Equational logic for higher-order abstract syntax

Alexander Kurz, Daniela Petrişan
University of Leicester

23rd September 2008
Domains IX
Overview

• Motivation

 ▶ Functors with finitary presentations

 ▶ Equational logic for higher-order abstract syntax

 ▶ Connection with nominal sets
Motivation

• Syntax with variable binders cannot be captured as an initial algebra for functors on Set.

• But we can do it if we move to functors on a presheaf category (Fiore, Plotkin and Turi).

• In particular, the lambda terms up to α-equivalence form an initial algebra for a functor.
Approach

- Functors with finitary presentation.
 - Introduced by Bonsangue and Kurz in coalgebraic logic.
 - Give rise to adequate logics for coalgebras:

\[
L \xrightarrow{\mathcal{A}} \mathcal{X} \xleftarrow{T}
\]

- Moving to many-sorted varieties is necessary in certain situations
- Another application: modularity! How can we describe logics for \(T_1 \circ T_2 \)-coalgebras?
Approach

- Functors with finitary presentation.
 - Introduced by Kurz and Bonsangue in coalgebraic logic.
 - Give rise to adequate logics for coalgebras:

 $L \leftarrow A \xrightarrow{T} \mathcal{X} \rightarrow T$

- Moving to many-sorted varieties is necessary in certain situations
- Another application: modularity! How can we describe logics for $T_1 \circ T_2$-coalgebras?
Overview

- Motivation
- Functors with finitary presentations
- Equational logic for higher-order abstract syntax
- Connection with nominal sets
Finitary presentations for functors

\[
\begin{align*}
\mathcal{A} & \xrightarrow{L} \mathcal{A} \\
\downarrow F & \quad \downarrow U \\
\Sigma \setminus S & \xrightarrow{\Sigma} \text{Set}
\end{align*}
\]

where \(E \subseteq (M\Sigma MV)^2 \) and \(M \) is the monad \(UF \)
Two results

A characterization theorem (Kurz and Rosický)

L has a finitary presentation by operations and equations if and only if L preserves sifted colimits.

Alg(L) as an equational class

Let $A = \text{Alg}(\Sigma_A, E_A)$ be an S-sorted variety and let $L : A \to A$ be a functor presented by operations Σ_L and equations E_L. Then $\text{Alg}(L) \cong \text{Alg}(\Sigma_A + \Sigma_L, E_A + E_L)$.
Two results

A characterization theorem (Kurz and Rosický)

L has a finitary presentation by operations and equations if and only if L preserves sifted colimits.

Alg(L) as an equational class

Let $A = \text{Alg}(\Sigma_A, E_A)$ be an S-sorted variety and let $L : A \to A$ be a functor presented by operations Σ_L and equations E_L. Then $\text{Alg}(L) \cong \text{Alg}(\Sigma_A + \Sigma_L, E_A + E_L)$.
Overview

- Motivation

- Functors with finitary presentations

- Equational logic for higher-order abstract syntax

- Connection with nominal sets
The functor-category Set^F

- F is the full subcategory of Set with objects $\underline{n} = \{1, \ldots, n\}$ and $\underline{0} = \emptyset$.

- $A = \text{Set}^F$ is a many-sorted unary variety:
 - the sorts: objects of F
 - operation symbols: morphisms of F
 - equations: $h(x) = f(g(x))$ (when equality holds in F) or $id_{\underline{n}}(x) = x$
A suitable functor to describe the presheaf of λ-terms

- A coproduct structure on \mathbb{F}

\[
\begin{array}{c}
1 \\
\downarrow^{\text{new}} \\
 n + 1
\end{array}
\]

\[
\begin{array}{c}
\downarrow^{i} \\
 n
\end{array}
\]

where i is the inclusion and $\text{new}(1) = n + 1$.

- The type constructor $\delta : \mathcal{A} \to \mathcal{A}$ for context extension:

\[
\delta(A)(\rho) = A(\rho + id_1) \quad \forall A \in \mathcal{A} \quad \forall \rho \in \mathcal{F}^{Morph}
\]

- Let $L : \mathcal{A} \to \mathcal{A}$ be the functor given by

\[
LX = \delta X + X \times X
\]
The algebraic structure of ΛV_α

- For an arbitrary presheaf of variables V, the α-equivalence classes of λ-terms over V form a presheaf in Set^F: ΛV_α.

Theorem. (Fiore, Plotkin, Turi) ΛV_α is the free L-algebra on the presheaf of variables V

- But $\text{Alg}(L)$ is an equational class, and a presentation can be obtained from:

 - an equational presentation of \mathcal{A} and
 - a finitary presentation of L.
An equational presentation for \mathcal{A}: the signature

We consider the following operation symbols:

\[\Sigma_{\mathcal{A}} = \{\sigma_n^{(i)} | 1 < n, 1 \leq i < n\} \cup \{w_n | n \geq 0\} \cup \{c_n | n > 0\} \cup \{\sigma_0\} \]

with the intended interpretation:

- $\sigma_n^{(i)}$ - the transposition $(i, i + 1)$ of the set n,
- c_n - a contraction $c_n : n + 1 \rightarrow n$, given by
 \[c_n(i) = i \quad \forall i \leq n, \quad c_n(n + 1) = n \]
- w_n - the inclusion of n into $n + 1$.
- σ_0 - the empty function.
An equational presentation for \(A \): the equations \(E_A \) (1)

-the equations coming from the presentation of the symmetric group:

\[
\begin{align*}
(\sigma_n^{(i)})^2(x) &= \text{id}_n(x) & 1 \leq i < n \\
\sigma_n^{(i)} \sigma_n^{(j)}(x) &= \sigma_n^{(j)} \sigma_n^{(i)}(x) & j \neq i \pm 1; 1 \leq i, j < n \quad (E_1) \\
(\sigma_n^{(i)} \sigma_n^{(i+1)})^3(x) &= \text{id}_n(x) & 1 \leq i < n - 1
\end{align*}
\]
An equational presentation for \mathcal{A}: the equations $E_\mathcal{A}$ (2)

-and some extra equations:

\[
\begin{align*}
c_n\sigma_{n+1}^{(n)}(y) &= c_n(y) & (E_2) \\
c_nw_n(x) &= id_n(x) & (E_3) \\
\sigma_{n+1}^{(i)}w_n(x) &= w_n\sigma_n^{(i)}(x) & 1 \leq i < n & (E_4) \\
\sigma_{n+2}^{(n+1)}w_{n+1}w_n(x) &= w_{n+1}w_n(x) & (E_5) \\
\sigma_n^{(i)}c_n(y) &= c_n\sigma_n^{(i)}(y) & i < n - 1 & (E_6) \\
c_n\sigma_{n+1}^{(n-1)}\sigma_{n+1}^{(n)}w_n(x) &= \sigma_n^{(n-1)}w_{n-1}c_{n-1}(x) & (E_7) \\
c_nc_{n+1}\sigma_{n+2}^{(n)} &= c_nc_{n+1} & (E_8) \\
((2, n - 1)(1, n)w_{n-1}c_{n-1})^2 &= (w_{n-1}c_{n-1}(2, n - 1)(1, n))^2 & (E_9)
\end{align*}
\]

(E_9) comes from the presentation of the monoid of functions on n, given by Aizenstat.
A finitary presentation for L

- **The operation symbols:** $\text{lam}_n, \text{app}_n$ for each $n \in \mathbb{N}$; (semantically they correspond to λ-abstraction and application).

- The respective signature functor $\Sigma_L : \text{Set}^{\mathbb{N}} \rightarrow \text{Set}^{\mathbb{N}}$ is given by:

\[
(\Sigma_L X)_m = \{\text{lam}_{m+1}\} \times X_{m+1} + \{\text{app}_m\} \times X_m \times X_m
\]

- For any presheaf $V \in \mathcal{A}$ let $\rho_V : \Sigma UV \rightarrow ULV$ be the map defined by

\[
\text{lam}_{n+1}(t) \mapsto t \quad \forall t \in V(n + 1) = (\delta V)(n)
\]

\[
\text{app}_n(t_1, t_2) \mapsto (t_1, t_2) \quad \forall t_1, t_2 \in V(n)
\]
A finitary presentation for L - the equations

- The equations E_L should correspond to the kernel pair of the adjoint transpose $\rho_V^\# : F\Sigma UFV \rightarrow LV$.

\[
\begin{align*}
\sigma^{(i)}_n \text{lam}_{n+1}(t) &= \text{lam}_{n+1}(\sigma^{(i)}_{n+1} t) \\
wn \text{lam}_{n+1}(t) &= \text{lam}_{n+2}(\sigma^{(n+1)}_{n+2} wn_{n+1} t) \\
cn \text{lam}_{n+2}(t') &= \text{lam}_{n+1}(\sigma^{(n)}_{n+1} cn+1 \sigma^{(n)}_{n+2} \sigma^{(n+1)}_{n+2} t') \\
\sigma^{(i)}_n \text{app}_n(t_1, t_2) &= \text{app}_n(\sigma^{(i)}_n t_1, \sigma^{(i)}_n t_2) \\
wn \text{app}_n(t_1, t_2) &= \text{app}_{n+1}(wn t_1, wn t_2) \\
cn \text{app}_{n+1}(t_1, t_2) &= \text{app}_n(cn t_1, cn t_2)
\end{align*}
\]
Representing different implementations of λ-terms

- If V is the presheaf defined by $V(\rho) = \rho$ for all morphisms ρ in \mathcal{F}, the free L-algebra over V gives an implementation of λ-terms by the De Bruijn levels method.

- How can we obtain different implementations for λ-terms?

 - One possible approach: equip \mathcal{F} with different coproduct structures!

 - But this implies working with a different functor than L.

 - Let's keep L and use different presheaves of variables!
Representing different implementations of λ-terms

• If \(V \) is the presheaf defined by \(V(\rho) = \rho \) for all morphisms \(\rho \) in \(F \), the free \(L \)-algebra over \(V \) gives an implementation of \(\lambda \)-terms by the De Bruijn levels method.

• How can we obtain different implementations for \(\lambda \)-terms?

• One possible approach: equip \(F \) with different coproduct structures!

• But this implies working with a different functor than \(L \).

• Let’s keep \(L \) and use different presheaves of variables!
Overview

▷ Motivation

▷ Functors with finitary presentations

▷ Equational logic for higher-order abstract syntax

► Connection with nominal sets
Connection with nominal sets

- Replace \mathbb{F} with \mathbb{I}
- Replace \mathbb{F} with \mathbb{S}

 objects: finite subsets of a countable set of atoms \mathbb{A}

 morphisms: injective maps

- An equational presentation for Set^S:

 - operation symbols: $(a, b)_S : S \cup \{a\} \to S \cup \{b\}$ and $w_{S,c} : S \to S \cup \{c\}$, for $S \subseteq_{\text{fin}} \mathbb{A}$ and $a, b, c \notin S$

 \[
 \begin{align*}
 (b, a)(a, b) &= \text{id} : S \cup \{a\} \\
 (a, b)(c, d) &= (c, d)(a, b) : S \cup \{b, d\} \\
 (b, c)(a, b) &= (a, c) : S \cup \{c\} \\
 (a, b)w_c &= w_c(a, b) : S \cup \{c, b\} \\
 (a, b)w_a &= w_b : S \cup \{b\} \\
 w_aw_b &= w_bw_a : S \cup \{a, b\}
 \end{align*}
 \]
Syntactical differences

• A new signature: $\text{lam}_{S,a} : S \cup \{a\} \rightarrow S$, $\text{app}_S : S \times S \rightarrow S$ and $v_a : \rightarrow \{a\}$ for all $a \in A$, $S \subset \text{fin} A$.

• A slightly different type constructor $\delta : \text{Set}^S \rightarrow \text{Set}^S$

• Equations:

 $t : S \cup \{a, c\} \vdash (b, c)\text{lam}_a(t) = \text{lam}_a((b, c)t) : S \cup \{b\}$
 $t : S \cup \{a\} \vdash w_b\text{lam}_a(t) = \text{lam}_a(w_b t) : S \cup \{b\}$
 $t_1, t_2 : S \vdash w_b\text{app}(t_1, t_2) = \text{app}(w_b t_1, w_b t_2) : S \cup \{b\}$
 $t_1, t_2 : S \cup \{a\} \vdash (a, b)\text{app}(t_1, t_2) = \text{app}((a, b)t_1, (a, b)t_2) : S \cup \{b\}$
 $\vdash (a, b)v_a = v_b$
\(\alpha\beta\eta\)-equivalence

\[
\begin{align*}
\alpha &: S \vdash \\
\alpha &: S; \quad \beta &: S \vdash & \quad \text{app}(\text{lam}_a(w_{S\nu_a}), \alpha) = \alpha &: S \\
\alpha, \beta &: S \cup \{a\}; \quad \gamma &: S \vdash & \quad \text{app}(\text{lam}_a(\text{app}(\alpha, \beta)), \gamma) = \\
& & \quad \text{app}(\text{app}(\text{lam}_a(\alpha), \gamma), \text{app}(\text{lam}_a(\beta), \gamma)) : S \\
\alpha &: S \cup \{a, b\}; \quad \beta &: S \vdash & \quad \text{app}(\text{lam}_a(\text{lam}_b(\alpha)), \beta) = \\
& & \quad \text{lam}_b(\text{app}(\text{lam}_a(\alpha), w_a\beta)) : S \\
\alpha &: S \cup \{a\} \vdash & \quad \text{app}(w_b\text{lam}_a(\alpha), w_{S\nu_b}) = (a, b)\alpha &: S \cup \{b\} \\
\alpha &: S; \quad \beta &: a \vdash & \quad \text{lam}_a(\text{app}(w_a\alpha, w_{S\nu_a})) = \alpha &: S
\end{align*}
\]
Thank you!