
Modelling Fusion calculus using HD-automata?

Gianluigi Ferrari1, Ugo Montanari1, Emilio Tuosto1, Björn Victor2, and
Kidane Yemane2

1 Dipartimento di Informatica, Università di Pisa, Italy.
2 Dept. of Information Technology, Uppsala University, Sweden.

Abstract. We propose a coalgebraic model of the Fusion calculus based
on HD-automata. The main advantage of the approach is that the par-
tition refinement algorithm designed for HD-automata is easily adapted
to handle Fusion calculus processes. Hence, the transition systems of
Fusion calculus processes can be minimised according to the notion of
observational semantics of the calculus. As a beneficial side effect, this
also provides a bisimulation checker for Fusion calculus.

1 Introduction

Nominal calculi, process calculi with primitive mechanisms for local name gener-
ation, name exchange and scoping rules, have been successfully applied to specify
and verify properties of global computing systems. Names provide a suitable ab-
straction to describe a variety of different computational phenomena such as
mobility, localities, distributed object systems, security keys, session identifiers
and son on. For instance, the π-calculus has been exploited for modelling and
verifying a finite instance of the handover protocol of the Public Land Mobile
Network [20]. Several properties of cryptographic protocols have been naturally
expressed through spi-calculus specifications [1]. Nominal calculi also provide a
basic programming model that has been incorporated in novel programming lan-
guages (see e.g. [6, 2]) and workflow languages for Web Service coordination [4,
16].

Verification via semantic equivalence provides a well established framework
to reason about the behaviour of systems specified using nominal calculi. In
this approach, checking behavioural properties is reduced to the problem of con-
trasting two system abstractions in order to determine whether their behaviours
coincide with respect to a suitable notion of semantic equivalence. However, in
the case of nominal calculi verification via semantic equivalence is intrinsically
difficult. Indeed, when an unbound number of new names can be generated dur-
ing execution, models of nominal calculi (e.g. labelled transition systems) tend to
be infinite even in the simplest cases unless explicit mechanisms are introduced
to deal with names.

Symbolic semantics [15, 3, 17] is a well established approach to finite state ver-
ification of nominal calculi. Symbolic semantics takes a syntax-based approach

? Work supported by the PROFUNDIS FET-GC project.

and generalises standard operational semantics by keeping track of equalities
among names: transitions are derived in the context of such constraints. The
main advantage of the symbolic semantics is that it yields a smaller transi-
tion system. The idea of symbolic semantics has been exploited to provide a
convenient characterisation of open bisimilarity [25] and in the design of the
corresponding bisimulation checker, the Mobility WorkBench (MWB) [27].

An alternative class of models for nominal calculi are the so-called syntax-free
models where names are explicitly dealt with regardless of the syntactic structure
of the calculi. Indexed LTSs [5] and History Dependent automata (HD-automata
in brief) [18, 22, 19] are examples of syntax-free models of nominal calculi devel-
oped following the approach based on name permutations. HD-automata have
an added value because they are a formal device for verification of nominal calcui
modelled in a syntax-free context. This model encompasses the main features of
nominal calculi, namely creation and deallocation of names, and accounts for a
compact representation of process behaviour by collapsing states differing only
for the renaming of local names. Basically, the “history” of the names appearing
in the computation is explicitly represented so that it is possible to reconstruct
the associations that have led to a given state. Clearly, if a state is reached
in two different computations, different histories are assigned to its names [18,
22]. In [19], states of HD-automata have been equipped with name symmetries
which further reduces the size of the automata and guarantee the existence of
the minimal realization. The computation of the minimal automata is derived by
exploiting a coalgebraic presentation of the partition refinement algorithm [7].
The minimisation algorithm for the early semantics of π-calculus has been im-
plemented in the Mihda toolkit [10]. Since Mihda does not rely on a symbolic
semantics, the number of states of the minimal HD-automaton is unnecessarily
large due to the existence of different input transitions for different instantia-
tions of the input variable. Hence, the integration of symbolic techniques and
syntax-free models would provide more powerful verification methods. Notice
that minimisation algorithms for syntax-based models have been already devel-
oped (e.g., for the open semantics of the π-calculus[23]).

In this paper we introduce a novel symbolic semantics for the Fusion calcu-
lus [21]. The Fusion calculus is a nominal calculus which extends the π-calculus
with the capability of fusing names. When two names are fused then they can
be used interchangeably. The Fusion calculus has been introduced as a simplifi-
cation and generalization of the π-calculus. Apart from the theoretical interest
Fusion calculus seem to arise naturally in the implementation of distributed
systems, e.g. workflow languages for service coordination [24].

The main technical contribution of this paper is the development of a coalge-
braic framework for the Fusion calculus equipped with the symbolic semantics.
Our main result here is that the coalgebraic description of the minimisation
algorithm for HD-automata smoothly extends to handle the Fusion calculus
and behaves in accordance with the symbolic semantics: bisimilar processes are
mapped together by the morphisms yielding the minimal HD-automaton.

The paper is structured as follows: In section 2 we describe HD-automata as a
coalgebra over a category of named-set and the minimisation procedure for the
HD-automata and in, Section 3, we provide a brief overview of Fusion calcu-
lus together with a new symbolic semantics. This will be followed by the HD-
automata for Fusion calculus and how minimisation works for Fusion calculus
HD-automata in Section 4, and we conclude in Section 5 with some conclusion,
related work and some ideas for future work.

2 History Dependent Automata

Verification of concurrent and mobile systems specified using nominal calculi is
intrinsically difficult since the state space can easily become extremely large or
even infinite. History Dependent automata (HD-automata in brief) [22, 18, 19,
7] are an operational model for nominal calculi designed to address finite state
verification. HD-automata can be seen as automata enriched by equipping states
and transition with names. This permits to model name creation/deallocation
or name extrusion which are typical linguistic mechanisms of nominal calculi.

A noteworthy fact is that names in states of HD-automata have local meaning,
hence a compact representation of agent behaviour can be achieved by collapsing
states that differ only for renaming of local names. Following [10], we provide a
formal definition of HD-automata which basically differs from definitions of [10]
in avoiding usage of dependent types. Indeed, the presentation in [10] aims at
showing how the formal definition of the partition refinement algorithm for HD-
automata guides and corresponds to its implementation Mihda [9]. Here, we build
named sets on top of permutation algebras, namely we give a more abstract defi-
nition which focuses on the main mathematical ingredients necessary to describe
the coalgebraic model and the related minimisation algorithm for Fusion calculus
without taking into account implementation details.

Before giving the formal definitions, it is worth to collect some notations.
We consider a set N ? made of a countable set of names N and a distinguished

element ? 6∈ N . We let Aut(N) be the set of bijective endofunctions on N , i.e.,
the permutations of N . Given a permutation ρ such that dom(ρ) ⊂ N (where
dom(ρ) is the domain of ρ), ρ is the automorphism on N ? obtained by extending
ρ on N ? so that ρ(x) = x for any x ∈ N ? \dom(ρ). The application of a function
on names γ to an element e is written as eγ and, when e is a set, it stands for
the point-wise application of γ to the elements of e.

Definition 1 (Permutation algebras). A permutation algebra is an algebra
〈S, O〉, where S is the carrier of the algebra and the set of operations O contains
unary operators {ρ̂ | ρ ∈ Aut(N)} such that the following axioms hold.

∀x ∈ S. xîd = x, ∀x ∈ S∀ρ1, ρ2 ∈ O. xρ̂1; ρ2 = (xρ̂1)ρ̂2.

Following [19], we can see the Fusion calculus as a permutation algebra: the
carrier is the set of processes of Fusion calculus (up-to structural congruence)
and the operations are name permutations interpreted as substitutions.

We introduce the notions of named sets and named functions which form the
category NS of named sets, in terms of permutation algebras. Then we study
the structure of NS.

Definition 2 (Named sets). A named set (ns) is a pair 〈Q, g〉 where;

1. Q is a permutation algebra;
2. g : Q →

⋃
N∈℘fin(N) sym(N) assigns to any q ∈ Q a group of permutations

g(q) over a finite set of names such that q = qρ̂, for any ρ ∈ g(q). The names
of q, written as |q|, are defined as the domain of the permutations ρ ∈ g(q)
while ||q|| is the cardinality of |q|.

We let D, E, F range over nss and, given D = 〈Q, g〉, we write QD (resp. gD)
to denote Q (resp. g).

Definition 3 (Isomorphism of named sets). Two nss D and E are iso-
morphic if there exists an isomorphism between D and E, namely a bijective
function s : QD → QE such that, for any d ∈ QD there is a bijective correspon-
dence n : |d| → |s(d)| such that gD(d) = gE(e); n.

Therefore, we consider nss up-to isomorphism so that two nss are considered
equal whenever they have the same “structure” despite of having different un-
derlying sets and different names associated to each element. It only matters the
number of names and the symmetry associated to each element, namely, names
are local to elements of nss.

Named functions basically are functions that preserve the structure of nss.

Definition 4 (Named functions). Given two named sets D and E, a named
function (nf) H : D → E is a pair 〈h, Σ〉 where h : QD → QE and Σ : QD →

℘fin(QE ×N ?
N) are such that, for all q ∈ QD and (e, σ) ∈ Σ(q),

1. σ is injective, σ(|e|) ⊆ |q| ∪ {?} and σ(x) = x, for any x ∈ N \ |e|;
2. σ; gD(q) ⊆ Σ2(q), where Σ2(q) =

⋃
(e,σ)∈Σ(q){σ} and the permutations in

gD(q) are all meant to act as the identity on ?;
3. gE(h(q)); σ = Σ2(q).

Named functions are ranged over by H , K and J . We write hH and ΣH for denot-
ing the first and the second components of H . The intuition behind conditions 1,
2 and 3 naturally emerges when nfs are exploited to describe the transitions out
of a certain state. Intuitively, elements in hH(q) are the transitions out of q and
ΣH(q) contains the mappings of names of target states of those transitions to
names of q. Condition 1 ensures that any name in |q| has a unique “meaning”
along each transition in hH(q) (injectivity of σ) and establishes that names in
target states are either mapped on names of the source state or to ?, the dis-
tinguished name representing the generation of a new name along a transition.
Condition 2 states that the group of the starting state q does not generate tran-
sitions which are not in ΣH(q). Finally, condition 3 states that any permutation
is in the symmetry of hH(q) iff, when applied to any σ mapping names of the
transitions to those of q, yields a map in ΣH(q).

Definition 5 (Composition of named functions). The composition H ; K
of two nfs H : D → E and K : E → F is 〈hH ; hK , ΣH ; ΣK〉 where ΣH ; ΣK :

QD → ℘fin(QF ×N ?
N) is such that

ΣH ; ΣK : q 7→
⋃

(e,σ)∈ΣH(q)

{(f, σ′; σ′) | (f, σ′) ∈ ΣK(h(q))}.

Proposition 1. In Definition 5, H ; K is a nf. Composition of nfs is associative
and has identities.

Proof. The proof proceeds as the corresponding proof in [11]. ut

Definition 6 (Category of named sets). The category NS has nss as objects
and nfs as morphisms.

The basic charecteristics of NS are collected in Proposition 2.

Proposition 2 (Structure of NS). The category NS has initial object, ter-
minal object, and finite powerset functor defined as follows:

1. the initial object given by ⊥ = 〈∅, ∅〉;
2. the terminal object is given by I = 〈{∗}, ∗ 7→ ∅〉;
3. the powerset functor on NS is obtained by lifting the covariant powerset

functor ℘fin() on Set, namely ℘fin(D) = 〈℘fin(DQ), g〉, where, given Q ⊆ QD,
g(Q) = {ρ | ρ is a permutation over

⋃
q∈Q |q|} ∧ Qρ = Q.

Definition 7 (Pairing of named sets). Given two nss D and E, the pairing
D ⊗ E of D and E is defined as D ⊗ E = 〈QD × QE , g〉 where

– g : QD×QE →
⋃

N,M∈℘fin(N) (sym(N) + sym(M)) such that g(d, e) = {ρ1 +

ρ2 | ρ1 ∈ gD(d) ∧ ρ2 ∈ gE(e)}.

Formally, D ⊗ E is not a ns because the range of gD⊗E is not the union of
symmetries over a finite set of names. However, observing that for any (d, e) ∈
QD × QE, g(d, e) is a symmetry on |d| + |e|, we can find a ns whose group
function maps (d, e) to a symmetry over as many names as in |d|+ |e| and whose
permutations correspond bijectively to the permutations in g(d, e). Notice that,
since nss are considered up-to isomorphism, it does not matter which set of
names is chosen for any pair (d, e).

Definition 8 (HD-automata). Fixed a ns of labels L, a HD-automaton over
L is a coalgebra for TL(D) = ℘fin(L ⊗ D).

We emphasise that nfs provide the formal mean to describe a generic step of
the iterative minimisation algorithm. Intuitively, nfs map states of the automaton
in equivalence classes containing those states considered equivalent.

Definition 9 (Kernel of named functions). The kernel of a nf H : E → F
(written as kerH) is the ns D such that:

1. QD = ker hH considered as permutation algebra where for all A ∈ QD and
ρ ∈ Aut(N), Aρ is the element-wise application of ρ to A;

2. the group of A ∈ ker hH is gF (hH(a)), for a ∈ A.

In [7, 10] the normalisation functor for the early semantics of π-calculus has
been introduces. In this context, the concept of redundancy relies on the concept
of active names because of the presence of freshly generated names. We generalise
this concept by means of redundant transitions. Generally, redundant transitions
are transitions describing behaviours that can be matched by other transitions
in the bisimulation game. Redundant transitions occur when HD-automata are
built out of a nominal calculus. During this phase, it is not possible to decide
which are the redundant transitions1. Therefore, all the transitions are taken
when HD-automata are built and redundant ones are removed during the min-
imisation. This is achieved by means of the most important operation of NS
namely normalisation which basically gets rid of reduntandant transitions.

Definition 10 (Normalisation functor). A normalisation functor N is any
functor such that N(D) is isomorphic to a subset of D.

The minimisation algorithm on a TL coalgebra (D, K : D → TL(D)) is
specified by the equations 1 and 2 below.

H(0)
def
= 〈q 7→ ⊥, q 7→ ∅〉, where dom(H(0)) = D (1)

H(i+1)
def
= K; N(T (H(i))), (2)

where N is a normalisation functor and T : NS → NS is the functor defined as

T (D) =

{
TL(D) D ∈ obj(NS)
〈h, Σ〉 D = 〈hD, ΣD〉 ∈ NS(E, F) for E, F ∈ obj(NS)

where, given B ∈ ℘fin(L ⊗ E),

h(B) = {〈l, hD(q)〉 | 〈l, q〉 ∈ B}
Σ(B) = {〈l, hD(q), σ; σ′〉 | 〈l, q, σ′〉 ∈ B ∧ 〈l, q′, σ′〉 ∈ ΣD(q)}.

All the states of automaton K are initially considered equivalent, indeed, kerH0

gives rise to a single equivalence class containing the whole dom(K). At the
generic (i + 1)-th iteration, as specified in (2), the image through H(i) of the
i-th iteration is composed with K as stated by the definition of functor T ,
then the normalisation functor removes the redundant transitions. The algorithm
builds the minimal realisation H̄ of (finite) HD-automata by constructing (an
approximation of) the final coalgebra morphism. The kernel of H̄ yields the
equivalence classes where equivalent states are grouped in the same class.

The proof of the convergence of the algorithm is based on the observation
that T is a monotonic functor over a finite chains. In order to establish this, we
must give a way of saying when two nfs are the same.

1 In general, to decide redundancy is as difficult as deciding bisimilarity.

Definition 11 (Equivalence of named functions). Two nfs H : D → E and
K : D′ → E′ are equivalent when kerH is isomorphic to kerK via the bijections
n and s (see Definition 3) and for all q ∈ D, gE(hH(q)); n = gE′(hK(s(q))).

Definition 12 (Order of named functions). Let H : D → E and K : D → F
be two nfs, H is less than of equal to K (written as H � K) if, and only if,

– Qker H is coarser than Qker K and ∀A ∈ Qker H .∀B ∈ Qker K . B ⊆ A ⇒
gker H(A) ⊆ gkerK(B).

– ∀A ∈ Qker H .∀B ∈ Qker K . ∀q ∈ A ∩ B.ΣH(q) ⊆ ΣK(q).

Proposition 3. Relation � is a pre-order and H � K ∧ K � H implies
H and K equivalent.

Proof. The first condition of Definition 12 and H � K ∧ K � H imply that
kerH is isomorphic to kerK. It remains to prove that the hypothesis implies the
last condition of Definition 11.

Assume that there is q ∈ dom(H) such that gcod(H)(hH(q)) 6= gcod(K)(hK(q)).
Then, for all σ ∈ ΣH(q),

gcod(H)(hH(q)); σ 6= gcod(K)(hK(q)); σ. (3)

By Definition 12, ΣH(q) = ΣK(q) since H � K ∧ K � H . Moreover, conditions
on nfs (Definition 4) imply that gcod(H)(hH(q)); σ = ΣhH

(q) and gcod(K)(hK(q)); σ =
ΣhK

(q) that contradicts (3). ut

Monotonicity is preserved by composition of named functions:

Lemma 1. Let H and K be two nfs such that H � K. For any ns J , if cod(J) =
dom(H) = dom(K) then J ; H � J ; K.

Finally, we can prove the convergence of the iterative algorithm:

Theorem 1 (Convergence). The iterative algorithm described by (1) and (2)
is convergent on finite state HD-automata whenever the normalisation functor
N is monotone on nfs.

Proof. By construction, ℘fin() is monotone, hence T is monotone because it is
the composition of two monotone functors, moreover, by monotony of T and
Lemma 1, maps M : H 7→ K; T (H) is monotone and finite. Finally, all nfs
chains having finite domain are finite, hence, the iterative algorithm defined
in (1) and (2) converges to the maximal fix-point of M. ut

The proofs of Theorem 1 mimics that in [10]. The only difference is that the
theorem in [10] is proved only for the case of the early semantics of π-calculus,
while here, the result is extended to the general case of finite HD-automata, with
the only additional assumption that the normalisation functor is monotone.

pref
−

α . P
α
−→ P

sum
P

γ
−→ P ′

P + Q
γ
−→ P ′

P
γ
−→ P ′

P | Q
γ
−→ P ′ | Q

par

com
P

ux̃
−→ P ′, Q

uỹ
−→ Q′, |x̃| = |ỹ|

P | Q
{x̃=ỹ}
−−−−→ P ′ | Q′

P
ϕ
−→ P ′, z ϕ x, z 6= x

(z)P
ϕ\z
−−→ P ′{x/z}

scope

pass
P

γ
−→ P ′, z 6∈ n(γ)

(z)P
γ
−→ (z)P ′

P
(ỹ)a x̃
−−−−→ P ′, z ∈ x̃ − ỹ, a 6∈ {z, z}

(z)P
(zỹ)a x̃
−−−−→ P ′

open

match
P

γ
−→ P ′

[x = x]P
γ
−→ P ′

P ≡ P ′ P
γ
−→ Q Q ≡ Q′

P ′ γ
−→ Q′

struct

Table 1. Transition rules for the Fusion calculus

3 Syntax and Semantics of the Fusion calculus

We briefly recollect the syntax and operational semantics of the Fusion calculus.
For lack of space, we refer the reader to [21] for further details. In Section 3.1
we present a new canonical symbolic semantics.

Definition 13 (Fusion calculus syntax). The free actions ranged over by α,
fusion action ranged over by ϕ, actions ranged over by γ, and the agents ranged
over by P, Q, . . ., are defined by
α ::= ux̃

∣∣ ux̃
γ ::= α

∣∣ ϕ
P ::= 0

∣∣ γ . Q
∣∣ Q + R

∣∣ Q | R
∣∣ (x)Q

∣∣ [x = y]Q
∣∣ A〈x̃〉,

where x, y, u, v . . . range over N and represent communication channels, which
are also the values transmitted. An input action ux̃ means “input objects along
the port u and replace x̃ with these objects”. Note that input does not entail
binding. The output action ux̃ means “output the objects x̃ along the port u”. A
fusion action {x̃ = ỹ} represents an obligation to make x̃ and ỹ equal everywhere,
limited by the scope of the names involved.

Definition 14 (Fusion calculus semantics). The labelled transition system
of Fusion calculus is the least relation satisfying the inference rules in Table 1.

Use of the scope rule entails a substitution of the scoped name z for a
nondeterministically chosen name x related to it by ϕ. For the purpose of the
equivalence defined below it will not matter which such x replaces z. The only
rule dealing with bound actions is open. Using structural congruence, pulling

the relevant scope to top level, we can still infer e.g. P | (x)ayx . Q
(x)ayx
−−−−→ P | Q

using pref and open (provided x 6∈ fn(P), otherwise an alpha-conversion is
necessary).

Definition 15 (Hyperbisimulation [21]). A fusion bisimulation is a binary
symmetric relation S between agents such that (P, Q) ∈ S implies:

If P
γ
−→ P ′ with bn(γ)∩fn(Q) = ∅, then Q

γ
−→ Q′ and (P ′σγ , Q′σγ) ∈ S. Agents

P and Q are fusion bisimilar, written P
.
∼ Q, if (P, Q) ∈ S for some fusion

bisimulation S. A hyperbisimulation is a substitution closed fusion bisimulation.

Theorem 2. [21] Hyperequivalence is the largest congruence in fusion bisimi-
larity.

3.1 Canonical Symbolic Semantics of Fusion calculus

Having briefely presented Fusion calculus syntax together with its concrete se-
mantics, we provide a new symbolic semantics of Fusion calculus which lend
itself to coalgebraic modeling through HD-automata. The canonical symbolic
semantics for the Fusion calculus is defined along the lines of symbolic semantics
for the π-calculus [25, 23]. Symbolic semantics are often used to give efficient
characterizations of bisimulation equivalences for value-passing calculi.

In Table 2 we present the symbolic transition system where structurally
equivalent agents are considered the same. Like in [25] a symbolic transition

is of the form P
M,γ
7−−→ Q, where M is the enabling condition of the action γ

in the sense that M represents the equalities a minimal substitution σM must
make true in order for PσM to perform the corresponding action in the original
labelled transition system. σM is the substitutive effect of M : an idempotent
substitution s.t. σM (x) = σM (y) iff M ⇒ x = y. We generalise substitutive
effects to actions, where σα is the identity substitution.

In Table 2 we write MN for denoting the concatenation of M and N . Fol-
lowing Pistore and Sangiorgi’s work [23], our transition rules apply substitutions
to the continuation of a transition: like [23], a substitution σM , making the con-
dition for the transition true, and in addition a substitution σγ , the substitutive
effect of the action, is applied to the right-hand side of the transition. The moti-
vation for this is to make the definition of bisimulation simpler and more in line
with the algorithms used in the HD framework (see Section 4). We show later
in this section that bisimulation using the symbolic semantics coincides with the
original non-symbolic version.

Using canonical substitutions gives us pleasant properties like the following:

Lemma 2. If P
M,γ
7−−→ P ′, then γ = γσM and P ′ = P ′σM = P ′σγ = P ′σMσγ .

The definition of symbolic hyperbisimulation is similar to that of symbolic
open bisimulation [25, 23], but does not have the complication of distinctions.

Definition 16 (Symbolic hyperbisimulation). A binary symmetric process
relation S is a symbolic hyperbisimulation if (P, Q) ∈ S implies:

If P
M,γ
7−−→ P ′ with bn(γ) ∩ fn(Q) = ∅ then Q

N,γ′

7−−−→ Q′ such that
M ⇒ N , γ = γ′σM , (note γ = γσM)
and (P ′, Q′σM) ∈ S (note P ′ = P ′σM).

P is symbolically hyperequivalent to Q, written P ' Q, if (P, Q) ∈ S for some
symbolic hyperbisimulation S.

pref
−

α . P
∅,α
7−−→ Pσα

sum
P

M,γ
7−−→ P ′

P + Q
M,γ
7−−→ P ′

P
M,γ
7−−→ P ′

P | Q
M,γ
7−−→ P ′ | QσMσγ

par

scope
P

M,ϕ
7−−→ P ′, z ϕ x, z 6= x, z 6∈ n(M)

(z)P
M,ϕ\z
7−−−−→ P ′{x/z}

P
M,γ
7−−→ P ′ M ′ = M [x = y]

[x = y]P
M′,γσ[x=y]7−−−−−−−→ P ′σM′

match

pass
P

M,γ
7−−→ P ′, z 6∈ n(M, γ)

(z)P
M,γ
7−−→ (z)P ′

P
M,(ỹ)a x̃
7−−−−−→ P ′, z ∈ x̃ − ỹ, a 6∈ {z, z}, z 6∈ n(M)

(z)P
M,(zỹ)a x̃
7−−−−−−→ P ′

open

com
P

M,ux̃
7−−−→ P ′, Q

N,vỹ
7−−−→ Q′, |x̃| = |ỹ|, L = MN [u = v], ϕ = {x̃ = ỹ}σL

P | Q
L,ϕ
7−−→ (P ′ | Q′)σLσϕ

Table 2. Canonical symbolic transition system for the Fusion calculus

Since the symbolic semantics applies the substitutive effects, we can leave
most of that out of the bisimulation definition. It is still necessary to apply
substitution corresponding to the stronger condition, σM , to the label and con-
tinuation of the transition of Q. (Note that Q′σM = Q′σMσγ .)

Theorem 3. P ∼ Q iff P ' Q

Proof. See appendix.

4 From Fusion calculus to HD-automata

This section describes how agents of Fusion calculus can be mapped onto HD-
automata and what normalisation means for the HD-automata for Fusion calcu-
lus. We first introduce labels and transitions and then define the normalisation
functor for Fusion calculus. We note the monotonicity of the this functor guar-
anty the convergence of the minimisation algorithm on finite HD-automata that
correspond to Fusion calculus agents. We conclude the section with an informal
discussion on the correspondence between hyperequivalence and minimisation.
In order to keep the coalgebraic presentation as simple as possible, we limit to a
monadic version of Fusion calculus where tuples in communication actions carry
a single name.

Though not increasing the expressiveness of the calculus, polyadicity would
obscure the main picture of the coalgebraic presentation with cumbersome tech-
nical details. (A mapping of the polyadic Fusion calculus to HD-automata is
given in [26].)

The labels of the canonical symbolic semantics of Fusion calculus are consists
of enabling conditions and actions; both of them can be represented as nss.

Let M be the ns 〈{•}, g〉 where g = {idx,y, exchx,y}, namely, g contains the
identity and the exchanging permutation on the two names in M i.e, |•| = {x, y}.

Definition 17 (Matching named-set). A matching named-set is a ns of the
form M = M ⊗ . . .⊗︸ ︷︷ ︸

n≥0

M , also written as Mn (recall, that pairing treats names

in a component as distinguished from those in other components; Mi is the i-th
component of M).

Given a name substitution σ ∈ N ?
N , the interpretation of M in σ is [[M]]σ

and is defined as

σ(x1) = σ(y1) ∧ · · · ∧ σ(xn) = σ(yn),

where, for any i = 1, . . . , n, {xi, yi} are the names in Mi.

As notation, M0 is the ns 〈{•}, • 7→ ∅〉 namely, the singleton ns where |•| = ∅.
Basically, enabling conditions are represented by tupling matching nss each rep-
resenting a fusion of two names. The interpretation of M under σ is the statement
constraining the names xi and yi of any component Mi to be identified once they
are interpreted through σ. Notice that the interpretation of M0 under any sub-
stitution always hold and, indeed, it represent the trivial condition [x = x]. (Any
substitution σ such that [[M]]σ holds true is said to be compatible with M.)

Definition 18 (Labels for Fusion calculus). Let M be a matching ns and Lab
be the set {tau, in, out, fuse}. The nss of labels for Fusion calculus are the nss
M⊗ 〈Lab, g〉 where g : Lab → N ? is such that

||tau|| = 0
||fuse|| = 2 ∧ g(fuse) has the identity and the exchanging permutations
||in||, ||out|| ≤ 2 ∧ g(in), g(out) has only the identity permutation.

M is called the enabling part and g is called the action part of labels for Fusion
calculus.

Hereafter, L stands for the ns of labels for Fusion calculus and K : D → TL(D) is
an HD-automaton. (Roughly, L represents labels of transitions of the canonical
symbolic semantics of Fusion calculus.)

Let P be a Fusion calculus agent, K[P] denotes the coalgebraic specifica-
tion of the HD-automaton associated to P , namely a TL-coalgebra such that
dom(K[P]) = D[P] and cod(K[P]) = TNS(D[P]).

Let QD[P] denote the set of Fusion calculus processes reacheable from P ,
namely

QD[P]
def
= {P} ∪

⋃

P
M,γ
7−−→P ′

{P ′} ∪ QD[P ′].

It is trivial to equip QD[P] with a named-set structure, indeed for any q ∈
QD[P], the group component gD[P](q) is the identity on fn(q).

Function hK[P] associates, to each state, its outgoing transitions and is de-
fined as

hK[P](q) = {〈l, q′, σ〉 | q
M,γ
7−−→ q′ ∧ l corresponds to M, γ}

where, for any 〈l, q′, σ〉 ∈ hK[P](q) σ maps the names in fn(q′) that correspond
to those in fn(q) and names generated in the transition to ? (and similarly for
the names of l). Recall, indeed, that the names in q′ and l are local, hence, even
though they are syntactically equal in the Fusion calculus transition system,
they must be considered different in HD-automata states.

The HD-automaton obtained by this definition is a TL-coalgebra by con-
struction. Observe that infinite HD-automatacan be obtained using the con-
struction above, however, there are interesting classes of Fusion calculus agents
that generate finite HD-automata: this is the case of finitary agents. The degree
of parallelism deg(P) of a Fusion calculus agent P is defined as follows:

deg(0) = 0 deg(α . P) = 1
deg((x)P) = deg(P) deg(P | Q) = deg(P) + deg(Q)

deg([x = y]P) = deg(P) deg(P + Q) = max(deg(P), deg(Q))

deg(A〈y1, . . . , yn〉) = deg(P [y1,...,yn/x1,...,xn
]), if A(x1, . . . , xn)

def
=P

Agent P is finitary if max{deg(P ′)
∣∣ P

M1,γ17−−−−→ · · ·
Mi,γi7−−−→ P ′} < ∞. In [19, 22]

the following result has been proved:

Theorem 4 (Theorem 47 of [19]). Let P be a finitary agent. Then the HD-
automaton K[P] is finite.

Let us now define the normalisation functor for Fusion calculus.

Definition 19 (Redundancy of labels). Let 〈l, q, σ〉 and 〈l′, q, σ′〉 be two hdt
of K. Assuming that the matching ns of l (resp. l′) is M (resp. M′), l is redundant
wrt l′ iff l and l′ have the same action part and [[M]]σ logically implies [[M ′]]σ′

but not vice versa.

Definition 20 (Redundant transitions). Let q ∈ QD be a state of K, an
hdt 〈l1, q1, σ1〉 is redundant (abbreviated as rhdt) for q if there is 〈l2, q1, σ2〉 in
ΣK(q) such that l1 is redundant wrt l2 and, for a substitution σ accomplishing
with the interpretation of the enabling part of l1, σ2; σ = σ1.

The intuition is that t = 〈l1, q1, σ1〉 is dominated by another transition t′ =
〈l2, q1, σ2〉 reaching the same target state as t and with the same label but having

– enabling conditions weaker than those of t and,
– under the conditions of t, the names associated to the label of t′ are the same

as those of t.

Definition 21 (Normalisation functor for Fusion calculus). The normal-
isation functor for Fusion calculus denoted by N : NS → NS, is defined as
follows:

N(D) =

{
〈h, Σ〉 D = 〈hD, ΣD〉 ∈ NS(℘fin(L ⊗ E), ℘fin(L ⊗ F)) for E, F ∈ obj(NS)
D otherwise.

where, for B ∈ ℘fin(L ⊗ E),

h(B) = {〈l, q〉 | 6 ∃〈l, q, σ〉 rhdt in Σ(B)}
Σ(B) = {〈l, q, σ〉 ∈ B | 〈l, q, σ〉 not rhdt in }

Basically, N filters those transitions out of a given state q that are redundant
because of the presence of another transition having weaker conditions on names.

Proposition 4. The functor N is monotonic on nfs.

Theorem 5. The minimisation algorithm described in Section 2 converges on
finite HD-automaton for Fusion calculus.

Proof. By the monotonicity of T and N and Theorem 1.

Let us remark that normalisation trough NH is based on Definition 16 of symbolic
hyperbisimulation. Indeed, redundancy conditions for Fusion calculus simply are
the conditions in Definition 16 relating the enabling part and the action part of
bisimilar transitions. Hence, a tight relationship can be established between Fu-
sion calculus hyperbisimulation and the outcome of the minimisation algorithm.

Theorem 6 (Minimisation and hyperbisimulation). Two Fusion calculus
processes are hyperbisimilar iff they have the same minimal realisation

Proof. (Sketch.) On the one hand, given two bisimilar Fusion calculus agents P
and Q, if corresponding HD-automata K[P] and K[Q] are finite, their minimal
realisations, say K̄[P] and K̄[Q], achieved by the minimisation algorithm are
equivalent. Namely, ker K̄[P] = ker K̄[Q] which implies that their corresponding
classes have the same symmetries. On the other hand, if K[P] and K[Q] are
finite and they both have the same minimal realisation, say K̄, then P and Q
are bisimilar. Basically, this is due to the fact that, the transitions out of a state
in K[P] (resp. K[Q]) have a corresponding transition in the behaviour of P (resp.
Q). By construction of K̄ all the possible transitions of P have a matching non
rhdt in H̄, hence can be matched by Q as well and vice versa. ut

5 Conclusions

Related work. This work is related to the work of Ferrari et al [8–10], and Cat-
tani and Sewell [5] where they both follow syntax-independent model approach
to the operational semantics of process calculi. The former goes further to in-
troduce a minimization procedure of transition systems for nominal calculi in a
coalgebraic setting but only treated an early semantics of π-calculus. Another
related work worth noting is the work of Fiore and Staton [12], and Fabio et
al [13] where they provide a formal comparison of several operational semantics
of nominal calculi.

In this paper we take the work of Ferrari et al [8–10] approach further to
give the same functionality for the Fusion calculus. Hyperbisimulation in Fu-
sion calculus is more sophisticated than early and late bisimulation of π-calculus

which was studied in the above mentioned work because of the closure under all
substitution required by hyperbisimulation. We solve these technical challenges
by providing a new symbolic semantics of Fusion calculus and conservatively
extending HD-automata. The presentation of the minimisation algorithm given
in Section 2 differs from those [7, 10] because we neatly distinguish between two
phases. The first phase “immerges” the initial HD-automaton to the current it-
eration of the algorithm, while the second phase applies a suitable normalisation
functor for removing redundant transitions.

In the future we wish to take this research further and to deal with open
semantics of π-calculus. Open semantics of π-calculus is complicated because
extruded names need to be recorded and kept distinct from all other names
under renaming. On the theoretical side, it would be interesting to study how
this work is related to a presheaf model of open semantics of π-calculus as in [14]
and other approaches as in [12, 13].

References

1. M. Abadi and A. Gordon. A Calculus for Cryptographic Protocols: The Spi Cal-
culus. Information and Computation, 148(1):1–70, January 1999.

2. N. Benton, L. Cardelli, and C. Fournet. Modern Concurrency Abstractions for
C#. ACM Transactions on Programming Languages and Systems, 26(5):269–304,
Sept. 2004.

3. M. Boreale and R. De Nicola. A Symbolic Semantics for the π-calculus. Information

and Computation, 126(1):34–52, April 1996.

4. R. Bruni, H. Melgratti, and U. Montanari. Theoretical Foundations for Compen-
sations in Flow Composition Languages. In Annual Symposium on Principles of

Programming Languages POPL, 2005. To appear.

5. G. L. Cattani and P. Sewell. Models for name-passing processes: Interleaving and
causal (extended abstract). In Proceedings of the Fifteenth Annual IEEE Sympo-

sium on Logic in Computer Science, LICS 2000, pages 322–333. IEEE Computer
Society Press, 2000.

6. S. Conchon and F. Le Fessant. Jocaml: Mobile Agents for Objective-Caml. In
International Symposium on Agent Systems and Applications, pages 22–29, Palm
Springs, California, Oct. 1999.

7. G. Ferrari, U. Montanari, and M. Pistore. Minimizing Transition Systems for
Name Passing Calculi: A Co-algebraic Formulation. In M. Nielsen and U. Engberg,
editors, Foundations of Software Science and Computation Structures, volume 2303
of Lecture Notes in Computer Science, pages 129–143. Springer-Verlag, 2002.

8. G. Ferrari, U. Montanari, and M. Pistore. Minimizing transition systems for name
passing calculi: A co-algebraic formulation. In M. Nielsen and U. H. Engberg, edi-
tors, Proceedings of FoSSaCS 2002, volume 2303 of LNCS, pages 129–143. Springer,
Apr. 2002.

9. G. Ferrari, U. Montanari, and E. Tuosto. From Co-algebraic Specifications to Im-
plementation: The Mihda toolkit. In F. de Boer, M. Bonsangue, S. Graf, and W. de
Roever, editors, Symposium on Formal Methods for Components and Objects, vol-
ume 2852 of Lecture Notes in Computer Science, pages 319 – 338. Springer-Verlag,
November 2002.

10. G. Ferrari, U. Montanari, and E. Tuosto. Coalgebraic Minimisation of HD-
automata for the π-Calculus in a Polymorphic λ-Calculus. Theoretical Computer

Science, 2004. To appear.
11. G. Ferrari, U. Montanari, and E. Tuosto. Modular Verification of Systems via

Service Coordination. In Monterey Workshop 2004, October 2004. To appear on
the workshop post-proceedings.

12. M. Fiore and S. Staton. Comparing operational models of name-passing process
calculi. In J. Adamek, editor, Proc. CMCS’04, ENTCS. Elsevier, 2004.

13. F. Gadducci, M. Miculan, and U. Montanari. About permutation algebras and
sheaves (and named sets, too!). Technical Report UDMI/26/2003/RR, Department
of Mathematics and Computer Science, University of Udine, 2003.

14. N. Ghani, B. Victor, and K. Yemane. Relationally staged computation in the π-
calculus. In Procedings of CMCS 2004, number 106, 11 in ENTCS, pages 105–120,
2004.

15. M. Hennessy and H. Lin. Symbolic Bisimulations. Theoretical Computer Science,
138(2):353–389, February 1995.

16. C. Laneve and G. Zavattaro. Foundations of Web Transactions. In Foundations of

Software Science and Computation Structures, Lecture Notes in Computer Science,
2005. To appear.

17. H. Lin. Complete Inference Systems for Weak Bisimulation Equivalences in the
π-Calculus. Information and Computation, 180(1):1–29, January 2003.

18. U. Montanari and M. Pistore. History Dependent Automata. Technical report,
Computer Science Department, Università di Pisa, 1998. TR-11-98.

19. U. Montanari and M. Pistore. π-Calculus, Structured Coalgebras, and Minimal
HD-Automata. In M. Nielsen and B. Roman, editors, Mathematical Foundations of

Computer Science, volume 1983 of Lecture Notes in Computer Science. Springer-
Verlag, 2000. An extended version will be published on Theoretical Computer
Science.

20. F. Orava and J. Parrow. An algebraic verification of a mobile network. Formal

Aspects of Computing, 4(5):497–543, 1992.
21. J. Parrow and B. Victor. The fusion calculus: Expressiveness and symmetry in

mobile processes. In Proceedings of LICS ’98, pages 176–185. IEEE, Computer
Society Press, July 1998.

22. M. Pistore. History Dependent Automata. PhD thesis, Computer Science Depart-
ment, Università di Pisa, 1999.

23. M. Pistore and D. Sangiorgi. A Partition Refinement Algorithm for the π-Calculus.
Information and Computation, 164(2):467–509, 2001.

24. U. Roxburgh. Biztalk orchestration: Transactions, exceptions, and debugging,
2001. Microsoft Corporation. Available at http://msdn.microsoft.com/library/en-
us/dnbiz/html/bizorchestr.asp.

25. D. Sangiorgi. A Theory of Bisimulation for the π-Calculus. Acta Informatica,
33(1):69–97, 1996.

26. E. Tuosto, B. Victor, and K. Yemane. Polyadic History-Dependent Au-
tomata for the Fusion Calculus. Technical Report 2003-62, Department
of Information Technology, Uppsala, Sweden, December 2003. Available at
http://www.it.uu.se/research/reports/.

27. B. Victor and F. Moller. The Mobility Workbench — A Tool for the π-Calculus.
In D. Dill, editor, Computer Aided Verification, volume 818 of Lecture Notes in

Computer Science, pages 428–440. Springer-Verlag, 1994.

A Proof sketches for Section 3

Lemma 3. For any Fusion calculus agent P , if P
γ
−→ P ′, then Pσ

γσ
−−→ P ′σ,

for any substitution σ.

In the remainder of this section we establish the correspondence between
symbolic hyperequivalence (Definition 16) and the standard hyperequivalence
(Definition 15) by proving Theorem 3: P ∼ Q iff P ' Q.

Lemma 4.

1. σσRσ = σRρ, for any substitution σ and some ρ, where R is an equivalence
relation.

2. If M ⇒ N then for any substitution σ, Mσ = Nσρ, for some substitution
ρ.

3. σRσSσR
= σSσR, where R and S are equivalence relations.

Lemma 5.

1. If P
M,γ
7−−→ P ′, then Pσ

Mσ,γσ
7−−−−→ P ′σσMσσγσ.

2. if Pσ
N,γ′

7−−−→ P ′, then P
M,γ
7−−→ P ′′ with Mσ ⇔ N , γσ = γ′, and P ′ =

P ′′σσNσγ′ .

Proof. By transition induction, using Lemma 4. ut

Lemma 6. P ' Q implies Pσ ' Qσ, for any substitution σ.

Proof. Straightforward diagram chasing, using Lemmas 4 and 5. ut

Lemma 7.

1. If P
M,γ
7−−→ P ′, then PσM

γ
−→ P ′′ s.t. P ′ = P ′′σγ ;

2. if M ⇒ N and PσM
γ
−→ P ′, then P

N,γ′

7−−−→ P ′′ such that γ = γ′σM and P ′σγ

= P ′′σM .

Proof. Again by transition induction, using Lemmas 4 and 3. ut

Proof of Theorem 3:

⇒: by showing S = {(P, Q) : P ∼ Q} is a symbolic hyperbisimulation, using
Lemmas 7 and 4. ut

⇐: We already have closure under substitution (Lemma 6), and show that S =
{(P, Q) : P ' Q} is a fusion bisimulation using Lemmas 7 and 4. ut

