
Compositional Verification of

Model-Level Refactorings Based On

Graph Transformations

Thesis submitted for the degree of

Doctor of Philosophy

at the University of Leicester

by

Dénes András Bisztray MSc

Department of Computer Science

University of Leicester

May 2009

Compositional Verification of Model-Level Refactorings Based On Graph
Transformations

Dénes András Bisztray

Abstract

With the success of model-driven development as well as component-based and
service-oriented systems, models of software architecture are key artifacts in the de-
velopment process. To adapt to changing requirements and improve internal software
quality such models have to evolve while preserving aspects of their behaviour. These
behaviour preserving developments are known as refactorings.

The verification of behaviour preservation requires formal semantics, which can
be defined by model transformation, e.g., using process algebras as semantic domain
for architectural models. Denotational semantics of programming languages are by
definition compositional. In order to enjoy a similar property in the case of model
transformations, every component of the source model should be distinguishable in the
target model and the mapping compatible with syntactic and semantic composition.

To avoid the costly verification of refactoring steps on large systems and create
refactoring patterns we present a general method based on compositional typed graph
transformations. This method allows us to extract a (usually much smaller) rule
from the transformation performed, verify this rule instead and use it as a refactoring
pattern in other scenarios.

The main result of the thesis shows that the verification of rules is indeed sufficient
to guarantee the desired semantic relation between source and target models. A for-
mal definition of compositionality for mappings from software models represented as
typed graphs to semantic domains is proposed. In order to guarantee compositional-
ity, a syntactic criterion has been established for the implementation of the mappings
by typed graph transformations with negative application conditions. We apply the
approach to the refactoring of architectural models based on UML component, struc-
ture, and activity diagrams with CSP as semantic domain.

Acknowledgements

Through the past three years, there were several people who influenced my work,

made my days in Leicester delightful and thus helped this thesis to be completed.

First of all, I learned from Reiko Heckel what research is about. His scientific

exactitude was a great inspiration to me. His work reminded me that theory and

practice should be always in balance. I am grateful for all his thorough help with

papers that made me realise the importance of good presentation. He was always

there when I got stuck, needed a discussion and helped me to bring my research on

course again. I thank Reiko for being my guide through the labyrinths of science.

I would probably have missed the opportunity to work with Reiko, had not Ti-

hamér Levendovszky drawn my attention to the SENSORIA scholarship. I thank

Tihamér for giving me the golden tip.

I gratefully acknowledge the financial support of project SENSORIA, IST-2005-

016004.

I would like to thank my examiners Gabriele Taentzer and José Luiz Fiadeiro for

their thorough and detailed review of this thesis. Their appreciated criticism enabled

its substantial improvement.

The collaboration with Hartmut Ehrig was invaluable. I am indebted to him for

his help with the proofs and contributed work. His ideas and remarks taught me a

great deal about the practical application of category theory.

The nicest experience in my research was the cooperation with Karsten Ehrig.

His constant smile and joyful demeanour made him a colleague to be missed, the

department felt empty after his leave. His unconditional help and instantaneous

response to remarks about EMT unburdened my implementation. I am grateful to

him for introducing me to the Eclipse world.

The time spent in the Computer Science Department has been great fun due to

my friendly colleagues. It has been a great pleasure to share an office with Mark

Parsons, João Abreu and Stephen Gorton. Although the days spent in G1 passed, I

still remember the bracing conversations and that fisherman statue. It was always a

pleasure to meet Artur Boronat, Stephan Reiff-Marganiec and Fer-Jan de Vries in the

department. Although not directly involved in my research, their friendly presence,

stimulating discussions and useful ideas improved my perception on computer science

and scientific work. I also thank Fer-Jan for proofreading the thesis and pointing out

the ambiguities.

I thank my friends Dave, Martin, Andrew, Keith, Geraldine, George and Annie

for all their help and the unforgettable conversations. I would also like to thank

Matt, Vreni and Lucy for the all the enjoyable climbing sessions in the Tower. They

brightened my days in Leicester.

Of course I thank my family for their support, their interest and for always being

there when I needed them most. I conclude with the most important of all. I would

like to give thanks to God for bringing all these people into my life and leading me

through these long years of PhD.

Contents

Introduction . 1

Chapter 1: Background . 9

1.1 Modelling and UML . 9

1.2 Model Transformations . 10

1.3 Design Patterns and Refactoring . 11

1.4 Graph Transformations . 14

1.4.1 Basic Concepts . 14

1.4.2 Double Pushout Approach . 16

1.5 Theory of Graph Transformations . 17

1.5.1 Concurrency . 18

1.5.2 Extension . 19

1.5.3 Confluence and Termination 21

1.6 Negative Application Conditions . 24

1.6.1 Concurrency with NACs . 26

1.6.2 Extension with NACs . 29

1.7 Model Transformation Approaches 29

1.7.1 Based On Algebraic Graph Transformations 30

1.7.2 Based on Triple Graph Grammars 30

Chapter 2: Related Work . 32

2.1 Verification of Graph and Model Transformations 32

2.2 Compositionality of Bidirectional Transformations 34

2.3 Refactoring . 35

2.3.1 Invariants and Empirical Evidence 36

2.3.2 Formal Behaviour . 40

2.3.3 Summary of Approaches . 44

Chapter 3: Modelling Architecture . 45

3.1 Metamodel . 46

3.2 Components . 48

3.3 Activities . 54

3.4 Composite Structures . 64

3.5 Diagrammatic Representation . 67

3.6 Differences to UML2 . 69

3.6.1 Component and Behaviour . 69

3.6.2 Semantics of SendSignalAction and

AcceptEventAction . 70

3.6.3 Composite Structures . 70

3.6.4 Inheritance Structure of Activities 71

3.6.5 OwnedInterface and Methods 71

Chapter 4: Semantic Domain . 76

4.1 Syntax . 76

4.2 CSP Metamodel . 79

4.3 Semantics . 86

4.3.1 Traces . 86

4.3.2 Divergences . 86

4.3.3 Failures . 87

4.3.4 Refinement Relations . 88

Chapter 5: Semantic Mapping . 89

5.1 Transformation Overview . 89

5.1.1 Transformation Mechanics . 89

5.1.2 Rule Design . 91

5.2 Type-Level Mapping . 92

5.2.1 Components and Port Declarations 92

5.2.2 Ports Connected to Interfaces 94

5.2.3 Interfaces . 95

5.3 Behavioural Mapping . 97

5.3.1 Basic Behavioural Elements 97

5.3.2 Communication Events . 98

5.3.3 Decision Node and Merge Node 100

5.3.4 Fork Node and Join Node . 101

5.3.5 Well-Structured Activity Diagrams 102

5.4 Instance-Level Mapping . 103

5.4.1 Component Objects . 103

5.4.2 Channels . 104

5.5 Renaming Rules . 104

Chapter 6: Verification of Refactoring Rules 107

6.1 Formalising Compositionality . 109

6.2 Semantic Mapping . 111

6.3 Correctness of Rule-level Verification 112

6.4 Basic Graph Transformations . 114

6.5 Graph Transformations with NACs 119

6.6 Compositionality of the Semantic Mapping 123

6.6.1 Local Confluence . 123

6.6.2 Constructiveness . 123

6.6.3 Context Preservation . 124

6.6.4 Termination . 126

6.6.5 Separability . 133

Chapter 7: Architectural Refactoring Patterns 135

7.1 Rule Extraction and Verification . 135

7.1.1 Extraction of Minimal Rule 138

7.1.2 Inclusion of Necessary Context 141

7.1.3 Architectural Refactoring . 143

7.2 Refactoring Patterns . 147

7.2.1 Example Refactoring Pattern 148

7.2.2 Difference from Extracted Rule 149

7.3 Tool Support . 151

7.3.1 Visual Editor . 151

7.3.2 Semantic Mapping . 153

7.3.3 Formal Verification . 153

Conclusion . 155

Appendix A: Basic Concepts of Category Theory 159

Bibliography . 163

Introduction

Let us start in medias res. In order to understand a problem, any kind of problem,

the four most important things we must know are [Kre02]:

1. that there is a problem to solve (motivation);

2. what the problem is exactly (scope and challenges);

3. the techniques or strategies involved in the solution (method), and

4. what steps have been taken to solve it (solution)

This chapter is organised by the above four-point checklist to show what this thesis

contains. After presenting the problem in nutshell, we outline the thesis structure.

Motivation

Nothing endures but change, as the philosopher says [Lae25]. As much as anywhere

else, this applies to the world of software. A software in constant use must continu-

ally evolve, otherwise it becomes progressively less satisfactory [Leh96]. In order to

improve the internal structure, performance, or scalability of software systems, such

changes may be required that preserve the observable behaviour of systems.

Let us present a simple motivational example for behaviour-preserving improve-

ments from everyday life. A user withdraws cash from an ATM with his cashcard.

When the amount is selected for withdrawal, the same amount is expected to be

dispensed in hard cash and subtracted from the corresponding account. The devel-

opment of ATMs has gone a long way since the invention of the PIN and cashcard in

1965; more advanced algorithms and networking protocols were introduced and the

overall architecture of the ATM was redesigned since then. However, no matter what

clever improvement the engineers may apply to the system, everyone still expects

that after selecting the £100 button, that amount is dispensed, and deducted from

the account balance.

Introduction 2

Behaviour is the total of events and actions that a system can perform and the

order in which they can be executed [Bae05]. As actions are the chosen unit of

observation, the observable or external aspect of the behaviour consist of actions

perceivable by the environment. While the design and structure of the ATM was

improved, its external behaviour — the dispensation of cash and deduction from the

balance — remained the same.

A development process that improves the internal structure of existing systems

without altering the external behaviour is called refactoring [FBB+99, NG03]. That

is, the requirement of behaviour preservation is the difference between generic software

development and refactoring.

Checking behaviour preservation of complex and large systems can be very costly,

while the actual refactoring might only affect a relatively small fragment of the overall

system. It would be advantageous if we could focus our verification on those parts

of the system that have been changed. The complexity of evolving software increases

unless work is done to maintain or reduce it. As already stated, refactoring is needed

to cope with increasing complexity. However, the functionality of software must be

continually increased to maintain user satisfaction over its lifetime [LRW+97]. Thus

refactoring is not a one-time activity; refactoring must be performed continually.

Refactoring activities are often recurring as well. Like design patterns, there are

common patterns of refactoring. Software companies, however, spend a lot of money

and effort in reinventing code and methods that have been previously developed

[THD03]. The possibility of extracting the changed parts of the system, and verifying

behaviour preservation enables the recognition of commonly recurring refactoring

problems. The recurring and verified refactorings should be generalised to enable

their use in various situations. Essentially, a method or definition is required to

create patterns analogous to the design patterns that describe generic refactorings

within one modelling language.

Scope and Challenges

Today, when applications tend to be distributed and service-oriented, the most im-

portant changes take place at the architectural level. We view software architecture

as defined in [GP95]: the structure of the components of a program/system, their

interrelationships, and principles and guidelines governing their design and evolution

over time. Even if the architectural changes are structural, they have to take into

account the behaviour encapsulated inside the components that are being replaced or

Introduction 3

reconnected. In analogy to the programming level we speak of architectural refactor-

ing if the behaviour of the software system expressed at the architecture level is due

to be preserved.

As software systems of today are inherently complex, an abstract representation

of their architecture is necessary. As models are offering an abstract view of a com-

plex system, they are ideal to represent software architecture. Thus, architectural

refactorings are addressed at the level of models. When refactoring is performed on

a system it is possible to identify those parts that have been changed. Our aim is to

verify the behaviour preservation of the changed parts of the system, that is, extract

these changed parts from the system to form standalone refactoring rules. Then,

the behaviour preservation of the refactoring for the whole system follows from the

behaviour preservation of the refactoring rule. We call this rule-level verification. To

harness these results, we would like to generalise recurring refactoring rules to create

refactoring patterns. In order to achieve these goals, the following steps need to be

taken:

1. To express redesign at the model-level, a modelling language is required captur-

ing the structural and behavioural aspects of the system described at the level

of architecture.

2. To verify behaviour preservation, the modelling language has to be provided

with formal notion of behaviour, i.e. semantics.

3. It is necessary to have a formal representation of the chosen modelling language,

the refactoring step and the semantic domain.

4. Based on the formal representation, a semantic mapping is required that maps

the modelling language onto the semantic domain. As rule-level verification can-

not be applied generally, conditions of compositionality have to be established

and satisfied by the semantic mapping.

5. A method of creating a refactoring rule is essential; techniques are required that

extract the changed parts of the system in such a way, that their application to

a different system guarantees behaviour preservation.

Method

Following the steps sketched in the previous section, let us discuss the techniques and

methods used.

Introduction 4

On the concrete level, as a modelling language we use combined structure modelling

language (CSML), a UML-based language, which provides the means to describe both

structure (by component and static structure diagrams) and behaviour (by activity

diagrams) of software systems [OMG06b].

The formal behaviour, or semantics of the relevant fragment of the architecture

is expressed in a denotational style using CSP [Hoa85] as a semantic domain. The

semantic relation of behaviour preservation can be expressed conveniently using one

of the refinement and equivalence relations on CSP processes. In our case study we use

trace refinement for its theoretical simplicity, but divergence and failure refinement

is equally suitable.

Architectural models and denotational semantics can be represented as instances

of metamodels with a mathematical model provided by type and instance graphs.

Thus, refactorings are described by graph transformations and a refactoring is a

graph transformation step from a source to a target model.

The semantic mapping, denoted by sem, from architectural models expressed in

CSML to CSP processes is defined by means of graph transformation rules.

Note that there are two distinct graph transformations as shown in Figure 1. The

refactoring is represented by a graph transformation step while the semantic map

is specified by a graph transformation consisting of multiple steps given by a graph

transformation system. Due to the mathematical formulation of our approach, the

concrete modelling language (e.g. CSML) and denotational semantics (e.g. CSP) can

be replaced by other, subject to certain requirements introduced later.

Figure 1: Overview of the transformations

Based on these ingredients, we can formalise the behaviour verification problem:

a model transformation M1 → M2 is behaviour-preserving if sem(M1) ℛ sem(M2)

where ℛ is the desired relation on the semantic domain. As mentioned, the larger

Introduction 5

M1 and M2 are, the more expensive the verification of relation ℛ is. Thus we focus

our verification on the changed parts of the model, i.e. verify the refactoring rules

rather than the actual steps.

A compositionality property for the semantic mapping is necessary to verify the

behaviour preservation at rule level. In general, compositionality is similar to the

property of denotational semantics. As for simple mathematical expressions, we as-

sume that the the meaning of expression 2 + 5 is determined by the meaning of 2, 5

and the + operator, i.e. [[2 + 5]] = [[2]]
⊕

[[5]].

Figure 2: Compositional semantic mapping

In terms of model transformations, a compositional semantic mapping is presented

in Figure 2. A system consisting of components A and B with a connector c is

mapped to a semantic domain through transformation sem. The result is a set of

semantic expressions where sem(A), sem(B) and sem(c) are distinguishable and their

composition is the semantics of the whole system.

Compositionality is an important property for denotational semantics and thus for

model transformations that establish a mapping between existing modelling artifacts

and their denotational semantics. Without compositionality the modular specification

and verification of model transformations would be impossible.

A typical semantic verification scenario is depicted in Figure 3. A modelling lan-

guage (ML) is mapped to a semantic domain (SD) and from the models, programming

language (PL) code is generated. To verify semantic consistency, semantics for the

programming language has to be defined typically through a mapping PL → SD.

The generated source code is semantically correct if the triangle commutes. Although

the different model instances are numerous, they are composed from the basic ele-

BE ⊆
))

##

ML //

��

=
PL

||xxxxxxxx

SD

Figure 3: Semantic verification

Introduction 6

ments (BE) of the modelling language. In case of compositional transformations, the

mapping can be described in terms of the basic building blocks, enabling the modular

verification of various semantic properties.

Architectural refactorings at the model-level are unlikely to be created directly

from semantics-preserving rules. Existing rule catalogues focus on object-oriented

systems and are effectively liftings to the model level of refactoring rules for OO

programs. Rather, an engineer using a modelling tool performs a manual model

transformation M1 →M2 from which a verifiable refactoring rule has to be extracted

first. In this we follow the idea of model transformation by example [Var06] where

model transformation rules expressed as graph transformations are derived from sam-

ple transformations.

Solution

The semantic mapping was implemented using the Tiger EMF Transformer [Tig07]

tool. It was designed to fulfill the compositionality conditions and thus enable the

behavioural verification of rules. The reason for such a property to work is twofold.

On one hand, the various equivalence and refinement notions in CSP are closed under

context. This means that a relation between two sets of CSP expressions will hold also

after embedding both of them into the same context (i.e. into the same set of CSP

expressions). On the other hand, a graph production rule changes only a subset of

nodes in a graph; the context (i.e. the unchanged nodes of the initial graph) remains

the same. These two observations enabled the definition and implementation of a

compositional mapping. Compositionality provides the preservation of closure under

context for the semantic mapping.

We have shown formally that the verification of refactoring rules, rather than

steps, is possible: assuming a refactoring G =⇒ H, via the graph transformation

rule p : L→ R, if the relation ℛ holds for sem(L) ℛ sem(R) then sem(G) ℛ sem(H)

also holds. To make it feasible, we defined the notion of compositionality for any

total functions between sets of graphs (representing models) defined by graph trans-

formations. Conditions are provided and proved that guarantee compositionality for

simple graph transformations and graph transformations with negative application

conditions.

Extracting the refactoring rule is not necessarily obvious; there can be complicated

refactorings that span change on the behaviour of multiple components. To determine

the mechanics of producing a rule, we performed extractions on proven and successful

Introduction 7

refactorings. In general, for a transformation G =⇒ H with sem(G) ℛ sem(H), we

extract the smallest rule such that:

1. when applying it on G at the appropriate match, the transformation step pro-

duces H

2. sem(L) ℛ sem(R), i.e. the semantic relation ℛ holds also at rule-level.

The rule extraction consists of two steps. In the first step, the difference between

G and H is extracted, to form a minimal production rule which is shown to fulfill

requirement 1. As the minimal rule may represent a semantically incomplete part

of the domain, a necessary context needs to be added to fulfill requirement 2. Both

the difference extraction and context determination is performed interactively by the

refactoring developer.

Publications

The contributions of this thesis extend and generalise material published in several

research papers. The original idea of rule-level verification of business processes (rep-

resented as activity diagrams) was published in [BH07]. The problem statement

and implementation idea of the semantic mapping as a graph transformations sys-

tem based on triple graph grammars were published in [VAB+08]. In [BHE08] our

complete approach has been summarised: the modelling domain was extended from

business processes to architectural models and the correctness of rule-level verifica-

tion was formalised and proven. The implementation of the semantic mapping was

elaborated in [DB08] with the concept of triple graph grammars dropped due to per-

formance issues. The problems of rule extraction and tool support were published in

[Bis08] and elaborated in [BHE09c]. The concept of compositionality and the related

theorems were published in [BHE09b, BHE09a].

Outline

After this short introduction to the topic, let us present the structure of the thesis.

It consists of two main parts: the first two chapters present the context of the thesis,

while the next five introduce the main contributions. The last chapter concludes the

thesis.

Introduction 8

Chapter 1 introduces theories and practices that our contributions are based on

or use directly. It starts with models and model transformations in general. Then

it elaborates on graphs, graph transformation theory and negative application condi-

tions. Approaches of graph based model transformations finish the chapter.

In Chapter 2 the work related but not directly connected to our contributions is

discussed. First, the verification methods of temporal properties are presented that

deals with model and graph transformations. Then we proceed to bidirectional trans-

formations. The next section presents a short taxonomy of refactoring approaches.

Finally, we position our work by discussing the related approaches themselves

The next three chapters present an elaborate case study for the theoretical con-

tributions: a compositional semantic mapping between a modelling language and

semantic domain. In Chapter 3 the source language of the transformation is intro-

duced: combined structure modelling language (CSML), a UML-based language for

software architecture modelling. It uses the UML component, composite structure

and activity diagrams combined in a common metamodel. Chapter 4 deals with CSP,

the chosen semantic domain and target language of the transformation. Both the

term and graph-based representation is introduced with examples of the correspon-

dence between the two. And finally Chapter 5 presents the semantic mapping itself

with its working mechanics elaborated.

The main theoretical contributions are detailed in Chapter 6. The concept of

compositionality is formalised, the correctness of rule-level verification is proven. The

compositionality theorem is established and proved. Conditions are provided for

compositionality for semantic mappings implemented as graph transformations.

Chapter 7 completes the circle. It applies the theory to the practice: the theo-

retical results of rule-level verification are used on the architectural domain. First,

the rule-level verification based on the approach of rule extraction by example is pre-

sented. Then the generalisation of extracted rules is discussed aiming for the creation

of refactoring patterns.

Chapter 1

Background

This chapter is an introduction to the theoretical background of our research. It starts

with the general concept of modelling in Section 1.1, and model transformations in

Section 1.2. Section 1.4 presents the fundamental definitions of graph transforma-

tions, while the advanced theory is introduced in Section 1.5. The graph transforma-

tion theory is extended to accommodate negative application conditions in Section 1.6.

Finally in Section 1.7, the two relevant graph-based model-transformation approaches

are introduced.

1.1 Modelling and UML

A model is a simplified abstract view of the complex reality. Using models to describe

increasingly complicated software systems is particularly useful. Models provide ab-

stractions, which allow developers to focus on the relevant properties of the system,

and ignore unnecessary complications [MM03]. We use the notion of model as ”a

description of a system written in a well-defined language. A well-defined language is

a language with well defined form (syntax) and meaning (semantics), which is suit-

able for automated interpretation by a computer” [KWB03]. A model has an abstract

and a concrete syntax. The abstract syntax is often defined in terms of a metamodel,

which is an explicit model of the constructs and well-formedness rules needed to build

specific models within a domain of interest. The concrete syntax is the (graphical or

textual) representation of the model.

Although it would be ideal to represent the system with one concise model, a

system description requires multiple views : each view represents a projection of the

complete system that shows a particular aspect. A view requires a number of di-

agrams that visualise the information of that particular aspect of the system. The

1.2. Model Transformations 10

concepts used in the diagrams are model elements that represent common object-

oriented concepts such as classes, objects and messages, and their relationships, in-

cluding associations, dependencies and generalisation. These are the basic elements

for modelling an object-oriented software system. A model element is used in several

different diagrams, but it always has the same meaning and symbol [EPLF03].

Unified Modelling Language (UML) [OMG06b] is a modelling language with well-

defined abstract syntax used to specify, visualise, construct and document the arti-

facts of an object-oriented software-intensive system under development [oC02]. The

abstract syntax of the UML is described with metamodels. The UML metamodel is

a model that defines the characteristics of each UML model element, and its rela-

tionships to other model elements. The metamodel is defined using an elementary

subset of UML, and is supplemented by a set of formal constraints written in the

Object Constraint Language (OCL) [OMG06a, Sel05]. This combination (constructs

and rules) represents a formal specification of the abstract syntax of UML that is

used to represent UML models.

1.2 Model Transformations

The significance of model transformations can be understood from the perspective

outlook of model-driven architecture. The original drive behind model transformation

was the mapping of a platform independent model (PIM) to a platform specific model

(PSM). The software architect builds the PIM, which does not contain the details of a

specific platform. The PSM enables the implementation of the system with the desired

architecture. There can be several target architectures, and thus several PSMs. The

mapping provides specifications for the transformation of a PIM into a PSM [MM03].

A typical example of such a transformation is transforming an UML-based PIM to

Enterprise Java Beans (EJB) [Sun09] models.

As mentioned, it is possible to have several modelling perspectives or views of the

system. Depending on relevance, usually one view is highlighted. It is often necessary

to convert to different views of the system at an equivalent level of abstraction, or in

other cases to convert models of one perspective from one abstraction level to another

[Ala04]. Model transformations facilitate achieving these goals.

A generic definition of a rule-based model transformation is given by [KWB03]:

the automatic generation of a target model from a source model according to a trans-

formation definition. A transformation definition is a set of transformation rules that

together describe how a model in the source language can be transformed into a model

1.3. Design Patterns and Refactoring 11

in the target language. A transformation rule is a description of how one or more

constructs in the source language can be transformed into one or more constructs in

the target language.

We classify model transformation based on [MCvG05] into the following categories:

∙ Endogenous and Exogenous transformations. The distinction is based on the

language in which the source and target models of a transformation are ex-

pressed. Endogenous transformations use the same language, while exogenous

transformations transform between different languages or different models of

the same language.

∙ Horizonal and Vertical transformation. The distinction is based on the ab-

straction level in which the source and target models are. A transformation

is horizontal if both models are at the same abstraction level, while vertical

transformations transform between different level of abstraction.

To apply these definitions, we position our transformations introduced eariler. The

semantic mapping is an exogenous and horizontal transformation, as it transforms

between different languages but same abstraction level. The refactoring step is an

endogenous and horizontal transformation. It transforms within the same modelling

language and abstraction level.

1.3 Design Patterns and Refactoring

The notions of refactoring and refactoring patterns are introduced in this section.

Because of the similarity to design patterns, the differences and commonalities of

these concepts are explained.

In the area of software maintenance, there are three related concepts: restructur-

ing, reengineering and refactoring. To ensure clarity we present their definition and

relation to each other.

The most general and high-level concept of these three is the reengineering [DDN08].

Reengineering, as defined in [CCI90] is ”the examination and alteration of a subject

system to reconstitute it in a new form and the subsequent implementation of the

new form.”. Reengineering is concerned with the creation of a well-structured system

from legacy or deteriorated code [FR98]. As shown in Figure 1.1, reengineering may

contain restructuring and refactoring.

The explicit requirement of behaviour preservation emerged with the concept of

restructuring [Arn86, GN93]. The precise definition of restructuring according to

1.3. Design Patterns and Refactoring 12

Figure 1.1: Overview of reengineering

[CCI90] is ”the transformation from one representation form to another at the same

relative abstraction level, while preserving the subject system’s external behaviour

(functionality and semantics). A restructuring transformation is often one of ap-

pearance, such as altering code to improve its structure in the traditional sense of

structured design. While restructuring creates new versions that implement or pro-

pose change to the subject system, it does not normally involve modifications because

of new requirements. However, it may lead to better observations of the subject sys-

tem that suggest changes that would improve aspects of the system.” As shown in

Figure 1.1, reengineering is dealing with code structure views, which are implementa-

tion level models of the system. The slight difference between the original definition

of refactoring and restructuring apart from the programming paradigm, is the level

of its application.

The word refactoring was first used in [Opd92], where it meant an object-oriented

version of restructuring. In [FBB+99], refactoring is defined as ”the process of chang-

ing a [object oriented] software system in such a way that it does not alter the external

behaviour of the code, yet it improves its internal structure”. The main idea of refac-

toring is to redistribute classes, variables and methods across the class hierarchy in

order to facilitate future adaptations and extensions [FBB+99]. Although being the

narrowest in its original meaning, the notion of refactoring (verb) is now used as a

generic term for behaviour preserving transformation of an arbitrary software arti-

fact. When refactoring, developers no longer concern with adding functionality to

the system. Thus a refactoring (noun) means a single technique or procedure that

improves the design of existing software systems [NG03].

To understand what is a refactoring pattern, we elaborate on the concept of design

1.3. Design Patterns and Refactoring 13

patterns. Design patterns are elegant problem-solution pairs that codify exemplary,

tried-and tested design principles to commonly occurring problems in software engi-

neering [GHJV94, NG03]. A design pattern usually consists of four essential elements

[GHJV94]:

∙ The pattern name is used as a handle to describe a design problem, its solutions,

and consequences in a couple of words.

∙ The problem describes when to apply the pattern. It explains the problem and

its context.

∙ The solution describes the elements that make up the design, their relation-

ships, responsibilities, and collaborations. It is not a concrete implementation,

but rather an abstract description of a design problem and how a general ar-

rangement of elements solves it.

∙ The consequences are the results and trade-offs of applying the pattern.

The idea of refactoring pattern is the coupling of refactoring and design patterns :

classic solutions to recurring design problems of existing code [Ker04].

The main difference between them is their application: design patterns are used

during the design process of the application while refactoring is done during mainte-

nance. Design patterns loosen the binding between program components thus creating

a flexible design. Such a flexible and elegant design enables later program evolution

with minimal change. However, there are some problems that may arise:

∙ The design process must undergo a couple of iterations to make good use of

design patterns. Often, there is no time for creating flexible design.

∙ The program can be prepared for changes that can be foreseen. Although the

good use of design patterns make a program as generic as possible, it is possible

that the required flexibility is not present in all parts of the software.

This required flexibility or design excellence can be introduced later by applying

refactoring patterns to the application.

In refactoring pattern description, the problem statement is always a description

of a class or object structure that is symptomatic of inflexible design [GHJV94].

This relatively concrete and precise problem statement enables the implementation

of refactoring patterns [Ecl09, VS09] in software development environments. There

1.4. Graph Transformations 14

are also approaches that aim to automate the application of refactoring patterns as

detailed in Section 2.3.

Ideas and design principles found in design patterns and refactoring patterns are

often interchangeable. It is possible that a refactoring pattern leads to a design

pattern and vice verse.

The difference between a refactoring (or a refactoring step) and a refactoring

pattern is the generality and level of documentation. While a refactoring is a solution

to a single problem, the refactoring pattern (like the design pattern) is generic and

well documented. A refactoring can be the application of a refactoring pattern.

The difference between a refactoring pattern and refactoring rule is often blurred.

In our understanding, the difference is the level of formalisation: a refactoring rule is

such a pattern that is implemented in a tool or formalised with mathematical means.

1.4 Graph Transformations

In this section the fundamental concepts of graphs and graph transformations are

introduced.

1.4.1 Basic Concepts

First we present the definitions of graphs, typed graphs and typed graph morphisms

for clarity.

Definition 1.4.1. (Graph and Graph Morphism [Ehr87]) A graph G = (V,E, s, t)

consists of a set V of nodes (also called vertices), a set E of edges, and two functions

s, t : E → V , the source and target functions:

E
s ++
t

33 V

Given graphs G1, G2 with Gi = (Vi, Ei, si, ti) for i = 1, 2, a graph morphism

f : G1 → G2, f = (fV , fE) consists of two functions fV : V1 → V2 and fE : E1 → E2

that preserve the source and target functions, i.e. fV ∘s1 = s2∘fE and fV ∘t1 = t2∘fE.

E1

fE
��

s1 ++
t1

33

=

V1

fV
��

E2
s2 ++
t2

33 V2

A graph morphism f is injective (resp. surjective) if both functions fV , fE are

1.4. Graph Transformations 15

injective (or surjective, respectively); f is called isomorphic if it is bijective, that is

both injective and surjective.

In this algebraic representation, a graph is considered as a two sorted algebra

where the sets of vertices V and edges E are the carriers, while the source s : E → V

and target t : E → V are two unary operators [CMR+97].

The composition property of graph morphisms is one of the necessary ingredients

to show that graphs form a category (Def. A.1.1).

Fact 1.4.1. (Composition of Graph Morphisms [Ehr87]) Given two graph mor-

phisms f = (fV , fE) : G1 → G2 and g = (gV , gE) : G2 → G3, the composition

g ∘ f = (gV ∘ fV , gE ∘ fE) : G1 → G3 is again a graph morphism.

As mentioned in Section 1.1, a metamodel is an explicit model with set of well-

formedness rules. The model part can be conveniently expressed as a type graph. A

typed graph consists of a graph and a corresponding type graph. The type graph

defines a set of types that are assigned to the nodes and edges of the graph by a

typing morphism.

Definition 1.4.2. (Typed Graph [Ehr87]) A type graph is a distinguished graph

TG = (VTG, ETG, sTG, tTG) where VTG and ETG are called the vertex and edge type

alphabets, respectively.

A tuple (G, type) of a graph G together with a graph morphism type : G→ TG is

called a typed graph over TG.

Definition 1.4.3. (Typed Graph Morphism) Given typed graphs GT
1 = (G1, type1)

and GT
2 = (G2, type2), a typed graph morphism f : GT

1 → GT
2 is a graph morphism

f : G1 → G2 such that type2 ∘ f = type1.

G1 f //

type1
DDD

!!DDD
=

G2

type2
zzz

}}zzz

TG

In order to use categorical constructs on graphs, it is necessary to show that graphs

form a category.

Corollary 1.4.1. (Category of Graphs [Mar96])

∙ The class of all graphs (as defined in Definition 1.4.1) as objects and of all

graph morphisms (see Definition 1.4.1) forms the category Graphs, with the

composition given in Fact 1.4.1, and the identities are the pairwise identities on

nodes and edges.

1.4. Graph Transformations 16

∙ Given a type graph TG, typed graphs over TG and typed graph morphisms (see

Definition 1.4.3) form the category GraphsTG.

1.4.2 Double Pushout Approach

The core of a graph transformation is a graph production p : L → R consisting of a

pair of graphs L and R. L is called the left-hand side graph (LHS) and R is called

the right-hand side graph (RHS). Applying rule p to a source graph means finding

a match of L in the source graph and replacing it with R, thus creating the target

graph. The technical difficulty is in performing this operation.

In the DPO approach, a graph K is used. K is the common interface of L and R,

i.e. their intersection. Hence, a rule is given by a span p : L← K → R.

Definition 1.4.4. (Graph Production [CMR+97]) A (typed) graph production

p = (L
l←− K

r−→ R) consists of (typed) graphs L,K,R, called the left-hand side,

gluing graph (or interface graph) and the right-hand side respectively, and two injective

(typed) graph morphisms l and r.

Given a (typed) graph production p, the inverse production is defined by p−1 =

R
r←− K

l−→ L.

A graph transformation starts by finding a match m of L in the source graph G.

Then, the vertices and edges of L∖ l(K) are removed from G. Similar to the rule-level

interface graph K, an intermediate graph D is created, D = (G∖m(L)∪ l(K)). Since

D has to be a graph, no dangling edges are allowed. To ensure this, G has to be the

gluing of m(L∖ l(K)) and D, that is a pushout complement (Def. A.1.2). To produce

the target graph H, graph D has to be glued together with R ∖ l(K).

Definition 1.4.5. (Graph Transformation [CMR+97]) Given a (typed) graph

production p = (L
l←− K

r−→ R) and a (typed) graph G with a (typed) graph morphism

m : L→ G, called the match, a direct (typed) graph transformation G
p,m⇒ H from G

to a (typed) graph H is given by the following double-pushout (DPO) diagram, where

(1) and (2) are pushouts in the category Graphs (or GraphsTG respectively):

L

m

��
(1)

K

(2)

loo r //

k
��

R

n

��
G Dfoo g // H

A sequence G0 ⇒ G1 ⇒ ...⇒ Gn of direct (typed) graph transformations is called

a (typed) graph transformation and is denoted by G0
∗⇒ Gn. For n = 0, we have

1.5. Theory of Graph Transformations 17

the identity (typed) graph transformation G0
id⇒ G0. Moreover, for n = 0 we allow

also graph isomorphisms G0
∼= G′0, because pushouts and hence also direct graph

transformations are only unique up to isomorphism.

The gluing condition is a constructive approach to formulate a syntactic criterion

for the applicability of a (typed) graph production.

Definition 1.4.6. (Gluing Condition [CMR+97]) Given a (typed) graph produc-

tion p = (L
l←− K

r−→ R), a (typed) graph G, and a match m : L → G with

X = (VX , EX , sX , tX) for all X ∈ L,K,R,G, we define:

∙ The gluing points GP are those nodes and edges in L that are not deleted by p,

i.e. GP = lV (VK) ∪ lE(EK) = l(K).

∙ The identification points IP are those nodes and edges in L that are identified

by m, i.e. IP = {v ∈ VL ∣ ∃w ∈ VL, w ∕= v : mV (v) = mV (w)}∪{e ∈ EL ∣ ∃f ∈
EL, f ∕= e : mE(e) = mE(f)}.

∙ The dangling points DP are those nodes in L whose image under m are the

source or target of an edge in G that does not belong to m(L), i.e. DP = {v ∈
VL ∣ ∃e ∈ EG ∖mE(EL) : sG(e) = mV (v) or tG(e) = mV (v)}.

Production p with match m satisfy the gluing condition if all identification points

and all dangling points are also gluing points, ie.e IP ∪DP ⊆ GP .

A graph transformation is a sequence of productions applied to a graph. A set

of production rules that may applied to a graph is defined as a graph transformation

system. A graph grammar is basically a graph transformation system with a fixed

start graph.

Definition 1.4.7. (GT System, Graph Grammar [CMR+97]) A typed graph

transformation system GTS = (TG, P) consists of a type graph TG and a set of typed

graph productions P .

A typed graph grammar GG = (GTS, S) consists of a typed graph transformation

system GTS and a typed start graph S.

We may use the abbreviation GT system for typed graph transformation system.

1.5 Theory of Graph Transformations

Following the DPO approach, we introduce the advanced concepts that are essential

to the contributions presented. The four most important concepts are concurrency,

1.5. Theory of Graph Transformations 18

extension, confluence and termination. Concurrency enables the execution of two

sequentially dependent productions via a concurrent production. Extension analyses

the problem of extending a graph transformation to a larger graph. Termination and

confluence together provide a graph transformation system functional behaviour.

1.5.1 Concurrency

A concurrent graph transformation is basically the sequential merge of a production

rule sequence. Given a sequence of graph transformations G
p1⇒ H1

p2⇒ G′ we construct

a so-called E -concurrent production p1∗E p2 such that G
p1∗Ep2⇒ G′. This E -concurrent

rule is created with an epimorphic overlap graph E that is a subgraph of H1. E is

created through a jointly surjective morphism pair (e1 : R1 → E, e2 : L2 → E).

Definition 1.5.1. (Jointly Surjective Morphism Pair) A pair of morphisms

f1 : A → E and f2 : B → E in an arbitrary category is jointly surjective, if for all

e ∈ E there exists either an a ∈ A for which e = f1(a) or a b ∈ B for which e = f2(b).

Definition 1.5.2. (E-dependency Relation and E-concurrent Production

and Transformation [EEPT06]) Given two productions p1 and p2 with pi = (Ll
li←−

Ki
ri−→ Ri) for i = 1, 2, an object E with morphisms e1 : R1 → E and e2 : L2 → E is

an E-dependency relation for p1 and p2 if (e1, e2) is jointly surjective and the pushout

complements (1) and (2) over K1
r1−→ R1

e1−→ E and K2
l2−→ L2

e2−→ E exist:

L1

��
(3)

K1l1oo r1 //

��
(1)

R1

e1
AAA

 AAAA

L2

e2
~~~

~~~~~~

K2

(2)

l2oo r2 //

��

R2

��
(4)

L C1loo // E C2
oo r // R

K

k1QQQQQQQ

hhQQQQQQQ
k2nnnnnnn

66nnnnnnn(5)

Given an E-dependency relation with jointly surjective (e1, e2) for the productions

p1 and p2. The E-concurrent production p1 ∗E p2 is defined by p1 ∗E p2 = (L
l∘k1←−−

K
r∘k2−−→ R) as shown in the above diagram, where (3) and (4) are pushouts and (5) is

a pullback.

A transformation sequence G
p1,m1⇒ H1

p2,m2⇒ G′ is called E-related if there exists

ℎ : E → H1 with ℎ ∘ e1 = n1 and ℎ ∘ e2 = m2 and there are morphisms c1 : C1 → D1

and c2 : C2 → D2 such that (6) and (7) commute and (8) and (9) are pushouts:

1.5. Theory of Graph Transformations 19

L1

m1

��

K1l1oo r1 //

!!BBBBBBBB

��

R1

n1

111111111

��1
11111

e1
BBB

 BBBB

L2

e2
|||

~~||||

m2

��

K2l2oo r2 //

~~||||||||

��

R2

n2

��

C1

(8)

(6) //

c1
|||

}}|||

E

ℎ
��

C2

(9)

(7)oo

c2
BBB

 BBB

G D1
oo // H1 D2

oo // G′

If the E -dependency relation exists, the following theorem shows that not only it

is possible to construct a direct graph transformation from two sequential productions

p1 and p2 via the E -concurrent rule p1∗Ep2, but also to sequentialise this E -concurrent

production.

Theorem 1.5.1. (Concurrency Theorem [EEPT06]) Given two (typed) graph

productions p1 and p2 and an E-concurrent (typed) graph production p1 ∗E p2, we

have:

1. Synthesis. Given an E-related transformation sequence G ⇒ H ⇒ G′ via p1

and p2, then there is a synthesis construction leading to a direct transformation

G⇒ G′ via p1 ∗E p2.

2. Analysis. Given a direct transformation G ⇒ G′ via p1 ∗E p2, then there is

an analysis construction leading to an E-related transformation sequence G ⇒
H ⇒ G′ via p1 and p2

3. Bijective correspondence. The synthesis and analysis constructions are inverse

to each other up to isomorphism, provided that every (e1, e2) is a jointly surjec-

tive pair:

G p1 +3

p1∗Ep2
VVVVVVVVVVVV

VVVVVVVVVVVV

'/VVVVVVVVVVV

VVVVVVVVVVV

H

p2
NNNNNN

NNNNNN

"*NNNNN
NNNNN

G′

1.5.2 Extension

Extension is useful, when there is a larger graph, however the graph transformation

changes only a small part of it. We assume two graphs G′0, the large graph, and G0

the small subgraph connected via an extension morphism k0 : G0 → G′0. A graph

transformation G0
∗⇒ Gn is then extended to G′0

∗⇒ G′n with same rules applied in

the same order. This extension is obtained through an extension diagram.

1.5. Theory of Graph Transformations 20

Definition 1.5.3. (Extension Diagram [EEPT06]) An extension diagram is a

diagram (1), as shown below,

G0

(1)k0
��

t
∗ +3 Gn

kn
��

G′0 t′
∗ +3 G′n

where k0 : G0 → G′0 is a morphism, called extension morphism, and t : G0
∗⇒ Gn

and t′ : G′0
∗⇒ G′nare transformations via the same productions (p0, ..., pn−1) and

matches (m0, ...,mn−1) and (k0 ∘m0, ..., kn−1 ∘mn−1) respectively, defined by the fol-

lowing DPO diagrams:

pi: Li

mi

��

Kilioo ri //

ji
��

Ri

ni

��
Gi

ki
��

Difioo gi //

di
��

Gi+1

ki+1
��

G′i D′if ′i
oo g′i

// G′i+1

(i = 0, ..., n− 1), n > 0

In order to formulate Definition 1.5.5, we have to introduce the concept of a derived

span. The derived span is intuitively a generic interface graph construction. Given a

graph transformation t : G0 ⇒ Gn the derived span is der(t) = (G0 ← D → Gn).

Definition 1.5.4. (Derived Span [EEPT06]) The derived span of an identity

transformation t : G
id⇒ D is defined by der(t) = (G ← G → G) with identity

morphisms.

The derived span of a direct transformation G
p,m⇒ H is the span (G← D → H).

For a transformation t : G0
∗⇒ Gn ⇒ Gn+1, the derived span is the composition

via pullback (PB) of the derived spans der(G0
∗⇒ Gn) = (G0

d0←− D′
d1−→ Gn) and

der(Gn ⇒ Gn+1) = (Gn
fn←− Dn

gn−→ Gn+1) this construction leads to the derived span

der(t) = (G0
d0∘d2←−−− D

gn∘d3−−−→ Gn+1):

G0 D′d0oo d1 // Gn Dnfnoo gn // Gn+1

D

d2BBB

aaBBB
d3{{{

=={{{
(PB)

The construction of the extension diagram is not always possible. We need to

formulate a consistency condition. The boundary graph B of an initial pushout

1.5. Theory of Graph Transformations 21

(Def. A.1.4) is the smallest subgraph of G0 that contains the identification and dan-

gling points (Def. 1.4.6) of k0 : G0 → G′0. If this graph is preserved by the transfor-

mation, the extension diagram exists.

Definition 1.5.5. (Boundary Consistency [EEPT06]) Given a transformation

t : G0
∗⇒ Gn with derived span der(t) = (G0

d0←− D
dn−→ Gn), a morphism k0 : G0 → G′0

is called boundary consistent with respect to t if there exist an initial pushout (1) over

k0 and an injective morphism b with d0 ∘ b = b0:

B

��
(1)

b ((
b // G0

k0
��

Dd0oo dn // Gn

C // G′0

The following theorem shows that boundary consistency is sufficient for the exis-

tence of the extension diagram.

Theorem 1.5.2. (Embedding Theorem [EEPT06]) Given a transformation t :

G0
∗⇒ Gn and a morphism k0 : G0 → G′0 which is consistent with respect to t, then

there is an extension diagram over t and k0.

1.5.3 Confluence and Termination

The concept of confluence originates from term-rewriting systems describing that

although terms can be rewritten in different ways, the result remains the same. As

it is important to know whether a graph transformation system shows a functional

behaviour (i.e. it terminates and provides unique result for isomorphic source models),

the concept of confluence has been transferred to term graphs [Plu99], hyper graphs

[Plu93] and typed graphs as well [HKT02a].

Definition 1.5.6. (Confluence and Local Confluence [HKT02b]) A graph trans-

formation system is confluent if for all graph transformations H1
∗⇐ G

∗⇒ H2 there

is a graph X together with transformation sequences H1
∗⇒ X and H2

∗⇒ X.

G
∗

z� |||||||

|||||||
∗

�$
BBBBBBB

BBBBBBB

H1

∗
�$

BBBBBBB

BBBBBBB
H2

∗
z� |||||||

|||||||

X

1.5. Theory of Graph Transformations 22

A graph transformation system is locally confluent if this property holds for each

pair of direct graph transformations. The system is confluent if this holds for all

pairs of transformations.

Termination is a simple, yet important property of graph transformation systems.

A graph transformation G
∗⇒ H is called terminating if no graph production rule in

the GTS is applicable to H any more.

Definition 1.5.7. (Termination [EEPT06]) A graph transformation system is

terminating, if there is no infinite sequence of graph transformations (tn : H
n⇒

Hn)n∈ℕ with tn+1 = G
tn⇒ Gn ⇒ Gn+1 [EEPT06].

Termination and local confluence together ensures the functional behaviour of a

graph transformations system.

Theorem 1.5.3. (Functional Behaviour of GT Systems [EEPT06]) Given a

terminating and locally confluent graph transformation system GTS, then GTS has

a functional behaviour in the following sense:

1. For each graph G, there is a graph H together with a terminating graph trans-

formation G
∗⇒ H in GTS, and H is unique up to isomorphism.

2. Each pair of graph transformations G
∗⇒ H1 and G

∗⇒ H2 can be extended to

terminating graph transformations G
∗⇒ H1∗⇒H and G

∗⇒ H2∗⇒H with the

same graph H.

In the following we present the necessary definitions to prove local confluence and

termination.

Confluence can be shown by using the concept of critical pairs. Critical pairs which

can be detected and analysed statically, represent potential conflicts in a minimal

context [HKT02b]. Given a GTS = (TG, P) and a graph G, there can be several rules

in P applicable to G. Given two rules p1 : L1
l1← K1

r1→ R1 and p2 : L2
l2← K2

r2→ R2

applicable to G via matches m1 and m2. There is no conflict if, after applying any

of them, the other one is still applicable, i.e. the direct graph transformation defined

by the former does not disable the application of the latter.

Definition 1.5.8. (Parallel Independence and Conflict [EEPT06])

Two direct graph transformations G
p1,m1⇒ H1 and G

p2,m2⇒ H2 are parallel indepen-

dent of all nodes and edges in the intersection of the two matches are gluing items

with respect to both transformations, i.e.

m1(L1) ∩m2(L2) ⊆ m1(l1(K1)) ∩m2(l2(K2)).

1.5. Theory of Graph Transformations 23

Two direct graph transformations G
p1,m1⇒ H1 and G

p2,m2⇒ H2 are in conflict if they

are not parallel independent. This type of conflict is called delete-use conflict.

A critical pair characterises the conflict situation in a minimal context.

Definition 1.5.9. (Critical Pair [EEPT06]) A critical pair for the pair of rules

(p1, p2) is a pair of direct graph transformations P1
p1,o1⇐ K

p2,o2⇒ P2 in conflict, such

that o1 and o2 are jointly surjective morphisms.

The context is minimal, because o1 and o2 are required to be jointly surjective

morphism. This means that each item in K has a preimage in L1 or L2, thus K can

be considered as a suitable gluing of L1 and L2.

If GTS does not contain critical pairs, it is locally confluent. A working imple-

mentation for checking critical pairs can be found in the Attributed Graph Grammar

System (AGG) [AGG07].

Although termination is generally undecidable, special criteria were introduced

in [EEdL+05, LPE07] and an implementation for termination checking is also built

into AGG [BKPPT05]. Unfortunately these criteria are not applicable in our case

(Sec. 6.6.4) we present the necessary definitions from [EEdL+05] that helps us proving

termination.

The notion of essential match deals with the possible re-application of a production

to the similar match.

Definition 1.5.10. (Tracking Morphism and Essential Match [EEdL+05])

Given a (typed) graph grammar with injective matches. A production p given by an

injective morphism r : L → R and injective match m : L → G leading to a direct

transformation G
p,m⇒ H via (p,m) defined by the pushout (1) of r and m. The

morphism d : G→ H is called tracking morphism of G
p,m⇒ H:

L r //

m

��
(1)

R

m∗

��
G d // H

L

m0
{{{{

}}{{{ m1

��
G0 d1 // H0

Since both r and m is injective, the pushout properties of (1) imply that also d and

m∗ are injective.

Given a transformation G0
∗⇒ H1, i.e. a sequence of direct transformations with

an induced injective tracking morphism d1 : G0 → H1, a match m1 : L→ H1 of L in

H1 has an essential match m0 : L → G0 of L in G0 if we have d1 ∘m = m1. Note

that if the transformation is nondeleting, there is at most one essential match m0 for

m1, because d1 is injective.

1.6. Negative Application Conditions 24

A non-deleting rule is self-disabling if it has a NAC that prohibits the existence

of the same pattern that the rule creates.

Definition 1.5.11. (Self-Disabling Production) Given a production rule p by

r : L → R with NAC n : L → N . NAC(n) is self-disabling if there is an injective

n′ : N → R such that n′ ∘ n = r. A production is self-disabling if it is nondeleting

and has a self-disabling NAC.

The following lemma establishes that a self-disabling production cannot be applied

on the same match again, and extends it to graph transformations that consists of

only self-disabling rules.

Lemma 1.5.1. (Essential Match Applicability [EEdL+05]) In every transfor-

mation starting from G0 of a nondeleting (typed) graph grammar GG = (TG, P,G0)

with injective matches and self-disabling productions, each production p ∈ P with

r : L → R can be applied at most once with the same essential match m0 : L → G0

where m ∣= NAC(n).

1.6 Negative Application Conditions

This section extends the previous theory of graph transformations to facilitate Neg-

ative Application Conditions (NACs) allowing control over the applicability of rules.

A NAC is connected to either the LHS or RHS of a production rule forming a pre or

postcondition on the rule. If this pattern is found in the corresponding host graph,

the production cannot be applied. We use NACs extensively both in our theoretical

contributions and implementation.

Definition 1.6.1. (Negative Application Condition [EEPT06]) A negative ap-

plication condition or NAC(n) on L is an arbitrary morphism n : L → N . A

morphism g : L → G satisfies NAC(n) on L i.e. g ∣= NAC(n) if and only if does

not exists and injective q : N → G such that q ∘ n = g.

L n //

m

��

N

X
q~~

G

A set of NACs on L is denoted by NACL = {NAC(ni)∣i ∈ I}. A morphism

g : L → G satisfies NACL if and only if g satisfies all single NACs on L i.e. g ∣=
NAC(ni)∀i ∈ I.

1.6. Negative Application Conditions 25

Definition 1.6.2. (Production Rule with NACs) A set of NACs NACL (resp.

NACR) on L (resp. R) for a rule p : L
l←− K

r−→ R (with injective l and r) is called a

left (resp. right) NAC on p. NACp = (NACL, NACR) consisting of a set of left and

a set of right NACs on p is called a set of NACs on p. A rule (p,NACp) with NACs

is a rule with a set of NACs on p.

To enable the creation of concurrent NACs (Def. 1.6.5, Thm. 1.6.3), we show the

possibility of translating a postcondition to a precondition.

Definition 1.6.3. (Construction of Left From Right NACs [EEPT06]) For

each NAC(ni) on R with ni : R → Ni of a rule p = (L ← K → R), the equivalent

left application condition Lp(NAC(ni)) is defined in the following way:

L

n′i
��

Koo

��

//

(2)(1)

R

ni

��
N ′i Zoo // Ni

∙ If the pair (K → R, R → Ni) has a pushout complement, we construct (K →
Z, Z → Ni) as the pushout complement (1). Then we construct pushout (2)

with the morphism n′i : L→ N ′i . Now we define Lp(NAC(ni)) = NAC(n′i).

∙ If the pair (K → R, R → Ni) does not have a pushout complement, we define

Lp(NAC(ni)) = true.

For each set of NACs on R, NACR = ∪i∈INAC(ni) we define the following set

of left NACs:

Lp(NACR) = ∪i∈I′Lp(NAC(n′i))

with i ∈ I ′ if and only if the pair (K → R, R→ Ni) has a pushout complement.

The following theorem establishes that a precondition is equivalent to the corre-

sponding postcondition.

Lemma 1.6.1. (Equivalence of Left and Right NACs [EEPT06]) For every

rule p with NACR a set of right NACs on p, Lp(NACR) as defined in 1.6.3 is a set

of left NACs on p such that for all direct transformations G
p,g⇒ H with comatch ℎ,

g ∣= Lp(NACR)⇔ ℎ ∣= NACR

1.6. Negative Application Conditions 26

1.6.1 Concurrency with NACs

The theory of concurrency and extension introduced in Section 1.5 needs to be up-

dated to facilitate NACs. In this section we discuss concurrency, while extension

theory is treated in Section 1.6.2.

Ni

ei

��
(1)

Nj

z1

��
(2)N ′i L0

ni

__@@@@@@@@

mc

��

K0
oo //

��

R0

e0

N ′j L1

nj

OO

e1
~~

K1
oo //

��

R1

��
Lc

n′i
``

C0
loo // E

n′j

OO

C1
oo r // Rc

Our aim is to construct the resultant NAC of the E -concurrent production p1 ∗E
p2 translated from the E -related rules p1 and p2 with NACs NAC(ni) on L0 and

NAC(nj) on L1. The concurrent NAC is denoted by NACpc

First, we show the construction that translates NAC(nj) on L0 to an equivalent

NAC that is on Lc.

Definition 1.6.4. (Construction of NACS on Lc from NACs on L0 [LEPO08b])

Consider the following diagram:

Nj ej //

(1)

N ′i

L0

nj

OO

m0 // Lc

n′i

OO

For each NAC(nj) on L0 with nj : L0 → Nj and m0 : L0 → Lc let

Dm0(NAC(nj)) = {NAC(n′i) ∣ i ∈ I, n′i : Lc → N ′i}

Where I and n′i are constructed as follows: i ∈ I if and only if (ei, n
′
i) with

ei : Nj → N ′i jointly surjective, ei ∘ nj = n′j ∘m0 and ei is injective.

For each set of NACs NACL0 = {NAC(nj) ∣ j ∈ J} on L0 the downward trans-

lation of NACL0 is then defined as:

Dm0(NACL0) = ∪j∈JDm0(NAC(nj))

The following theorem establishes that the translated Dm0(NACL0) is equivalent

to the original NAC(nj).

1.6. Negative Application Conditions 27

Lemma 1.6.2. (Equivalence of Set of NACs on L0 and Set of NACs on

Lc [LEPO08b]) Given gc : Lc → G0, m0 : L0 → Lc with NACL0 and g0 = gc ∘m0 as

in the following diagram:

Nj

q

��

ei //

(1)

Ni

=
q′

qq

L0

g0
��

m0 //

nj

OO

Lc

n′i

OO

gc
}}}

~~}}}

G0

then the following holds:

g0 ∣= NACL0 ⇔ gc ∣= Dm0(NACL0)

The second task is to define the equivalent NACs on the LHS of the concurrent rule

from the set of NACs on the LHS of the second rule of the two-step transformation.

This is done in two steps. First, a NAC(nj) on L1 is translated to the NACn′j on E.

Then, it can be seen that Lc ← C0 → E is a production. Using the construction of

left from right NACs (Def. 1.6.3) we create the equivalent NAC on Lc.

Definition 1.6.5. (Construction of NACs on Lc from NACs on L1 [LEPO08b])

Given an E-dependency relation with jointly surjective morphism pair (e0, e1) for the

rules p0,p1 and pc = p0 ∗E p1 = Lc ← Kc → Rc the E-concurrent rule of p0 and p1 is

as depicted in the following diagram:

Nj

z1
~~

N ′i

L0

��

K0
oo //

��

R0

e0

L1

nj

OO

e1

~~

K1
oo //

��

R1

��
Lc C0
oo // E

n′j

OO
(1)

C1
oo // Rc

Kc

aa 44

For each NAC(nj) on L1 with nj : L1 → Nj:

DLpc(NAC(nj)) = Lp(De1(NAC(Nj)))

1.6. Negative Application Conditions 28

with p : LC ← C0 → E and De1, Lp according to Definitions 1.6.4 and 1.6.3.

For each set of NACL1 = {NAC(nj) ∣ j ∈ J} on L1, the down and leftward

translation of NACL1 is defined as:

DLpc(NACL1) = ∪j∈JDLpc(NAC(nj))

The corresponding theorem shows that the construction is equivalent.

Lemma 1.6.3. (Equivalence of NACs on Rule p1 and NACs on pc [LEPO08b])

Given a two-step E-related transformation via p0 : L0 ← K0 → R0 and p1 : L1 ←
K1 → R1

Nj

L0

��

K0
oo

��

// R0

ℎ0

BBB

 BBB

L0

nj

OO

g1
|||

~~|||

K1

��

oo // R1

��
G0 D0
oo // G1 D1

oo // G2

with gc being the match from the LHS of the E-concurrent rule pc = p1 ∗E p2 into

G0 (as described in the synthesis construction of Theorem 1.5.1) then the following

holds:

g1 ∣= NACL1 ⇔ gc ∣= DLpc(NACL1)

The following theorem is the concurrency theorem extended to incorporate NACs.

Theorem 1.6.1. (Concurrency Theorem with NACs [LEPO08b])

1. Synthesis. Given a transformation sequence t : G0
∗⇒ Gn+1 via a sequence of

rules p0, p1, ..., pn with NACs, then there is a synthesis construction leading to

the direct transformation G0 ⇒ Gn+1 via the concurrent rule pc : Lc ← Kc → Rc

via NACpc, match gc : Lc → G0 and comatch ℎ0 : Rc → Gn+1 induced by

t : G0
∗⇒ Gn+1.

2. Analysis. Given a direct transformation G′0 ⇒ G′n+1 via the concurrent rule pc :

Lc ← Kc → Rc with NACpc induced by t : G0
∗⇒ Gn+1 via a sequence of rules

p0, p1, ..., pn then there is an analysis construction leading to a transformation

sequence t′ : G′0
∗⇒ G′n+1 with NACs via p0, p1, ..., pn.

3. Bijective Correspondence. The synthesis and analysis constructions are inverse

to each other up to isomorphism.

1.7. Model Transformation Approaches 29

1.6.2 Extension with NACs

In this section we present the theory of extension with the presence of NACs in the

participating production rules. First, we introduce the extension diagram with NACs.

Definition 1.6.6. (Extension Diagram with NACs [LEPO08a]) An extension

diagram with NACs is a diagram as defined in Definition 1.5.3 except that the trans-

formations t and t′ use rules containing NACs. Thus, the matches (m0, ...,mn−1)

and extended matches (k0 ∘m0, ..., kn−1 ∘mn−1) have to satisfy the NACs of the rules

p0, ..., pn−1

Although the existence of the extension diagram (Thm. 1.5.2) needed only bound-

ary consistency, we need another consistency condition when NACs are present. NAC-

consistency intuitively requires that the concurrent NACpc should be satisfied by the

match of the concurrent production rule.

Definition 1.6.7. (NAC-Consistency [LEPO08a])

A morphism k0 : G0 → G′0 is called NAC-consistent with respect to a transforma-

tion t : G0
∗⇒ Gn if k0 ∘ gc ∣= NACpc with NACpc the concurrent NAC and gc the

concurrent match induced by t.

As the extension diagram with NACs and the NAC-consistency introduced, we

can present the embedding theorem with NACs.

Theorem 1.6.2. (Embedding Theorem with NACs [LEPO08a]) Given a trans-

formation t : G0
n⇒ Gn using rules with NACs. If k0 : G0 → G′0 is boundary consis-

tent and NAC-consistent with respect to t then there exists an extension diagram with

NACs over t and k0 as defined in Def. 1.6.6 and depicted below.

G0

(1)k0
��

t
∗ +3 Gn

kn
��

G′0 t′
∗ +3 G′n

1.7 Model Transformation Approaches

In this section we present two model transformation approaches, where the models

are given by abstract syntax graphs. These two paradigms are the algebraic graph

transformation (conventional) approach, and triple graph grammars. The conven-

tional approach presents graph transformations as the imperative application of rules

for transforming a source graph to a target graph. Triple graph grammars (TGGs)

establishes bidirectional correspondence between participating graphs.

1.7. Model Transformation Approaches 30

1.7.1 Based On Algebraic Graph Transformations

For the model transformation that is based on algebraic graph transformations, spe-

cific source and target models are given. Both models are described by their abstract

syntax graphs. The abstract syntax graphs of the source models are specified by

a subset of instance graphs over a type graph TS. Similarly, the target models are

specified with a type graph TT . Both type graphs TS and TT are subgraphs of a

common type graph T . As shown in the diagram below the containment is expressed

as inclusion morphism incS : TS → T and incT : TT → T .

TS
incS // T TT

incToo

GS

typeS

OO

typeGS

<<zzzzzzzzzzzzzzzzzz ri +3 ... rj +3 Gi

typeGi

OO

rk +3 ... rl +3 GT

typeT

OO

typeGT

bbDDDDDDDDDDDDDDDDDD

The transformation is defined as a graph transformation system GTS = (T,R)

with the common type graph T and a set of transformation rules R (Def. 1.4.4). The

start model is represented by GS typed over TS. The transformation proceeds by

applying rules of R as described in Def. 1.4.5. The resultant graph GT represents the

target model. During the transformation process, intermediate graphs, like Gi, are

typed over T containing elements from both TS and TT . In order to fulfill semantical

correctness, the resultant graph GT (target model) has to be typed over TT .

The application of the production rules can be nondeterministic for two reasons.

There can be several applicable rules, and one is chosen arbitrarily. Also, given a

rule, it is possible to have multiple matches. Both kinds of nondeterminism can

be restricted. Control flow can be introduced with negative application conditions,

explicit control structures or priorities. The matches can be restricted by input pa-

rameters. And finally a rule can be selected from outside (e.g. the user).

1.7.2 Based on Triple Graph Grammars

In this section we present the basics of a different approach to graph transformations.

Conventional graph transformations, introduced in Section 1.4.2 are restricted to

transform one instance of a class of graphs into an instance of another class.

The concept of triple graph grammars (TGGs) [Sch94] is a purely declarative

way of describing two-way graph transformations. A correspondence graph is used,

that describes the connections between the other two graphs enabling the definition

1.7. Model Transformation Approaches 31

of m-to-n relationships. These correspondence graphs and rules allow us to record

additional information about the transformation process itself, which are for instance

needed to propagate incremental updates of one data structure as incremental updates

into its related data structures [Sch94].

Definition 1.7.1. (Graph Triples [Sch94]) Let LG, RG, and CG be three graphs,

and lr : CG → LG, rr : CG → RG are those morphisms which represent m-to-n

relationships between the left-hand side graph LG and the right-hand side graph RG

via the correspondence graph CG in the following way:

x ∈ LG is related to y ∈ RG ⇔ ∃z ∈ CG : x = lr(z) ∧ rr(z) = y

The resulting graph triple is denoted as follows:

GT = (LG
lr←− CG

rr−→ RG)

One must be aware, that the CG is not similar to the interface graph K of con-

ventional graph transformations. The interface graph is an intersection of the left-

and right-hand side while the correspondence graph expresses a common syntax and

basis for expressing relations.

The advantage of triple graph grammars in comparison to conventional graph

transformations is clearly visible. In the latter case we have a fixed and unintelligible

graph on left- and right-hand sides of productions. A TGG, with the two sides are

equivalent, replaces three different conventional graph transformation cases:

∙ a left-to-right transformation, which takes any left-hand side graph as input and

returns a corresponding right-hand side graph

∙ a right-to-left transformation, which analyses a right-hand side graph and pro-

duces left-hand side if possible

∙ a correspondence analysis, which monitors the relationships between a given left-

hand side and a given right-hand side by trying to establish correspondences

between them.

Chapter 2

Related Work

The presentation of a problem on its own is not sufficient, its context is almost equally

important. The reflection on related work is necessary as it positions the contribution.

Thus, the present chapter satisfies this need. It is organised as follows: Section 2.1

examines research done on formal verification of graph and model transformations

discussing the verification of temporal properties. Compositionality of bidirectional

transformations is analysed in Section 2.2. Then a short taxonomy of refactoring

approaches is presented in Section 2.3, succeeded by a detailed discussion of these

approaches.

2.1 Verification of Graph and Model Transforma-

tions

Our contributions are on the field of model transformations and their verification.

Although there are several research areas of model transformation verification, we

would like to concentrate on those that verify temporal properties.

There are behavioural properties of graph transformations that can be described

as temporal properties. For instance, termination — required to show the functional

behaviour of the proposed semantic mapping (Sec. 6.6.4) — can be described by

temporal properties. The verification of a system with respect to temporal properties

is often similar to the setup of our approach: it is based on the translation of the

system to a formal model that can be checked against a logic formula by an automatic

tool (a model-checker). Alternatively, systems can be formalised in a logic and verified

by carrying out formal proofs, either automatically or interactively, using a theorem

prover.

2.1. Verification of Graph and Model Transformations 33

Automated verification, for all the crucial role it may play in the formal analysis

of dynamically evolving systems, appears to have been covered until recently by a

comparatively small section of the otherwise very rich literature on GT systems. A few

major early contributions in the static analysis of such systems are [Koc00, GHK98,

Hec98a]. In [Hec98b] the author introduced an abstract theory of over-approximations

(system views) based on graph transformations, aiming at the verification of reactive

systems, which relies on the interpretation of a branching time logic built into models

as GT systems of the double pushout approach.

Since then, several approaches based on model-checking have been introduced.

Interesting comparisons between some of the main trends can be found in [BKR05]

— between the unfolding and the partitioning approach, and [RSV04] — between the

GROOVE-based and the SPIN-based approach. Research has largely been focused

on abstraction techniques to cover large and infinite models [BK02, BCK08, KK06,

Ren04a, Ren04c, BBER08, Ren08], allowing more expressive systems (e.g. with types

and attributes) [KK08, Kas05, Var04, HLM06], and on making state-of-the-art generic

model-checking techniques available for GTS verification [SV03, Var04, DLRdS03,

DMdS05, FFR07].

The concurrent behaviour of GT systems has been studied in depth throughout

the years, leading by now to a consolidated theory of concurrency which generalises

the corresponding semantics of Petri nets, including process and unfolding semantics

(see, e.g., [CMR96, Rib96, BCM98, BCMR07]).

Several methods have been successfully proposed for the analysis of Petri nets,

ranging from the calculus of invariants [Rei85] to model checking based on finite

complete prefixes [McM93, Esp94]. Some of these methods, most notably the one

originally proposed by McMillan in [McM93], are based on the concurrent semantics

of nets, which allows to avoid the combinatorial explosion arising when one explores

all possible interleavings of concurrent events.

The unfolding approach to GTS model-checking [BCM99, BK02, BKK03, BCK04,

BCK08] [KK06, KK08] relies on a translation of GT systems to models based on

Petri nets and on the application of an unfolding strategy. This is also the underlying

approach in a counterexample-guided abstraction refinement technique implemented

in [KK06], more recently extended to support attributed graphs [KK08].

The model-checking approach presented in [Ren03, KR06, Ren08] is largely based

on graph transformation techniques as they have been implemented in the GROOVE

tool [Ren04b]. Given a GTS, GROOVE can generate its state space and convert it

to a Kripke model to be checked against temporal logic formulas [KR06]. On top of

2.2. Compositionality of Bidirectional Transformations 34

this approach, abstract interpretation techniques based on notions of abstract graph

and abstract graph transformation have been investigated in order to deal with large

systems. An abstraction approach related to shape analysis and based on structural

similarity between nodes of the state graphs has been developed in [Ren04a, Ren04c].

The goal of this approach, also called partitioning, is to obtain tractable models based

on a logically intuitive notion of abstraction. In a further development [BBER08],

shape-based abstraction has been joined by a form of topological abstraction, based

on adjacency relations. The combined abstractions have been shown to satisfy preser-

vation and reflection with respect to a modal logic.

Verification of GT systems can also be carried out relying on more standard model-

checking techniques [SV03, Var04]. The CheckVML tool presented in [SV03] aims at

the verification of arbitrary visual modelling languages, and it can be used to generate

a model-level specification of a GTS in the form of a Promela description for the SPIN

model checker. SPIN can be used to check models against LTL formulae. In contrast

with the GROOVE approach, the model translation is already optimised — e.g. it

tends to abstract static elements away, in order to avoid state explosion [Var04].

Another line of research based on translation to Promela and model-checking with

SPIN can be found in [DLRdS03, DMdS05, FFR07].

The authors of [BGMM08] rely on standard SAT model-checking in order to carry

out automatically the verification of behaviour models in which graph transformation

is used to represent data abstraction. AGG is used to generate a GTS model that gets

translated to a linear temporal logic model, and this can be checked by a SAT-solver,

relying on a bound model-checking approach.

2.2 Compositionality of Bidirectional Transforma-

tions

Although the design of our semantic mapping is inspired by Triple Graph Grammars

(Sec. 5.1.2), it is not bidirectional. However, spatial compositionality of bidirectional

transformations, discussed in [Ste07, Ste08], is similar to the notion of composition-

ality proposed in this thesis.

The aim of bidirectional transformations is to maintain consistency [Ste08]. The

setting is truly symmetric: there are no distinct source or target models. When either

of the models change, a transformation is ran to restore consistency.

Spatial composition yields that if two systems are composed of parts which them-

2.3. Refactoring 35

selves can be acted on by model transformations, consistency of individual parts

implies the consistency between the systems. Given a system m composed of parts

ci, i ∈ I and s composed of parts tj, j ∈ J and a consistency relation ℛ, the consis-

tencyℛ(m, s) can be demonstrated by showing that for every ci, there is a correspond-

ing tj, such that ℛ(ci, tj). Thus, we can understand the effect of a transformation on

the composed system by understanding its effect on the parts composed [Ste08].

In our case, there are two models: the semantic domain N and the software

artifacts N . As the semantic domain only formalises the behaviour of the software

artifact, it is not modified directly. Only the software artifacts may change, thus

the transformation only implements a function sem : M → N . Explicit consistency

checking is not necessary; the software artifact m and the formalised behaviour m of

the chosen semantic domain are consistent if n = sem(m). If the software artifact is

changed, the transformation is re-run, and the old semantic model is replaced by the

newly generated version.

2.3 Refactoring

To discuss the related work on refactorings systematically, the following list sum-

marises the most important properties of a refactoring approach.

∙ Subject language: either programming language (procedural languages like C,

object oriented like C++ and Java) or modelling language (UML diagrams or

constraint languages like Object Constraint Language (OCL) [OMG06a]).

∙ Representation of refactoring : informal (based on language syntax, described

as a pattern) or formal (graph transformation rules or other formal notation)

∙ Representation of semantics : informal (based on syntax), invariants (predicates

that have to be true before and after the refactoring), formal (process algebras

or graph-based operational semantics)

∙ Verification method : assumed (behaviour preservation is assumed or based on

empirical evidence), informal (regression testing or other informal reasoning),

formal (verification of bisimulation or trace refinement with tool support)

Refactoring approaches are easily classified according to the above categories.

Based on empirical observations, most of the approaches can be grouped into two

distinct methodologies: the pattern-based and the verification-based. All approaches

2.3. Refactoring 36

in the same methodology share a common setup of the above ingredients, the actual

implementation and language refactored can differ.

The pattern-based approaches like [MTR07, SPTJ01, HJvE06, PC07] assume a

large set of refactoring patterns. The application of the patterns are assumed (but

not formally verified) to preserve behaviour, and thus the overall change is supposed

to be behaviour preserving as well. A pattern-based refactoring consists of three

important steps: the recognition for the need of refactoring, the application of the

refactoring pattern that is shown to be behaviour preserving; and the assessment of

the system if the refactoring really improved it.

In verification-based approaches [vKCKB05, RLK+08], the refactoring is per-

formed by the developers. In the pattern-based approach, the developers merely

applied a pattern; here, an actual development process is performed. When the nec-

essary improvement is finished, the system is checked for behaviour preservation by

formal means. Note that these methodologies are not complementary: one may verify

the behaviour preservation after pattern application. It is rarely done however.

In the following sections, we discuss the different refactoring approaches one by

one, organised by their notion of behaviour. Approaches where formal behaviour is

not defined and the behaviour preservation is based on empirical evidence or various

invariants are detailed in Section 2.3.1. In Section 2.3.2 approaches with formal be-

haviour are discussed. Finally, Section 2.3.3 summarises all the presented approaches

in a concise table.

2.3.1 Invariants and Empirical Evidence

This section deals with work done on refactorings without formal behaviour. The

presentation is not chronological, it goes along the subject language the refactoring is

performed on: object-oriented languages, then procedural programming and finally

modelling languages.

The notion of refactoring was originally introduced by Opdyke [Opd92] focusing

on object-oriented languages. Refactorings are proposed to be intermediate level

reorganisation plans, and as such, the representation of their semantics is based on

regression testing: before and after refactoring, a program has to produce the same

output for a given set of inputs. He identifies a set of invariants that preserves

the behaviour of refactorings. The concept of invariants is inspired by the works of

Banerjee and Kim [BKKK87] on database schema evolutions. Opdyke proved that

the presented refactorings preserve the invariants. However, the preservation invariant

2.3. Refactoring 37

does not necessarily imply preservation of behaviour.

Instead of invariants, Roberts [Rob99] uses pre- and postconditions described as

first order predicates. This way, it is possible to calculate the applicability of refactor-

ings in a refactoring sequence. Given a composite refactoring containing a refactoring

sequence, Ó Cinnéide and Nixon[OCN98] propose an algorithm to calculate the pre-

and postconditions of such composite refactorings from the predicates of all their

refactorings contained. In both cases, behaviour preservation is proved only by show-

ing that a refactoring fulfills its pre- and postconditions.

Tokuda and Batory [TB01] implemented the refactorings proposed by Opdyke

[Opd92] and Banerjee and Kim [BKKK87] in C++. They define refactorings as pa-

rameterised behaviour preserving program transformations and point out that formal

proof of behaviour preservation is desirable but unlikely. The complexity of object

oriented languages makes the definition of formal semantics challenging; semantics

may vary between compilers or language versions. Their notion of semantics consists

in the introduction of enabling conditions that are invariants defined for a specific

refactoring. According to their results, these conditions help to preserve behaviour,

however this may not be sufficient. Behaviour preservation is due to good implemen-

tation, not formal proofs.

The refactoring textbook by Fowler [FBB+99] presents refactorings like design

patterns: each refactoring is presented with its name, short summary, motivation

for use, guide on applying the refactoring and an example in Java. Although this

presentation is not formal, there is a definite progress towards a standardisation. An

explicit notion of behaviour or verification of its preservation is missing.

There are refactoring approaches for non object-oriented languages as well. Gar-

rido and Johnson [GJ02] worked on refactorings in C. The problems of this different

paradigm were addressed. A catalog of refactorings was introduced and implemented

in a prototype tool. The notion of behaviour is regression testing, as proposed by

Opdyke [Opd92]. Vittek [Vit03] created a refactoring browser for C and C++, and

also addressed the problem of preprocessor directives.

There are other alternative notions of behaviour preservation as well. Tip et al

[TKB03] introduced type constraints formally, but argue informally about preserva-

tion of type correctness. Bergstein [Ber91] uses the notion of object-preservation. In

object-oriented database refactorings, the repopulation of a database is objectionable.

Object preservation thus means that the set of objects that the class defines is not

changed.

Bottoni et al [BPPT04, BPPT03] widen the scope of refactoring by using dis-

2.3. Refactoring 38

tributed graph transformations. Their aim is to maintain consistency between the

various software artifacts before and after refactoring. The software system (including

code, class diagrams, sequence diagrams and state charts as well) is represented by

distributed graphs. A distributed graph is basically a network graph that has compos-

ite nodes containing object graphs. The system is represented by this network graph

with the nodes being the different views. Source code is modelled as a control-flow

graph. They use distributed graph transformation rules as a technique or mechanism

to perform refactorings, their representation of refactorings is based on the pre- and

postcondition approach of Roberts [Rob99]. The left-hand side is a precondition that

has to be satisfied, and the right-hand side is the postcondition that describes the

effects of the refactoring. Notions of semantics and behaviour preservation are not

mentioned explicitly.

A notable refactoring approach based entirely on UML models is of Sunyé et

al [SPTJ01]. Refactorings are defined on UML class diagrams and state charts.

Although the representation of a refactoring is a text-based, informal description,

the preservation of behaviour is expressed by OCL invariants. The preservation of

invariants is justified by empirical evidence.

Porres [Por03] also presents a method for rule-based UML refactorings. He uses

the System Modelling Workbench (SMW) [Por02] for rule representation. SMW uses

a languge for UML modification, with a syntax similar to OCL. Refactoring rules

consist of two parts: the precondition and the actions that define the refactoring. He

also has an implementation for the Python language. The formal notion of behaviour

and its preservation are not discussed however.

Another area of refactoring arises when UML class diagrams are annotated with

OCL constraints. After a refactoring, the OCL expressions need to be updated as well.

Also, it is possible that the OCL expressions themselves need refactoring. Correa

and Werner [CW04] present OCL-based refactoring patterns. They address both

problems: presenting OCL exclusive and combined refactoring patterns. A graph-

grammar inspired approach is presented by Markovic and Baar [MB08], in which the

formal notation is given by QVT Merge [QVT05]. They present a catalog of OCL

annotated class diagram refactorings. The verification of behaviour preservation in

both approaches is case by case reasoning.

Biermann et al [BEK+06] present refactorings on EMF models. The refactoring

rules are represented as graphs, and implemented in the Eclipse Modelling Frame-

work. They also provide consistency check for refactorings, but no formal notion of

behaviour. Taentzer et al. [TM07] present domain-specific refactorings represented

2.3. Refactoring 39

as EMF model transformations.

The first to employ graph transformations were Mens et al [MDJ02]. In their

opinion, refactorings should be as generic as possible, thus a graph-based representa-

tion was created, in which refactoring rules are represented by graph transformation

rules. However, as refactoring tools work on source-code, the authors restrict refac-

torings to be performed only on the static structure of the program. Hence three

structural invariants are defined formally: access preservation, update preservation

and call preservation. The method of verification is not mentioned.

When several refactorings are applicable to a system, the works of Taentzer et al

[MTR07] help to make an informed choice. Applying one refactoring may prohibit

the application of other refactorings. Thus, by representing the refactorings as graph

transformation rules, sequential dependency analysis and critical pair analysis can be

used. This way, the the implicit dependencies among refactorings can be detected,

and the sequence of refactorings most suitable in a given context can be uncovered.

As the use of graph transformation to express visual languages and their refac-

torings gained popularity, shortcomings of graph transformations were addressed by

Hoffmann et al [HJvE06]. Although refactoring patterns tend to be generic, a graph

transformation rule represents a refactoring on a specific system instance. A generic

refactoring pattern may correspond to a large set of very similar graph transformation

rules. The authors of [HJvE06] point out that different graph transformations are

needed for each method body in the push-down-method [FBB+99] refactoring. Thus,

in [HJvE06, vEJ04, Hof05] the expressive power of graph transformation rules is aug-

mented. Cloning and expanding operations are added to graph variables. This way,

the graph transformation rules are turned into a rule scheme. Thus, a rule scheme is

a suitable formal representation of a refactoring pattern. When applied to a system,

the rule schemes are instantiated. Janssens and Van Eetvelde [EJ03] address the

size problem of the graph representation of programs. The graph representation of

a simple class can be enormous. Thus, a hierarchical structure for the graphs that

represent programs is introduced. It enables the developers to view the system at the

appropriate abstraction level.

Pérez and Crespo [PC07] present a method to detect whether the evolution be-

tween two versions of a system can be expressed as a sequence of refactoring pat-

terns. Refactorings — formally presented as graph transformations following Mens et

al [MDJ02]— are performed on Java programs. A graph parsing algorithm based on

state-space search is implemented in AGG to find the suitable refactoring sequence.

In all the previous refactoring approaches, it was assumed that the choice of the

2.3. Refactoring 40

refactoring to apply is always made by the developer. Van Gorp et al [vGSMD03]

propose a solution for automating this choice. The refactoring is on the level of UML

models using OCL for expressing pre- and postconditions. However, the pre- and

postcondition approach is improved by the introduction of refactoring contracts : a

third set of OCL expressions is added to capture the problematic model constructs

that can be improved by that refactoring. Hence, by searching the model, it is possible

to identify problematic parts and apply the relevant refactorings automatically. Nei-

ther the preservation of invariants nor the representation of refactorings are explicit;

the approach focuses on the automation.

Massoni et al [MGB06] extend invariants to support automatic refactorings. The

invariants are expressed in first-order logic, based on the Analysable Annotation Lan-

guage (AAL) [KMJ02] and implemented as Java code annotations. The invariants

are not only expressions that provide behaviour-preservation when used but also pre-

conditions providing semantic information about the classes and their fields. This

helps the refactoring tool to select the appropriate refactoring pattern automatically.

2.3.2 Formal Behaviour

After the exhaustive list of informal approaches, this section presents works with for-

mal notion of behaviour. Since there are fewer of such approaches, they are presented

in greater detail following the chronological order of release.

Refactoring of architectural models has been studied formally first in architectural

description languages (ADLs) like Wright [ADG98, All97] or Darwin [MK96], using

process calculi like CSP or �-calculus for expressing formal semantics.

Refinement of Information Flow Architectures Philipps and Rumpe [PR97]

present a calculus for stepwise refinement of abstract information flow architectures.

These architectures are represented as a hierarchical data-flow network. The authors

use the suggestive box-and-arrow notation [YC79] for graphical representation.

The formal calculus proposed in the paper is based on [BDD+92]. CSP is a

completely generic process algebra, while this algebra incorporates properties of the

software architecture. The central notion is a set ℂ of channel identifiers with a given

set M of messages. The calculus uses streams to describe communication sequences on

a channel, which are similar to traces in CSP. The difference however is that the notion

of time is used. M∗ denotes a finite sequence and over a set M of of messages; M∞

is a set of infinite sequences over M . The communication histories are timed streams,

i.e. M
N

= (M∗)∞. The time axis is divided into an infinite stream of time intervals,

2.3. Refactoring 41

where each interval consists a finite number of transmitted messages. Channels and

timed streams are assigned by a named stream tuple function (ℂ→M
N

) and
−→
C is a

set of named stream tuples within C ∈ ℂ.

All other objects in the calculus are derived from these basic notions. Component

behaviour is modelled as a relation over input and output communication histories.

Given input channels I ∈ ℂ and output channels O ∈ ℂ the interface behaviour of a

component is a function � =
−→
I → ℙ(

−→
O). Component is a tuple c = (n, I, O, �) with

n as component name. The operators name.c, in.c, out.c and beℎav.c yield n, I, O

and � respectively.

As shown, both the modelling language and its semantics are different to the ones

we use. The box-and-arrow notation is restrictive compared to CSML. At the level of

semantics, the notion of streams is similar to the trace semantics of CSP, but the time

axis, and the channel-based structuring makes the proposed calculus more specific.

The authors introduce three different notions for behavioural refinement: basic

behavioural refinement, refinement of systems and refinement with invariants. Basic

behavioural refinement is essentially a refinement relation defined on behaviours, i,e

given behaviours �1, �2 ∈
−→
I → ℙ(

−→
O) we say �1 is refined by �2 if and only if

∀i ∈
−→
I : �2(i) ⊆ �1(i). Behaviour refinement of systems uses the notion of black

box behaviour, i.e. [S] :
−−→
in.S → ℙ(

−−−→
out.S). With the black box behaviour, systems

can be treated as components. Their refinement relation is a behavioural refinement

on the given interface, i.e. S ⇝ S ′ ⇔ ∀i ∈
−−→
in.S : [S ′](i) ⊆ [S](i) (in.S = in.S ′ and

out.S = out.S ′ was assumed). The idea of both refinement relations is similar to trace

refinement in CSP, but tailored to the special constructs of the calculus.

The refinement with invariants is different however. An invariant over the possible

message flows within a system S = (I, O, C) is given as a predicate Ψ over all streams

within the system: Ψ :
−−−−−−−→
(I ∪ out.C) → B. An invariant is valid within a system, if it

holds for all named stream tuples l defining the streams of the system. If the invariant

is valid, then the behavioural change was a refactoring.

A prototypical CASE tool, AutoFocus [HSSS96] is used for verification.

Although we compared the modelling language, its semantics and the refinement

notions between the two approaches, the main difference is flexibility. In our approach

the modelling language and semantic domain are examples and thus are interchange-

able, the authors main contribution is the calculus for that specific modelling nota-

tion. Also, the verification is not dealing with compositionality: always the complete

behaviour of the system is verified.

2.3. Refactoring 42

Behaviour Preservation of UML Models Van Kempen et al [vKCKB05] also

proposed to use CSP to formally describe the behaviour of UML models. The authors

use a class diagram variant to model software structure. The classes may contain

attributes, but only the operations are concerned. Two classes are connected if there

is a call relationship between them, i.e. class A has an association with class B if A

calls a method of B. The owned behaviour of the classes are specified in terms of

statecharts: every class has a statechart defining its behaviour. Statecharts model a

method call by a Call Event and the return call by a Signal Event. The execution of

a method in a class is either implied by the semantics of the Call Event or defined

using a statechart.

The behaviour expressed in statecharts are formalised by CSP. The mapping of

statecharts to CSP is not formal, in [vKCKB05] it was described informally. The idea

of the mapping is that a class A will correspond to a process P with its functions

calls and state changes as events. Refactoring is tested as trace refinement between

the old and the new system.

This approach uses similar concepts to ours: UML based modelling language (class

diagram with statecharts compared to component diagrams with activities) and CSP

as denotational semantics and trace refinement as refinement relation. However, as

pointed out previously, our approach is generic; the connection between class diagrams

and CSP could be formalised with graph transformations to form another example

to our theoretical contributions. Also, compositionality is not concerned.

Behaviour Preservation using Borrowed Contexts The only approach that

is comparable to ours is that of Rangel et al [RLK+08, RKE07]. Not only it is

generic with respect to modelling domain, but verification is performed at the level

of refactoring rules.

First, let us review the technical machinery they employ to verify refactoring rules.

In the standard DPO approach (Sec. 1.4.2), the productions rewrite graphs with no

interaction with any other entity then the graph itself. Hence, the authors adopted

the DPO approach with borrowed contexts [EK06], where graphs have interfaces,

through which the missing parts of the LHS can be borrowed from the environment.

This leads to open systems which take into account interactions with the external

environment [RLK+08]. A graph G with interface J is basically a morphism J → G.

The interface contains the elements that communicate with the envionment, i.e. they

function as boundary points. The context is a pair of morphisms J → E ← J .

The pushout below constructs the embedding of graph with interface J → G into a

2.3. Refactoring 43

context J → E ← J .

J //

��
PO

E

��

Joo

~~
G // G+

The authors define rewriting rules with borrowed contexts based on graphs with

interfaces and graph contexts. A rewriting step with borrowed context is notated as

(J → G)
J→F←K−−−−−→ (K → H) over a graph context J → F ← K.

While we map denotational semantics that can be represented as graphs to the

modelling domain, the authors use operational semantics directly on graph-based

modelling domains. Operational semantics defined for a type graph TG is a set of

graph productions OpSemTG. Then, the notion of behaviour preservation is bisimu-

lation, i.e. a relation ℛ is called a bisimulation if whenever there is a (J → G)ℛ(J →
G′) and a transition (J → G)

J→F←K−−−−−→ (K → H) then there exists a model K → H ′

and a transition (J → G′)
J→F←K−−−−−→ (K → H ′) such that (K → K)ℛ(K → H ′).

The advantage of the borrowed context technique is that the derived bisimulation

is a congruence and thus it is preserved by embedding into contexts. This notion

corresponds to compositionality in our approach.

As can be seen, the theoretical background that achieves rule-level verification of

behaviour preservation is completely different. Although both approaches are flexible

with respect to the actual modelling and semantic domain, harnessing this flexibility

raises different issues. In our case the semantic mapping has to be adapted on chang-

ing any of the domains. In the operational semantic approach one has to create a

complete set of operational semantic rules for every modelling domain.

It is indeed true, that this approach works directly with graph transformations,

and thus do not need the auxiliary encoding like ours. However, their lack of tool

support gives us the practical advantage. We successfully applied our theory to

practice. While their case study is used to illustrate their theoretical contributions,

our implementation demonstrates the validity of ours.

As it can be seen, none of the above approaches fulfill our requirements of having

formal representation of refactorings and behaviour with verifying refactorings at

rule-level using proper tool support on real-world examples. Thus, we present our

approach, which complies with these requirements.

2.3. Refactoring 44

Approach Language Representation Semantics Verification method
[Opd92] programming informal invariants informal

[BKKK87] modelling informal invariants informal
[Rob99] programming informal invariants formal
[TB01] programming informal invariants assumed

[FBB+99] programming informal informal assumed
[GJ02] programming informal invariants informal

[TKB03] programming informal informal informal
[Ber91] programming informal informal informal

[MDJ02] programming formal informal informal
[BPPT04] modelling informal invariants assumed
[SPTJ01] modelling informal informal informal
[Por03] modelling formal informal assumed
[CW04] modelling informal informal informal
[MB08] modelling formal informal informal

[BEK+06] modelling formal informal assumed
[MGB06] modelling formal informal assumed

[vKCKB05] modelling informal formal formal
[PR97] modelling informal formal formal

[RLK+08] modelling formal formal formal
Ours modelling formal formal formal

Table 2.1: Summary of Refactoring Approaches

2.3.3 Summary of Approaches

In Table 2.1, all the approaches presented in the previous sections are summarised.

Note that [vGSMD03, EJ03, PC07, MTR07] generally follow the methodology of

Mens et al [MDJ02], and are thus not explicitly highlighted.

Chapter 3

Modelling Architecture

The theoretical contributions of the thesis use software architecture models as an

example application domain. Our choice for architecture modelling language is based

on the UML logical view: it shows how the functionality is designed inside the system,

in terms of the system’s static structure and dynamic behaviour [EPLF03].

Combined Structure Modelling Language (CSML) — the architecture description

language we present in this chapter — comprises three different views of the sys-

tem: a type-level architectural view that defines the system as a static blueprint, a

behavioural view that describes the dynamic behaviour of the system and an instance-

level view that presents the actual running configuration.

For type-level representation we use the Components package of UML2. The cen-

tral concept which forms the building block is the component, a replaceable modular

unit. Activity modelling from the FundamentalActivities package has been chosen

for its usability as a workflow modelling language in the context of service-oriented

systems. Although the notion of activity partitions is introduced in [OMG06b], it

violates the principle of encapsulation. Activities are associated with components

(type-level) as owned behaviour. Similar to classes and objects in object-oriented

programming, the behaviour of components is shared between all instances of the

same type. While the type-level is a static description of the system behaviour, the

instance level presents the actual running configuration. Since they show the col-

laborating features of the system as they combine at run time, the packages covered

by the composite structure diagram were chosen for our work. Combined Structure

Modelling Language merges the constructs defined in all these packages (type-level,

behaviour and instance-level). To provide a precise definition, this chapter introduces

the metamodel of CSML in required detail.

CSML is illustrated with the help of an example based on the Car Accident Sce-

3.1. Metamodel 46

nario from the SENSORIA Automotive Case Study [WCG+06]. The Car Accident

Scenario is concerned with automatic dispatch of medical assistance to road traffic

accident victims. The service assumes a car being equipped with GPS-based location

tracking devices with communication capabilities and a pre-registered mobile phone

of the driver. The occurrence of a road accident is detected by various sensors, and

reported to an on-board safety system (car agent). The safety system immediately

sends the current location of the car (obtained by GPS) to a pre-established accident

report endpoint (accident server). The accident server attempts to call the registered

mobile phone of the driver and analyses the sensorial data acquired from the car. If

there is no answer to the call, emergency services close to the reported location of

the car are contacted (local services) and asked for immediate dispatch (presuming

that the driver has been incapacitated by injuries sustained in the accident). From

the general scenario, our work elaborates on the accident server.

The outline of the chapter is as follows. Section 3.1 gives an overview of the meta-

model. Then, a detailed presentation follows according to the original packages that

the metamodel encompasses: Section 3.2 presents the components, Section 3.3 the

activities, and Section 3.4 the composite structures. A diagrammatic representation

for CSML with necessary examples are introduced in Section 3.5. A detailed com-

parison between the official UML2 metamodel and CSML metamodel is provided in

Section 3.6.

3.1 Metamodel

We represent our model as instances of metamodels represented by attributed typed-

graphs. A metamodel, as mentioned in Section 1.1, consists of an explicit model of

the constructs and a set of well-formedness constraints defined on them. The explicit

model, which is the type graph TGarcℎ is shown in Figure 3.1. It is based on the official

UML2 metamodel with only the necessary model elements kept from the component,

composite structure and activity diagrams [OMG06b].

We introduce the model elements in the metamodel grouped according to their

original diagram affiliation (i.e. ActivityNode originally belongs to the Activity Dia-

gram, consequently it will be presented in Section 3.3 that deals with the Activities

package). As the only exception is the ComponentContainer class, we present it here.

3.1. Metamodel 47

Figure 3.1: TGarcℎ: the combined structure metamodel

ComponentContainer

The ComponentContainer is a central element of the metamodel. The implementation

uses EMF ecore [EMF07] which stores the model as an XML tree. A root node is

necessary that contains all elements; the ComponentContainer is this root.

Attributes

∙ rulePart: String [0..1] : One instance of the metamodel represents one typed

graph. The rulePart attribute is the name of this graph (e.g. L,R or G).

Associations

∙ elements [0..*] : A collection of ConnectableElements owned by the Component-

Container.

∙ interfaces [0..*] : A collection of OwnedInterfaces owned by the Component-

Container.

∙ objects [0..*] : A collection of ConnectableObjects owned by the ComponentCon-

tainer.

3.2. Components 48

∙ channels [0..*] : A collection of Channels owned by the ComponentContainer.

Constraints

1. There can be only one ComponentContainer.

self.allInstances()->size = 1

2. The Components, Interfaces, and the ActivityEdges and EventNodes contained

by the ComponentContainer must have unique names. This is not the trivial

requirement that every Component has to be distinguishable; but rather that

a Component cannot bear the same name as an ActivityEdge, ActivityNode or

Interface and vice versa.

context ComponentContainer:

elements->forAll(oclIsKindOf(Component)).activityNodes->

forall(oclIsKindOf(EventNode)).name->

intersection(elements->

forAll(oclIsKindOf(Component)).activityEdges.name->

intersection(interfaces.name->intersection(elements.name)))->isEmpty()

3.2 Components

The Components package helps to describe the types of components in the system

together with their provided and required interfaces [OMG06b]. The components

part of the metamodel is shown in Figure 3.2. The diagram associated with the

Components package is the component diagram. The component diagram of the

accident server is illustrated in Figure 3.3. The classes we use are the following,

based on [OMG06b].

ConnectableElement

Used according to the Composite pattern [BMR+96], the ConnectableElement is a

generic parent for the type-level classes. A ConnectableElement is typed by its pro-

vided and required interfaces as a specification of the services it provides to its clients

and those that it requires from other ConnectableElements.

Attributes

∙ name: String [1] : The name of the ConnectableElement.

3.2. Components 49

Figure 3.2: Components metamodel

Associations

∙ provided [0..*] : The interfaces that the ConnectableElement exposes to its en-

vironment.

∙ required [0..*] : The interfaces that the ConnectableElement requires from other

ConnectableElements in its environment in order to provide its full functionality.

Constraints

1. ConnectableElements have unique names.

context ConnectableElement inv:

ConnectableElement.allInstances()->

forall(p1,p2 | p1 <> p2 implies p1.name <> p2.name)

Component

Each Component is a replaceable modular unit of the system with encapsulated im-

plementation of data and behaviour. A Component specifies a formal contract of

the services that it provides and those that it requires in terms of its provided and

required interfaces. Every Component type is substitutable with other Component

types based on the compatibility of interfaces [OMG06b].

In the component diagram, Components are represented by rectangles with a

component icon and a classifier name. Components may contain other components

as well as ports.

Generalisations

3.2. Components 50

∙ ConnectableElement

Attributes No additional attributes.

Associations

∙ packagedElement [0..*]: Components may contain other Components. This is

the collection of the owned Components.

∙ ports [0..*]: A Component may have a set of Ports that formalise its interaction

points. This is the collection of the owned Ports.

∙ activityEdges [0..*]: A collection of ActivityEdges that describe the dynamic

behaviour of the Component.

∙ activityNodes [0..*]: A collection of ActivityNodes that describe the dynamic

behaviour of the Component.

Constraints

1. A Component has to contain an initial node.

self.activityNodes-> forall(oclIsKindOf(InitialNode))->size() = 1

Port

Ports are distinguished interaction points between Components and their environ-

ment. They isolate a Component from its environment by forming a point for con-

ducting interactions between the internals of the Component and its environment.

Hence, the Component can be defined independently of its environment making it

more versatile. The interfaces associated with a Port specify the nature of the inter-

actions that may occur over that Port. The required interfaces of a Port characterise

the requests that may be made from the Component to its environment through

thatPort. The provided interfaces of a Port characterise requests to the Component

that its environment may make through that Port [OMG06b].

In the component diagram, the squares on the Components represent Ports.

Generalisations

∙ ConnectableElement

3.2. Components 51

Attributes No additional attributes.

Associations

∙ engages [0..*] : The collection of CommunicationNodes in the component be-

haviour the Port may engage in. These nodes define the requests that may be

made from the Component to its environment or vice versa.

Constraints

1. A Port must be contained by one and only one Component.

self.Component->size = 1

2. A Port must be connected to at least one CommunicationNode and an Owned-

Interface.

context Port:

engages->size > 0 and (provided->size() > 0 or required->size() > 0)

OwnedInterface

An interface represented by the OwnedInterface class declares a set of features and

obligations that a Component (or Port) offers. Since interfaces are declarations, they

are not instantiable; that is, there are no run-time instances of interfaces. Interfaces

are implemented by ConnectableElements. Note that a given ConnectableElement

may implement more than one interfaces and that an interface may be implemented by

a number of different ConnectableElements. A ConnectableElement that implements

an interface specifies instances that are conforming to the interface and to any of its

ancestors.

An interface realisation means that the Component supports the set of features

owned by the interface, and any of its parent interfaces. The set of interfaces realised

by a Component is its set of provided interfaces. They describe the services that

the instances of that Component offer to their clients. Interfaces may also be used

to specify required interfaces. Required interfaces specify services that a Component

needs in order to perform its function and fulfill its own obligations to its clients

[OMG06b].

In the component diagram, circles represent provided interfaces ; the socket shaped

elements represent required interfaces.

3.2. Components 52

Attributes

∙ name: String [1]: The name of the OwnedInterface.

Associations

∙ methods [0..*]: References all the operations owned by the OwnedInterface.

Constraints

1. An interface must contain at least one method.

self.methods->size() >= 1

2. OwnedInterfaces have unique names.

context OwnedInterface inv:

OwnedInterface.allInstances()->

forall(p1,p2 | p1 <> p2 implies p1.name <> p2.name)

Method

A Method is a behavioural feature of a classifier that specifies the name, type, pa-

rameters, and constraints for invoking the associated behaviour [OMG06b]. Methods

are described by their names. The isReturning value designates if the Method has a

return value.

Attributes

∙ name: String [1]: The name of the Method.

∙ isReturning: boolean [0..1]: Specifies if the Method has a return value or not.

If true, the Method returns a value to the caller. The actual value is not part

of the model.

Associations No additional associations

Constraints

1. Methods have unique names.

context Method inv:

Method.allInstances()->

forall(p1,p2 | p1 <> implies p1.name <> p2.name)

3.2. Components 53

2. AcceptEventActions represent the reception of method calls in case of provided

interfaces. Consequently, if the interface containing the Method is provided by

a Port, the Port must engage in an AcceptEventAction of the same name (as

the Method).

context Method:

let receiveEvents =

OwnedInterface.provided-> forall(oclIsKindOf(Port)).engages->

forall(oclIsKindOf(AcceptEventAction)) in

if OwnedInterface.provided->size() >= 1 then

receiveEvents->size() >= 1 and receiveEvents.name->intersection(name) = 1

3. SendSignalActions represent the method calls through required interfaces. Hence,

if the interface containing the Method is required by a Port, the Port must en-

gage in a SendSignalAction of the same name (as the Method).

context Method:

let sendEvents =

OwnedInterface.required-> forall(oclIsKindOf(Port)).engages->

forall(oclIsKindOf(SendSignalAction)) in

if OwnedInterface.required->size() >= 1 then

sendEvents->size() >= 1 and

sendEvents.name->intersection(name) = 1

4. If the method is returning and the interface containing the Method is required

by a Port, then the Port must engage in an AcceptEventAction of the same

name as well. This represents that the Component responsible for the method

calling receives the return value.

context Method:

let returnEvents =

OwnedInterface.required-> forall(oclIsKindOf(Port)).engages->

forall(oclIsKindOf(AcceptEventAction)) in

if isReturning then OwnedInterface.required->size() >= 1 and

returnEvents->size() >= 1 and

returnEvents.name->intersection(name) = 1

5. If the method is returning and the interface containing the method is provided

by a Port, then the Port must engage in a SendSignalAction of the same name

as well. This represents that the Component providing the functionality behind

the method sends the return value.

3.3. Activities 54

context Method:

let replyEvents =

OwnedInterface.provided-> forall(oclIsKindOf(Port)).engages->

forall(oclIsKindOf(SendSignalAction)) in

if isReturning then OwnedInterface.provided->size() >= 1 and

replyEvents->size() >= 1 and replyEvents.name->intersection(name) = 1

Figure 3.3: Component diagram of the accident server

3.3 Activities

The Activities package defines the workflow modelling language of UML. Although

the Activities package of UML2 is not a simple control-flow language (it also con-

tains object flow, signalling and even exception handling), CSML uses only the basic

control-flow elements. The activities part of the metamodel is demonstrated in Fig-

ure 3.4. The diagram associated to the Activities package is the activity diagram. The

owned behaviour of the ServiceManager component expressed as an activity diagram

is shown in Figure 3.5.

The semantics of activities are based on token flows. A token traverses an edge:

it may be taken from the source node and moved to the target node. A node may

initiate the execution when specified conditions on its input tokens are satisfied. The

classes we use are the following, based on [OMG06b].

3.3. Activities 55

Figure 3.4: Activities metamodel

Figure 3.5: Owned behaviour of ServiceManager as an activity diagram

ActivityNode

An ActivityNode is an abstract class for points in the flow of an activity connected

by edges. It covers executable nodes and control nodes [OMG06b].

Attributes No additional attributes.

Associations No additional associations.

3.3. Activities 56

Constraints

1. Every ActivityNode must be contained within one and only one Component.

self.Component->size() = 1

ActivityEdge

An ActivityEdge is a directed connection that has a source ActivityNode and a target

ActivityNode, along which tokens may flow. In CSML ActivityEdges represent control

flow that only passes control tokens. An ActivityEdge is notated by an open arrowhead

line connecting two ActivityNodes. If the edge has a name, it is notated near the arrow.

Attributes

∙ name: String [1]: The name of the ActivityEdge.

∙ guard: String [0..1]: Specification evaluated at runtime to determine if the edge

can be traversed.

Associations

∙ source [0..1]: Node from which tokens are taken when they traverse the edge.

∙ target [0..1]: Node to which tokens are put when they traverse the edge.

Constraints

1. ActivityEdges have unique names.

context ActivityEdge inv:

ActivityEdge.allInstances()->

forall(p1,p2 | p1 <> p2 implies p1.name <> p2.name)

2. The source and the target of an edge must be in the same Component as the

edge.

self.source.Component = self.Component

and self.target.Component = self.Component

EventNode

EventNode is an abstract class for all named ActivityNodes that represent an event

in the system. EventNode encompasses the simple Action and the communication

nodes as well.

3.3. Activities 57

Generalisations

∙ ActivityNode

Attributes

∙ name: String [1]: The name of the EventNode.

∙ match: integer [0..1]: The match value is used for expressing object connections

in graph production rules. It is described in detail in Section 5.5.

∙ isMatched: boolean [1]: The isMatched attribute expresses if the point is a

gluing point in a graph production rule. It is described in detail in Section 5.5.

Attributes No additional associations.

Constraints

1. EventNodes have unique names.

context EventNode inv:

EventNode.allInstances()->

forall(p1,p2 | p1 <> p2 implies p1.name <> p2.name)

2. EventNodes must have one and only one incoming edge.

self.target->size() = 1

3. EventNodes must have one and only one outgoing edge.

self.source->size() = 1

Action

An Action represents a single step within an activity. It begins execution by taking

tokens from its incoming control edges. When the execution of an Action is complete,

it offers tokens on its outgoing ActivityEdges. Actions are notated as round-cornered

rectangles with their names in their centre.

In official UML2, every action is allowed to have multiple incoming and outgoing

edges. We restrict them to have one incoming and one outgoing edge. The semantic

expressiveness is not changed: a substitute merge and decision node can be included

before and after the action.

3.3. Activities 58

Generalisations

∙ EventNode, ActivityNode

Attributes No additional attributes.

Associations No additional associations.

Constraints No additional constraints.

InitialNode

An InitialNode is a control node that starts the flow. A token is placed on the

InitialNode when the activity starts. InitialNodes are notated as solid circles.

Generalisations

∙ ActivityNode

Attributes No additional attributes.

Associations No additional associations.

Constraints

1. There can be only one InitialNode in a Component.

context Component:

activityNodes->forall(oclIsKindOf(InitialNode))->size() = 1

FinalNode

An activity final node stops all flows in the activity. More precisely, it stops all

executing actions in the activity, and destroys all tokens on object nodes. As we use

only one type of final node, we use the FinalNode name. A FinalNode is notated as

a solid circle with a hollow circle inside.

Generalisations

∙ ActivityNode

3.3. Activities 59

Attributes No additional attributes.

Associations No additional associations.

Constraints

1. A FinalNode must have one and only one incoming edge.

self.target->size() = 1

CommunicationNode

CommunicationNode is an abstract class for those special nodes that engage in com-

munication through a Port : AcceptEventAction receives and SendSignalAction sends

messages through a Port.

Generalisations

∙ EventNode, ActivityNode

Attributes No additional attributes.

Associations No additional associations.

Constraints

1. A CommunicationNode must be connected to precisely one Port that provides

or requires an interface with a Method of the same name as the Communica-

tionNode.

context CommunicationNode: Port->size() = 1 and

(Port.provided.methods.name->intersection(name)->size() = 1 or

Port.required.methods.name->intersection(name)->size() = 1)

AcceptEventAction

An AcceptEventAction is an action that waits for the occurrence of an event meeting

specified conditions. An AcceptEventAction may represent two types of communi-

cation events, depending on the port it engages in. It either means the reception

of function calls through provided interfaces or the reception of function return val-

ues through required interfaces. An AcceptEventAction is notated with a concave

pentagon.

3.3. Activities 60

Generalisations

∙ CommunicationNode, EventNode, ActivityNode

Attributes No additional attributes.

Associations No additional associations.

Constraints No additional constraints.

SendSignalAction

A SendSignalAction is an action that creates a signal instance from its inputs, and

transmits it to the target object, where it causes the execution of an activity. A

SendSignalAction may represent two types of communication events, depending on

the Port it engages in. It either means a function call sent through a required interface

or the sending of a return value through a provided interface. A SendSignalAction is

notated with a convex pentagon.

Generalisations

∙ CommunicationNode, EventNode, ActivityNode

Attributes No additional attributes.

Associations No additional associations.

Constraints No additional constraints.

DecisionNode

A DecisionNode is a control node that chooses between outgoing flows. Each token

arriving at a decision node can traverse only one outgoing edge. Tokens are not

duplicated. Each token offered by the incoming edge is offered to the outgoing edges.

Then, guards of the outgoing edges are evaluated to determine which edge should be

traversed. The notation of a DecisionNode is a diamond-shaped symbol.

Generalisations

∙ ActivityNode

3.3. Activities 61

Attributes No additional attributes.

Associations No additional associations.

Constraints

1. A DecisionNode has exactly one incoming edge.

self.target->size() = 1

2. A DecisionNode has at least two outgoing edges.

self.source->size() >= 2

3. Exactly one of the outgoing edges must have the else guard condition.

self.target->forall(guard = ’else’)->size() = 1

MergeNode

A MergeNode is a control node that brings together multiple alternate flows. All

tokens offered on incoming edges are offered to the outgoing edge. There is no

synchronisation of flows or joining of tokens. The notation for a MergeNode is a

diamond-shaped symbol.

Generalisations

∙ ActivityNode

Attributes No additional attributes.

Associations No additional associations.

Constraints

1. A MergeNode has exactly one outgoing edge.

self.source->size() = 1

2. A MergeNode has at least one incoming edge.

self.target->size() >= 1

3.3. Activities 62

ForkNode

A ForkNode is a control node that splits a flow into multiple concurrent flows. Tokens

arriving at a fork are duplicated across the outgoing edges. If at least one outgoing

edge accepts the token, duplicates of the token are made and one copy traverses each

edge that accepts the token. The notation for a ForkNode is a thick line segment.

A ForkNode has an id element that represents a pairing between a ForkNode and

a JoinNode. In our system, we deal with well-structured activity diagrams. Allowing

generic branching as in Figure 3.6(b) imposes theoretical problems in the mapping to

CSP as discussed in Section 5.3.5.

Generalisations

∙ ActivityNode

Attributes

∙ id: integer [1]: The element that represents pairing between a ForkNode and a

JoinNode.

Associations No additional associations.

Constraints

1. A ForkNode has exactly one incoming edge.

self.target->size() = 1

2. A ForkNode has at least two outgoing edges.

self.source->size() >= 2

JoinNode

A JoinNode is a control node that synchronises multiple flows. If there are tokens

offered on all incoming edges, then a token is offered on the outgoing edge. The

notation for a JoinNode is a thick line segment.

Generalisations

∙ ActivityNode

3.3. Activities 63

(a) Well-Formed (b) Not Well-
Formed

Figure 3.6: Parallelism in activity diagrams

Attributes

∙ id: integer [1]: The element that represents pairing between a ForkNode and a

JoinNode.

Associations No additional associations.

Constraints

1. A JoinNode has exactly one outgoing edge.

self.source->size() = 1

2. A JoinNode has at least one incoming edge.

self.target->size() >= 1

3. The id of the JoinNode must be defined.

self.id >= 0

4. There must be always a paired ForkNode in owner component, that has the

same unique id.

context Component:

activityNode->forall(oclIsKindOf(JoinNode)).id->

intersection(activityNode->forall(oclIsKindOf(ForkNode)).id)->size() = 1

Restricting possible configurations of the ForkNode and JoinNode changes se-

mantic expressiveness compared to the official UML2 definition in [OMG06b]. Only

3.4. Composite Structures 64

activity diagrams that are well-formed with respect to parallelism are allowed. Fig-

ure 3.6(b) depicts a reasonably complicated not well-formed case: there is no obvious

correspondence between the ForkNodes and JoinNodes. Figure 3.6(a) shows a well-

formed activity diagram: every ForkNode has a corresponding JoinNode. We assume

that every spanned outgoing process will be synchronised at one corresponding JoinN-

ode (if present).

3.4 Composite Structures

Composite structure diagrams represent the system as a composition of interconnected

run-time component instances collaborating over communications links [Amb04]. While

the Components and Activities packages had corresponding diagrams, the Compos-

ite Structures incorporates several packages: these are the InternalStructures, Ports,

Collaborations, StructuredClasses and Actions. The composite structures part of the

metamodel is illustrated in Figure 3.7. A possible configuration of the accident server

is shown in Figure 3.8. The classes we use are the following, based on [OMG06b].

Figure 3.7: Composite structures metamodel

ConnectableObject

Used according to the Composite pattern [BMR+96], the ConnectableObject is a

generic parent for the instance-level objects. The instance level objects are connected

to the type level elements with instantiation connections.

3.4. Composite Structures 65

Attributes

∙ name: String [1] : The name of the ConnectableObject.

Associations No additional associations.

Constraints

1. ConnectableObjects have unique names.

context ConnectableObject inv:

ConnectableObject.allInstances()->

forall(p1,p2 | p1 <> p2 implies p1.name <> p2.name)

ComponentObject

A ComponentObject is an instance of its typing Component. Object instantiation is

denoted by the type relation. ComponentObjects are graphically represented as boxes

with the usual instance : type title pattern.

Generalisations

∙ ConnectableObject

Attributes No further attributes.

Associations

∙ part [0..*]: As Components may contain other Components, ComponentObjects

may contain other ComponentObjects as well. This is the collection of the owned

ComponentObjects.

∙ type [1]: The typing Component of the represented instance.

∙ interactionPoints [0..*]: The collection of the owned InteractionPoints.

Constraints No additional constraints.

InteractionPoint

An InteractionPoint is a model element that represents an instance of a Port in the

system. Port instantiation is denoted by the instanceOf relation. The graphical

notation is a square on the owner ComponentObject.

3.4. Composite Structures 66

Figure 3.8: Composite structure diagram of the accident server

Generalisations

∙ ConnectableObject

Attributes No additional attributes.

Associations

∙ type [1]: The typing Port of the represented instance.

Constraints

1. An InteractionPoint must be contained by one and only one ComponentObject.

self.ComponentObject->size = 1

Channel

A Channel specifies a link that enables communication between two component in-

stances [OMG06b]. The possible communication events through a Channel are deter-

mined by the type of the InteractionPoints on the endpoints of the channels. Interac-

tionPoints, being instances of Ports and thus typed by interfaces, define the possible

actions that can happen through the relevant Channel. Channels are not instances

of OwnedInterfaces ; they are rather realisations of the communication behaviour the

interfaces declare, expressed through the implements relation.

Attributes

∙ name: String [1] : The name of the Channel.

3.5. Diagrammatic Representation 67

Associations

∙ channelEnd [0..2]: A Channel has two channel ends, each representing the

participation of instances of the Ports typing the ConnectableObjects.

∙ implements [0..*]: The OwnedInterface of the represented realisation.

Constraints

1. Channels have unique names.

context Channel inv:

Channel.allInstances()->

forall(p1,p2 | p1 <> p2 implies p1.name <> p2.name)

2. Both ends of a channelEnd must point to a ConnectableObject.

self.channelEnd->size() = 2

3. The two ends of the channelEnd must point to different ConnectableObjects.

context Channel inv:

channelEnd->size() = 2 implies channelEnd->forall(p1,p2 | p1 <> p2)

3.5 Diagrammatic Representation

As introduced in the previous sections, CSML encompasses the component, composite

structure and activity views of the system. The diagrammatic representation we are

about the present merges all these views and visualises them in one diagram called

the combined structure diagram. The complete combined structure diagram of the

accident server is shown in Figure 3.9. The diagram consists of two parts separated by

a dashed line: the upper part is the type-level, and the lower part is the instance-level.

∙ The type-level part of the combined structure diagram is based on the com-

ponent diagram. The activity diagrams describing component behaviour are

embedded inside the components. The communication events fit into the com-

munication framework by representing function calls from the corresponding

OwnedInterfaces through the relevant Ports. For instance, the phoneData

SendSignalAction in AccidentManager represents the function call from the

databaseFrontEnd interface through the PhoneData port. The corresponding

AcceptEventAction in PersistentDatabase receives the function call.

3.5. Diagrammatic Representation 68

∙ The instance-level part of the combined structure diagram adopts the notation

of the composite structure diagram. The configuration of the accident server

shown in Figure 3.9 is similar to the one depicted in Figure 3.8.

In the following we present the behaviour of components in the accident server

that will be further used for describing refactorings.

AccidentManager

The AccidentManager is the core component, responsible for receiving incoming alerts

through the AlertRecv port. In order to initiate a phone call it acquires the phone

number of the driver from the PersistentDatabase and passes it to the PhoneService,

which calls the driver. The alert is cancelled in case the driver denies the need for

assistance. Otherwise, the call is returned to the AccidentManager to assess the

available data (including sensorial and positioning data from the car) and decide if

the situation is a real emergency. On an ascertained emergency, the necessary data

is passed to the ServiceManager. The ServiceManager matches the GPS location

of the car with the MapHandler and creates a service description. Then, the local

emergency services are contacted through the serviceConnector interface .

PhoneHandler

The PhoneHandler is a dedicated interface to the cellular network. A callNumber

function call is received with a phone number. The call process is started by initiating

the connection. On a successful call, the car driver is questioned on his situation. On

a failed call, the recent timestamp is acquired and the various data concerning the

call attempt are collected. When receiving the callInfo function call, the call data is

transferred to the AccidentManager.

PersistentDatabase

The PersistentDatabase is the simplified database component of the accident server.

It contains the phone numbers of the registered car drivers as well as the map of the

area within jurisdiction. Components can query the phone numbers of users based on

their identification or ask for a route plan from the nearest emergency service station

to the location of the crashed car.

3.6. Differences to UML2 69

ServiceManager

The ServiceManager provides the connection to the emergency services. An ascer-

tained alert is passed through the serviceData function call. Based on the detailed

information, the precise location and timestamp is obtained. With all necessary de-

tails at hand, a service request is compiled and dispatched to the local emergency

services through the reportEmergency call.

TimeService

The TimeService is a simple time server. It provides a precise timestamp to all

requests.

3.6 Differences to UML2

This section elaborately details the differences between the UML 2.1.1 [OMG06b] and

the combined structure modelling language (CSML) metamodel (Fig. 3.1).

The CSML metamodel is close to a subset of the UML metamodel with several

semantic variation points. UML is a general purpose modelling language with a vast

amount of classes and properties. As CSML is specific to the architecture domain, it is

radically simplified compared to UML. Most of the UML classes that were introduced

for flexibility and universality pose an unnecessary complication for CSML. Excessive

amount of unused classes are a problem for two main reasons:

∙ The performance of the transformation decreases,

∙ The graphical representation of a production rule becomes unintelligible.

We refrain from listing all the classes and features that are not present in CSML.

Generally, the semantical and important structural differences between the two lan-

guages are introduced.

3.6.1 Component and Behaviour

A component is a self contained unit encapsulating the state and behaviour of a

number of classifiers. As shown in Figure 3.10, these classifiers realise (or imple-

ment) the behaviour of a component in UML and thus are connected to the Compo-

nentRealization class. Also, UML allows multiple different sets of realisations for a

single specification. Thus, a component can contain multiple ComponentRealization

3.6. Differences to UML2 70

classes. A classifier incorporates behaviour specifications in its own namespace, the

one connected through the classifierBehaviour association specifies the behaviour of

the classifier itself. This behaviour specification can be an activity diagram.

In CSML, the notion of component realisation is not concerned. Also, the be-

haviour specification is not flexible: the ActivityEdge and ActivityNode classes are

directly contained by the Components. The component behaviour is not assumed to

be specified in different ways or by multiple activity diagrams.

3.6.2 Semantics of SendSignalAction and

AcceptEventAction

The semantics of SendSignalAction and AcceptEventAction is generally similar in

UML and CSML: SendSignalAction creates a signal instance and transmits it to the

target object; AcceptEventAction waits for the occurrence of an event meeting its

conditions. Their coupling is different however.

The classes involved in UML signalling are shown in Figure 3.11. SendSignalAction

is a child of InvocationAction that allows signals to be sent through ports. When

sending a signal, a Signal class is instantiated. On the receiving side, the Trigger

object of the AcceptEventAction specifies the type of events accepted by the action.

Any Event, including SignalEvents can be accepted as well. A SignalEvent occurs

when a signal message, originally caused by a SendSignalAction, is received by another

object. When the trigger is activated, SignalEvent results in the execution of the

AcceptEventAction.

In CSML the inheritance structure and mechanics is different: AcceptEventAction

and SendSignalAction are children of CommunicationNode. As shown in Figure 3.4,

CommunicationNode is directly connected to Port. The main difference is the absence

of explicit signal classes: the event is implicitly determined by the interface typing

the port and the name of the relevant communication node (Sec. 3.3).

3.6.3 Composite Structures

As mentioned in Section 3.6.1, there are no explicit Port or Component instances

in UML. Components are realised through classifiers connected to the corresponding

ComponentRealization class. When an instance of a classifier is created, instances

corresponding to each of its ports are created as well and held in the slots specified

by the ports. These instances are referred to as interaction points. The interaction

point object must be an instance of a classifier that realises the provided interfaces of

3.6. Differences to UML2 71

the port.

CSML takes a direct view on the case: both Components and Ports have explicit

instances. The instance of a Component is a ComponentObject and the instance of a

Port is an InteractionPoint.

Although the idea of the composite structure view is the same in UML and CSML,

the contents is substantially different because of the above differences. Since the

instantiation relation of components and ports in UML is not direct, the composite

structures view contains the instances of the realising classifiers. In CSML, the object

and port instances are concerned.

3.6.4 Inheritance Structure of Activities

After presenting the major semantic differences, we elaborate on the metamodel of

the activities view. The coupling of a component and its activity diagram is discussed

in Section 3.6.1. This section details the inheritance structure. The UML metamodel

of the activities view is shown in Figure 3.12.

The edges that represent the control flow between the activities are represented by

the ActivityEdge class in CSML. In UML however, not only control flow, but object

flow edges are allowed. Hence, the ActivityEdge is an abstract class with ObjectFlow

and ControlFlow children.

The activities are represented by the ActivityNode abstract class in both lan-

guages. In UML, there is a ControlNode intermediate class, that serves as a parent

for InitialNode, FinalNode, ForkNode, JoinNode, DecisionNode and MergeNode. In

the CSML, these classes are direct children of ActivityNode. In UML, there are two

different final nodes: ActivityFinalNode shuts down the execution of the activity di-

agram while FlowFinalNode only stops that particular flow, where the token was

consumed. CSML uses only the latter, and thus, instead of an inheritance hierarchy,

it has only one FinalNode class.

The Action is a direct child of ActivityNode in UML, but in CSML there is an

EventNode that generalises Action and CommunicationNode. The reasons for the

existence of CommunicationNode is detailed in Section 3.6.2.

3.6.5 OwnedInterface and Methods

The connections between the Component, Interface and Operation classes are similar

in both models. They are named differently however: Interface is called OwnedIn-

terface and Operation is called Method in CSML. Interface was renamed because of

3.6. Differences to UML2 72

implementation reasons; Tiger EMF Transformer executes generated Java code, and

interface is a reserved word in Java.

However, when Figure 3.13 is compared to the CSML metamodel (Fig. 3.2), the

difference between the contained attributes is apparent. While there is a vast amount

of attributes in UML, CSML is intentionally simplified: a method has only a name,

and a boolean variable isReturning. As introduced in Section 3.2, isReturning denotes

if the method has a return value, but the value itself is not considered.

3.6. Differences to UML2 73

Figure 3.9: Combined structure diagram of the accident server

3.6. Differences to UML2 74

Figure 3.10: Connecting the behaviour to the Component

Figure 3.11: Connecting SendSignalAction and AcceptEventAction

3.6. Differences to UML2 75

Figure 3.12: Metamodel of Activities

Figure 3.13: Connecting Component, Interface and Operation

Chapter 4

Semantic Domain

As an example semantic domain for the theoretical contributions, Communicating

Sequential Processes (CSP)[Hoa85] were chosen. CSP is a process algebra providing

formal means of modelling concurrent systems by describing the interactions, commu-

nications, and synchronisation between a collection of independent agents [Hen88].

CSP as a semantic domain was chosen with implementation in mind. We use the

FDR2 [FSEL05] refinement checker for establishing properties of models expressed

in CSP. There are differences between the ’official’ CSP and the dialect interpreted

by FRD2. We adopted a CSP dialect based on FDR2; its syntax is presented in

Section 4.1.

The semantic mapping that maps the semantic domain to a model is described

by graph transformations. Thus, CSP need to be represented as instances of a typed

graph. This graph based representation and the correspondence between the graph

instances and the term-based form is introduced in Section 4.2.

The various notions of semantics in CSP that can be used for verification are

elaborated in Section 4.3.

4.1 Syntax

FDR2 stores the systems expressed in CSP in files. An FDR2 compliant CSP file

consists of three major parts: channel definitions, system specifications, and system

equations. The definition of the syntax of a CSP file is presented using EBNF [Int96].

fdr2 file =

[channel definitions, new line],

[system specification, new line],

4.1. Syntax 77

[system equation, new line];

channel definitions = set of events;

system specification = process assignment*;

system equation = process assignment*;

The channel definitions form a collective alphabet of the described systems: it

lists all possible events. A system specification is the actual set of CSP expressions

that defines the behaviour of a system. The system equation is the root process of

a system. As a file may contain multiple systems, the difference between the system

specifications and system equations is only semantic.

The basic elements of CSP are processes. A process is the behaviour pattern of an

agent with an alphabet of a limited set of events. Processes are defined using recursive

process equations with guarded expressions. For clarity, we use the terminology shown

in the expression below.

assignment︷ ︸︸ ︷
P =︸︷︷︸

declaration

(a→ Q)∣∣(b→ R)︸ ︷︷ ︸
definition

A CSP expression that defines the behaviour of a process is called process assign-

ment. The declaration specifies the name of the process, while the definition is a

process expression that describes the behaviour assigned to that process. The syntax

of the process assignments is the following.

process assignment = process identifier, ’=’, process expression;

process identifier = process name;

process expression = process name

| event, "->", process expression

| process expression [] process expression

| process expression, "[|", [set of events], "|]", process expression

| process expression, "|||", process expression

| process expression \ set of events

| process expression, ";", process expression

| renaming

| "SKIP";

set of events = "{|", event name*, "|}";

The interpretation of these process expressions is as follows. The prefix operator

a -> P performs event a and then behaves like P. The process P [] Q represents

4.1. Syntax 78

an external choice between processes P and Q. In this case the choice is observable

and controllable by the environment. The hiding operator in case of P ∖ a means a

process that behaves like P except that all occurrences of event a are hidden. The

split operator P ; Q means that upon the successful termination of P it behaves like

Q. The process SKIP represents successful termination.

FDR2 treats the process alphabets and the parallel composition operator in a sig-

nificantly different way than the official CSP. According to [Hoa85], every process has

its own, intrinsic alphabet �P , and a simple parallel composition operator (P ∣∣ Q)

is used. Hence, the synchronised events are not defined explicitly, they are the in-

tersection of the respective alphabets, i.e. �P ∩ �Q. In FDR2 the processes lack

the intrinsic alphabet definition. As mentioned, the channel definition contains the

list of all possible events, but they are not explicitly bound to a particular process.

Consequently, a parameterised concurrency operator P [| X |] Q is used where X is

the set of synchronised events. The participating processes are engaged in a lock-step

synchronisation, the events outside the set X are interleaved. An interleaving process

P ||| Q is truly concurrent: there is no synchronisation at all.

In our application it is important to define a group of processes with similar

behaviour. To this end, we use renaming. When renaming, we label each process by

a different name, also each event of the labelled process is labelled by that name. A

labelled event is a pair l x where l is a label, and x is the symbol for the event. A

process P labelled by l is also denoted by l P. It engages in the event l x whenever P

would have engaged in x. In the ’official” CSP, a renaming function is used to define

l P. The function is f l(x) = l x for all x ∈ �P and the definition of the renaming

is l P = f l(P) [Hoa85]. In FDR2 however, renaming bears a different notation;

assuming the renaming r(event1) = renamed1, r(event2) = renamed2 and r(P) = R

in CSP, the syntax of the respective FDR2 representation is shown below.

renaming = process name, "[[", event renaming, "]]";

event renaming = [event name, "<-", event name]*;

process name = [side, ’_’], [label, ’_’], name, [’_’, subscript];

event name = [label, ’_’], name, [’_’, subscript];

side = terminal string;

label = terminal string;

name = terminal string;

subscript = terminal string;

4.2. CSP Metamodel 79

4.2 CSP Metamodel

The metamodel TGCSP of the graph-based representation of CSP is illustrated in

Figure 4.1. It is the abstract syntax tree of its EBNF form. The mapping between

the graph-based representation and the term-based representation is formalised with

the mapping semg2t : GraphTGCSP
→ CSP . In this section we introduce both the

graph-based representation and the mapping semg2t. The classes and corresponding

terms of the metamodel are elaborated in the following. It is important to note that

there are no additional constraints defined on the various classes. The only constraint

is based on the containment: a contained element must have precisely one container.

This also helps to avoid unwanted connections.

Figure 4.1: TGCSP : the metamodel for CSP

CspContainer

The CspContainer is a similar element to the ComponentContainer in the architec-

ture metamodel. As the implementation uses the EMF ecore [EMF07], the model is

represented as an XML tree. The CspContainer is the root node that contains all

elements.

Associations

4.2. CSP Metamodel 80

∙ systems [0..*] : A collection of system equations owned by the CspContainer.

∙ channelDefinitions [0..*] : A collection of events that forms the channel defini-

tions.

∙ processAssignments [0..*] : A collection of ProcessAssignments used to specify

the behaviour of the contained systems.

ProcessAssignment

The ProcessAssignment assigns behaviour defined as a ProcessExpression to a process

identifier. As shown in Figure 4.2, the processIdentifier edge contains the declared

process while the process edge holds the definition of the declared process.

Associations

∙ processIdentifier [1]: the declaration of the process name.

∙ process [1] : the ProcessExpression that defines the behaviour assigned to the

process.

Figure 4.2: Graph to terms: ProcessAssignment

ProcessExpression

ProcessExpression is the abstract composite class of process expressions. As CSP

revolves around processes and expressions that define them, nearly all classes are

children of this class in the CSP metamodel.

Process

The instances of class Process represent processes, the basic building blocks of CSP.

In Figure 4.3 a complete process assignment is illustrated: process P is defined to

behave as process Q. The attributes name, subscript and label create together the

4.2. CSP Metamodel 81

label.namesubscript pattern. In FDR2 this pattern is flattened to label name subscript.

As CSP is used for refinement checking, identical process names are not allowed.

Figure 4.3: Graph to terms: Process

Attributes

∙ name: String [1]: The name of the Process.

∙ subscript: String [0..1]: The subscript of the process name.

∙ label: String [0..1]: The label of a renamed Process.

∙ side: String [0..1]: Indicates the particular side of the refactoring rule (LHS or

RHS) where the process is.

Event

Event represents an event class in CSP with its instances representing occurrences of

that event. The attributes name, subscript and label create together the label.namesubscript

pattern. In FDR2 this pattern is flattened to label name subscript.

Attributes

∙ name: String [1]: The name of the Event.

∙ subscript: String [0..1]: The subscript of the event name.

∙ label: String [0..1]: The label of a renamed Event.

Prefix

Prefix represents the prefix operator in CSP. An example is shown in Figure 4.4:

process P is initially willing to communicate a and will wait indefinitely for this a to

happen. After a it behaves like Q.

4.2. CSP Metamodel 82

Associations

∙ event [1] : the Event that the process engages.

∙ targetProcess [1] : after communicating a, the system behaves like this Process.

Figure 4.4: Graph to terms: Prefix

BinaryOperator

The BinaryOperator is an abstract class that represents all process operators taking

two operands.

Generalisations: ProcessExpression

Associations

∙ leftHandSide [1] : the ProcessExpression on the left-hand side of the operator.

∙ rightHandSide [1] : the ProcessExpression on the right-hand side of the operator.

ProcessWithSet

Another abstract superclass is the ProcessWithSet. It generalises such process ex-

pressions that may have a set of events associated with them.

Generalisations: ProcessExpression

Associations

∙ eventSet [0..*] : the set of events associated with the process expression.

4.2. CSP Metamodel 83

Concurrency

The Concurrency class represents the parallel composition of processes. Figure 4.5

shows an example configuration. Processes E and F are in parallel composition.

The two processes engage in a lock-step synchronisation with events a and b. The

leftHandSide and rightHandSide operands are inherited from the BinaryOperator,

while the eventSets are from the ProcessWithSet.

Figure 4.5: Graph to terms: Concurrency

Generalisations: ProcessExpression, BinaryOperator, ProcessWithSet

Choice

In our CSP dialect we use only external choice which is represented by the Choice

class. In Figure 4.6 process P behaves either like E or like F .

Figure 4.6: Graph to terms: Choice

Generalisations: ProcessExpression, BinaryOperator

Hiding

The class Hiding is the graph based representation of the hiding operator. Process P

in Figure 4.7 is defined to behave as process Q, except that events a and b have been

4.2. CSP Metamodel 84

internalised, i.e hidden from the outside environment.

Generalisations: ProcessExpression, ProcessWithSet

Associations

∙ hiddenProcess [1] : the process that has a set of events hidden from the envi-

ronment.

Figure 4.7: Graph to terms: Hiding

RenameArrow

When a process is renamed, it is necessary to transform all the events that it may

engage in as well. RenameArrow defines the renaming of a single event explicitly. In

Figure 4.8, the event class commit connected through originalEvent is renamed by

the label p1. The renamed event used in the renamed process is p1 commit.

Associations

∙ originalEvent [1] : the event that is being renamed.

∙ renamedEvent [1] : the renamed name of the event.

Figure 4.8: Graph to terms: RenameArrow

4.2. CSP Metamodel 85

RenamingOperator

RenamingOperator implements the FDR2 syntax of renaming in the graph based rep-

resentation. The correspondence between the term- and graph-based representation

is shown in Figure 4.9. In the example, process P is renamed to process R. Although

there are no explicit alphabets of processes in FDR2, still, the events a process en-

gaged in need to be renamed. Assuming that P is engaged in event1 and event2 ;

with the help of RenameArrow they are renamed to renamed1 and renamed2.

Associations

∙ usedProcess [1] : the process being renamed.

∙ renameArrow [0..*] : the set of rename arrows that rename all events the process

engages in.

Figure 4.9: Graph to terms: RenameOperator

SystemExpression

SystemExpression is a special process used in FDR2 only: it is the root process of a

system.

Associations

∙ equation [1] : the behaviour assigned to the root process of a system.

4.3. Semantics 86

4.3 Semantics

The semantics of CSP is usually defined in terms of traces, failures, or divergences

[Hoa85].

4.3.1 Traces

A trace of a process is a finite sequence of events in which the process has engaged

up to some moment in time. Two events cannot occur simultaneously, one is always

succeeds the other. Traces are denoted as a sequence of symbols, separated by commas

enclosed in angular brackets. Let us give some examples on traces [Hoa85]:

∙ ⟨a, b⟩ consists of two events: a followed by b.

∙ ⟨a⟩ is a trace containing only event a

∙ ⟨⟩ is the empty trace containing no events

∙ The process P = a -> SKIP [] b -> SKIP can generate traces ⟨⟩, ⟨a⟩, ⟨b⟩.

The complete set of all possible traces of process P is denoted by the function

traces(P).

There are various operations available on traces, the ones used later are the fol-

lowing:

∙ Catenation: construct the trace from a pair of operands s and t by putting

them together in this order.

∙ Afters : if s ∈ traces(P), then P/s (’P after s’) represents the behaviour of P

after the trace s is complete. This operator is only used as a notation for dis-

cussing behaviour of processes in abstract contexts. It represents the behaviour

of P on the assumption that s has occurred [Ros97].

4.3.2 Divergences

With the introduction of the hiding operator, it became possible for a process to

perform an infinite sequence of internal actions. An internal action is notated by � .

The state when a process enters into an infinite sequence of internal actions is called

divergence. The process that does nothing but diverge is notated as div or CHAOS.

Consider the following recursions:

4.3. Semantics 87

P = a -> (P \ a)

Q = a -> SKIP

The behaviour shown to the environment is similar, since the traces in both cases

are ⟨⟩, ⟨a⟩, i.e. traces(P) = traces(Q). However, the internal behaviour is different:

after trace ⟨a⟩ process P diverges.

The divergences of a process, represented by the function divergences(P), are the

set of traces after which the process diverges, i.e.

divergences(P) = {s∣s ∈ traces(P) ∧ (P/s) = div}

4.3.3 Failures

The failures model uses the concept of refusals to deal with the nondeterminism

introduced by the hiding operator. A refusal set is a set of events that a process

can fail to accept however long it is offered. The function refusals(P) is the set of

initial refusals of P . We also need to know not only what P can refuse to do after

the empty trace, but also what it can refuse after any of its traces [Ros97]. A failure

is a pair (s,X), where s ∈ traces(P) and X ∈ refusals(P/s). The possible failures

of a process are defined by the function

failures(P) = {(s,X)∣s ∈ traces(P) and X ∈ refusals(P/s)}

To demonstrate failures, consider the following processes with alphabet {a, b, c}:

P1 = (c -> a -> SKIP) [] b -> c -> SKIP)

P2 = ((c -> a -> SKIP) [] (b -> c -> SKIP)) \ {| c |}

The complete set of failures for the deterministic P1 is

{(⟨⟩, {}), (⟨⟩, {a}), (⟨c⟩, {c, b}), (⟨b⟩, {a, b}), (⟨c, a⟩{a, b, c}), (⟨b, c⟩{a, b, c})}

The process P2 shows how failures express nondeterminism introduced by hiding.

The complete set of failures are:

{(⟨⟩, X)∣X ⊆ {b, c}} ∪ {(⟨a⟩, X), (⟨b⟩, X)∣X ⊆ {a, b, c}}

4.3. Semantics 88

4.3.4 Refinement Relations

From these semantic notions the corresponding equivalence and refinement relations

can be deduced.

∙ If every trace of Q is also trace of P , we say P trace-refines Q, written P ⊑T Q
if and only if traces(Q) ⊆ traces(P).

∙ If every trace s of Q is possible for P and every refusal after this trace is

possible for P , then Q can neither accept and event or refuse one unless P

does. P failure-refines Q: P ⊑F Q if and only if traces(Q) ⊆ traces(P) and

failures(Q) ⊆ failures(P).

∙ One process failure/divergence-refines another, written P ⊑FD Q if and only if

failures(Q) ⊆ failures(P) ∧ divergences(Q) ⊆ divergences(P)

The equivalence relations are constructed as a symmetric closure on the refinement

relations: P ≡X Q if and only if P ⊑X Q ∧Q ⊑X P where X = {T, F, FD}.
All these relations can be used to express behaviour preservation of refactoring

rules and compatibility of system components in CSP. It is important to note that the

traces model is not unsuitable for systems with hiding or internal choice. It simply

does not take the internal actions into account. When the observable behaviour is

concerned, the traces model is the perfect choice.

Chapter 5

Semantic Mapping

The modelling language has to be provided with formal behaviour. In our case, a

CSP-based semantics formalise the behaviour of the CSML. Since both domains are

represented as instances of their respective metamodels, the correspondence between

them is defined as a graph transformation system [DB08, BHE08]. This chapter

presents this graph transformation system: Section 5.1 outlines the underlying me-

chanics while Sections 5.2, 5.3, 5.4 and 5.5 details the transformation.

5.1 Transformation Overview

The graph transformation system that implements the semantic mapping between

the combined structure modeling language (CSML) and CSP is denoted by GTSsmc =

(Psmc, TGroot) with the common type graph TGroot and a set of transformation rules

Psmc. The CSP metamodel TGCSP (Fig. 4.1) and the CSML metamodel TGarcℎ

(Fig. 3.1) are subgraphs of TGroot. This containment is expressed as inclusion mor-

phisms incS : TGarcℎ → TGroot and incT : TGCSP → TGroot.

This section is divided into two parts: Section 5.1.1 introduces the mechanics of

the transformation, Section 5.1.2 presents the general rule design.

5.1.1 Transformation Mechanics

The task of GTSsmc is to read the software architecture model expressed in CSML

and generate the corresponding CSP graph. Since the CSP graph is essentially the

abstract syntax tree of the term-based CSP expression set, let us elaborate on its

structure. As it was introduced in Section 4.1, a CSP process assignment consists of

a declaration and a definition. The declaration provides a unique name that identifies

5.1. Transformation Overview 90

the process; the definition specifies its behaviour. Figure 5.1 shows a generic outline

of the CSP graph: the root node is a CspContainer instance connected to process

declarations. A process declaration is a ProcessAssignment instance that is identified

by a Process instance contained via the processAssignment aggregation. Further

depth is given to the tree by the connected behaviour. We call these connected

behaviour-trees ProcessExpression subtrees.

Figure 5.1: Overview of the transformation

Definition 5.1.1. (ProcessExpression Subtrees) Given a graph G ∈ GraphsTGCSP

with node v ∈ VG such that type(v) = ProcessAssignment. A subgraph Av ⊆ G is

called a ProcessExpression-subtree (or PE-subtree) if there is a node w ∈ VA with

edge e ∈ EG such that s(e) = v, t(e) = w and type(e) = process exists.

The transformation builds the CSP-graph top-down. The process declarations are

created first from components, ports, interfaces and - as shown in Section 5.1.2 - activ-

ity edges. Then, these empty declarations are provided with behaviour specifications.

Since the CSP-graph is a tree, these behaviour specifications are PE-subtrees. One

PE-subtree corresponds to one CSML element. The rule-design reflects this: Psmc

5.1. Transformation Overview 91

is sorted into named subsets Pi ⊂ Psmc, each responsible for transforming a certain

element of CSML. It is important to observe that one rule group does not interfere

with the PE-tree of another group. For instance, the rules responsible for building

the subtree associated with a DecisionNode will not modify or create a subtree that

describes the behaviour of a Port.

At the type-level, as presented in Section 5.2, the processes are derived from the

components, ports and interfaces to form the framework of the semantic model. The

behaviour of the system in Section 5.3 is generated from the corresponding activ-

ity diagrams. In Section 5.4, the instance level declarations are created using both

the component and composite structure diagrams. The behaviour is identical in ev-

ery component instance of the same type; thus, in Section 5.5 the behaviour of the

component instances and channels are renamed from the type-level behaviour.

5.1.2 Rule Design

In this section we sketch the design of our transformation rules, concentrating on a

single rule for a detailed presentation.

We consider the simple example rule that transforms an ActivityEdge. The pro-

duction rule is depicted in Figure 5.2 using the concrete syntax of the participating

languages. The idea behind the mapping of component behaviour is to relate an Ac-

tivityEdge of an activity diagram to a Process in CSP. The behaviour transformation

follows a delocated design. First, all the edges are transformed to the corresponding

process declarations by the BℎEdge rule shown in Figure 5.3. Then, the various

nodes fill the empty process definitions.

Figure 5.2: Mapping ActivityEdge with concrete syntax

The mapping, shown in Figure 5.2 is expressed intuitively in concrete syntax. This

format will be used to give a precise overview on the outcome of the transformation.

The individual rule design of GTSsmc was inspired by triple graph grammars.

It is important to stress that TGGs were never used for implementation; only the

idea of using correspondence model for controlling the progress of transformation

was harnessed. The creation of target elements, in combination with negative ap-

plication conditions on the target model, allows us to retain the input model and

restrict ourselves to nondeleting rules with respect to the input model. These two

5.2. Type-Level Mapping 92

properties will be important later. Earlier versions of the transformation did use a

correspondence model. The mapping of behaviour with the use of a correspondence

model was presented in [BH07]. However, because of complexity and performance

issues, the correspondence model was abandoned, the progress of the transformation

is controlled by the target model.

According to the graph transformation theory (Section 1.4.2), the production rules

are defined by rule graphs, namely a left-hand side (LHS), a right-hand side (RHS)

and negative application conditions (NACs). These rule graphs are object-structures

that contain objects typed over EMF metamodels of UML diagrams (Fig. 3.1) as

well as CSP expressions (Fig. 4.1). Object-structures are essentially attributed typed

graphs.

Figure 5.3: The BhActivityEdge rule

5.2 Type-Level Mapping

The type-level mapping realises the generation of process declarations associated with

the components.

5.2.1 Components and Port Declarations

The mapping of a component and its ports is shown in Fig. 5.4. A component is

mapped to a process definition with its owned behaviour (obtained from the activity

diagram) and port processes in parallel. The shared event sets X and Y between

5.2. Type-Level Mapping 93

the behaviour and the port processes are generated from the engaged accept event

actions and send signal actions.

Figure 5.4: Mapping of a Component and its Ports

The rules in Figure 5.5 and 5.6 are responsible for creating the component and

port processes and weaving the port processes into the component declarations.

Figure 5.5: The Component rule

The Component rule in Figure 5.5 creates the process declaration and definition

for the corresponding component. The NAC, defined on CSP expressions, is self-

disabling (Def. 1.5.11). It checks the existence of similar process declarations to

allow the rule application on an essential match only once. If no similar process

assignments exist, the matched component has not been transformed yet. Thus it

creates the expression type.C def = type.C behaviour and the type.C behaviour

process declaration. As the absence of an attribute is not matchable in EMT, the

type label is used in both the component and port processes, to indicate a type-level

process.

The Port rule in Figure 5.6 creates the process declarations for the corresponding

ports and inserts them into the definition of the parent component. The NAC works

5.2. Type-Level Mapping 94

Figure 5.6: The Port rule

the same way as the one in the Component rule. Assuming the configuration in

Figure 5.6, the rule transforms P1 first with matching A = "C" and B = "P1". P2

is transformed in the second place with A = "C" and B = "P2". As the component

definition is not empty, the root element can be matched as a process expression,

hence the port processes are added to the component definition in the following way:

1. type.C = type.P1 || C behaviour

2. type.C = type.P2 || (type.P1 || C behaviour).

5.2.2 Ports Connected to Interfaces

Ports are mapped to processes engaging with events corresponding to their interfaces.

As shown in Figure 5.7, port type.P1, implementing a provided interface, engages

with receive and reply events. In case of a required interface, like port type.P2 and

interface I, the definition includes the initial send and possible return events.

The process of generating the provided interface definition of type.P1 is shown

in Figure 5.8.

∙ Step 0 (Fig. 5.8(a)): The initial setup, with the empty declaration of the

type.P1 process derived from the port.

5.2. Type-Level Mapping 95

Figure 5.7: Mapping of Port behaviour

∙ Step 1 (Fig. 5.8(b)): As shown in Figure 5.4, port P1 provides an interface with

methods method1 and method2. When an AcceptEventAction with method1

name is engaged with the port, it means the reception of a function call. Thus,

the definition with expression method1 recv -> type.P1 is created.

∙ Step 2 (Fig. 5.8(c)): Similarly, an AcceptEventAction for method2 can be found

as well. A similar prefix is introduced through a choice: an idle port may

engage in any of its communication events sequentially. Note that the graph

transformation rules in Step 1 and 2 are different. In Step 1, the rule needed

an empty process declaration; while in Step 2, it searched for a declaration with

a generic ProcessExpression as its definition, and inserted a Choice as a parent

node.

∙ Step 3 (Fig. 5.8(d)): Figure 5.4 shows that method1 has a return value. Thus, a

SendSignalAction engaged with the port represents the reply of method1 (with

return value) through the port. Thus, the prefix is expanded to method1 recv

-> method1 rply -> type.P1.

Although it is not shown in Figure 5.8, the created events (method1 recv, method1 rply,

method2 recv) are added to the corresponding event set of the concurrency operator

shown in Figure 5.6 and to the channel definitions of the CSP file.

5.2.3 Interfaces

In the CSP representation, ports are façades synchronising the events between com-

munication channels and the owned behaviour of the component. Interfaces are them-

selves the type-level communication behaviour. Their process counterparts contain

all the possible communication events, and through event synchronisation they define

the allowed order of communication.

The mechanics of building the interface definitions are similar to ports. The only

difference, as shown in Figure 5.9, is that the events are created in send − receive
and reply − return pairs.

5.2. Type-Level Mapping 96

(a) Step 0 (b) Step 1

(c) Step 2

(d) Step 3

Figure 5.8: Mechanics of the provided interface transformation

5.3. Behavioural Mapping 97

Figure 5.9: Mapping of Interface behaviour

5.3 Behavioural Mapping

Every component contains exactly one activity diagram as its owned behaviour, which

is transformed to CSP to define the behaviour of the component.

5.3.1 Basic Behavioural Elements

As mentioned in Section 5.1.2 and shown in Figure 5.2, ActivityEdges are mapped

to Processes in CSP. In this section we present the fundamentals of the mapping of

behaviour.

Figure 5.10: Simple behaviour transformation

A simple transformation is depicted in Figure 5.10 with its mechanics revealed

in Figure 5.11. First, the edges are transformed to empty process declarations, as

shown in Figure 5.11(a). Although the InitialNode is not mapped to anything directly,

Figure 5.11(b) shows that the process of its outgoing edge fills the definition of the

behaviour of the parenting component. The transformation of an Action according

to Figure 5.11(c) is defined in terms of a new prefix expression. The definition of the

process corresponding to an ActivityEdge ending in a FinalNode is the SKIP process

as shown in Figure 5.11(d).

As the most important rule from this group, BℎAction, presented in Figure 5.12,

implements the mapping of an Action.

In the LHS, the Action and the connected edges are matched along with the

process declaration corresponding to the incoming edge. In the RHS, a prefix is

created. The created event is added to the channel definition. The rule is nondeleting

and has a self-disabling NAC.

5.3. Behavioural Mapping 98

(a) Edges (b) Initial Node

(c) Action Node (d) Final Node

Figure 5.11: Basic mechanics of behaviour transformation

Figure 5.12: The BhAction rule

5.3.2 Communication Events

Both the SendSignalActions and AcceptEventActions map to similar prefixes as action

nodes. As mentioned in Section 3.3, these nodes represent the various events related

to function calls through the ports they engage. A concise summary of the possible

communication primitives is depicted in Figure 5.13.

A SendSignalAction sends the function call through its engaged port typed by a

required interface. A corresponding AcceptEventAction receives the function call in

the providing component. If the function has a return value, it is replied using a

SendSignalAction from the providing component. This return value is received in the

original calling component with an AcceptEventAction. As presented, both actions

have two possible meanings dependent on the typing of their engaged ports. Thus

the transformation uses two rules for each.

5.3. Behavioural Mapping 99

Figure 5.13: Mapping of communication events

Figure 5.14: LHS of the BhSendSignalAction1 rule

The LHS of the first of the rules transforming a SendSignalAction is shown in

Figure 5.14. The pattern matched is similar to the one in Figure 5.12: the SendSig-

nalAction, along with its incoming and outgoing edges. However, the corresponding

port is also necessary here; it has to be connected to an interface with a method of

5.3. Behavioural Mapping 100

a similar name as the SendSignalAction. If the interface is required (as the one in

the figure), an eventname send event is created. In case of a provided interface, the

event is a reply event. The rules for the accept event action are very similar to the

one described.

5.3.3 Decision Node and Merge Node

The transformation of a DecisionNode, as depicted in Figure 5.16, is a more com-

plicated case, although its concrete syntax is obvious. Choice is a binary operator,

hence we have to build a binary tree bottom-up as depicted in Figure 5.15. First, the

else branch is matched with an arbitrary edge creating the lowest element of the tree

(in a dark grey shade). Then, the tree is built by adding the elements one-by-one (in

a light grey shade).

Figure 5.15: Abstract syntax tree for the result of DecisionNode transformation

Note that this transformation, which creates non-determinism at the syntactic

level, leads to semantically equivalent processes. According to [OMG06b], the or-

der in which guards are evaluated is undefined and the modeler should arrange that

each token only be chosen to traverse one outgoing edge, otherwise there will be race

conditions among the outgoing edges. Hence, the if guard conditions are disjoint,

syntactically different nestings are semantically equivalent.

As mentioned, the choice of the outgoing route in the activity diagram is based

on the evaluation of the guard conditions. In CSP, the external choice models this

case: the environment is offered to make the decision. However, the various notions of

semantics introduced in Section 4.3 deal only with the fact that the choice is external,

the actual conditions are not concerned. Thus, the guard conditions themselves are

5.3. Behavioural Mapping 101

not transformed to CSP.

Figure 5.16: Mapping of the DecisionNode

The MergeNode is a simpler case, as illustrated in Figure 5.17. It is mapped to

an equation identifying the processes corresponding to the two incoming edges.

Figure 5.17: Mapping of the MergeNode

5.3.4 Fork Node and Join Node

ForkNode and JoinNode are similar in implementation mechanics to the case of the

MergeNode and DecisionNode. As mentioned in Section 5.3.5, the activity diagram

is well-structured in the sense of parallel nodes. The ForkNodes and JoinNodes are

paired by a unique id, thus the transformation searches for a matching pair. The

ForkNode in Figure 5.18 bears the same id as the JoinNode in Figure 5.19.

The mapping for the ForkNode is demonstrated in Figure 5.18. The concurrency

operator is binary, hence by processing the outgoing edges one-by-one we create a

binary abstract syntax tree of concurrency nodes the same way we did in Figure 5.15

for the DecisionNode. Since P ∥ (Q ∥ R) = (P ∥ Q) ∥ R, the different trees are

semantically equivalent. As we expect the processes to terminate, we simply use the

split operator and start a new process for the outgoing edge of the corresponding

JoinNode.

The transformation of a JoinNode is depicted in Figure 5.19: all inbound processes

terminate with success.

5.3. Behavioural Mapping 102

Figure 5.18: Mapping of the ForkNode

Figure 5.19: Mapping of the JoinNode

5.3.5 Well-Structured Activity Diagrams

After introducing the transformation of ForkNode and JoinNode, we would like to

discuss the necessity of using well-structured activity diagrams with respect to par-

allelism. It is important to note that the difference between expressing parallelism

in FDR2 and ”official” CSP is only syntactic. In both cases, the parallel processes

are synchronised through shared events. The difference is that in official CSP, the

synchronisation is implicit, while FDR2 expresses the synchronised events explicitly.

As demonstrated in Figure 3.6(b), it is possible to have very complicated parallel

configurations in an activity diagram. In such cases, there is no correspondence

between fork and join nodes. However, in CSP there are two ways to synchronise

previously forked processes.

1. Sequential processes can be used. If there is a parallel process P ∣∣ Q, then both

end successfully, and another process continues the control flow. It has to be

stated in advance which processes participate in the parallel process. Hence,

it needs to be stated as well, which processes will terminate successfully upon

synchronisation. Consequently, the model of sequential processes cannot be

used in the not well-formed case.

2. An explicit synchronisation event can be used as in [BH07]. In this case, there

is a dedicated synchronisation event that is artificially planted into a process at

the point when the activity diagram synchronises. As shown in Figure 5.20, all

participating processes synchronise and one proceeds. This solution seems to

be usable in not well-formed cases as well.

5.4. Instance-Level Mapping 103

Figure 5.20: Non-structured JoinNode transformation

However, there is a problem with the dedicated event solution. There can be

either one general synchronisation event in the system or one synchronisation event

for every corresponding JoinNode. As the implementation is in FDR2, we have to take

into account that synchronisation events need to be explicitly stated in the parallel

operator. Thus, using a synchronisation event for every JoinNode leads back to the

same problem the sequential process solution faces: the ForkNodes have to be paired

with the JoinNodes and thus the activity diagrams need to be well-formed.

Using only one general synchronisation event is not allowable either. As there is no

obvious connection between the ForkNodes and JoinNodes in the system, the relation

between them can get very complicated. Since the synchronisation event is general,

it is possible to have multiple join nodes in parallel system modules both waiting for

the synchronisation event. It is not unlikely that, in this way, the system may get into

deadlock or produce unwanted behaviour. Thus, the well-structured activity diagram

paradigm was chosen with the semantically-feasible sequential process solution.

5.4 Instance-Level Mapping

The composite structure diagram models the dynamic behaviour of a software system

at the architecture level. Hence, it needs to be used for checking the preservation of

behaviour. The instance-level part of the semantic mapping first creates the process

declarations; the behaviour is renamed from the type-level as described in Section

5.5.

5.4.1 Component Objects

To deal with multiple instances, component and port instance processes are renamed

according to their instance names as shown in Figure 5.21.

Aside from the generated renaming definitions and instance name labels, the rules

creating the process declarations are similar to component and port rules shown in

Figures 5.5 and 5.6.

5.5. Renaming Rules 104

Figure 5.21: Mapping of a ComponentInstance

5.4.2 Channels

Channels are implementations of interface definitions. The channel object maps to a

process declaration as shown in Figure 5.22, since its behaviour is renamed from the

corresponding interface.

Figure 5.22: Mapping of a Channel

5.5 Renaming Rules

The only missing piece of the semantic mapping is the behaviour of the instance

level objects. This behaviour is acquired by ”instantiating” the behaviour of the

components. The instantiation is basically renaming the events. The structural

elements are mapped to processes, hence the distinction between the RHS and LHS

of the refactoring rule is important. Events are used for checking trace refinement (as

the chosen notion of behaviour preservation), thus similar event instances on both

rule sides have to bear the same name.

As shown in Section 5.4, instances of structural artifacts are renamed using their

instance name. Structure-based renaming, i.e. the label is the instance name of the

owning object, can be used for events not present in both sides of the refactoring

rule as they are considered to be deleted or created. However, because mapped

event instances have to be similar on both rule sides, they need a different labelling

method. Events can be relocated in the hierarchy through the refactoring, hence their

renaming cannot be based on structural notions. These event instances are renamed

by a unique matcℎ value overriding the structure-based renaming.

The three elements from CSML that map to events in CSP are the action, send

signal action and accept event action. The possible event renamings are summarised

in Figure 5.23. The Action and the two communication actions that can form two

different communication primitives resolve to five different events for the non-mapped

5.5. Renaming Rules 105

Figure 5.23: Renaming of events

case. The mapped case yields similar combinations.

As the simplest of all, the renaming of a non-mapped action is shown in Fig-

ure 5.24. The action is matched with its container and the relevant component

instance. The false isMapped attribute ensures that the matched action is not

mapped. A renaming arrow is inserted to the relevant Renaming operator, where

the original event is renamed with a label bearing the instance name of the matched

component object. The renamed event is added to the channel definition, and to the

list of hidden events in the system equation. The reason for hiding is explained in

Section 7.1.3. The renaming of the communication nodes work the same way, they

only encompass a more complicated pattern in the LHS.

The rules for the mapped elements are slightly different. The isMapped attribute

in their case is true with an integer matcℎ present holding their system-wide unique

mapping identification. All mapped elements, regardless of the structural status, are

labelled by the value of match.

5.5. Renaming Rules 106

Figure 5.24: The RnActionNoMap rule

Chapter 6

Verification of Refactoring Rules

This chapter presents the main theoretical contributions of the thesis. A formal

definition of compositionality for any total function between sets of graphs (repre-

senting software models and the semantic domain) defined by graph transformations

is proposed. The formal notion of rule-level verification is defined and its correct-

ness is proven [BHE08, BHE09b, BHE09a]. To establish compositionality, a syntactic

criterion has been established for the implementation of the mappings by graph trans-

formations with negative application conditions. Finally, the compositionality of the

semantic mapping from Chapter 5 is proven.

Before presenting the technical content, a running example is introduced. This

sample refactoring is demonstrated in Figure 6.1 as a graph transformation following

the H0 ← D → H ′0 format of the DPO approach (Sec. 1.4.2). The idea behind the

refactoring is similar to the parallelization pattern depicted in Figure 7.11. Compo-

nent C calls function a() through port P and then performs action b. Component D

receives this call through port Q. The refactoring parallelises the actions in compo-

nent C: the function call a() and action b are interleaved. The behaviour of the system

expressed in CSP is shown in Table 6.1 according to the transformation presented in

Chapter 5 along with its trace semantics.

oo //

Figure 6.1: Sample Refactoring

108

system_L =

type.C_L [| [a_send] |]

type.I [| [a_recv]|] type.D

type.C_L = C_behaviour

[| [a_send]|] type.P

C_behaviour = c-1

c-1 = a_send -> c-2

c-2 = b -> c-3

c-3 = SKIP

type.P = a_send -> type.P

type.D = D_behaviour

[| [a_recv] |] type.Q

D_behaviour = d-1

d-1 = a_recv = d-2

d-2 = SKIP

type.Q = a_recv -> type.Q

type.I = a_send -> a_recv

-> type.I

system_R =

type.C_R [| [a_send] |]

type.I [| [a_recv]|] type.D

type.C_R = C_behaviour

[| [a_send]|] type.P

C_behaviour = c-1

c-1 = (c-b1 ||| c-a1); c-3

c-b1 = b -> c-b2

c-b2 = SKIP

c-a1 = a_send -> c-a2

c-a2 = SKIP

c-3 = SKIP

type.P = a_send -> type.P

type.D = D_behaviour

[| [a_recv] |] type.Q

D_behaviour = d-1

d-1 = a_recv = d-2

d-2 = SKIP

type.Q = a_recv -> type.Q

type.I = a_send -> a_recv

-> type.I

traces(type.C_L) =

< a_send, b >

traces(system_L) =

< a_send, b, a_recv >,

< a_send, a_recv, b >

traces(type.C_R) =

< a_send, b >,

< b, a_send >

traces(system_R) =

< b, a_semd, a_recv >,

< a_send, b, a_recv >,

< a_send, a_recv, b >

Table 6.1: Semantics of the system in Figure 6.1

6.1. Formalising Compositionality 109

6.1 Formalising Compositionality

In this section, compositionality is introduced formally. As the results proposed

are generic with respect to the semantic domain, we provide a general, axiomatic

definition.

Definition 6.1.1. (Semantic Domain) A semantic domain is a triple (D,⊑, C)
where D is a set, ⊑ is a partial order on D, C is a set of total functions C[] : D → D,

called contexts, such that d ⊑ e =⇒ C[d] ⊑ C[e] (⊑ is closed under contexts).

The equivalence relation ≡ is the symmetric closure of ⊑.

Let us illustrate first, what is a context in CSP using the example in Table 6.1.

The context E[X] = System L of process type.C (i.e. X = type.C) is:

X [| [a send] |] type.I [| [a recv]|] type.D

Thus, CSP is a semantic domain (D,⊑, C), where D is the set of CSP process

expressions and ⊑ can be trace, failure or divergence refinement as they are closed

under context [Hoa85]. A context is a process expression E[X] with a single occurrence

of a distinguished process variable X.

To motivate the definition of compositionality, we formulate the context F(Y) of

process type.I and context G(Z) of process type.D as well (i.e. Y = type.I and Z

= type.D).

F(Y) = type.C L [| [a send] |] Y [| [a recv] |] type.D

G(Z) = type.C L [| [a send] |] type.I [| [a recv] |] Z

It is important to see that the parallel operator is associative, i.e.

F(Y) = (type.C L [| [a send] |] Y) [| [a recv] |] type.D

= type.C L [| [a send] |] (Y [| [a recv] |] type.D)

Thus, we can conclude that the system is the composition of processes type.C,

type.I and type.D. Figure 6.2 visualises the composition of the above contexts in

the style of Figure 2.

However, the fact that the semantic domain is composed of different parts is a

piece of trivia. The special about compositionality is that these parts of the semantic

6.1. Formalising Compositionality 110

Figure 6.2: The composition of contexts

m//

Figure 6.3: Inclusion of component C

domain are directly related to parts of the software model. For instance the behaviour

of component C expressed in CSP is the process type.C L, i.e. sem(C) = type.C L.

Moreover, the inclusion m : L→ G in Figure 6.3 is reflected in the semantic domain

as sem(G) ≡ E[sem(L)]. This means that the context is uniquely determined in the

semantic domain by the part of G that is not in the image of L, i.e. G ∖m(L).

Definition 6.1.2. (Compositionality) A semantic mapping sem : GraphsTG →
(D,⊑, C) is compositional if, for any injective m0 : G0 → H0 and pushout (1), there

is a context E with sem(H0) ≡ E[sem(G0)] and sem(H ′0) ≡ E[sem(G′0)]

G0
//

(1)m0

��

G′0

m′0
��

H0
// H ′0

Intuitively the concept of compositionality is depicted in Figure 6.4. The seman-

tic expression generated from H0 and H ′0 differ by only those parts that form the

difference between G0 and G′0. The subgraph of H0 that is not part of the image of

G0 is unchanged, so is context E.

Although concept of context was defined only for the semantic domain, it is clear,

that the part of H0 that is not part of the image of G0 refers to a similar concept.

Context in graphs (and thus in semantic domains represented as graphs) is understood

via the initial pushout construction.

6.2. Semantic Mapping 111

Figure 6.4: Intuitive approach to compositionality

6.2 Semantic Mapping

After the definition of semantic domain, and compositionality, we give a concise

definition for semantic mapping. It consists of two steps, where the second step is an

injection to the original term-based representation of the semantic domain.

Definition 6.2.1. (Semantic Mapping) A graph to graph semantic transforma-

tion is a function semg2g : GraphsTGmdl
→ GraphsTGSD

specified by a locally

confluent and terminating graph transformation system GTSsem = (TGsem, Psem).

TGsem consists of two distinguished subgraphs TGmdl and TGSD with TGmdl∩TGSD =

∅. The mapping semg2g is defined for all G0 ∈ GraphsTGmdl
by semg2g(G0) = Gn

if there is a transformation G0
p1⇒ G1...Gn−1

pn⇒ Gn with rules p1, ..., pn ∈ Psem which

is terminating.

A graph to term semantic transformation is an injective function semg2t : GraphsTGSD
→

(D,⊑, C).

A semantic mapping sem : GraphsTGmdl
→ (D,⊑, C) is a composition of a graph

to graph semg2g and a matching graph to term semg2t semantic transformations, i.e.

sem = semg2t ∘ semg2g.

The source model is typed over TGmdl while the expressions of a semantic domain

(D,⊑, C) are represented as a typed graph typed over TGSD. The graph to term

transformation maps the graph representation of the semantic domain into terms

(i.e. its original form).

In our case, the type graph TGSD of the semantic domain is the CSP metamodel

TGCSP shown in Figure 4.1. The correspondence between the abstract syntax tree of

6.3. Correctness of Rule-level Verification 112

L

m

��

H

sem

��

Koo //

��

Rv

sem

��

m∗

��
G_

sem
��

Doo // H_

sem
��

sem(G) ℛ sem(H)

sem(L)

OO

ℛ

KS

sem(R)

OO

Figure 6.5: CSP correspondence for behaviour verification

CSP and the graph representation is injective. The rationale for injectivity is based

on the similarity of the abstract syntax tree of CSP terms and the graph instances of

the CSP metamodel.

6.3 Correctness of Rule-level Verification

In this section we prove that the method of verifying a refactoring by verifying the

refactoring rule is indeed correct. The crucial condition is the compositionality of

the semantic mapping, which guarantees that the semantic relation ℛ (refinement or

equivalence from Def. 6.1.1) is preserved under embedding of models. We will formu-

late the principle and prove that, assuming this property, our verification method is

sound.

The overall structure is illustrated in Fig. 6.5. The original model (expressed in

CSML) is given by graph G. The refactoring results in graph H by the application of

rule p : L← K → R at match m. By applying the semantic mapping sem to the LHS

and RHS of the rule, we obtain the set of semantic expressions sem(L) and sem(R)

given as typed graphs. Whenever the relation sem(L) ℛ sem(R) (say ℛ = ⊑ is trace

refinement of CSP, so all traces of the left processes are also traces of the right), we

would like to be sure that also sem(G) ℛ sem(H) (traces of sem(G) are preserved

in sem(H)).

Using our running example, the double-pushout diagram is as illustrated in Fig-

ure 6.6. The refactoring rule contains only Component C : the changes were intro-

duced only to Component C and the refactoring rule consists of the changed parts

only. Thus, we map only L and R to the semantic domain instead of G and H.

The results are the processes type.C L and type.C R. The context E[X] introduced

in Section 6.1 remains unchanged; hence system L = E(type.C L) and system R =

6.3. Correctness of Rule-level Verification 113

m

��
(1) k

��

(2)

loo r //

m0

��

oo //

Figure 6.6: The refactoring as a DPO diagram

E(type.C R). According to the traces presented in Table 6.1 we can see that:

traces(type.C L) ⊑T traces(type.C R)

According to the forthcoming Theorem 6.3.1, we can conclude that

traces(E(type.C L)) ⊑ traces(E(type.C R)) =⇒ System L ⊑T System R

Compositionality (Def. 6.1.2) applies where G0 is the interface graph of a rule

and G′0 is either the left or the right-hand side. In this case, the set of semantic

expressions generated from G′0 contains the one derived from H ′0 up to equivalence,

while the context E is uniquely determined by the context graph C. The proof also

relies on the fact that semantic relation ℛ is closed under context.

Theorem 6.3.1. (Correctness of Rule-Based Verification Based on Com-

positionality) Given a compositional semantic mapping sem : GraphsTGmdl
→

(D,⊑, C). Then, for all transformations G
p,m
=⇒ H, it holds that sem(L) ⊑ sem(R)

implies sem(G) ⊑ sem(H).

Proof. As m is injective, pushout (1) implies that k is injective as well. Thus

sem(D) ≡ E[sem(K)] and sem(G) ≡ E[sem(L)]. Since m is injective, k and m0

are injective as well because of pushouts (1) and (2). Similarly, the injectivity of k

and pushout (2) implies that sem(H) ≡ E[sem(R)].

6.4. Basic Graph Transformations 114

L

m

��
(1)

K

k
��

(2)

loo r // R

m0

��
G Doo // H

Now, E[sem(L)] ⊑ E[sem(R)] since sem(L) ⊑ sem(R) and ⊑ is closed under

context. Hence sem(G) ≡ E[sem(L)] ⊑ E[sem(R)] ≡ sem(H)

The statements in Theorem 6.3.1 also hold for the relation ≡, obtained as the

symmetric closure of ⊑.

6.4 Basic Graph Transformations

After giving the definition of compositionality in Section 6.1, we prove a condition

of compositionality of semantic mappings specified by graph transformations without

negative application conditions in this section. We assume that the semantic mapping

sem is of Definition 6.2.1.

Definition 6.4.1. (Nontermination) A graph G is nonterminating with respect

to a typed graph transformation system GTS = (TG, P) if ∃p ∈ P that is applicable

to G. The notation for a non-terminating graph is GGTS ≫.

Note that the termination as defined in Section 1.5.3 is of GT systems. The

nontermination above deals with a single graph. The last graph Hn of a terminating

graph transformation (tn : H
n⇒ Hn)n∈ℕ with no applicable rules left, is the exact

opposite of a nonterminating graph, it is terminating.

For a transformation t : G0
∗⇒ Gn we create a boundary graph B and a context

graph C through an initial pushout. The boundary graph is the smallest subgraph of

G0 which contains the identification points and dangling points of m0.

Given a graph H, the gluing of the context C and graph G. The separability of

semantics intuitively means that, if H is nonterminating with respect to the semantic

mapping (i.e. ∃p ∈ Psem applicable to H), then the reason for the nontermination of

H is that either C or G is nonterminating (i.e. this p is applicable to either C or G).

In a nonseparable case, it is possible to have H nonterminating with r ∈ P , but both

C and G is terminating, r is not applicable to either of them.

Definition 6.4.2. (Separable Graph Transformation System) A typed graph

transformation system GTS = (TG, P) is separable with respect to a set of constraints

6.4. Basic Graph Transformations 115

XS on GraphsTG if for all pushouts (1) with G ∣= XS and C ∣= XS it holds that if

HGTS ≫ then either GGTS ≫ or CGTS ≫.

B //

(1)

��

G

��
C // H

As mentioned, the notion of context in graphs is expressed through the initial

pushout construction. It is not trivial however, that in the term-based representation

of this context will remain the same. Thus, we require this property from the semg2t

transformation.

Definition 6.4.3. (Context Preservation of semg2t) The graph to term trans-

formation semg2t : GraphTGSD
→ (D,⊑, C) is context preserving, if for each initial

pushout (1) with B,L,C,G ∈ GraphsTGSD
it holds that semt2g(G) ≡ semt2g(C)[semt2g(L)].

B

��

//

(1)

L

k0
��

C // G

The next definition is IPO compatibility of semantic mappings. While compo-

sitionality was defined through an unknown context E, IPO compatiblity defines it

through the semantics of the context graph.

Definition 6.4.4. (IPO Compatibility) A semantic mapping sem : GraphsTGmdl
→

(D,⊑, C) is initial pushout compatible (IPO compatible) if for any injective m0 :

G0 → H0 and initial pushout (1) over m0 we have sem(H0) ≡ sem(C)[sem(G0)].

B //

(1)

��

G0

m0

��
C // H0

Lemma 6.4.1. (Compositionality of IPO Compatibility) Given a double pushout

diagram (2a) − (2b) with injective morphism m0. If a semantic mapping sem :

GraphsTGmdl
→ (D,⊑, C) over m0 is IPO compatible, then it is also compositional.

G0

m0

��
(2a)

K

k

��
(2b)

loo r // G′0

m′0
��

H0 Doo // H ′0

6.4. Basic Graph Transformations 116

Proof. Given pushouts (2a) − (2b) with injective morphism m0 : G0 → H0. The

existence of initial pushout (1) over m0 (Def. A.1.5) follows from the existence of

contexts (Thm. A.1.2). The closure property of initial pushouts (Lemma. A.1.1)

implies that the composition of pushout (1) + (2a) defined as pushout (3) is also

initial over m0. The composition of initial pushout (3) with pushout (2b) is an initial

pushout over m′0

B //

(1)

��

G0

m0

��
C // H0

B
b∗ //

(3)

��

K

k

��
(2b)

r // G′0

m′0
��

C
c∗
// D // H ′0

Since sem is IPO-compatible with (1), sem(H0) ≡ sem(C)[sem(G0)]. As (3) +

(2b) is also an initial pushout, sem is compatible with it, and thus sem(H ′0) ≡
sem(C)[sem(G′0)]. Hence sem is compositional with E = sem(C) .

The definition of initial-preserving graph transformations is inspired by the world

of Triple Graph Grammars [Sch94]. We assume an implicit source model left un-

touched by the transformation, while the transformation constructs the target model.

Definition 6.4.5. (Initial-Preserving) A (typed) graph transformation t : G0
∗

=⇒
Gn is initial-preserving if it is nondeleting with respect to its initial graph G0.

Note that initial-preservation is not identical to nondeletion, as elements of the

target model may be deleted or modified through the transformation process.

Theorem 6.4.1. (Basic Compositionality Theorem) A semantic mapping sem =

semg2t ∘ semg2g : GraphsTGmdl
→ (D,⊑, C) is compositional if GTSsem is separable

with constraints XS , semg2t is context preserving and for all G0 ∈ GraphsTGmdl
the

transformation semg2g : G0
∗⇒ Gn with semg2g(G0) = Gn is initial preserving.

Proof. The main argument is based on the Embedding Theorem (Def. 1.5.2). For

the transformation semg2g : G0
∗⇒ Gn we create a boundary graph B and context

graph C. The boundary graph is the smallest subgraph of G0 which contains the

identification points and dangling points of m0. Pushout (2) is the initial pushout of

m0.

6.4. Basic Graph Transformations 117

B b //

��
(2)

b

((
G0

sema

2:

m0

��

G0idoo
dn // Gn

C0
// H0

B //

��
(2)

G0

m0

��

sema +3

(3)

Gn

��
C0

semb

��

c0 //

(4)

H0

semb

��

sema +3 Hn

Cm // Hm

Since semg2g is initial-preserving the consistency diagram (Def. 1.5.5) above can

be used with initial pushout (2). G0 replaces D as it is preserved throughout the

transformation. Hence, m0 is consistent with respect to semg2g and there is an exten-

sion diagram over semg2g and m0 (Def. 1.5.3). Transformations sema and semb only

denote particular rule application orders of transformation semg2g.

This essentially means that (3) is a pushout and Hn is the pushout object of sema

and m0, thus can be determined without applying the transformation semg2g on H0.

While sema(G0) = Gn and thus G0
∗⇒ Gn is terminating, Hn is possibly not

terminating with respect to GTSsem. The parts of H0 not present in G0 were not

transformed to the semantic domain by the rule applications of sema, and the rea-

soning above holds for C0 as well. The extension diagram over C0 is pushout (4) and

semb(C0) = Cm. The termination of Hm with respect to GTSsem is also unknown.

According to the Concurrency Theorem (Def. 1.5.1) the concurrent production

can be created for both H0
∗⇒ Hm and H0

∗⇒ Hn. Since the transformation is initial-

preserving, the resulting morphisms ℎn and ℎm are inclusions (or identities) and the

extension diagrams (5) and (6) exist. Since pushouts are unique, (5) = (6) and thus

HA = HB = H.

H0

(5)

sema +3

ℎm
��

Hn

ℎa
��

Hm
sema +3 HA

H0
ℎn //

semb

��
(6)

Hn

semb

��
Hm

ℎb // HB

This leads to the diagram below. Since GTSsem is separable, Gn ∣= XS and

Cm ∣= XS and they are terminating (i.e. no semantic rule applicable), H must be also

terminating. If H is terminating, that means semg2g(H0) = H.

6.4. Basic Graph Transformations 118

B //

��
(2)

G0

m0

��

sema +3

(3)

Gn

��
C0

semb

��

c0 //

(4)

H0

semb

��
(5)

sema +3 Hn

semb

��
Cm // Hm

sema +3 H

According to the composition property of pushouts (Def. A.1.1), (2) + (3) and

(4)+(5) are pushouts and thus the big (2)+(3)+(4)+(5) = (6a) square is a pushout

as well. Since H is a pushout object, H ∼= Gn +B Cm.

However, following the algebraic graph transformation approach (Sec. 1.7.1) in

general, semg2g produces a graph that contains both the architectural model (TGmdl ⊂
TG) and the graph representation of semantic expressions (TGSD ⊂ TG). Pushout

(6a) has to be restricted by type graph TGSD ⊂ TG that contains only semantic

elements.

BT

(7)

//

��

GnT

��
CmT

// HT

This leads, according to the van-Kampen square property [EEPT06], to pushout

(7) typed over TGSD. BT = ∅ because TGmdl ∩ TGSD = ∅ and type(B) ⊆ TGmdl.

Thus pushout (7) is a coproduct in GraphsTGSD
and thus H0 is the initial pushout

object of C0 and G0.

The results of the semg2g transformations are graphs. The only task left is to apply

the semg2t mapping. As semg2t is context preserving, we can start with equation (6.1).

In step (6.2), the definition of sem = semg2t ∘ semg2g is applied.

semg2t(semg2g(H0)) ≡ semg2t(semg2g(C0))[semg2t(semg2g(G0))] (6.1)

sem(H0) ≡ sem(C0)[sem(G0)] (6.2)

Consequently, sem is IPO compatible and according to Lemma 6.4.1 it is also

compositional.

6.5. Graph Transformations with NACs 119

6.5 Graph Transformations with NACs

In Section 6.4 we were concerned with a semantic mapping defined by graph trans-

formations without NACs. However in real-life cases, to control the transformation,

negative application conditions need to be used as well. In this section we assume

that the semantic mapping sem is of Definition 6.2.1 but the set of typed graph

productions Psem contains NAC(nj) on each pj ∈ Psem with j ∈ J .

The definition of separable semantics (Definition 6.4.2) carries over to this section

with the presence of negative application conditions allowed. Before the establishment

of Theorem 6.5.1, the necessary definitions are presented.

Definition 6.5.1. (Created Points) Given a (typed) graph production p = (L
l←−

K
r−→ R). The created points CP are those nodes and edges in R that are created by

p, i.e. CP = VR∖rV (VK) ∪ ER∖rE(EK).

Definition 6.5.2. (Deleted Points) Given a (typed) graph production p = (L
l←−

K
r−→ R). The deleted points DP are those nodes and edges in R that are deleted by

p, i.e. CP = VL∖lV (VK) ∪ EL∖lE(EK).

Figure 6.7: Production rule with created points

The concept of created points is demonstrated in Figure 6.7. Since the C node

is deleted, it is the only deleted point of the production rule. The gluing points

(Def. 1.4.6) are the two A nodes as they are preserved by the rule in Fig. 6.7. The

created points are the B nodes on the right hand side of the rule.

It is possible to have a situation, where the B nodes are always - if present -

gluing points in every production rule of a graph transformation system. This means

that the node type B is such a special type that its instances are never deleted.

This observation leads to the definition of constant types whose instances are already

present in the start graph and are not deleted throughout the transformation.

Definition 6.5.3. (Constant Types) Given a typed graph transformation system

GTS = (TG, P). Constant types CT ⊆ TG = (VCT , ECT) are those nodes and edges

in the type graph TG, whose instances are not deleted or modified by any production

6.5. Graph Transformations with NACs 120

p ∈ P . i.e. CT = {v ∈ VTG ∣ ∀p ∈ P, ∀w ∈ LHS(pV) : v = typeV (w) =⇒ w ∈
GPp} ∪ {e ∈ ETG ∣ ∀p ∈ P, ∀f ∈ LHS(pE) : e = typeE(f) =⇒ f ∈ GPp} .

In an instance graph, constant points are those nodes and edges that are of a

constant type.

A graph G typed over TG with its constant types CT ⊆ TG is non-constant, if G

does not contain constant points.

The definition of constructive transformations are inspired by TGGs. While the

NACs contain only non-constant elements, the initial graph consists of constant points

exclusively. This way the NACs concentrate on the target elements of the transfor-

mation.

Definition 6.5.4. (Constructive Transformation) A graph transformation sys-

tem GTS = (TG, P) with constant types CT ⊆ TG, NACs, a start graph G0 and

embedding m0 : G0 → H0 is constructive if

1. G0 and H0 contains only constant points, i.e. type(G0), type(H0) ⊆ CT .

2. all NACs are injective and non-constant, i.e. for all (p,NACp) ∈ P , NACp =

NAC(n) with n : L→ N we have ∃x ∈ N ∖ n(L) with type(x) /∈ CT

Corollary 6.5.1. A constructive graph transformation t : G0
∗⇒ Gn with NACs

is also initial-preserving because G consists of constant points that are not deleted

through the transformation.

Lemma 6.5.1. (The Concurrent NAC of Non-Constant NACs is Non-

Constant) Given a graph transformation system GTS = (TG, P) with constant

types CT ⊆ TG and a graph transformation t : G0 =⇒ Gn. The concurrent rule of

t according to Thm. 1.6.1 is pc. The concurrent NAC NACpc of pc is non-constant

provided that ∀(p,NACp) ∈ P , NACp is non-constant.

Proof. The proof is by mathematical induction over the length of t : G0
∗⇒ Gn.

Basis. n = 1. We have pc = p0 which has the property by assumption.

Induction Step. Consider tn : G0
n⇒ Gn ⇒ Gn+1 via the rules p0, p1, ..., pn. We

can assume by induction that p′c = Ni
ni←− L′c ←− K ′c −→ R′c (the concurrent rule for

p0, p1, ..., pn−1) and pn : Nj
nj←− Ln ←− Kn −→ Rn have non-constant NACs. We have

to show that all NACs for pc are non-constant.

6.5. Graph Transformations with NACs 121

Ni

ei

��
(1)

Nj

z1

~~
(3)N ′i L′c

ni

__@@@@@@@@

mc

��

g′c

��

K ′coo //

��

R′c

e′c

ℎ′c ��

N ′j Ln

nj

OO

en
~~

gn
��

Kn
oo //

��

Rn

��

gn+1

Lc

n′i
``

gc

��

Cc
loo //

��

(2)

E

n′j

OO

ℎ

��

Cn

��

oo r // Rc

ℎc

��

Kc

kc

aa
kn

44

G0 Dn
oo // Gn Doo // Gn+1

According to the synthesis construction of Concurrency Theorem with NACs the

concurrent rule pc with NACs induced by G0
n+1
=⇒ Gn+1 is pc = Lc

l∘kc←−− Kc
r∘kn−−→ Rc

(with match gc : Lc → G0, comatch ℎc : Rc → Gn+1). The concurrent NACpc consists

of two parts.

Case 1 n′i : LC → N ′i defined by ni : L′C → Ni from p′c.

By Assumption 2 of constructiveness we have ∃xi ∈ Ni ∖ ni(L′C) with type(xi) /∈
CT . Let x′i = ei(xi) such that type(x′i) = type(xi) /∈ CT . Moreover x′i ∈ N ′i ∖ n′i(LC)

because otherwise pushout and pullback (1) implies that ∃yi ∈ L′C with ni(yi) = xi

and hence xi ∈ ni(L′C) which is a contradiction. Thus n′i is non-constant.

Case 2 n′′j : LC → N ′′j defined by nj : Ln → Nj with n′j : E → Nj through pushouts

(3)− (5).

N ′′j Z //oo N ′j

Lc

n′′j

OO

Ccoo //

OO

(4)(5)

E

n′j

OO

If the pushout complement Cc of (4) does not exists, the induced NAC is always

true.

By assumption on pn we have xj ∈ Nj ∖ nj(Ln) with type(xj) /∈ CT . Because (3)

is a pushout and pullback, ∃x′j = z1(xj) ∈ Nj ∖ n′j(E) and type(x′j) = type(xj) /∈ CT .

Also ∃yj ∈ Z ∖ Cc with (Z → N ′j)(yj) = x′j using pushout (4) with type(yj) =

type(x′j) /∈ CT . And finally ∃x′′j = (Z → N ′′j)(yj) ∈ N ′′j ∖ n′′j (LC) because (5) is

6.5. Graph Transformations with NACs 122

a pushout and pullback with type type(x′′j) = type(yj) /∈ CT . Thus n′′j is non-

constant.

Theorem 6.5.1. (Compositionality Theorem with NACs) Given a semantic

mapping sem = semg2t∘semg2g : GrapℎsTGmdl
→ (D,⊑, C) with constant types CT ⊆

TGsem and semg2g containing NACs. Then, it is compositional if GTSsem is separable

with constraints XS , semg2t is context preserving and semg2g is constructive.

Proof. The proof is based on the Basic Compositionality Theorem (Thm. 6.4.1). In

order to apply the Embedding Theorem in the proof of Theorem 6.4.1, we have to

show, that the extension diagrams over m0 and c0 exist in the presence of NACs.

B //

��
(2)

G0

m0

��

sema +3

(3)

Gn

��
C0

semb

��

c0 //

(4)

H0

semb

��

sema +3 Hn

Cm // Hm

As the equivalent left NACs can be constructed from the right NACs (Lemma 1.6.1),

the NACs throughout this proof are assumed to be left NACs, if not explicitly stated

on the contrary.

The extension diagram exists in case of NACs, if the transformation not only

boundary-consistent (Def. 1.5.5), but also NAC-consistent (Def. 1.6.7). According

to the synthesis construction of Concurrency Theorem a concurrent rule pc with a

concurrent match gc exists (Thm. 1.6.1). The concurrent rule pc is basically the merge

of all rules of a specific rule application order in sem : G0
∗⇒ Gn such that the target

graph Gn is produced by the application of pc on the source graph G0. In graph

transformations containing NACs, a concurrent NACpc exists for the concurrent rule

pc. To achieve NAC-consistency, we have to show, that k0 ∘ gc ∣= NACpc with NACpc

being the concurrent NAC, gc the concurrent match induced by t and k0 : G0 → H0

the inclusion morphism (Thm. 1.6.1).

Since type(H0) ⊆ CT , this follows from Lemma 6.5.1, because the existence of

a morphism q : Nc → H0 that violates an arbitrary NAC Nc of pc would imply

for x ∈ NC ∖ n(LC) with type(x) /∈ CT also type(q(x)) = type(x) /∈ CT which is

contradiction to type(H0) ⊆ CT .

6.6. Compositionality of the Semantic Mapping 123

6.6 Compositionality of the Semantic Mapping

In this section, we prove, that the graph to graph transformation semg2g : GraphsTGarch
→

GraphsTGCSP
presented in Section 5 combined with the graph to term transforma-

tion semg2t : GraphsTGCSP
→ CSP presented in Section 4 form a compositional

semantic mapping.

The semantic mapping with terminating and locally confluent graph to graph

transformation and context-preserving graph to term transformation is compositional,

if it is separable and constructive.

6.6.1 Local Confluence

The local confluence of semg2g : GraphsTGarch
→ GraphsTGCSP

can be proven

through a critical pair analysis in AGG [AGG07]. The critical pair analysis shown

in Figure 6.8 ran successfully using AGG 1.6.4. It found no essential critical pairs

[LEO08], thus local confluence is proven.

Figure 6.8: Essential Critical Pair Analysis in AGG

6.6.2 Constructiveness

The graph transformation system GTSsmc basically reads the architectural model and

creates the corresponding set of CSP expressions. None of the rules delete elements

from the architectural metamodel.

Observation 6.6.1. GTSsmc with initial graph G ∈ GraphsTGarch
is nondeleting

with respect to G

6.6. Compositionality of the Semantic Mapping 124

Also, the NACs are defined on CSP expressions only.

Observation 6.6.2. Given GTSsmc = (TGroot, Psmc), for all (p,NACp) ∈ P , NACp ∈
GraphsTGCSP

.

Lemma 6.6.1. (Constructiveness of sem) The typed graph transformation sys-

tem GTSsmc = (TGarcℎ, Psmc) is constructive.

Proof. The elements of the architectural metamodel are constant types, because of

Observation 6.6.1 their instances are constant points in the transformation. Thus,

the instances of TGCSP are non-constant. Also, according to Observation 6.6.2 the

NACs consist of elements that are instances of TGCSP . Consequently, the NACs are

non-constant as well.

These observations correspond to the assumptions of Definition 6.5.4, hence the

transformation is constructive.

6.6.3 Context Preservation

Context preservation in this case means that the gluing of graphs through an initial

pushout is equivalent to the substitution of terms. The intuitive meaning is shown in

Figure 6.9: initial pushout (1) where A is well-formed CSP graph (satisfying the well-

formedness constraints) corresponds to the substitution A = C[T]. Since the graph

representation of CSP is the abstract syntax tree, the gluing of context corresponds

to substituting a tree T for a variable represented by a leaf in C.

Figure 6.9: Idea of context preservation

As the initial pushout conforms to the CSP metamodel (including its well formed-

ness criteria), all graphs of CSP are trees and their valid gluings will remain trees as

well.

Theorem 6.6.1. The transformation semg2t : GraphsTGCSP
→ CSP is context

preserving, ie. for each initial pushout (1) with B, T,C,A ∈ GraphsTGCSP
it holds

that semt2g(A) ≡ semt2g(C)[semt2g(T)].

6.6. Compositionality of the Semantic Mapping 125

B

��

//

(1)

T

k0
��

C // A

Proof. The only elements in CSP that can have a context (and thus can be substi-

tuted) are the process expressions. When set T of CSP expressions are merged with

set C, the following cases may occur:

1. Process assignments of T are added to the ones in C and vice versa.

2. Empty process declarations in T are merged with their definition found in C and

vice versa.

Gluing various process expressions inside a PE-tree is not possible, there are nei-

ther stand alone process expressions nor placeholders in process definitions to fill. As

it can be seen in the CSP metamodel (Fig. 4.1), the CspContainer is not connected

directly to the ProcessExpression. They are either the definition of a ProcessAssign-

ment or the operand of a BinaryOperator.

It is important to note, that in the CSP metamodel, there are no association

relations, every element is contained within another one. This ensures that there are

no unwanted connections.

In the following we will show for each case that (i) the pushout object will remain

to be a valid CSP graph, and (ii) this gluing preserves the context when transformed

to the term-based representation.

Case 1 Merging Process Assignments. As the ProcessAssignments can be connected

only directly to the CspContainer, the result of creating a union of the ProcessAs-

signments will be will be a well-formed CSP graph.

When the gluing of two CSP graphs consists in creating a union of the ProcessEx-

pressions, the result will trivially remain a well-formed CSP graph. ProcessAssign-

ments can not be connected to a Process by both their process and processIdentifier

edges, since both are containment relations. One element can not be contained in

two containers.

The gluing of ProcessAssignment nodes to the same CspContainer is simply

adding more process assignments to the set of present expression if we view it via

the term-based representation. Thus the context, whichever process was embedded

is preserved.

6.6. Compositionality of the Semantic Mapping 126

Case 2 Process Definitions. The case of inserting process definitions into the empty

declarations follows the same argument as merge of process assignments. The only

difference is that in this case, the ProcessAssignment and its processIdentifier are

both part of the boundary graph. The PE-tree is glued to a ProcessAssignment with

no process edge. Since a process got defined, the pushout object remains a valid CSP

graph.

These two ways to glue processes seem to be restricting. However, since our

transformation creates such processes that contain only one process expression (except

choice), this level of granularity is satisfactory.

6.6.4 Termination

The termination criteria introduced in [EEdL+05] sorts the rules of a graph trans-

formation system into layers. Each layer is associated with the creation or deletion

of a specific type. Our graph transfomation system, GTSsmc builds a CSP abstract

syntax tree from the architectural model: the various node types in CSP (e.g Process

or Event) are created by almost every rule. Hence, they cannot be sorted into cre-

ation layers (i.e. almost all rules would be in one big layer) and this criteria cannot

be applied.

First, termination of transformations consisting of only nondeleting rules (Thm. 6.6.2)

is proven. Instead of layers, we define a precedence on nondeleting production rules

based on the produce-enable sequential dependency. Using this precedence relation,

a dependency graph can be built that shows the possible application order of pro-

duction rules. Nondeleting rules with self-disabling NACs can be applied only once

at the same essential match (Lemma 1.5.1). If the dependency graph contains no

directed cycles, the GTS is terminating as there is no infinite cycle of rules where new

matches are created infinitely.

Then, these results are adapted to GTSs with deleting rules. Under the assump-

tion that the effect of the deleting rules can be isolated into rule groups (Def. 6.6.3)

we extend the precedence relation to these self-contained rule groups. Termination

follows (Thm. 6.6.3) if the self-contained rule groups are terminating by themselves,

and the dependency graph lacks directed cycles.

With the help of these two theorems, the termination or our graph transformation

system GTSsmc translating CSML to CSP is proven.

When building the abstract syntax tree of CSP expressions, the elements closer

to the root are created first, then the branches. As observed in Section 5.1.1, the

6.6. Compositionality of the Semantic Mapping 127

elements close to the root are the process declarations, and the branches are the

ProcessExpression-subtrees (PE-trees Def. 5.1.1) specifying the behaviour. Hence,

a de-facto rule application precedence can be observed: rules, that fill a process

declaration can be applied only after the process declaration was created (or renaming

rules can be applied only when the renamed process was created). This notion of

precedence can be formalised as a produce-enable dependency: production rules p1, p2

are produce-enable dependent if p1 produces some nodes that enable the application

of p2. Although there are other types of sequencial dependencies, we concern only

produce-enable since the graph transformation was assumed to be nondeleting (i.e.

we cannot have delete-forbid dependency with nondeleting rules).

Definition 6.6.1. (Produce-Enable Dependency) Given a graph transformation

system GTS = (TG, P).

Rule p1, p2 are in a produce-enable dependency, notated by p1
pe→ p2 if there exist

two direct graph transformations t1 : G
p1,m1⇒ H1, t2 : H1

p2,m2⇒ H2 where

∙ p2 is applicable on H1

∙ some nodes and edges in the intersection of the comatch n1 : R1 → H1 and the

match m2 are created items with respect to t1 and gluing items with respect to

t2, i.e.:

n1(R1) ∩m2(L2) ⊆ n1(R1 ∖ r1(K1)) ∩m2(l2(K2))

The produce-enable relation is a partial order on the production rules. This partial

order relation gives rise to a directed graph where the nodes are the rules and the

edges indicate the dependency between them.

Definition 6.6.2. (PE Dependency Graph) The produce-enable dependency

graph of a graph transformation system GTS = (TG, P) is a simple directed graph

G = (P,E, s, t), where an edge e ∈ E with s(e) = p1 ∈ P and t(e) = p2 ∈ P exists if

p1
pe→ p2.

First, we assume to have a graph transformation system, that has only nondeleting

productions with NACs sufficient to be self-disabling (Def. 1.5.11). The proof of

termination is the following intuitively. The produce-enable dependency graph is the

direct translation of the produce-enable dependency relation into graph-theoric terms:

it has an edge p → r for every related p
pe→ r. If there are no directed cycles in the

produce-enable dependency graph, rules would not produce corresponding matches

for each other infinitely, resulting in finite rule application sequence and terminating

transformation.

6.6. Compositionality of the Semantic Mapping 128

Theorem 6.6.2. (Termination of Nondeleting GTS with Acyclic PE De-

pendency Graph) Given a graph transformation system GTS = (TG, P), such that

all rules are nondeleting and have self-disabling NAC (Def. 1.5.11). If the start graph

G0 and the rule set P is finite and the produce-enable dependency graph contains no

directed cycles, then GTS is terminating.

Proof. Termination is proven by contradiction, hence we assume the existence of an

infinite rule application sequence �inf .

Since P contains m rules, and �inf is an infinite application sequence, by the

Pidgeonhole principle, all rule applications cannot be distinct. Thus, there is set of

rules {ri, ..., rj} ∈ P that are applied infinite times, where 0 < i, j ≤ m.

For each direct derivation Gi
ri=⇒ Gi+1 with injective matches and injective

morphism di : Gi → Gi+1 (induced from Gi
ri=⇒ Gi+1 by nondeletion of ri), each

match mi+1 : Li → Gi+1 must have an essential match mi : Li → Gi with di ∘mi =

mi+1. From Lemma 1.5.1 we conclude that we have at most one application of rule

ri on essential match mi.

Thus the rules in set {ri, ...rj} create matches for each other, i.e. there is at least

one cycle, where ri
pe→ ri+1

pe→ ...
pe→ rj

pe→ ri. However, this means that the produce-

enable dependency graph contains a directed cycle, which contradicts our assumptions.

Thus, an infinite rule application cycle cannot exist.

Unfortunately Theorem 6.6.2 does not apply directly to GTSsmc because it con-

tains some deleting rules. The strategy to deal with the deleting rules is to isolate

them.

Rules in GTSsmc can be sorted into subsets that build different parts of the CSP

graph. This means that such a rule group is self-contained: they work on their own

subgraph and do not interfere with other groups. On more technical level it means

that deletion is contained within a group of rules; one rule deletes only the product

of other rules in the same group.

Definition 6.6.3. (Self-Contained Rule Set) Given a typed graph transformation

GTS = (TG, P). A subset Pi ⊂ P is self-contained if, when q ∈ P is sequentially

dependent on p ∈ Pi but not produce-enable dependent, then q ∈ Pi.
If p is nondeleting and there is no q ∈ P such that q is sequentially dependent on

p then it forms its own self-contained rule set, i.e. Pi = {p}.

Definition 6.6.4. (PE Dependency for Rule Sets) Rule set P and R are

produce-enable dependent, if exists rules r ∈ R and p ∈ P such that r
pe→ p.

6.6. Compositionality of the Semantic Mapping 129

From a different perspective, this means that deletion only happens within that

subgraph that was created by the rules of the self-contained group. The existence of

these rule sets in GTSsmc were already motivated in Section 5.1.1; the deleting rules

are always inserting new elements into PE-trees, and thus these rule groups are easily

identified.

Definition 6.6.5. (Non-Interfering Rule System) Given a graph transforma-

tion system GTS = (TG,R). The named subsets of rules R1, R2, ...Rn ⊂ R form a

non-interfering rule system if R1 ∩ R2 ∩ ... ∩ Rn = ∅ and each Ri is a self-contained

rule set.

Observation 6.6.3. The self-contained rule sets of Psmc shown in Figure 6.10 form

a non-interfering rule system.

This observation hold for Psmc for the following reasons. The nondeleting rules

are in their own self-contained rule set, thus they obviously do not interfere with

each other. Each deleting rule is responsible for expanding its corresponding PE-tree.

Also, it is grouped together with the other rules building that tree. The reason why

they do not interfere is the permanence of the source model. All rules match the

relevant element in the source model, and build the corresponding behaviour in CSP.

Thus, each rule set works on its set of trees that are identified by elements of the

same type in the source model. For example the rule set associated with a fork node

will build all the syntax trees that are corresponding to fork nodes, other rule sets do

not interfere.

Observation 6.6.4. (Self-Disabling NACs) All rules p = (L
l←− K

r−→ R) ∈ Psmc
have a self-disabling NAC (Def. 1.5.11), i.e. given NAC(n) there is an injective

n′ : N → R such that n′ ∘ n = r.

In order to prove termination, we update the definition of produce-enable depen-

dency graph (Def. 6.6.2) and Theorem 6.6.2 to incorporate self-contained rule sets.

Definition 6.6.6. (PE Dependency Graph with Non-Interfering Rule Sys-

tem) The produce-enable dependency graph of a graph transformation system GTS =

(TG, P) with non-interfering rule system R1, R2, ...Rn ⊂ P is a simple directed graph

G = (VR, E, s, t) with VR = {R1, ...Rn}. An edge e ∈ E with s(e) = R1 and t(e) = R2

exists if p1
pe→ p2 with p1 ∈ R1 and p2 ∈ R2.

Theorem 6.6.3. (Termination of GTSs with With Non-Interfering Rule

System) Given a graph transformation system GTS = (TG, P) with non-interfering

6.6. Compositionality of the Semantic Mapping 130

rule system R = R1, R2, ...Rn such that Ri ⊂ P and all rules have a self-disabling NAC

(Def. 1.5.11). If the start graph G0 is finite, the produce-enable dependency graph is

acyclic and the self-contained rule sets Ri with deleting rules terminate individually,

then GTS is terminating.

Proof. The proof of Theorem 6.6.2 can be applied with the following modifications.

Termination is proven by contradiction as well, we assume the existence of an infinite

rule application sequence �inf .

Since P contains m rules, and �inf is an infinite application sequence, by the Pid-

geonhole principle, all rule applications cannot be distinct. Thus, there is collection

of rule sets {Ri, ..., Rj} that are applied infinite times, where 0 < i, j ≤ m.

The rule sets Ri were individually assumed to be terminating, thus the sets in

{Ri, ..., Rj} must create matches for each other infinitely. It was shown in Theo-

rem 6.6.2 however, that this implies a directed cycle in the produce-enable dependency

graph which contradicts the assumtions.

Based on the AGG dependency check, the dependency graph of Psmc is shown in

Figure 6.10. The nodes of the graph are the rule sets R1, R2, ...Rm ⊂ Psmc that form

a non-interfering rule system.

Corollary 6.6.1. The graph transformation system GTSsmc = (Psmc, TGroot) with a

finite start graph G0 and injective matches is terminating.

Proof. The rules of Psmc form a non-interfering rule system (Observation 6.6.3),

all rules have self-disabling NAC and the produce-enable dependency graph acyclic.

Hence, according to Theorem 6.6.2 and 6.6.3, we have to show that the rule groups

that contain deleting rules terminate individually.

First, we show the finite application of the {BhDecision1, BhDecision2} self-

contained rule set with BhDecision1 shown in Figure 6.11 and BhDecision2 shown

in Figure 6.12.

BhDecision1 is a nondeleting rule creating PE-tree Ad. Unless the root of the

Choice-tree is not deleted, this rule can be applied at most once with the same

essential match. BhDecision2 is a deleting rule, that builds up a binary tree. As

there exists an injective n′ : N → R such that n′ ∘ n = r, its NAC is self-disabling.

Because of the non-interfering rule system (Observarion 6.6.3), and the fact that

BhDecision1 can be applied once with on the same DecisionNode; only BhDecision2

may alter Ad. As observable in Figure 6.12, the rule only replaces the deleted process

6.6. Compositionality of the Semantic Mapping 131

Figure 6.10: Produce-Enable dependency graph of PSMC

edge, it does not delete Choice nodes or Process leafs from the tree (or anything else).

Thus, if one DecisionNode is connected to n outgoing edges, this rule may be applied

precisely n− 2 times. Considering that G0 is finite and there is only finite number of

DecisionNodes, BhDecision2 can be applied only finite amount of times.

The finite application of other deleting rule groups follow from the structural

similarity to the group containing {BhDecision1, BhDecision2}.

6.6. Compositionality of the Semantic Mapping 132

Figure 6.11: The BhDecision1 rule

Figure 6.12: The BhDecision2 rule

Hence, each cooperative rule group is applied finite times, termination follows

from Theorem 6.6.3.

6.6. Compositionality of the Semantic Mapping 133

6.6.5 Separability

To prove the separability (Def. 6.4.2) of a graph transformation system GTS =

(TG, P), a set of constraints XS need to be defined on GraphsTGmdl
. These con-

straints, in case of our semantic mapping (as presented in Chapter 5), are based on

a factorisation G0
xg−→ GX

xℎ−→ H0. Dependent on the content of G0, the constraints

specify elements to be included into GX from H0.

Definition 6.6.7. (Separability Constraints) Given graphs G0, H0 with injective

inclusion m : G0 → H0. A graph GX satisfies the separability constrains XS if the

factorisation G0
xg−→ GX

xℎ−→ H0 exists with injective inclusions xg, xℎ and

∙ for all x ∈ VG0 such that m(x) ∈ VH0 and type(x) = ActivityNode: GX must

contain all e ∈ EH0 with type(e) = ActivityEdge that has no preimage in G0

and either s(e) = m(x) or t(e) = m(x).

∙ for all x ∈ VG0 such that m(x) ∈ VH0 and type(x) = Port: GX must contain all

y ∈ VH0 with type(y) = OwnedInterface and e ∈ EH0 with type(e) = provided

or type(e) = required that have no preimage in G0 and s(e) = m(x) and

t(e) = y.

∙ for all x ∈ VG0 such that m(x) ∈ VH0 and type(x) = SendSignalAction or

type(x) = AcceptEventAction: GX must contain all y ∈ VH0 with type(y) =

Port and e ∈ EH0 with type(e) = engaged that have no preimage in G0 and

s(e) = m(x) and t(e) = y.

∙ for all x ∈ VG0 such that m(x) ∈ VH0 and type(x) = Component: GX must

contain y ∈ VH0 with type(y) = InitialNode and e ∈ EH0 with type(e) =

activityNodes that have no preimage in G0 and s(e) = m(x) and t(e) = y.

Theorem 6.6.4. (Separability of sem) The typed graph transformation system

GTSsmc = (TGarcℎ, Psmc) with the set of constraints XS is separable.

Proof. We have to show that for all pushouts (1) with G ∣= XS and C ∣= XS it holds

that if HGTSsmc ≫ then either GGTSsem ≫ or CGTSsmc ≫.

B //

(1)
��

G

��
C // H

6.6. Compositionality of the Semantic Mapping 134

Every transformation in sem that operate on the activities part of the metamodel,

transform a single ActivityNode into the semantic domain. Every node type (which is

a child type of ActivityNode) has a related production rule or rule group in sem. As

ActivityEdges are transformed to process declarations in a delocated way, they form

a frame around the ActivityNodes, enabling their transformation (Section 5.3). Thus,

boundary graphs usually consist of only ActivityEdges. If all incoming and outgoing

ActivityEdges are included with the relevant node, all rules corresponding to that

node are triggered before the merge.

SendSignalActions and AcceptEventActions need their relevant Ports and Owned-

Interfaces to identify the communication primitives they are (Fig. 5.13). Similarly

Ports need their OwnedInterfaces to determine the actions they may engage in (Sec-

tion 5.2). The rules related to these elements (BhSendSignal1, BhSendSignal2, BhAc-

ceptEvent1, BhAcceptEvent2, Provided1, Provided2, Provided3, Required1, Required2,

Required3, Interface1, Interface2, Interface3) can be triggered, if those elements are

all present. Including them triggers the rule before merging.

The behaviour of a Component starts with its InitialNode (Section 5.3). If the Ini-

tialNode is not present in the Component when merging, the gluing of the behaviour

process to the component process triggers.

Thus, as both C and G satisfies constraints XS , no new structures are created in

H that enables a previously disabled rule. If C and G were terminating, then H is

terminating as well.

Chapter 7

Architectural Refactoring Patterns

All the building blocks necessary to verify architectural refactorings at rule-level are

now present. In Chapter 6, correctness of the rule-level verification of refactorings

and the compositionality of the semantic mapping from Chapter 5 has been proven.

In this chapter we apply these theoretical results to the architectural domain from

Chapter 3. The general methodology and the outline of this chapter as summarised

in Figure 7.1 is the following.

The initial starting point is an already finished refactoring. Both the old and

the improved system are present, but the refactoring is not verified for behaviour

preservation. Instead of verifying the refactoring as it is, we extract the changed parts

to form a refactoring rule. As the system is modelled by typed graphs, the refactoring

rule is a typed graph production. As a production rule is usually substantially smaller

than the system, its verification saves time.

The design flaws the extracted refactoring rules solve, can be recurring in multiple

systems. Generalising enhances them into refactoring patterns. When another system

with a similar design flaw is encountered, instead of refactoring it by hand, we apply

the refactoring pattern to produce the improved system. Verification is not necessary,

as the refactoring pattern was previously shown to be behaviour preserving.

Corresponding to the above methodology, Section 7.1 presents the rule-level veri-

fication and rule extraction, Section 7.2 elaborates on enhancing refactoring rules into

refactoring patterns and Section 7.3 introduces the necessary tool support.

7.1 Rule Extraction and Verification

To provide a general overview on the extraction of refactoring rules, we present a

refactoring example on the PersistentDatabase component from Section 3.5 [BHE09c].

7.1. Rule Extraction and Verification 136

Figure 7.1: Methodology of rule extraction and pattern creation

The PersistentDatabase is a näıve design: it synchronises with the route query

after every phone number access. This assumes that every distress signal is real, and

thus needs an emergency route plan. In several cases the crash may not need medical

attention or may even be a false alarm. As the system requires more independence,

the synchronisation node is deleted to make the two database engines work completely

independently. The refactoring is shown in Figure 7.2.

The extraction process consists of the following two major steps:

1. The minimal graph production rule that produces the refactored system when

applied to the original one is extracted.

2. Necessary context is added to the minimal rule to make it semantically complete.

The extraction of the minimal graph transformation rule helps us to identify the

changes in the system. The extracted minimal rule is shown in Figure 7.3. Minimality

means that it is the smallest rule that produces the refactored system when applied

on the original one at the appropriate match.

In most cases, including the present one, the minimal rule is not semantically

complete. Moreover, it seems to suffer from syntactic errors (dangling edges). Note,

7.1. Rule Extraction and Verification 137

Figure 7.2: Refactoring PersistentDatabase

p� : //oo

Figure 7.3: Minimal rule of the PersistentDatabase refactoring

7.1. Rule Extraction and Verification 138

however, that these diagrams are instances of metamodels where the edges are rep-

resented as nodes. To achieve semantical completeness to our minimal rule, we have

to address two problems.

1. It is possible to have a valid instance of the metamodel that is not semantically

complete. A SendSignalAction can mean both function call (if connected to

a required interface) or replying the return value (if connected to a provided

interface). In the minimal rule the SendSignalAction and AcceptEventAction

are not connected to any port or interface making them ambiguous.

2. Another problem is that the minimal rule is not precisely what the refactoring

intended to express. We assume that the fork and the join node form some

kind of pair, and as such they are connected to the same line of control flow.

In the minimal rule, this is not expressed: the join node can synchronise with

arbitrary flows in the system.

To overcome these faults, context needs to be included from the original system.

It is important to ensure that the included context is the same on both sides. After

the developer selects the necessary context, the resulting rule is shown in Figure 7.4.

Verification shows it to be behaviour preserving. Thus, when the rule is used for

refactoring, there is no further need for verifying the system. Since we proved the

rule to be behaviour preserving, we may generalise it to a refactoring pattern.

The theoretical contributions on refactoring rule creation following the steps out-

lined are presented in two sections. In Section 7.1.1, we introduce the construction

that produces the minimal rule. Section 7.1.2 elaborates on Step 2: it establishes the

formal framework of context inclusion process. In Section 7.1.3 we present a large

example for an extracted architectural refactoring rule.

7.1.1 Extraction of Minimal Rule

The process of minimal rule extraction assumes that the original system G, refactored

system H and their relation are given. Minimality, as mentioned, intuitively means

the smallest rule that produces H when applied to G. The formal definition is the

following:

Definition 7.1.1. (Minimality) A graph transformation rule p : L ←− K −→ R

is minimal over direct graph transformation G ←− D −→ H if for each rule p′ :

L′ ←− K ′ −→ R′ with injective morphism K ′ → D and pushouts (5) and (6), there are

7.1. Rule Extraction and Verification 139

pK : //oo

Figure 7.4: PersistentDatabase refactoring rule with context

unique L → L′, K → K ′ and R → R′ morphisms such that the following diagram

commutes and (7), (8), (5) + (7) and (6) + (8) are pushouts.

L

(7)
��

��

K

��

��

oo // R

(8)
��

��

L′

(5)

��

K ′

��

oo // R′

(6)

��
G Doo // H

Now, we present the construction that leads to the minimal rule.

Definition 7.1.2. (Minimal Rule Construction) Given direct graph transforma-

tion G←− D −→ H with initial pushouts IPO1 over D → G and IPO2 over D → H.

The following construction will define transformation rule p� : L ←− K −→ R over

G←− D −→ H.

L1

(IPO1)

��

B1
oo

 AAAAAAAA B2
//

~~}}}}}}}}
R1

(IPO2)

��
G Doo // H

1. Define B1 ←− P −→ B2 as a pullback of B1 −→ D ←− B2 and B1 ←− K −→ B2 as a

pushout of B1 ←− P −→ B2 with induced morphism K → D.

2. Construct L1 −→ L ←− K as a pushout (1) of L1 ←− B1 −→ K with induced

morphism L→ G. Similarly, R1 −→ R←− K is a pushout (2) of R1 ←− B2 −→ K

with induced morphism R→ K.

7.1. Rule Extraction and Verification 140

3. Since IPO1 = (1) + (3) and (1) is a pushout, because of the pushout decompo-

sition property (Def. A.1.1) (3) is also a pushout. Similarly IPO2 = (2) + (4)

and (2) being a pushout implies pushout (4).

4. By the constructions of the initial pushouts, B1 → D and B2 → D are injective

and hence also K → D.

P

~~}}}}}}}}

 AAAAAAAA

(PO)L1

(1)

��

��

B1

 AAAAAAAA
oo

��

B2

~~}}}}}}}}

��

// R1

(2)

��

��

L

(3)

��

K

��

oo // R

��
(4)

G D //oo H

Then L ←− K −→ R with pushouts (3) and (4) is p� over G ←− D −→ H with

injective morphisms L → G, K → D and R → H. Moreover injective G ←− D −→ H

implies injective L←− K −→ R.

Theorem 7.1.1. (Minimal Rule Theorem) Assuming a span of injective graph

morphisms G←− D −→ H, the graph transformation rule p� : L←− K −→ R is minimal

according to Definition 7.1.1.

Proof. Given pushouts (5) and (6) over G←− D −→ H with injective morhpism K ′ →
D, we have by IPO1 and IPO2, unique L1 → L′, B1 → K ′, B2 → K ′ and R1 → R′.

P

}}||||||||

!!BBBBBBBB

(PO)L1

(9)

��

��

B1

!!BBBBBBBB
oo

��

B2

}}||||||||

��

// R1

(10)

��

��

L′

(5)

��

K ′

��

oo // R′

��
(6)

G D //oo H

As the above diagram commutes, (9) and (10) are pushouts. As P → B1 → D

and P → B2 → D commutes and K ′ → D is an injective morphism, it implies that

P → B1 → K ′ and P → B2 → K ′ also commutes and hence a unique K → K ′

morphism exists and the diagram below commutes.

7.1. Rule Extraction and Verification 141

B1

 AAAAAAAA

((PPPPPPPPPPPPPPP

$$
P (PO)

>>}}}}}}}}

 AAAAAAAA K // K ′ // D

B2

>>}}}}}}}}

66nnnnnnnnnnnnnnn

::

Now pushouts (1) and (2) implies unique morphisms L1 → L and R1 → R such

that the following diagram commutes and (7) and (8) are pushouts because of the

pushout-decomposition of pushouts (9) and (10).

L1

(1)

��

��

B1

!!BBBBBBBB
oo B2

}}||||||||
// R1

(2)

��

��

L

(7)
��

K

��

oo // R

��
(8)

L′ K ′ //oo R′

And also L→ L′ → G commutes with L→ G using the pushout properties of L

and similarly R → R′ → H commutes with R → H using the pushout properties of

R.

Uniqueness of L → L′, K → K ′ and R → R′ in the minimality diagram follows

from the injectivity of K ′ → D, L′ → G and R′ → H.

7.1.2 Inclusion of Necessary Context

As motivated in Section 7.1, extracting the structural differences between the old

and new system is not necessarily enough to create the refactoring rule. To tackle

this problem, the software engineer performing the refactoring includes context that

makes the rule semantically complete.

Using the example sketched in Figure 7.3, we justify the necessity of including

context over the minimal rule. The LHS of the refactoring rule is shown in Figure 7.5.

In our example, as shown in Figure 7.5, there are three ’layers’ of included context.

We elaborate on them in the following.

1. Well-formedness. The rule-graphs have to be valid instances of the metamodel.

As the extracted minimal rule is the difference of the two systems, the rule-

graphs may not fulfill the well-formedness criteria. The complementing parts

that make them valid instances need to be included. In the example, the Port,

the CommunicationEvents engage in, as well as the corresponding OwnedInter-

face and the containing Component is included.

7.1. Rule Extraction and Verification 142

Figure 7.5: Inclusion of context

2. Separability. As introduced in Definition 6.4.2, a set of separability constraints

is defined on the source model of the semantic mapping. Separability is neces-

sary for the compositionality of the transformation. A non-separable, but well-

formed instance of the metamodel can be transformed standalone, but (using

the notation introduced in Def. 6.4.2) sem(H) will not be the merge of sem(G)

and sem(C). The separability constraints are based on the implementation of

the semantic mapping. According to Section 6.6.5, all the incoming and out-

going edges of an ActivityNode need to be included from the complete system.

Thus, the outgoing edges of the AcceptEventActions and incoming edges of the

SendSignalActions are included.

3. Intuitive Requirements. As mentioned in Section 7.1, we assume that the For-

kNodes and the JoinNodes form some kind of pair in our example refactoring:

they are connected to the same line of control flow. Thus, we include the ele-

ments that connect them. The inclusion of these elements have been intuitively

decided based on the intention of the refactoring developer.

The intuitively chosen parts of the included context are different in each refac-

toring case: they cannot be categorised by any kind of formal constraints or rules.

Thus formalising a notion of semantical completeness for context inclusions is rather

unlikely.

The following process describes the theoretical solution of context inclusion.

Definition 7.1.3. (context inclusion process) Given minimal rule p� : L ←

7.1. Rule Extraction and Verification 143

K → R over G← D → H with pushouts (1) and (2).

L

��
(1)

K

(2)

oo //

��

R

��
G Doo // H

L

(3)
��

m

��

K

(4)

oo

��

// R

��

��

LK

mK

��
(5)

KK

(6)

oo //

��

RK

��
G Doo // H

The context inclusion is defined by a suitable factorisation K → KK → D of

K → D with injective KK → D, where LK and RK are defined by pushouts (3)

and (4). By pushout decomposition this leads to pushouts (5) and (6) and pK : LK ←
KK → RK, where pushout (1) = (3) + (5) and pushout (2) = (4) + (6).

Hence we have G ⇒ H via (pK ,mK) by pushouts (5) and (6) with span G ←
D → H. Moreover the injectivity of p� : (L ← K → R) implies that pK : (LK ←
KK → RK) is injective as well.

The construction of the rule with additional context based on the factorisation

K → KK → D of K → D using our database example is shown in Figure 7.6.

7.1.3 Architectural Refactoring

As an example intended to be as complicated as real life refactorings, we present

a refactoring based on the AccidentManager component. This example illustrates

the potential complexity of the problem at hand, with changes in all three diagram

aspects to be handled.

Extracted Refactoring Rule

With the current AccidentManager (Fig. 3.9), scalability issues may arise. Assuming

that 70% of the incoming alerts are not real emergencies, the analysis of ’false alerts’

consumes considerable resources. The AccidentManager may thus turn out to be a

bottleneck in the system. To address this scalability problem we extract the initial

handling of alerts from the AccidentManager into an AlertListener component. The

refactored system is shown in Figures 7.7 and 7.8 with its component and composite

structure diagram respectively. The AlertListener receives alerts from cars, forwards

them to the AccidentManager for processing while querying the database for the

phone number and invoking the telephone service, which sends the results of its calls

directly to the AccidentManager.

7.1. Rule Extraction and Verification 144

��

��:::::::::::::::::::::::::::::::::::

K = B1 = B2

(PB)

oo //

��

�������������������������������������

�� ��
L = L1

(PO)

��

(PO)

K = B1 = B2
oo //

��

R = R1

(PO)

��

(PO)

��
(PO)

//oo

�� ��

(PO)

//oo

Figure 7.6: The construction of the minimal and extracted rule

7.1. Rule Extraction and Verification 145

Figure 7.7: Architectural model of the refactored accident server

Figure 7.8: Configuration after the refactoring

Figure 7.9: Component split refactoring

7.1. Rule Extraction and Verification 146

//

Figure 7.10: Refactoring rule of component split

The behaviour of the new AlertListener and the updated AccidentManager com-

ponent is given in Figure 7.9 (the original behaviour of the AlertListener is in Fig. 3.9).

Rather than comparing the semantics of the entire accident server model before

and after the change, we focus on the affected parts and their immediate contexts. In

the present example, the refactoring rule is shown in Fig. 7.10. All three aspects of

the system are present in the rule, and the necessary contexts are already included.

The rule is applied by selecting an occurrence isomorphic to the left-hand side of

the rule at both type and instance levels in the source model. Thus, component C

is matched by AccidentManager from Fig. 3.3, interface J corresponds to phone, N

to processAlert, and M to phoneData. At instance level, a similar correspondence is

established.

The System Equation

To verify the behaviour preservation property of the refactoring rule, its semantical

representation is created using the semantic mapping. However, the semantical rep-

resentation is a large set of CSP expressions both for the LHS and RHS. To perform

the verification, a single process is necessary that is essentially an entry point to the

7.2. Refactoring Patterns 147

behaviour of the whole system. This process is called the system equation. The

system equation is created in three major steps:

1. All component instances and connectors are placed in parallel composition. As

components are modular units with encapsulated behaviour, their independent

nature is captured this way. The communication channels synchronise the event

passing between the components. The system equation is the following in the

present case:

((((c1.C1_def || ch-k1.T) || c2.C2_def) || ch-j1.J)

|| ch-j2.J) || ch-m.M

2. The unmapped events are hidden. They are the events either created or deleted

by the production rule. In our case, the unmapped events are the ones associated

with the newly introduced I interface. Thus, the system equation is altered in

the following way:

(((((c1.C1_def || ch-k1.T) || c2.C2_def) || ch-j1.J) ||

ch-j2.J) || ch-m.M) \ {| q1.i_send, s1.i_recv |}

3. The synchronisation points are included. As mentioned in Section 4.1, the

target platform FDR2 is different from the ’official’ CSP. The synchronisation

events are not included implicitly in the parallel relation; they need to be stated

explicitly. Thus, as a final step, we include them into the equation.

System_RHS = (((((c1.C1_def [| {q1.i_send,s1.i_recv} |]

ch-k1.T) [| {q1.i_send,s1.i_recv} |] c2.C2_def)

[| {p1.e_send} |] ch-j1.J) [| {r2.f_send, r1.f_recv} |]

ch-j2.J) [| {p2.d_send, p2.d_recv} |] ch-m.M)

\ {| q1.i_send, s1.i_recv |}

The assertion of SystemLHS ⊑T SystemRHS is successful in FDR2, and indicates

trace refinement.

7.2 Refactoring Patterns

The definitions, differences and commonalities of design- and refactoring patterns were

discussed in Section 1.3. Refactoring patterns have a precise and well-documented

7.2. Refactoring Patterns 148

pparallel : oo //

Figure 7.11: Refactoring pattern: parallelization

definition and solution proposal, but their preservation of behaviour was not treated

formally (Sec. 2.3). Refactoring patterns require a proper mathematical treatment

and proof of behaviour preservation.

Our approach fulfills this requirement. A refactoring pattern is technically a

graph transformation rule p : L ← K → R with formal behaviour represented as

traces (or failures/divergences) in CSP. The behaviour was verified to be preserved,

i.e. sem(L) ⊑T sem(R). This graph transformation rule can be applied to a sys-

tem G. Then, the direct graph transformation t : G
p,m⇒ H produces the refactored

system H. As the rule is behaviour preserving and the semantic mapping is composi-

tional (Definition 6.1.2), according to Theorem 6.3.1 the transformation is behaviour

preserving as well, i.e. sem(G) ⊑T sem(H).

Although it is possible to create a refactoring pattern without a related system;

a refactoring pattern solves a particular problem and as such, arises when an actual

refactoring is performed. Thus, the creation of a refactoring pattern starts as de-

scribed in Section 7.1: a relevant refactoring rule is extracted and verified. However,

a refactoring pattern is more general than a simple extracted rule as demonstrated

in Section 7.2.2.

This section consists of two parts. In Section 7.2.1 an example refactoring pattern

is presented and applied. Section 7.2.2 details the differences between refactoring

patterns and extracted refactoring rules.

7.2.1 Example Refactoring Pattern

Parallelization of sequential activities is a common task when performance is critical.

As introduced in [BH07], a refactoring pattern can be created to parallelise previously

sequential tasks as shown in Figure 7.11.

It can be easily proven that the pattern shown in Figure 7.11 is behaviour pre-

7.2. Refactoring Patterns 149

sem(LHS(pparallel))

o-1 = a -> o-2

o-2 = b -> o-3

o-3 = c -> o-4

sem(RHS(pparallel))

r-1 = (r-a1 || r-b1); r-2

r-a1 = c -> r-a2

r-a2 = SKIP

r-b1 = b -> o-3

o-3 = c -> r-b3

r-2 = SKIP

traces(o-1)

a -> b -> c

traces(r-1)

a -> b -> c

a -> c -> b

c -> a -> b

Table 7.1: Verification details of pparallel

serving. Table 7.1 details the results of the semantic mapping; the resulting CSP

expressions as well as their traces. After studying the traces in Table 7.1 it can be

concluded that traces(o-1) ⊆ traces(r-1). Thus, it is indeed a refactoring.

We apply this pattern to the PhoneHandler component presented in Section 3.5.

In the original system (Fig. 3.9), the sending and receiving of timeRequest and collect-

ConnectionData are executed sequentially. However, the data collection can be run in

parallel with the acquisition of the timestamp. Thus, we apply the refactoring pattern

with a as timeRequest send, b as timeRequest receive and c as collectConnectionData.

The resulting system is shown in Figure 7.12.

As the rule was shown to be behaviour preserving, and the semantic map is com-

positional, it follows from Theorem 6.3.1 that the new system preserves the behaviour

of the old system, and no further verification is needed.

7.2.2 Difference from Extracted Rule

Refactoring patterns are usually extracted refactoring rules. However, there is a

subtle but important difference between refactoring patterns and extracted refactoring

rules that is more than philosophical: extracted refactoring rules usually solve a

particular problem, but refactoring patterns are as general as possible. To illuminate

the point, assume that the refactoring presented in Section 7.2.1 was performed by

the developer without the help of the presented refactoring pattern. Let us generalise

this refactoring rule.

7.2. Refactoring Patterns 150

Figure 7.12: Behaviour change of PhoneHandler

pparallel : oo //

Figure 7.13: Parallelization rule if extracted

The types of a and b in the refactoring pattern shown in the Figure 7.11 and

in PhoneHandler component in Figure 3.9 do not match. In PhoneHandler, a is a

SendSignalAction, and b is an AcceptEventAction. In the other rule extraction case

in Section 7.1.2 both the relevant ports and owned interfaces were extracted from the

system as a necessary context to make the extracted rule semantically complete in

the presence of communication events. Thus, the proper extracted rule would look

like the one depicted in Figure 7.13

However, our aim is generality. In the refactoring pattern shown in Figure 7.11 the

event types are higher in the inheritance hierarchy: they are EventNodes, a common

parent class for both Actions and CommunicationEvents. When applying the pattern

as a graph transformation rule, a and b are gluing points, thus the port engagement

7.3. Tool Support 151

pG : //oo

Figure 7.14: Generic EventNodes in the PersistentDatabase refactoring

connections remain intact in the context system. We can, and do exchange the

communication events to EventNodes in the extracted rule. Figure 7.14 shows another

example: the refactoring pattern derived by the same means from the extracted rule

in Figure 7.4.

These examples illustrate well how the refactoring patterns differ from extracted

rules.

7.3 Tool Support

This section discusses the tool support that enables the developers refactor system

architecture, extract refactoring rules and verify them [BHE09c]. The chain of tools

that are used for rule extraction and verification is illustrated in Figure 7.15

Figure 7.15: Block diagram of the tool chain

7.3.1 Visual Editor

A visual editor is necessary to perform architectural refactorings at the model level.

The editor has been implemented using the Eclipse Graphical Modelling Framework

(GMF) [GMF07].

7.3. Tool Support 152

Figure 7.16: Basic functionality of the Visual Editor

Editing Architecture

As mentioned in Section 3.5, the components and their instances are situated in

the same diagram, which is called a combined structure diagram. Such a diagram is

being edited in Figure 7.16. The round rectangle with label PersistentDatabase is a

type-level component, with registration and databaseFrontEnd interfaces. Interface

implementation is denoted by the usual inheritance and dependance connections:

both interfaces are provided by the relevant ports. The behaviour is encapsulated

within the component. The other rectangle with label pdatabase is a component

instance. It contains two interaction points (i.e. port instances): data1 and register1.

The metamodel of the combined structure diagram (Fig. 3.1) is represented as an

Eclipse Modeling Framework (EMF) model, which is essentially an attributed typed

graph as mentioned.

To help rule creation, every object in the diagram has an integer match value (0 by

default) that expresses matches between the LHS and RHS. Elements with the same

match are matched. This match property is the same as the match value discussed

in Section 5.5.

7.3. Tool Support 153

Rule Extraction and Context Inclusion

It is desirable to have an automated method for minimal rule extraction. Although

there are algorithms solving similar problems [Var06], and formal theory was pre-

sented in Section 7.1.1, the conception and implementation of the extraction algo-

rithm is future work.

Figure 7.17: Selected attribute

Aside from editing, the visual editor enables the definition of the refactoring rule.

The attribute Selected is used for this purpose: it defines if the particular element

is in the rule, regardless of its match status. In Figure 7.17 the accept event action

acquireMap is not included in the rule yet.

This method of selection is used by the developer to perform the tasks of minimal

rule extraction as well as context inclusion.

7.3.2 Semantic Mapping

The transformation that maps the CSML to CSP is implemented using the Tiger

EMF Transformer tool [Tig07]. The implementation was detailed in Chapter 5. The

rules were designed using the EMT Visual Editor.

The behavioural part of transformation was used for benchmarking the EMF

Transformer in [VAB+08] with the case study provided. An average transformation

run was around 0.2734 seconds after the first run on an Intel Core Duo T2400 1.83

GHz computer with 1 GB RAM. The times were tested on Windows XP, Vista and

Ubuntu Linux, but no significant difference was detected. The full transformation

was tested as well, but no thorough benchmarking was done. As an average, the

transformation successfully terminated after 2-3 seconds (which is one magnitude

slower than the behaviour only version).

7.3.3 Formal Verification

After the mapping to CSP, the expressions are checked for trace refinement with

FDR2, a refinement checker for establishing properties of models expressed in CSP

7.3. Tool Support 154

[FSEL05]. All the refactoring cases presented in Sections 7.1.2, 7.1.3 and 7.2.2 among

others have been verified for behaviour preservation.

Figure 7.18: FDR2 Verifying the parallel pattern from Section 7.2.2

The verification process is simple: the CSP file is loaded in FDR2 as shown

in Figure 7.18, then the trace refinement check is run on the desired expression.

Unfortunately, time is a problematic factor in the verification process; the exponential

state space explosion is apparent. The smaller verifications, like the ones in Section

7.1.2 and 7.2.2 finished in 5 minutes. The larger one from Section 7.2.2 finished in at

least 20-30 minutes. We tried to compare the verification time of the extracted rules

versus the whole system. Hopefully the fact that the verification of the whole system

crashed FDR2 after 9 hours at all three attempts gives justice to the effectiveness of

our approach.

The theoretical problems of not using well-structured activity diagrams have been

shown in Section 5.3.5. Apparently, the verification of well-structured diagram based

CSP expressions saves time. In complicated cases, where not just behaviour, but also

components are involved, the verification time was nearly halved.

Conclusions

The results presented in this work are now reviewed. First, the contributions are sum-

marised, then our experiences and the limitations of the presented work is discussed.

The chapter concludes with a list of future challenges.

Summary

The contributions presented can be grouped into three main categories: theoretical,

applications of theory, and implementation.

Starting with a concise summary, the main result is a comprehensive methodology

that enables the verification of software model refactorings at rule-level. The results

presented span two levels of abstraction.

The software models were represented as typed graphs and refactorings as direct

graph transformations. Formal behaviour was expressed in a denotational style and

mapped onto the software models via a typed graph transformation system. The cor-

rectness of verifying refactorings at rule-level assuming a compositionality condition

on this semantic mapping was established and proven. The notion of compositionality

was defined and guaranteed on this semantic mapping by a structural condition on

the form of the production rules. Both basic production rules and rules with negative

application conditions were considered.

The theoretical results were applied to two main scenarios. The first is to ex-

tract and verify refactoring rules instead of the whole system thus saving resources.

The second is the concept of refactoring patterns, which are generalised and verified

refactoring rules applicable to a system without the need for further verification. To

support the above approaches, a theoretical solution was created that establishes a

method to extract the minimal rule and justifies the need of further context inclusion.

As an extensive case-study, software architectural models were chosen for domain

of refactoring. The combined structure modelling language (CSML) was developed

as an architectural description language based on the UML component, composite

Conclusion 156

structure and activity diagrams. Its behaviour was formalised using CSP with trace

semantics. Both the architectural and semantic domain were represented as instances

of type graphs.

In order to show the validity of the theoretical contributions, a complete tool

chain was assembled. First, the graph representation of both the CSML and CSP was

implemented using the EMF platform. A graphical editor for CSML was implemented

in GEF enabling the developer to create architectural models and perform refactorings

on them. The semantic mapping from CSML to CSP was implemented using the Tiger

EMF Transformer and also proven to be compositional. And finally the generated

CSP expressions were verified using the FDR2 tool.

Evaluation

As mentioned in Section 6.6, the compositionality of a semantic map holds only

under certain requirements. To prove confluency with AGG, we used the complete

critical pair analysis first. The main problem with this method is the computational

complexity that makes the verification impossible for larger models. However, the

latest notion of essential critical pairs [LEO08] allowed us to re-run the critical pair

analysis with success. Although constructiveness is a simple criteria on rules, the

complexity of proving separability and termination varies wildly on the transformation

design.

The context inclusion to the extracted minimal refactoring rule needs to be re-

flected on as well. As mentioned in Section 7.1, the selection of included context is

a task of the developer. It is indeed true that the general rules for determining this

context are completely dependent on the domain model. There were attempts to

define a least bound context for our architecture model. A reasonable candidate for

the owned behaviour was the single entry single exit (SESE) region [JPP94] as the

smallest bounding context around the changed parts: in nearly every test case, this

bounding region produced a very small included context. Unfortunately we were not

able to define the notion of the smallest necessary contexts.

Future Work

Future work may encompass several orthogonal directions. The most important ones

are the following:

Conclusion 157

∙ Although the semantic mapping from CSML to CSP is compositional, adapting

it to new domains asks for re-evaluation. As the complexity of proving ter-

mination and separability is based on the semantic mapping implementation,

it could be advantageous to move to a slightly different graph transformation

paradigm. The use of strict control flow, as implemented in VMTS [LLC06],

would be helpful. Proving termination of a transformation regulated by a con-

trol flow is a much easier task. However, it would not only need a completely

new implementation of the transformation, but also a fundamental assessment

of the validity of the theoretical contributions in the new paradigm.

∙ Another interesting aspect would be the addition of time properties to the whole

system. Instead of CSP, stochastic process algebras like PEPA [Hil96, TG07]

could be used. Although, the architectural model would need adaptation to

incorporate stochastic properties.

∙ Obviously, other possible application domains apart from architectural refac-

torings would pose interesting research topics. For instance in the domain of

business processes, formally verified refactoring pattern creation was already

researched [KGK+08].

∙ The method of cloning and expanding on graph transformation rules introduced

by [HJvE06] is another interesting direction. The idea of rule instantiation

would be perfect to generalise refactorings like the one shown in Figure 7.4.

There, we assume that there can be only one action between the AcceptEven-

tAction and SendSignalAction. With cloning and expanding it would be possible

to create a refactoring pattern, where the number of intermediate actions is not

fixed.

∙ Our concept of semantics was based on process algebras. Although our theoret-

ical contributions are generic, it would be important to investigate how does it

work with other types of semantical domains, like temporal logic expressions.

∙ And finally the area of context inclusion into minimal rules definitely needs

future work. It would be important to create an algorithmic way of producing

the necessary context in our architecture domain. Also, the term ’necessary

context’ needs precise definition. The largest context is ironically the whole

model, thus it would be advantageous to extract something smaller. Hence,

definitions are also required for the smallest necessary context if it can be defined

concisely.

Conclusion 158

Refactoring software, especially models of software is a relatively new discipline.

The results of this thesis are novel achievements of this constantly evolving area.

Hence they must go through several adjustments based on substantial experience

of practical applications to obtain relevance in the industry. Hopefully they will

promote the use of formal methods and advance the efficiency of present verification

techniques.

Appendix A: Basic Concepts of

Category Theory

Hereby we introduce the necessary fundamental concepts of category theory for clar-

ity.

Definition A.1.1. (Category [Pie91]) A category C comprises

1. a collection of objects;

2. a collection of morphisms;

3. operations assigning to each morphism f an object domf , its domain, and

an object codf , its codomain (we write f : A → B or A
f−→ B to show that

dom f = A and cod f = B; the collection of all morphisms with a domain A

and codomain B is written C(A,B));

4. a composition operator assigning to each pair of morphisms f and g, cod f =

dom g, a composite morphism g ∘ f : dom f → cod g, satisfying the following

associative law:

for any arrows f : A→ B, g : B → C, and ℎ : C → D (with A,B,C and D not

necessarily distinct),

ℎ ∘ (g ∘ f) = (ℎ ∘ g) ∘ f

5. for each object A, an identity morphism idA : A → A satisfying the following

identity law:

for any morphism f : A→ B, idB ∘ f = f and f ∘ idA = f .

In graph transformations, the gluing of graphs along a common subgraph is a

common task. The idea of a pushout generalises the gluing construction in the sense

Appendix 160

of category theory, i.e. a pushout object emerges from gluing two objects along a

common subobject.

Definition A.1.2. (Pushout [EEPT06]) Given morphisms g : A→ B and g : A→
C in a category C, a pushout (D, f ′, g′) over f and g is defined by

∙ a pushout object D and

∙ morphisms f ′ : C → D and g′ : B → D with f ′ ∘ g = g′ ∘ f

such that the following universal property is fulfilled: For all objects X and mor-

phisms ℎ : B → X and k : C → X with k ∘ g = ℎ ∘ f , there is a unique morphism

x : D → X such that x ∘ g′ = ℎ and x ∘ f ′ = k:

A f //

=
=

g

��
=

B

g′

��
ℎ

<<<<<<<<

��<<<<<<<<C f ′ //

k
TTTTTTTTTT

))TTTTTTTTTT

D

x
NNNNNN

&&NNNNNN

X

We shall use the abbreviation PO for pushout. We use D = B +A C for the

pushout object D, where D is called the gluing of B and C via A, or more precisely,

via (A, f, g).

The pushout object D is unique up to isomorphism

The dual construction of a pushout is a pullback. Pullbacks are the generalisation

of both intersection and inverse image.

Definition A.1.3. (Pullback [EEPT06]) Given morphisms f : C → D and g :

B → D in category C, a pullback (A, f ′, g′) over f and g is defined by

∙ a pullback object A and

∙ murphisms f ′ : A→ B and g′ : A→ C with g ∘ f ′ = f ∘ g′

such that the following universal property is fulfilled: For all objects X with mor-

phisms ℎ : X → B and k : X → C with f ∘ k = g ∘ ℎ, there is a unique morphism

x : X → A such that f ′ ∘ x = ℎ and g′ ∘ x = k:

Appendix 161

X

=

x
NNNNNN

&&NNNNNN ℎ
TTTTTTTTTT

))TTTTTTTTTT

k
<<<<<<<<

��<<<<<<<< A f ′ //

g′

��
=

B

g

��
C f // D

=

We shall use the abbreviation PB for pullback.

The pullback object A is unique up to isomorphism.

The uniqueness, composition and decomposition properties are essential for the

theory of graph transformation.

Theorem A.1.1. (Composition and Decomposition of POs and PBs [EEPT06])

Given a category C with the following commutative diagram, the statements below are

valid:

A

g

��

d //

(1)

B

g′

��

e //

(2)

E

e′′

��
C f ′ // D e′ // F

Pushout composition and decomposition:

∙ if (1) and (2) are pushouts, then (1) + (2) is also a pushout.

∙ if (1) and (1) + (2) are pushouts, then (2) is also a pushout.

Pullback composition and decomposition:

∙ if (1) and (2) are pullbacks, then (1) + (2) is also a pullback.

∙ if (2) and (1) + (2) are pullbacks, then (1) is also a pullback.

Initial pushout is a complement construction. The context graph C as shown

in [EEPT06] is the smallest subgraph of A′ that contains A′ ∖ f(A).

Definition A.1.4. (Initial Pushout [EEPT06]) Given a morphism f : A → A′,

an injective morphism b : B → A is called the boundary over f if there is a pushout

complement of f and b such that (1) is a pushout initial over f . Initiality of (1) over

f means that for every pushout (2) with injective b′ there exists unique morphism

b∗ : B → D and c∗ : C → E with injective b∗ and c∗ such that b′ ∘ b∗ = b, c′ ∘ c∗ = c

and (3) is a pushout. B is then called the boundary object and C the context with

respect to f .

Appendix 162

B b //

��

A

f
��

(1)

C c // A′

B b∗ //

(3)

��

b ''
D

(2)

��

b′ // A

f

��
C c∗ //

c
77E c′ // A

Definition A.1.5. (Gluing Condition with Initial Pushouts [EEPT06]) In

GraphsTG a match m : L → G satisfies the gluing condition with respect to a

production p = (L
l←− K

r−→ R) if, for the initial pushout (1) over m, there is a

morphism b∗ : B → K such that l ∘ b∗ = b:

B

��

b∗ ''

(1)

b // L

m

��

Kloo r // R

C c // G

Theorem A.1.2. (Existence and Uniqueness of Contexts [EEPT06]) In GraphsTG

a match m : L → G satisfies the gluing condition with respect to a production

p = (L
l←− K

r−→ R) if and only if the context object D exists, i.e. there is a pushout

complement (2) of l and m:

B
b∗ ''

��
(1)

b // L

(2)m

��

K

k
��

loo r // R

C c //

c∗
77G Dfoo

Lemma A.1.1. (Closure Property of Initial POs [EEPT06]) Given an initial

pushout (1) over injective ℎ0 and double pushout diagram (2) with pushouts (2a) and

(2b) and injective d0, d1, we have the following:

1. The composition of (1) with (2a), defined as pushout (3) by the initiality of (1),

is an initial pushout over injective morphism d.

2. The composition of the initial pushout (3) with pushout (2b), leading to pushout

(4), is an initial pushout over injective morphism ℎ1

B b0 //

��
(1)

G0

ℎ0
��

C // G′0

G0

ℎ0
��

(2a)

Dd0oo d1 //

d

��
(2b)

G1

ℎ1
��

(2)

G′0 D′oo // G′1

B

��

b //

(3)

D

d
��

C // D′

B

��

d1∘b //

(4)

G1

ℎ1
��

C // G′1

Bibliography

[ADG98] Robert Allen, Rémi Douence, and David Garlan. Specifying and analyzing

dynamic software architectures. Lecture Notes in Computer Science, 1382,

1998.

[AGG07] AGG - Attributed Graph Grammar System Environment. http://tfs.

cs.tu-berlin.de/agg, 2007.

[Ala04] Alan Brown. An introduction to Model Driven Architecture. IBM, 2004.

http://www.ibm.com/developerworks/rational/library/3100.html.

[All97] Robert Allen. A Formal Approach to Software Architecture. PhD thesis,

Carnegie Mellon, School of Computer Science, January 1997. Issued as

CMU Technical Report CMU-CS-97-144.

[Amb04] Scott W. Ambler. The Object Primer: Agile Modeling-Driven Develop-

ment with UML 2. Cambridge University Press, 2004.

[Arn86] Robert S. Arnold, editor. Tutorial on software restructuring. IEEE Com-

puter Society Press, Los Alamitos, CA, USA, 1986.

[Bae05] J. C. M. Baeten. A brief history of process algebra. Theor. Comput. Sci.,

335(2-3):131–146, 2005.

[BBER08] J. Bauer, I. Boneva, Kurbán M. E., and A. Rensink. A modal-logic based

graph abstraction. In ICGT 2008, 2008.

[BCK04] P. Baldan, A. Corradini, and B. König. Verifying finite-state graph tran-

formation grammars: an unfolding-based approach. In Proceedings of

CONCUR ’04, number 3170 in LNCS, pages 83–98. Springer, 2004.

[BCK08] P. Baldan, A. Corradini, and B. König. A framework for the verification

of infinite-state graph transformation systems. Information and Compu-

tation, 2008. to appear.

Bibliography 164

[BCM98] P. Baldan, A. Corradini, and U. Montanari. Concatenable graph pro-

cesses: relating processes and derivation traces. In S. Larsen, K. Skyum

and G. Winskel, editors, Proceedings of ICALP’98, volume 1443 of Lecture

Notes in Computer Science, pages 283–295. Springer Verlag, 1998.

[BCM99] P. Baldan, A. Corradini, and U.. Montanari. Unfolding and event struc-

ture semantics for graph grammars. In W. Thomas, editor, Proceedings

of FoSSaCS ’99, number 1578 in LNCS, pages 73–89. Springer, 1999.

[BCMR07] P. Baldan, A. Corradini, U. Montanari, and L. Ribeiro. Unfolding Seman-

tics of Graph Transformation. Information and Computation, 205:733–

782, 2007.

[BDD+92] Manfred Broy, Frank Dederich, Claus Dendorfer, Max Fuchs, Thomas

Gritzner, and Rainer Weber. The design of distributed systems - an in-

troduction to focus. Technical Report TUM-I9202, Technische Univerität

München, 1992.

[BEK+06] Enrico Biermann, Karsten Ehrig, Christian Köhler, Günter Kuhns,

Gabriele Taentzer, and Eduard Weiss. Emf model refactoring based on

graph transformation concepts. ECEASST, 3, 2006.

[Ber91] Paul L. Bergstein. Object-preserving class transformations. In OOP-

SLA ’91: Conference proceedings on Object-oriented programming sys-

tems, languages, and applications, pages 299–313, New York, NY, USA,

1991. ACM.

[BGMM08] L. Baresi, C. Ghezzi, A. Mocci, and M. Monga. Using graph transforma-

tion systems to specify and verify data abstractions. In Claudia Ermel,

Reiko Heckel, and Juan de Lara, editors, Proceedings of the Seventh Inter-

national Workshop on Graph Transformation and Visual Modeling Tech-

niques (GT-VMT 2008), volume X, pages 277–290, Budapest, Hungary,

March 2008. EASST.

[BH07] Dénes Bisztray and Reiko Heckel. Rule-level verification of business pro-

cess transformations using csp. In Proc of 6th International Workshop on

Graph Transformations and Visual Modeling Techniques (GTVMT’07),

2007.

Bibliography 165

[BHE08] Dénes Bisztray, Reiko Heckel, and Hartmut Ehrig. Verification of archi-

tectural refactorings by rule extraction. In Fundamental Approaches to

Software Engineering, volume 4961/2008 of Lecture Notes in Computer

Science, pages 347–361. Springer Berlin / Heidelberg, 2008.

[BHE09a] Dénes Bisztray, Reiko Heckel, and Hartmut Ehrig. Compositional verifi-

cation of architectural refactorings. In Architecting Dependable Systems

VI, Lecture Notes in Computer Science, pages 308–333. Springer, 2009.

[BHE09b] Dénes Bisztray, Reiko Heckel, and Hartmut Ehrig. Compositionality of

model transformations. Electronic Notes in Theoretical Computer Science,

236:5–19, 2009.

[BHE09c] Dénes Bisztray, Reiko Heckel, and Hartmut Ehrig. Verification of ar-

chitectural refactorings: Rule extraction and tool support. Electronic

Communications of the EASST, 16, 2009.

[Bis08] Dénes Bisztray. Verification of architectural refactorings: Rule extraction

and tool support. In Graph Transformations, Lecture Notes in Computer

Science, pages 475–477. Springer Berlin / Heidelberg, 2008.

[BK02] P. Baldan and B. König. Approximating the behaviour of graph trans-

formation systems. In Proceedings of ICGT ’02, number 2505 in LNCS,

pages 14–30. Springer, 2002.

[BKK03] P. Baldan, B. König, and B. König. A logic for analysing abstractions of

graph transformation systems. In R. Cousot, editor, Proceedings of SAS

’03, number 2694 in LNCS, pages 255–272. Springer, 2003.

[BKKK87] Jay Banerjee, Won Kim, Hyoung-Joo Kim, and Henry F. Korth. Seman-

tics and implementation of schema evolution in object-oriented databases.

SIGMOD Rec., 16(3):311–322, 1987.

[BKPPT05] Paolo Bottoni, Manuel Koch, Francesco Parisi-Presicce, and Gabriele

Taentzer. Termination of high-level replacement units with application to

model transformation. Electr. Notes Theor. Comput. Sci., 127(4):71–86,

2005.

[BKR05] P. Baldan, B. König, and A. Rensink. Graph grammar verification

through abstraction. In Graph transforamtion and process algebras for

Bibliography 166

modeling distributed and mobile systems, volume 04241 of Dagstuhl Sem-

inar, 2005.

[BMR+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and

Michael Stal. A System of Patterns, volume Volume 1 of Pattern-Oriented

Software Architecture. John Wiley and Sons, 1st edition, August 1996.

[BPPT03] Paolo Bottoni, Francesco Parisi-Presicce, and Gabriele Taentzer. Coor-

dinated distributed diagram transformation for software evolution. Elec-

tronic Notes in Theoretical Compututer Science, 72(4), 2003.

[BPPT04] Paolo Bottoni, Francesco Parisi-Presicce, and Gabriele Taentzer. Spec-

ifying integrated refactoring with distributed graph transformations. In

Applications of Graph Transformations with Industrial Relevance, volume

Volume 3062/2004 of Lecture Notes in Computer Science, pages 220–235.

Springer Berlin / Heidelberg, 2004.

[CCI90] Elliot J. Chikofsky and James H. Cross II. Reverse engineering and design

recovery: A taxonomy. IEEE Software, 7(1):13–17, 1990.

[CMR96] A. Corradini, U. Montanari, and F. Rossi. Graph processes. Fundamenta

Informaticae, 26:241–265, 1996.

[CMR+97] Andrea Corradini, Ugo Montanari, Francesca Rossi, Hartmut Ehrig,

Reiko Heckel, and Michael Löwe. Algebraic approaches to graph trans-

formation - part i: Basic concepts and double pushout approach. In

Handbook of Graph Grammars, pages 163–246, 1997.

[CW04] Alexandre L. Correa and Cláudia Maria Lima Werner. Applying refac-

toring techniques to uml/ocl models. In UML, pages 173–187, 2004.

[DB08] Hartmut Ehrig Dénes Bisztray, Reiko Heckel. Verification of architectural

refactoring rules. Technical report, Department of Computer Science,

University of Leicester, 2008. http://www.cs.le.ac.uk/people/dab24/

refactoring-techrep.pdf.

[DDN08] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Object-Oriented

Reengineering Patterns. Square Bracket Associates, 2008.

[DLRdS03] F. L. Dotti, Foss L., L. Ribeiro, and O. M. dos Santos. Verification of

distributed object-based systems. In FMOODS ’03, pages 261–275, 2003.

Bibliography 167

[DMdS05] F. L. Dotti, O. M. Mendizabal, and O. M. dos Santos. Verifying fault-

tolerant distributed systems using object-based graph grammars. In

LADC ’05, pages 80–100, 2005.

[Ecl09] Eclipse Integrated Development Environment. http://www.eclipse.

org/, 2009.

[EEdL+05] Hartmut Ehrig, Karsten Ehrig, Juan de Lara, Gabriele Taentzer, Dániel

Varró, and Szilvia Varró-Gyapay. Termination criteria for model transfor-

mation. In Maura Cerioli, editor, Proc. FASE 2005: Internation Confer-

ence on Fundamental Approaches to Software Engineering, volume 3442

of LNCS, pages 49–63, Edinburgh, UK,, April 2005. Springer.

[EEPT06] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer.

Fundamentals of Algebraic Graph Transformation (Monographs in Theo-

retical Computer Science). An EATCS Series. Springer-Verlag New York,

Inc., Secaucus, NJ, USA, 2006.

[Ehr87] Hartmut Ehrig. Tutorial introduction to the algebraic approach of graph

grammars. In Proceedings of the 3rd International Workshop on Graph-

Grammars and Their Application to Computer Science, pages 3–14, Lon-

don, UK, 1987. Springer-Verlag.

[EJ03] Niels Van Eetvelde and Dirk Janssens. A hierarchical program represen-

tation for refactoring. Electr. Notes Theor. Comput. Sci., 82(7), 2003.

[EK06] Hartmut Ehrig and Barbara Koenig. Deriving bisimulation congruences

in the dpo approach to graph rewriting with borrowed contexts. Mathe-

matical Structures in Computer Science, 16(6), 2006.

[EMF07] Eclipse Modeling Framework. http://www.eclipse.org/emf, 2007.

[EPLF03] Hans-Erik Eriksson, Magnus Penker, Brian Lyons, and David Fado. UML

2 Toolkit. Wiley Publishing, 2003.

[Esp94] J. Esparza. Model checking using net unfoldings. Science of Computer

Programming, 23(2–3):151–195, 1994.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don

Roberts. Refactoring: Improving the Design of Existing Code. Addison-

Wesley Professional, 1st edition edition, 1999.

Bibliography 168

[FFR07] A. P. L. Ferreira, L. Foss, and L. Ribeiro. Formal verification of object-

oriented graph grammars specifications. Electron. Notes Theor. Comput.

Sci., 175(4):101–114, 2007.

[FR98] Richard Fanta and Václav Rajlich. Reengineering object-oriented code.

In ICSM ’98: Proceedings of the International Conference on Software

Maintenance, page 238, Washington, DC, USA, 1998. IEEE Computer

Society.

[FSEL05] Formal Systems Europe Ltd. FDR2 User Manual, 2005.

http://www.fsel.com/documentation/fdr2/html/index.html.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John M Vlissides. De-

sign Patterns: Elements of Reusable Object-Oriented Software. Addison-

Wesley Professional, 1994.

[GHK98] F. Gadducci, R. Heckel, and M. Koch. A fully abstract model for graph-

intepreted temporal logic. In H. Ehrig, G. Engels, H.-J. Kreowski, and

G. Rozenberg, editors, 6th International Workshop on Theory and Appli-

cation of Graph Transformations, volume 1764 of Lecture Notes in Com-

puter Science. Springer Verlag, 1998.

[GJ02] Alejandra Garrido and Ralph Johnson. Challenges of refactoring c pro-

grams. In IWPSE ’02: Proceedings of the International Workshop on

Principles of Software Evolution, pages 6–14, New York, NY, USA, 2002.

ACM.

[GMF07] Eclipse Graphical Modeling Framework. http://www.eclipse.org/gmf,

2007.

[GN93] William G. Griswold and David Notkin. Automated assistance for pro-

gram restructuring. ACM Trans. Softw. Eng. Methodol., 2(3):228–269,

1993.

[GP95] David Garlan and Dewayne E. Perry. Introduction to the special issue

on software architecture. IEEE Transactions on Software Engineering,

21(4):269–274, 1995.

[Hec98a] R. Heckel. Compositional verification of reactive systems specified by

graph transformation. In E. Astesiano, editor, Proceedings of FASE’98,

Bibliography 169

volume 1382 of Lecture Notes in Computer Science, pages 138–153.

Springer Verlag, 1998.

[Hec98b] R. Heckel. Compositional verification of reactive systems specified by

graph transformation. In FASE ’98, volume 1382 of LNCS, pages 138–

153. Springer-Verlag, 1998.

[Hen88] Matthew Hennessy. Algebraic theory of processes. MIT Press, Cambridge,

MA, USA, 1988.

[Hil96] Jane Hillston. A Compositional Approach to Performance Modelling.

Cambridge University Press, 1996.

[HJvE06] Berthold Hoffmann, Dirk Janssens, and Niels van Eetvelde. Cloning and

expanding graph transformation rules for refactoring. Electronic Notes

Theoretical Compututer Science, 152:53–67, 2006.

[HKT02a] Reiko Heckel, Jochen Malte Küster, and Gabriele Taentzer. Confluence of

typed attributed graph transformation systems. In ICGT ’02: Proceedings

of the First International Conference on Graph Transformation, pages

161–176, London, UK, 2002. Springer-Verlag.

[HKT02b] Reiko Heckel, Jochen Malte Küster, and Gabriele Taentzer. Confluence of

typed attributed graph transformation systems. In ICGT ’02: Proceedings

of the First International Conference on Graph Transformation, pages

161–176, London, UK, 2002. Springer-Verlag.

[HLM06] Reiko Heckel, Georgios Lajios, and Sebastian Menge. Stochastic graph

transformation systems. Fundamenta Informaticae, 72:1–22, 2006. To

appear.

[Hoa85] Charles Antony Richard Hoare. Communicating Sequential Processes.

Prentice Hall International Series in Computer Science. Prentice Hall,

April 1985.

[Hof05] Berthold Hoffmann. Graph transformation with variables. In Formal

Methods in Software and Systems Modeling, pages 101–115, 2005.

[HSSS96] Franz Huber, Bernhard Schätz, Alexander Schmidt, and Katharina Spies.

Autofocus: A tool for distributed systems specification. In FTRTFT,

pages 467–470, 1996.

Bibliography 170

[Int96] International Standard Organisation. Information technology - Syntac-

tic metalanguage - Extended BNF, 1996. http://www.iso.org/iso/

catalogue_detail.htm?csnumber=26153.

[JPP94] Richard Johnson, David Pearson, and Keshav Pingali. The program struc-

ture tree: computing control regions in linear time. SIGPLAN Not.,

29(6):171–185, 1994.

[Kas05] H. Kastenberg. Towards attributed graphs in groove. In GT-VC ’05,

Electronic Notes in Computer Science. Elseviee, 2005.

[Ker04] Joshua Kerievsky. Refactoring to Patterns. The Addison-Wesley Signa-

ture Series. Addison Wesley Professional, 2004.

[KGK+08] Jana Koehler, Thomas Gschwind, Jochen Küster, Cesare Pautasso, Kse-

nia Ryndina, Jussi Vanhatalo, and Hagen Völzer. Combining quality as-

surance and model transformations in business-driven development. pages

1–16, 2008.

[KK06] B. Koenig and V. Kozioura. Counterexample-guided abstraction refine-

ment for the analysis of graph transformation systems. In TACAS 2006,

volume 3920 of LNCS, pages 197–211. Springer, 2006.

[KK08] B. Koenig and V. Kozioura. Towards the verification of attributed graph

transformation systems. In ICGT 2008, 2008.

[KMJ02] Sarfraz Khurshid, Darko Marinov, and Daniel Jackson. An analyzable

annotation language. SIGPLAN Not., 37(11):231–245, 2002.

[Koc00] M. Koch. Integration of Graph Transformation and Temporal Logic for the

Specification of Distributed Systems. PhD thesis, Technische Universität

Berlin, 2000.

[KR06] H. Kastenberg and A. Rensink. Model checking dynamic states in groove.

In A. Valmari, editor, SPIN ’06, number 3925 in LNCS, pages 229–305,

2006.

[Kre02] Peter Kreeft. How to Win the Culture War. InterVarsity Press, 2002.

[KWB03] Anneke Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The Model

Driven Architecture: Practice and Promise. Addison-Wesley Object Tech-

nology Series. Addison-Wesley Professional, 2003.

Bibliography 171

[Lae25] Diogenes Laertius. Lives of Eminent Philosophers, volume 2. Loeb Clas-

sical Library, January 1925.

[Leh96] M. M. Lehman. Laws of software evolution revisited. In European Work-

shop on Software Process Technology, pages 108–124, 1996.

[LEO08] Leen Lambers, Hartmut Ehrig, and Fernando Orejas. Efficient conflict

detection in graph transformation systems by essential critical pairs. Elec-

tron. Notes Theor. Comput. Sci., 211:17–26, 2008.

[LEPO08a] Leen Lambers, Hartmut Ehrig, Ulrike Prange, and Fernando Orejas. Em-

bedding and confluence of graph transformations with negative applica-

tion conditions. In ICGT ’08: Proceedings of the 4th International Con-

ference on Graph Transformations, pages 162–177, Berlin, Heidelberg,

2008. Springer-Verlag.

[LEPO08b] Leen Lambers, Hartmut Ehrig, Ulrike Prange, and Fernando Orejas. Par-

allelism and concurrency in adhesive high-level replacement systems with

negative application conditions. Electronic Notes in Theorerical Computer

Science, 203(6):43–66, 2008.

[LLC06] Tihamr Levendovszky, Lszl Lengyel, and Hassan Charaf. Termination

Properties of Model Transformation Systems with Srtict Control Flow. In

5th International Workshop on Graph Transformation and Visual Model-

ing Techniques, Vienna, Austria, April 2006.

[LPE07] Tihamér Levendovszky, Ulrike Prange, and Hartmut Ehrig. Termination

criteria for dpo transformations with injective matches. Electron. Notes

Theor. Comput. Sci., 175(4):87–100, 2007.

[LRW+97] M M. Lehman, J F. Ramil, P D. Wernick, D E. Perry, and W M. Turski.

Metrics and laws of software evolution - the nineties view. In METRICS

’97: Proceedings of the 4th International Symposium on Software Metrics,

page 20, Washington, DC, USA, 1997. IEEE Computer Society.

[Mar96] Alfio Martini. Elements of basic category theory. Technical report, Tech-

nische Universität Berlin, 1996.

[MB08] Slavisa Markovic and Thomas Baar. Refactoring ocl annotated uml class

diagrams. Software and System Modeling, 7(1):25–47, 2008.

Bibliography 172

[McM93] K.L. McMillan. Symbolic Model Checking. Kluwer, 1993.

[MCvG05] Tom Mens, Krzysztof Czarnecki, and Pieter van Gorp. A taxonomy

of model transformations. In Jean Bezivin and Reiko Heckel, editors,

Language Engineering for Model-Driven Software Development, number

04101 in Dagstuhl Seminar Proceedings. Internationales Begegnungs- und

Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany,

2005.

[MDJ02] Tom Mens, Serge Demeyer, and Dirk Janssens. Formalising behaviour

preserving program transformations. In ICGT ’02: Proceedings of the

First International Conference on Graph Transformation, pages 286–301,

London, UK, 2002. Springer-Verlag.

[MGB06] Tiago Massoni, Rohit Gheyi, and Paulo Borba. An approach to invariant-

based program refactoring. ECEASST, 3, 2006.

[MK96] Jeff Magee and Jeff Kramer. Dynamic structure in software architectures.

In SIGSOFT ’96: Proceedings of the 4th ACM SIGSOFT symposium on

Foundations of software engineering, pages 3–14, New York, NY, USA,

1996. ACM Press.

[MM03] Jishnu Mukerji and Joaquin Miller. MDA Guide Version 1.0.1. OMG,

2003. http://www.omg.org/docs/omg/03-06-01.pdf.

[MTR07] Tom Mens, Gabi Taentzer, and Olga Runge. Analysing refactoring de-

pendencies using graph transformation. Software and Systems Modeling

(SoSyM), pages 269–285, September 2007.

[NG03] Colin J. Neill and Bharminder Gill. Refactoring reusable business com-

ponents. IT Professional, 5(1):33–38, 2003.

[oC02] Free Online Dictionary of Computing. Unified Modelling Language, 2002.

http://foldoc.org/UML.

[OCN98] Mel Ó Cinnéide and Paddy Nixon. Composite refactorings for java pro-

grams. In Proceedings of the Workshop on Formal Techniques for Java

Programs, ECOOP Workshops, 1998.

[OMG06a] OMG. Object Constraint Language, version 2.0, 2006. http://www.omg.

org/technology/documents/formal/ocl.htm.

Bibliography 173

[OMG06b] OMG. Unified Modeling Language, version 2.1.1, 2006. http://www.

omg.org/technology/documents/formal/uml.htm.

[Opd92] William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD the-

sis, Urbana-Champaign, IL, USA, 1992.

[PC07] Javier Pérez and Yania Crespo. Exploring a method to detect behaviour-

preserving evolution using graph transformation. In van Paesschen Ellen

Maja DHondt Tom Mens, Kim Mens, editor, Proceedings of the Third

International ERCIM Workshop on Software Evolution, pages 114–122.

ERCIM, October 2007. Informal Workshop proceedings.

[Pie91] Benjamin C. Pierce. Basic Category Theory for Computer Scientists.

Foundations of Computing. MIT Press, 1991.

[Plu93] Detlef Plump. Hypergraph rewriting: critical pairs and undecidability of

confluence. pages 201–213, 1993.

[Plu99] D. Plump. Term graph rewriting. pages 3–61, 1999.

[Por02] Ivan Porres. A toolkit for manipulating uml models. Technical report,

Turku Centre for Computer Science, 2002.

[Por03] Ivan Porres. Model refactorings as rule-based update transformations. In

UML, pages 159–174, 2003.

[PR97] Jan Philipps and Bernhard Rumpe. Refinement of information flow ar-

chitectures. In ICFEM, pages 203–212, 1997.

[QVT05] MOF Query/View/Transformation (QVT) Final Adopted Specification.

http://www.omg.org/docs/ptc/05-11-01.pdf, 2005.

[Rei85] W. Reisig. Petri Nets: An Introduction. EACTS Monographs on Theo-

retical Computer Science. Springer Verlag, 1985.

[Ren03] A. Rensink. Towards model checking graph grammars. In M. Leuschel,

S. Gruner, and S. Lo Presti, editors, Workshop on Automated Verification

of Critical Systems (AVoCS), Technical Report DSSE–TR–2003–2, pages

150–160. University of Southampton, 2003.

Bibliography 174

[Ren04a] Arend Rensink. Canonical graph shapes. In D. A. Schmidt, editor, Pro-

gramming Languages and Systems — European Symposium on Program-

ming (ESOP), volume 2986 of Lecture Notes in Computer Science, pages

401–415. Springer-Verlag, 2004.

[Ren04b] Arend Rensink. The GROOVE simulator: A tool for state space genera-

tion. In J. Pfalz, M. Nagl, and B. Böhlen, editors, Applications of Graph

Transformations with Industrial Relevance (AGTIVE), volume 3062 of

Lecture Notes in Computer Science, pages 479–485. Springer-Verlag, 2004.

[Ren04c] Arend Rensink. State space abstraction using shape graphs. In Auto-

matic Verification of Infinite-State Systems (AVIS), Electronic Notes in

Theoretical Computer Science. Elsevier, 2004.

[Ren08] A. Rensink. Explicit state model checking for graph grammars. In

P. Degano, R. De Nicola, and J. Meseguer, editors, Concurrency, Graphs

and Models. Essays Dedicated to Ugo Montanari on the Occasion of

His 65th Birthday, volume 5065 of Lecture Notes in Computer Science.

Springer Verlag, 2008.

[Rib96] L. Ribeiro. Parallel Composition and Unfolding Semantics of Graph

Grammars. PhD thesis, Technische Universität Berlin, 1996.

[RKE07] Guilherme Rangel, Barbara König, and Hartmut Ehrig. Bisimulation

verification for the dpo approach with borrowed contexts. ECEASST, 6,

2007.

[RLK+08] Guilherme Rangel, Leen Lambers, Barbara König, Hartmut Ehrig, and

Paolo Baldan. Behavior preservation in model refactoring using dpo trans-

formations with borrowed contexts. In ICGT ’08: Proceedings of the

4th international conference on Graph Transformations, pages 242–256,

Berlin, Heidelberg, 2008. Springer-Verlag.

[Rob99] Donald B Roberts. Practical analysis for refactoring. Technical report,

Champaign, IL, USA, 1999.

[Ros97] A. W. Roscoe. Theory and Practice of Concurrency. Prentice Hall, 1st

edition, November 1997.

Bibliography 175

[RSV04] A. Rensink, A. Schmidt, and D. Varró. Model checking graph transfor-

mations: a comparison of two approaches. In ICGT ’04, number 3256 in

LNCS, pages 226–241. Springer, 2004.

[Sch94] Andy Schürr. Specification of graph translators with triple graph gram-

mars. In Tinhofer, editor, Proc. WG’94 Int. Workshop on Graph-

Theoretic Concepts in Computer Science, number 903, pages 151–163.

Springer-Verlag, 1994.

[Sel05] Bran Selic. Unified Modeling Language version 2.0: In support of model-

driven development, 2005. http://www.ibm.com/developerworks/

rational/library/05/321_uml/?S_TACT=105AGX78&S_CMP=HP.

[SPTJ01] Gerson Sunyé, Damien Pollet, Yves Le Traon, and Jean-Marc Jézéquel.

Refactoring uml models. In Proceedings of the 4th International Confer-

ence on The Unified Modeling Language, Modeling Languages, Concepts,

and Tools, pages 134–148, London, UK, 2001. Springer-Verlag.

[Ste07] Perdita Stevens. Bidirectional model transformations in qvt: Semantic

issues and open questions. In Proceedings of 10th International Conference

on Model Driven Engineering Languages and Systems (MODELS 2007),

volume 4735, pages 1–15. Springer LNCS, October 2007.

[Ste08] Perdita Stevens. A landscape of bidirectional model transformations.

pages 408–424, 2008.

[Sun09] Sun Microsystems. Enterprise JavaBeans Technology, 2009. http://

java.sun.com/products/ejb/index.jsp.

[SV03] A. Schmidt and D. Varró. CheckVML: a tool for model checking visual

modeling languages. In UML ’03, volume 2863 of LNCS, pages 92–95.

Springer-Verlag, 2003.

[TB01] Lance Tokuda and Don Batory. Evolving object-oriented designs with

refactorings. Automated Software Engg., 8(1):89–120, 2001.

[TG07] Mirco Tribastore and Stephen Gilmore. The PEPA Project for Eclipse.

http://homepages.inf.ed.ac.uk/mtribast/, 2007.

[THD03] Kevin C. Desouza Thomas H. Davenport, Robert I. Thomas. Reusing in-

tellectual assets, 2003. http://www.entrepreneur.com/tradejournals/

article/105440989.html.

Bibliography 176

[Tig07] Tiger Developer Team. Tiger EMF Transformer, 2007. http://www.tfs.

cs.tu-berlin.de/emftrans.

[TKB03] Frank Tip, Adam Kiezun, and Dirk Bäumer. Refactoring for general-

ization using type constraints. In OOPSLA ’03: Proceedings of the 18th

annual ACM SIGPLAN conference on Object-oriented programing, sys-

tems, languages, and applications, pages 13–26, New York, NY, USA,

2003. ACM.

[TM07] Gabriele Taentzer, Dirk Müller 0002, and Tom Mens. Specifying domain-

specific refactorings for andromda based on graph transformation. In

AGTIVE, pages 104–119, 2007.

[VAB+08] Dániel Varró, Márk Asztalos, Dénes Bisztray, Artur Boronat, Duc-Hanh

Dang, Rubino Geiß, Joel Greenyer, Pieter Gorp, Ole Kniemeyer, Anantha

Narayanan, Edgars Rencis, and Erhard Weinell. Transformation of uml

models to csp: A case study for graph transformation tools. pages 540–

565, 2008.

[Var04] D. Varró. Automated formal verification of visual modelign languages.

Software and System Modeling, 3(2):85–113, 2004.

[Var06] Dániel Varró. Model transformation by example. In Proc. Model Driven

Engineering Languages and Systems (MODELS 2006), volume 4199 of

LNCS, pages 410–424, Genova, Italy, 2006. Springer.

[vEJ04] Niels van Eetvelde and Dirk Janssens. Extending graph rewriting for refac-

toring. In Graph Transformations, volume Volume 3256/2004 of Lecture

Notes in Computer Science, pages 399–415. Springer Berlin / Heidelberg,

2004.

[vGSMD03] Pieter van Gorp, Hans Stenten, Tom Mens, and Serge Demeyer. Towards

automating source-consistent UML refactorings. In Perdita Stevens, Jon

Whittle, and Grady Booch, editors, UML 2003 - The Unified Modeling

Language, volume 2863 of Lecture Notes in Computer Science, pages 144–

158. Springer-Verlag, 2003.

[Vit03] Marian Vittek. Refactoring browser with preprocessor. In CSMR ’03:

Proceedings of the Seventh European Conference on Software Maintenance

Bibliography 177

and Reengineering, page 101, Washington, DC, USA, 2003. IEEE Com-

puter Society.

[vKCKB05] Marc van Kempen, Michel Chaudron, Derrick Kourie, and Andrew

Boake. Towards proving preservation of behaviour of refactoring of uml

models. In SAICSIT ’05: Proceedings of the 2005 annual research con-

ference of the South African institute of computer scientists and informa-

tion technologists on IT research in developing countries, pages 252–259,

, Republic of South Africa, 2005. South African Institute for Computer

Scientists and Information Technologists.

[VS09] Microsoft Visual Studio. http://msdn.microsoft.com/en-us/vstudio/

default.aspx, 2009.

[WCG+06] Martin Wirsing, Allan Clark, Stephen Gilmore, Matthias Hölzl, Alexan-

der Knapp, Nora Koch, and Andreas Schroeder. Semantic-Based Devel-

opment of Service-Oriented Systems. In E. Najn et al., editor, Proc. 26th

IFIP WG 6.1 International Conference on Formal Methods for Networked

and Distributed Systems(FORTE’06), Paris, France, LNCS 4229, pages

24–45. Springer-Verlag, 2006.

[YC79] Edward Yourdon and Larry L. Constantine. Structured Design: Fun-

damentals of a Discipline of Computer Program and System Design.

Prentice-Hall, 1979.

