
On Nominal Regular Languages with Binders?

Extended version

Alexander Kurz, Tomoyuki Suzuki??, and Emilio Tuosto

Department of Computer Science, University of Leicester, UK

Abstract. We investigate regular languages on infinite alphabets where words
may contain binders on names. To this end, classical regular expressions and
automata are extended with binders. We prove the equivalence between finite
automata on binders and regular expressions with binders and investigate closure
properties and complementation of regular languages with binders.

1 Introduction

Automata over infinite alphabets have been receiving an increasing amount of attention,
see e.g. [17, 23, 5, 27]. In these approaches, the countably infinite alphabet N can be
considered as a set of ‘names’, which can be tested only for equality.

Typically, in this context languages of interest such as

L = {n1 . . .nk ∈N ∗ ∣∣ ∃ j > i .ni = n j}
from [17] are invariant under name-permutations: If e.g. nmn is in the language, then so
is n′mn′= (nn′) ·nmn, where (n n′) ·nmn stands for the application of the transposition
(n n′) to the word nmn. This suggests to think of names as being bound and languages
to be closed under α-equivalence.

On the other hand, we may fix a name n0 and consider the language

Ln0 = {n0n1 . . .nk ∈N ∗ ∣∣ ∃ j > i > 0 .ni = n j}
so that we can think of n0 as a free name and of n1, . . . ,nk as bound names. This suggests
to study not only words over names, but also words which contain binders and allow us
to make explicit the distinction between bound and free names. For example, we might
then model Ln0 by a regular expression

n0〈n.〈m.m〉∗ n〈k.k〉∗ n〉 (1)

where 〈n.e〉 binds n in e and, in the reading above, 〈n.n〉∗ is interpreted as N ∗.
In this paper, we consider languages with explicit binders on names in words and

study regular expressions such as (1) together with the associated notion of finite au-
tomata. We prove a Kleene style theorem relating finite automata and regular expres-
sions (cf. § 4) and show that regular languages are closed under intersection, union, and
resource-sensitive complement (defined in § 5).
? This work has been partially supported by the Aut. Region of Sardinia under grant L.R.7/2007

CRP2-120 (Project TESLA).
?? The author’s PhD research was supported by the Yoshida Scholarship Foundation.

2 A. Kurz, T. Suzuki and E. Tuosto

Regular expressions for words with binders could be used for the design and anal-
ysis of programming languages (as in [24] or [22]). For instance, to check that a ‘vari-
able’ (i.e. name) is declared before it is used, consider the finite set of ‘letters’ S =
{DECL,USE} and the nominal regular expression on the alphabet N ∪S

e1 〈n.DECL n e2 USE n e3〉∗

where with n ∈N and e being some other regular expression not involving n.
Another motivation for words with binders comes from verification and testing. To

this aim, in § 2 we consider a scenario based on transactional computations to show how
regular languages with binders can suitably represent computations that classical regu-
lar languages can only approximate. More precisely, we give examples throughout the
paper that illustrate how the naming policies used to implement transactional behaviours
can be captured in terms of regular languages with binders. Then our Kleene theo-
rem yields in this context an automata that recognises the language and our resource-
sensitive complement operation can be used to obtain a transactional monitor, namely
an automaton that recognises anomalous transactional behaviours.
Related Work Automata on words with binders already appear in [25] in the study of
the λ-calculus. In this paper we begin the systematic study of words with binders from
the point of view of the classical theory of formal languages and automata. This builds
on the recent convergence of three lines of research: languages over infinite alphabets,
HD-automata, and nominal sets, as we will explain now in more detail. As emphasised
above, the languages over infinite alphabets typically considered are equivariant, that
is, they are invariant under permutations. On the other hand, history-dependent (HD)
automata [20, 19] have been developed in order to check π-calculus expressions for
bisimilarity. This research highlighted that minimization requires to keep track of per-
mutations of local names. It is also known that HD-automata are automata internal (in
the sense of [3]) in the category of named sets [7, 8]. Independently of the work on HD-
automata, nominal sets [14] were introduced as a framework of doing mathematics in a
set theory where every set comes equipped with a permutation action. In particular, in
nominal sets, binders arise naturally as name abstractions. Later it was shown that the
categories of nominal sets and named sets are equivalent [12, 15].

Recently, these three developments have been coming together, see [9, 27, 5, 13] and
in particular [6]. In these works, the idea of automata and language theory internal in
nominal sets takes shape, but, although binders are the raison d’être of nominal sets
they are, so far, not present in the words themselves.
Structure of the paper. In § 2 we describe a transactional scenario used throughout the
paper. In § 3 we define regular languages with binders, nominal regular expressions, and
automata on binders. § 4 and 5 contain the main technical contributions of the paper.
Warning. The results of this paper are published in [4]; here proofs are included.

2 Representing Transactions

Our running example is centred around the notion of nested transactions which are
paramount in information systems [28] because they feature data consistency in the

On Nominal Regular Languages with Binders 3

presence of concurrent or distributed accesses. A transaction is a logically atomic com-
putation made of several steps. A transaction either commits when all its steps are
successful or rolls partial computations back when failures occur before completion.
Nested transactions are transactions that may possibly contain inner transactions so that
the failure of an inner transaction is confined and does not affect outer transactions. For
instance, let A, B, and C be basic activities subject to failure in the nested transaction

beginTX A ; beginTX B endTX ; C endTX (2)

where C is executed even if B fails and the outer transaction is successful if A and C do
not fail; on the contrary, a failure of C would require that also B is rolled-back.

Inner transactions can abort outer ones. This is typically implemented by using
transaction identities that allow inner transactions to invoke abort operations on outer
transactions. Using identities transaction (2), becomes

beginTX2 A ; beginTX1 B endTX1 ; C endTX2 (3)

and B can execute an abort operation (say abt2) that makes transaction (3) fail.
We will consider i-bound nested transactions, namely transactions that can be nested

only up to a fixed level i. To characterise correct executions of bound nested transac-
tions, one could think of using regular expressions. For instance, take the alphabet

T = {s1, . . . ,sh} ∪ {X,×} ∪ {[j,]j,cmtj,abtj}1≤ j≤i

where symbols si represent basic activities and the others denote success (X), failure
(×), and — for each possible nesting level — begin ([j), end (]j), and the intention
to commit (cmtj) or abort (abtj). Consider the following regular expressions (4), (5),
and (6) on T where, for simplicity, we examine 2-bound transactions:

e0 =
(h

∑
i=1

si

)∗
(4)

e1 =
(

e0 + [1 e0 cmt
1]1 X + [1 e0 abt

1]1 ×
)∗

(5)

e2 =
(

e0 + [2 e1 cmt
2]2 X + [2 e1 abt

2]2 × + [2 e1 [
1 e0 abt

2]1]2 ×
)∗

(6)

The language corresponding to e2 characterises the correct executions of computations
with transactions nested up to level two. Therefore, the automaton recognising the com-
plement of the language of e2 can be used as monitor of such transactions.

Although the expressions (4), (5), and (6) correctly capture the structure of correct
executions of our transactions (balanced parenthesis up to level 2), a main drawback is
that they do not suitably represent identities of transactions. For example,

beginTX1 s1 endTX1 . . . beginTXk s1 endTXk (7)

where k is unbound and all the identifiers beginTXi are pairwise distinct (and similarly
for endTXi), represents the sequential execution of k (non-nested) transactions. Trans-
lated in our alphabet T , computation (7) becomes the word [1 s1]

1X . . . [1 s1]
1X, where

4 A. Kurz, T. Suzuki and E. Tuosto

the identities of the transactions vanish. Note that the alternative [1 s1]
1X . . . [k s1]

kX
requires an infinite alphabet because k is unbound.

We define nominal regular languages below and give a nominal regular expression
that captures computations like (7) (cf. Example 1). We provide a class of automata
with binders able to accept such language (cf. Example 2).

3 Languages, automata and regular expressions, with binders

In this section, we introduce languages, automata and regular expressions to present
examples as above in a uniform and formal way.
Languages. The main idea is to handle local names by explicitly denoting the binding
scopes to express locality. A binding scope takes the form 〈〈n.· · ·〉〉 and represents the fact
that the name n is bound between the scope delimiters 〈〈 and 〉〉. For instance, the word
〈〈n.n m n〉〉 has the occurrences of n bound while m is not affected by the binder (it occurs
free in the word). Consequently, we consider words up to α-renaming for bound names,
e.g. 〈〈n.n m n〉〉 is identified with 〈〈n′.n′ m n′〉〉 for any n′ 6= m.

Now, let N be a countably infinite set (of ‘names’) and S a finite set (of ‘letters’).
We define words w according to

w ::= ε | n | s | w◦w | 〈〈n.w〉〉

where n ranges over N and s over S . We do not consider equalities on words other than
α-renaming and, as in the classical case, the monoidal laws of composition. Namely,
every word is taken up to α-renaming and the concatenation operation ◦ is associative
and has the empty word ε as the neutral element. We often write w v for w◦v. We call a
set of words (closed under α-renaming) a nominal language, or simply a language.

The occurrence in a word w of n ∈N is bound (resp. free) if it is (resp. not) in the
scope of a binder 〈〈n. 〉〉.
Regular expressions. We define regular expressions with binders, or nominal regular
expressions via the grammar

ne ::= 1 | 0 | n | s | ne◦ne | ne+ne | 〈n.ne〉 | ne∗

An occurrence of a name n in a nominal regular expression ne, is bound if it is in the
scope of a binder 〈n. 〉, otherwise it is free; accordingly, we say that n is a bound (resp.
free) name of ne if there are bound (resp. free) occurrences of n in ne and we let FN(ne)
be the set of free names in ne (since ne is a finite expression, FN(ne) is finite).

Example 1. We describe the nominal regular expression addressing the problem from
§ 2(7). Let Stx = {X,×,cmt,abt}∪{s1, . . . ,sh} and n1,n2 ∈N be distinct. Define

ne1 =
(

e0 + 〈n1. e0 cmt n1〉X+ 〈n1. e0 abt n1〉 ×
)∗

(8)

ne2 =
(

e0 + 〈n2. ne1 cmt n2〉X+ 〈n2. ne1 abt n2〉 × + (9)

〈n2. ne1 〈n1. e0 abt n2〉〉 ×
)∗

On Nominal Regular Languages with Binders 5

where e0 is defined in (4). The above equations are rather similar to (5), and (6); how-
ever, in (8) and (9), the binders delimit the scope of n1 and n2 and correspond to the
beginning and ending of transactions.

In Example 1, identities of transactions are modelled as bound names. Computations
of the form (7) are captured by ne1 that simply requires to re-bind n1 to beginTXi+1
after it has been bound to beginTXi. This is made more precise by considering the
interpretation of nominal regular expressions below.

The nominal language L(ne) of a nominal regular expression ne, is defined as

L(1) def
= {ε} L(0) def

= /0 L(n) def
= {n} L(s) def

= {s}

L(ne1 +ne2)
def
= L(ne1)∪L(ne2) L(〈n.ne〉) def

= {〈〈n.w〉〉
∣∣ w ∈ L(ne)}

L(ne1 ◦ne2)
def
= L(ne1)◦L(ne2) = {w◦ v

∣∣ w ∈ L(ne1),v ∈ L(ne2)}

L(ne∗) def
=

⋃
j∈N

L(ne) j, where L(ne) j def
=

{
{ε} j = 0
L(ne)◦L(ne) j−1 j 6= 0

A language of the form L(ne) is called a nominal regular language.

Automata. To describe a mechanism to handle local names and binders, we let N
denote the set of natural numbers and define i = {1, . . . , i} for each i ∈ N. We consider
sets (of states) Q paired with a map ‖ ‖ : Q→ N and define the local registers of q ∈ Q
to be ‖q‖. Definition 2 below explains how registers store names via maps σ : ‖q‖→N .

Definition 1. Let N fin ⊆ N be a finite set of names. An automaton on binders over S
and N fin — an (S ,N fin)-automaton for short — is a tuple H = 〈Q,q0,F, tr〉 such that

– Q is a finite set (of states) equipped with a map ‖ ‖ : Q→ N
– q0 ∈ Q is the initial state and ‖q0‖= 0
– F ⊆ Q is the set of final states and ‖q‖= 0 for each q ∈ F

– for each q∈Q and α∈ I N fin(q)∪{ε}— where I N fin(q) def
= S ∪ {〈〈, 〉〉} ∪ ‖q‖ ∪ N fin

is the set of possible inputs on q — we have a set tr(q,α)⊆Q of ‘successor states’;
for all q′ ∈ tr(q,α) the following must hold:

α = 〈〈 =⇒ ‖q′‖= ‖q‖+1
α = 〉〉 =⇒ ‖q′‖= ‖q‖−1

α ∈ I N fin(q)\{〈〈, 〉〉} or α = ε =⇒ ‖q′‖= ‖q‖

An α-transition is a triple (q,α,q′) such that q′ ∈ tr(q,α).

H is deterministic if, for each q ∈ Q,{
|tr(q,α)|= 0, if (α = 〈〈 and ‖q‖= max{‖q′‖ | q′ ∈ Q}) or (α = 〉〉 and ‖q‖= 0)
|tr(q,α)|= 1, otherwise.

6 A. Kurz, T. Suzuki and E. Tuosto

The condition ‖q‖= 0 for each q ∈ F ∪{q0} in Definition 1 can be removed at the
cost of making the presentation technically more complex.

As in the classical case, we say that a (S ,N fin)-automaton is accessible when all its
states are reachable from the initial state. We tacitly assume that all (S ,N fin)-automata
in the current paper are accessible.

Fact 1 For any (S ,N fin)-automaton H = 〈Q,q0,F, tr〉 and q ∈Q we have that ‖q‖= 0
implies tr(q, 〉〉) = /0 and that ‖q‖= maxq′∈Q ‖q′‖ implies tr(q, 〈〈) = /0.

The notion of determinism in Definition 1 is slightly different from the classical one
because it must consider the constraints between the registers of source and target states
of transitions. We shall come back to this in § 5.

Example 2 below exhibits an (S ,N fin)-automaton for the nominal regular expres-
sion ne1 in Example 1. Instead of the formal definition, we introduce a more appealing
graphical notation, anticipating the notion of layer defined in § 4.

Example 2. Let Stx as defined in Example 1. The (Stx, /0)-automaton corresponding to
ne1 can be depicted as

S

X

⇥

1

1

cmt

abt

ii

ii

hh

0th layer

1st layer

S

which has a unique initial and final state (the circled one on the 0th layer).

In the figure of Example 2, dashed transitions denote 〈〈- and 〉〉-transitions. The 〈〈-transition
goes from a state on the 0th layer to a state on the 1st layer, whereas the two 〉〉-transitions
go in the opposite direction. Also note that within each layer the picture shows essen-
tially a classical automaton. This is typical for (S ,N fin)-automata, see § 4.

Let us fix an (S ,N fin)-automaton

H def
= 〈Q,q0,F, tr〉. (10)

and define how H processes words with free names in N fin. Hereafter, we denote the
image of a map σ by Im(σ) and the empty map by /0.

A configuration of H is a tuple 〈q,w,σ〉 consisting of a state q, a word w whose free
names are in N fin ∪ Im(σ), and a map σ : ‖q‖ → N . We call a configuration 〈q,w,σ〉
initial if q = q0, w is a word whose free names are in N fin, and σ = /0; we call 〈q,w,σ〉
accepting if q ∈ F , w = ε, and σ = /0.

On Nominal Regular Languages with Binders 7

Definition 2. Given q,q′ ∈ Q and two configurations t = 〈q,w,σ〉 and t ′ = 〈q′,w′,σ′〉,
H as in (10) moves from t to t ′ (written t H→ t ′) if there is α ∈N ∪N∪S ∪{〈〈, 〉〉,ε} such
that q′ ∈ tr(q,α) and

α ∈ ‖q‖, w = σ(α) w′, σ′ = σ and ∀i > α.σ(α) 6= σ(i)
α ∈N fin \ Im(σ), w = α w′, and σ′ = σ

α ∈ S , w = α w′, and σ′ = σ

α = ε, w = w′, and σ′ = σ

α = 〉〉, w = 〉〉w′, and σ′ = σ|‖q‖′
α = 〈〈, w = 〈〈n.w′, and σ′ = σ[‖q′‖ 7→ n]

where σ[‖q′‖ 7→ n] extends σ by allocating the maximum index in ‖q′‖ to n.
The set reachH (t) of states reached by H from the configuration t is defined as

reachH (t) def
=

{
{q} if t = 〈q,ε,σ〉⋃

t H→t ′
reachH (t ′) otherwise

A run of H on a word w is a sequence of moves of H from 〈q0,w, /0〉.

Definition 3. The (S ,N fin)-automaton H in (10) accepts (or recognises) a word w if
F ∩ reachH (〈q0,w, /0〉) 6= /0. The language of H is the set LH of words accepted by H .

Example 3. It is straightforward to observe that the (Stx, /0)-automaton in Example 2
accepts L(ne1). The only interesting steps are from a configuration where the word
starts with a binder, say 〈〈n.w〉〉. In our example, the automaton consumes the binder only
if it is in the initial/final state; in this case, the (unique) register of the target state on
the 1st layer is mapped to n and used in the transitions on the 1st layer. Observe that, if
the right-most states on the 1st layer are reached by consuming w, then the automaton
can “deallocate” n and possibly reach the final state.

A direct consequence of Definitions 2 and 3 is the following proposition.

Proposition 1. If H accepts w and w′ is α-equivalent to w then H accepts w′.

Remark 1. The automata in Definition 1 can be envisaged either as an instantiation of
basic history-dependent automata [20] or as a variant of finite-memory automata [17].
In fact, the constraint on local names imposed in Definition 1 allows us to treat names
as “global” (as done in finite-memory automata). More precisely, the semantics of each
index is uniformly fixed through our automata, once it has been allocated. A main dif-
ference wrt basic history-dependent and finite-memory automata though, is the “stack
discipline” imposed by 〈〈- and 〉〉-transitions.

4 A Kleene theorem

This section gives the details of the equivalence, in the setting with binders, of finite
automata and regular expressions. The main results can be summarised as follows.

8 A. Kurz, T. Suzuki and E. Tuosto

Theorem 1. For each (S ,N fin)-automaton H , there exists a deterministic (S ,N fin)-
automaton which recognises the same language as H .

Theorem 2. Every language recognised by an (S ,N fin)-automaton is representable by
a nominal regular expression. Conversely, every language represented by a nominal
regular expression ne is acceptable by an (S ,FN(ne))-automaton.

The proofs and constructions are obtained by extending the techniques of clas-
sical automata theory (see e.g. [16]) layer-wise: Given H = 〈Q,q0,F, tr〉 as in (10),
Qi def

= {q ∈ Q
∣∣ ‖q‖ = i} is the i-th layer of H . Each layer of H is very much like a

classical automaton if all 〈〈− and 〉〉-transitions are ignored. In fact, the only way to move
from layer i to i+ 1 is to read a 〈〈 along a 〈〈-transition; vice-versa, moving from layer
i+1 to i is possible only by reading a 〉〉 along a 〉〉-transition.

From (S ,N fin)-automata to regular expressions. The first step to prove Theorem 1 is
to construct a deterministic (S ,N fin)-automaton for each (S ,N fin)-automaton. Given an
(S ,N fin)-automaton H , we first remove all ε-transitions. Note that ε-transitions are not
allowed to connect states on different layers. For the ε-free non-deterministic (S ,N fin)-
automaton, we take the powerset construction for each layer, and make all layers deter-
ministic except 〈〈- and 〉〉-transitions. Finally, we define 〈〈-transitions and 〉〉-transitions in a
deterministic way: For each subset Q′ ⊆ Qi, we let

tr(Q′, 〈〈) def
=

⋃
q∈Q′

tr(q, 〈〈) and tr(Q′, 〉〉) def
=

⋃
q∈Q′

tr(q, 〉〉)

This construction allows us to claim Theorem 1.
There are two main reasons for applying the powerset construction layer-wise rather

than to the whole automaton. A technical reason is that the definition of the function
‖ ‖ on sets of states taken from different layers could not be given in a consistent way.
Secondly, since only 〈〈- and 〉〉-transitions can move between layers, each layer must have
a “sink” state (i.e. the empty set of states) to allow for transitions that reject words.

The following proposition yields one direction of Theorem 2.

Proposition 2. For any deterministic (S ,N fin)-automaton H there is a nominal regu-
lar expression neH such that L(neH) is the language recognised by H .

Proof (Sketch). Take H as in (10) to be deterministic; Q can be decomposed into

Q0 = {q0
1, . . . ,q

0
m0
}, Q1 = {q1

1, . . . ,q
1
m1
}, · · · Qh = {qh

1, . . . ,q
h
mh
}

where h = maxq∈Q ‖q‖ is the highest layer of H . Note that q0 ∈Q0 and we assume that
it is q0

1. Let sRk
i, j denote the set of paths from qs

i to qs
j which visit only states on layers

higher than s or states qs
r ∈ Qs with r ≤ k. Then, sRk

i, j is defined on the highest layer h
by

hR0
i, j

def
= {α

∣∣ qh
j ∈ tr(qh

i ,α)}∪E hRk
i, j

def
= hRk−1

i,k

(
hRk−1

k,k

)∗
hRk−1

k, j ∪ hRk−1
i, j

On Nominal Regular Languages with Binders 9

where, in the first clause, E = {ε} if i = j and E = /0 if i 6= j and, for layer s < h, letting
Γs

i, j
def
= {(i′, j′)

∣∣ qs+1
i′ ∈ tr(qs

i , 〈〈) ∧ qs
j ∈ tr(qs+1

j′ , 〉〉)}, by

sR0
i, j

def
= {α

∣∣ qs
j ∈ tr(qs

i ,α)}∪
⋃

(i′, j′)∈Γs
i, j

s+1Rms+1
i′, j′ ∪E

sRk
i, j

def
= sRk−1

i,k

(
sRk−1

k,k

)∗
sRk−1

k, j ∪ sRk−1
i, j ∪

⋃
(i′, j′)∈Γs

i, j

s+1Rms+1
i′, j′

where, in the first clause, E = {ε} if i = j and E = /0 if i 6= j.
Hence,

⋃
(i′, j′)∈Γs

i, j

s+1Rms
i′, j′ is the collection of all paths from qs

i to qs
j visiting only states

on the higher layers. Finally, we translate all paths from the initial state to final states
into a nominal regular expression, but this is analogous to the classical theory. ut

From nominal regular expressions to (S ,N fin)-automata. We now turn our attention
to the construction of (S ,N fin)-automata from nominal regular expressions.

Proposition 3. Given a nominal regular expression ne, there is an (S ,FN(ne))-automaton
H which recognises L(ne).

We prove the above proposition by induction on the structure of ne. Let HLneM denote
the (S ,FN(ne))-automaton defined by the following construction.

We start with the constructions for the base cases.

– ne = 1: let HL1M be 〈{q0},q0,{q0}, tr〉 where ‖q0‖ = 0 and tr(q0,α) = /0 for each
α ∈ I N fin(q0).

– ne = 0: let HL0M be 〈{q0},q0, /0, tr〉 where ‖q0‖ = 0 and tr(q0,α) = /0 for each α ∈
I N fin(q0).

– ne= n: let HLnM be 〈{q0,q1},q0,{q1}, tr〉 where, for j ∈ {0,1} ‖q j‖= 0 and

tr(q0,n) = {q1}
tr(q j,α) = /0, for α ∈ I N fin(q j) and α 6= n if j = 0.

Note that, as FN(n) = {n}, each state may have a transition with the label n.
– ne= s: let HLsM be 〈{q0,q1},q0,{q1}, tr〉 where, for j ∈ {0,1}, ‖q j‖= 0 and

tr(q0,s) = {q1}
tr(q j,α) = /0, for α ∈ I N fin(q j) and α 6= s if j = 0.

Lemma 1. HL1M, HL0M, HLnM and HLsM recognise, respectively, L(1), L(0), L(n) and L(s).
Further, HL1M, HL0M and HLsM are (S , /0)-automata, and HLnM is an (S ,{n})-automaton,
i.e. HL1M, HL0M, HLnM and HLsM are all (S ,FN(ne))-automata.

Union ne1 + ne2 : For j ∈ {1,2}, let HLne jM = 〈Q j,q0, j,Fj, tr j〉 be an (S ,FN(ne j))-
automaton which recognises L(ne j). The union HLne1+ne2M is a tuple 〈Q+,q+0 ,F

+, tr+〉:

– Q+ def
= Q1]Q2]{q+0 } (where] stands for disjoint union);

10 A. Kurz, T. Suzuki and E. Tuosto

– q+0 is a new state with
∥∥q+0

∥∥= 0;

– F+ def
= F1]F2;

– tr+(q,α) def
=


tr1(q,α), if j ∈ {1,2}, q ∈ Q j, and α ∈ I N fin

j (q)
{q0,1,q0,2}, if q = q+

0 and α = ε

/0, otherwise

where I N fin
1 (q) is the set of possible inputs on q in HLne1M and I N fin

2 (q) is the set of
possible inputs on q in HLne2M. Notice that possible inputs of free names are extended
from FN(ne1) or FN(ne2) to FN(ne1)∪FN(ne2) in HLne1+ne2M, but the above definition
of transitions says that each state q in Q1 has no transition with labels in FN(ne2) \
I N fin

1 (q), and each state q in Q2 has no transition with labels in FN(ne1)\ I N fin
2 (q).

Lemma 2. HLne1+ne2M is an (S ,FN(ne1 +ne2))-automaton recognising L(ne1 +ne2).

Concatenation ne1◦ne2 : For j∈{1,2}, let HLne jM = 〈Q j,q0, j,Fj, tr j〉 be an (S ,FN(ne j))-
automaton which recognises L(ne j). The concatenation HLne1◦ne2M is a tuple 〈Q◦,q◦0,F◦, tr◦〉:

– Q◦ def
= Q1]Q2;

– q◦0
def
= q0,1;

– F◦ def
= F2;

– tr◦(q,α) def
=



tr1(q,α), if q ∈ Q1 \F1, and α ∈ I N fin
1 (q)

tr2(q,α), if q ∈ Q2 and α ∈ I N fin
2 (q)

tr1(q,α)∪{q0,2}, if q ∈ F1 and α = ε

tr1(q,α), if q ∈ F1 and α ∈ I N fin
1 (q)

/0, otherwise

Intuitively, we just add ε-transitions to q0,2 from the final states of HLne1M.

Lemma 3. HLne1◦ne2M is an (S ,FN(ne1 ◦ne2))-automaton recognising L(ne1 ◦ne2).

Iteration ne∗ : Given a nominal regular expression ne and an (S ,FN(ne))-automaton
HLneM = 〈Q,q0,F, tr〉 which recognises L(ne), the iteration HLne∗M is defined by a tuple
〈Q∗,q∗0,F∗, tr∗〉:

– Q∗ def
= Q;

– q∗0
def
= q0;

– F∗ def
= {q0};

– tr∗(q,α) def
=


tr(q,α), if q ∈ Q\F and α ∈ I N fin(q)

tr(q,α)∪{q∗0}, if if q ∈ F and α = ε

tr(q,α), if q ∈ F and α ∈ I N fin(q)\{ε}

Notice that, since the possible inputs on q in HLne∗M and HLneM are the same, here we do
not need to consider the “otherwise” case.

Lemma 4. HLne∗M is an (S ,FN(ne∗))-automaton recognising L(ne∗).

On Nominal Regular Languages with Binders 11

Name-abstraction 〈n.ne〉 : Given a nominal regular expression ne and an (S ,FN(ne))-
automaton HLneM = 〈Q,q0,F, tr〉 which recognises L(ne), the name-abstraction HL〈n.ne〉M
is defined by a tuple 〈Q�,q�0,F�, tr�〉:

– qs and qt are new states with ‖qs‖= 0 and ‖qt‖= 0;

– Q� def
= Q]{qs,qt} where we increase ‖q‖ by 1 for each state q ∈ Q (hence qs and

qt are the only states on the 0th layer);

– q�0
def
= qs;

– F� def
= {qt};

– tr�(q,α) def
=



tr(q,n), if q ∈ Q and α = 1 ∈ ‖q‖
tr(q,α−1), if q ∈ Q and α ∈ ‖q‖\{1}
tr(q,α), if q ∈ Q\F and α ∈ I N fin(q)\‖q‖
{qt}, if q ∈ F and α = 〉〉

tr(q,α), if q ∈ F and α ∈ I N fin(q)\
(
‖q‖∪{〉〉}

)
{q0}, if q = qs and α = 〈〈

/0, otherwise

Note that on an (S ,FN(〈n.ne〉))-automaton, n cannot be an input on any state. Intu-
itively, to bind the free name n, we first increase all numbers in all states in HLneM
(accordingly for the labels on transitions) by 1, and then we allocate the new number
1 in each state in HLneM for the new local name obtained by binding n and rename all
labels n on each transition in HLneM (if they exist) with the number 1.

Lemma 5. HL〈n.ne〉M is an (S ,FN(〈n.ne〉))-automaton recognising L(〈n.ne〉).

Lemmas 1, 2, 3, 4 and 5 complete the proof of Proposition 3.

Example 4. We give an account of how the nominal regular expression ne2 in Example 1
is translated to an (Stx, /0)-automaton. Below is a simplified graphical representation of
the automaton HLne2M.

12 A. Kurz, T. Suzuki and E. Tuosto

S

S

S S

1

hh

abtabt

cmt
2

2

⇥

X

ii

ii hh
ii

1

1

cmt

abt

ii

ii

⇥

Xhh

0th layer

1st layer

2nd layer

(where “box” and “star” shaped states are used to ease the textual description below).
This automaton is basically obtained by the above inductive construction but for the
following simplifications:

1. we removed all ε-transitions in the obvious way;
2. three equivalent states of HLne2M accessible from the initial state with 〈〈-transitions

are now unified as the single box state on the 1st layer;
3. the star state on the 2nd layer which had a 〉〉-transition to a distinct state on the

1st layer in HLne2M is now connected to the star state on the 1st layer. Accordingly,
non-accessible states are deleted.

5 Closure properties

Here we shall discuss the closure properties of nominal languages summarised in

Theorem 3. Nominal languages are closed under union, intersection, and resource
sensitive complementation.

The notion of resource-sensitive complementation is given in Definition 4 below. Clo-
sure under unions is immediate and the construction is the same as the classical one.
Similarly, closure under intersections is shown by taking a product of the respective au-
tomata; the only difference wrt the analogous construction in the classical theory is that
we must take the product layer-wise (otherwise there is no meaningful way to define
the values of ‖ ‖). It remains to discuss complementation.

In our nominal languages, brackets 〈〈 and 〉〉 are explicitly expressed as syntax. So, for
example, 〈〈n.w〉〉 is different from 〈〈m.〈〈n.w〉〉〉〉, even when m does not freely occur in 〈〈n.w〉〉.
This is important for complementing nominal regular languages since every word has a

On Nominal Regular Languages with Binders 13

maximum depth of nested binders determined by the regular expression. Define ∂(ne),
the depth of a nominal regular expression ne as

ne ∈ {ε,1,0}∪N ∪S =⇒ ∂(ne) = 0
ne= ne1 +ne2 or ne1 ◦ne2 =⇒ ∂(ne) = max(∂(ne1),∂(ne2))

ne= 〈n.ne〉 =⇒ 1+∂(ne)

ne= ne∗ =⇒ ∂(ne)

For example, if ne = 〈n.〈m.s m n〉∗n n◦ s〉◦〈l.s l〉◦s then ∂(ne) = 2, hence no word in
L(ne) can have more than 2 nested binders; therefore the complement of L(ne) has to
include words which have finite but unbounded depth, e.g. 〈〈n1.〈〈n2. · · · 〈〈nk.n1 · · ·nk 〉〉 · · · 〉〉〉〉
for any natural number k > ∂(ne). But, it is impossible to accept all these words on any
finite (S ,N fin)-automaton. Therefore, nominal regular languages are not closed under
the standard complementation.

On the other hand, when contemplating nominal languages, is the notion of the
standard complementation suitable? We claim that there are two distinct conditions for
rejecting words on (S ,N fin)-automata:

1. The word is consumed and the automaton finishes in a non-accepting state.
2. The automaton is in a configuration whose word is of the form 〈〈n.w〉〉 and its state is

in the highest layer.

The first is the usual non-acceptance condition, while the second one, which we call
overflow condition, is necessary for (S ,N fin)-automata. Informally, the distinction of
the two conditions of rejection above can be rephrased as follows:

Rejection by non-acceptance takes place when the word represents a ‘wrong
behaviour’; instead, rejection by overflow happens when we do not have enough
resources to process the word.

The considerations above lead to the notion of resource-sensitive complementation:

Definition 4. Let ne be a nominal regular expression. The resource sensitive comple-
mentation of L(ne) is the set {w 6∈ L(ne)

∣∣ ∂(w)≤ ∂(ne)} (where the depth of a word
is defined as the depth the corresponding expression).

The algebraic structure of union, intersection, and resource sensitive complementa-
tion is that of a generalised Boolean algebra [26], that is, of a distributive lattice with
bottom and relative complement (but no top).

For the proof that nominal regular expressions are closed under resource-sensitive
complementation, note first that the overflow condition characterises the configurations
where a deterministic automaton (Definition 1) can get stuck. Further, recall that, by
Proposition 3, for each nominal regular expression ne, there is an (S ,N fin)-automaton
HLneM which accepts the language L(ne). By Theorem 1 we can assume, without loss
of generality, that HLneM is deterministic. Since configurations can get stuck only by
overflow, for any word in L(ne), HLneM has a run to a final state which, by construction,
is on the 0-th layer. Hence, if we swap the final states with the non-final states on the
0-th layer, the automaton recognises the resource-sensitive complementation of L(ne).
Finally, by Proposition 2, we obtain

14 A. Kurz, T. Suzuki and E. Tuosto

Proposition 4. Nominal regular expressions are closed under resource-sensitive com-
plementation.

We give an example of how to construct an (S ,N fin)-automaton which accepts the
resource-sensitive complementation of a nominal regular expression in Example 1.

Example 5. An automaton which recognises the resource-sensitive complementation of
L(ne1) from Example 1 is given below:

ii hh

hh

hh

ii

ii

ii

⇥

X

S

S

1

1

cmt

abt

ii

ii

 hh

0th layer

1st layer

else

In this automaton, the transitions with non-filled heads represent “complement tran-
sitions”, that is transitions taken when the source state does not have any filled-head
transition with a label matching the input symbol. Let HLne1M be the (S ,N fin)-automaton
in Example 2; the automaton above is constructed from HLne1M as follows:

1. firstly HLne1M is determinised, by means of the layer-wise powerset construction;
note that this adds deadlock states (in the automaton in the picture above, we just
added two deadlock states, one per layer);

2. secondly, all non-accessible states are removed;
3. finally, accepting and non-accepting states on the 0th layer are swapped.

The automaton in Example 5 can be used as a transactional monitor of the trans-
actions characterised by ne2 in Example 1. Namely, it accepts words representing com-
putations of 2-level nested transactions that diverge from the expected behaviour, e.g.,
transactions that starts but do not explicitly commit or abort.

6 Conclusion

Our long-term aim is to develop a theory of nominal languages with binders. In this pa-
per we looked at the most basic case where the binders do not interact with the monoid
operations. But there is a range of other interesting possibilities. For example, one may
impose the additional equation 〈〈n.w〉〉◦ v = 〈〈n.w◦ v〉〉 for n not free in v. This is known as
scope extrusion in the π-calculus and would have as a consequence that an automaton
recognising 〈n.n〉∗ would need to be able to keep track of an unbounded number of local
names (for an analysis of the interplay between binders and name locality see e.g. [21,
11]). A first sketch of some of the arising landscape is drafted in [18].

On Nominal Regular Languages with Binders 15

Although the use of binders in this paper is rather restricted, it is expressive enough
to represent interesting computational phenomena and it guarantees the properties in
§ 4 and 5. Increasing the expressiveness of our regular expressions by adding permuta-
tions is the natural step we are currently investigating. For instance, we are considering
languages where the Kleene-star operator interplays with name automorphisms.

It will be interesting to explore the connections with tree-walking pebble automata [10].
The idea is that the configuration of the automaton is given by a pair (q,v) where q is
a state of the automaton and v a node of the input tree. A run is obtained by letting
the automaton to change its state and mode to parent/children nodes of v according to
the label of v and the fact that v is the root, a leaf, or an internal node. Our approach
is reminiscent of this pushdown mechanism of tree-walking pebble automata, with the
difference that the decision of dropping/lifting pebbles is driven by binders in the word.

With an eye on applications to verification it is of interest to pursue further devel-
opments in the direction of the work [1] on Kleene algebra with local scope. Another
direction for future work starts from the observation that, due to the last two clauses
of Definition 2, automata with binders do not process words buts nested words (with
dangling brackets) [2]. This suggests extend the work of [2] to the nominal setting.

Acknowledgements. The authors thank the reviewers for their criticisms and comments
which helped to greatly improve the paper.

References

1. K. Aboul-Hosn and D. Kozen. Local variable scoping and kleene algebra with tests. J. Log.
Algebr. Program., 76(1):3–17, 2008.

2. R. Alur and P. Madhusudan. Adding nesting structure to words. J. ACM, 56(3), 2009.
3. M. A. Arbib and E. G. Manes. Machines in a category: An expository introduction. SIAM

Review, 16(163–192):285–302, 1974.
4. L. Birkedal, editor. 15th International Conference on Foundations of Software Science and

Computation Structures (FoSSaCS), 2012. To appear.
5. M. Bojanczyk. Data monoids. In STACS, pages 105–116, 2011.
6. M. Bojanczyk, B. Klin, and S. Lasota. Automata with group actions. In IEEE Symposium

on Logic in Computer Science, pages 355–364, 2011.
7. V. Ciancia. Nominal Sets, Accessible Functors and Final Coalgebras for Named Sets. PhD

thesis, Dipartimento di Informatica, Università di Pisa, 2008. Forthcoming.
8. V. Ciancia and U. Montanari. Symmetries, local names and dynamic (de)-allocation of

names. Inf. Comput., 208(12):1349 – 1367, 2010.
9. V. Ciancia and E. Tuosto. A novel class of automata for languages on infinite alphabets.

Technical Report CS-09-003, Leicester, 2009.
10. J. Engelfriet and H. J. Hoogeboom. Tree-walking pebble automata. In Jewels are Forever,

pages 72–83, 1999.
11. M. Fernández and M. Gabbay. Nominal rewriting. Inf. Comput., 205(6):917–965, 2007.
12. M. P. Fiore and S. Staton. Comparing operational models of name-passing process calculi.

Inf. Comput., 204(4):524–560, 2006.
13. M. Gabbay and V. Ciancia. Freshness and name-restriction in sets of traces with names. In

FoSSaCS, volume 6604 of LNCS, pages 365–380. Springer, 2011.
14. M. Gabbay and A. Pitts. A new approach to abstract syntax involving binders. In Symbolic

on Logics in Comput Science, pages 214–224, 1999.

16 A. Kurz, T. Suzuki and E. Tuosto

15. F. Gadducci, M. Miculan, and U. Montanari. About permutation algebras, (pre)sheaves and
named sets. Higher-Order and Symbolic Computation, 19(2-3):283–304, 2006.

16. J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison Wesley, 2nd edition, 2000.

17. M. Kaminski and N. Francez. Finite-memory automata. TCS, 134(2):329–363, 1994.
18. A. Kurz, T. Suzuki, and E. Tuosto. Towards nominal formal languages. CoRR,

abs/1102.3174, 2011.
19. U. Montanari and M. Pistore. π-Calculus, Structured Coalgebras, and Minimal HD-

Automata. In MFCS, volume 1983 of LNCS. Springer, 2000.
20. M. Pistore. History Dependent Automata. PhD thesis, Dip. di Informatica - Pisa, 1999.
21. A. Pitts and I. Stark. Observable properties of higher order functions that dynamically create

local names, or what’s new? In MFCS, volume 711 of NSCS, pages 122–141. Springer, 1993.
22. N. Pouillard and F. Pottier. A fresh look at programming with names and binders. In Pro-

ceeding of the 15th ACM SIGPLAN international conference on Functional programming,
pages 217–228, 2010.

23. L. Segoufin. Automata and Logics for Words and Trees over an Infinite Alphabet. In Com-
puter Science Logic, volume 4207 of LNCS, pages 41–57. Springer, 2006.

24. M. Shinwell, A. Pitts, and M. Gabbay. Freshml: programming with binders made simple.
In Proceedings of the Eighth ACM SIGPLAN International Conference on Functional Pro-
gramming, pages 263–274, 2003.

25. C. Stirling. Dependency tree automata. In FoSSaCS’09, pages 92–106, 2009.
26. M. H. Stone. Postulates for boolean algebras and generalized boolean algebras. American

Journal of Mathematics, 57(4):703–732, 1935.
27. N. Tzevelekos. Fresh-Register Automata. In Symposium on Principles of Programming

Languages, pages 295–306. ACM, 2011.
28. G. Weikum and G. Vossen. Transactional information systems: theory, algorithms, and the

practice of concurrency control and recovery. Morgan Kaufmann, 2002.

A Proofs

Theorem 1. For each (S ,N fin)-automaton H , there exists a deterministic (S ,N fin)-
automaton which recognises the same language as H .

Proof. Let Qi be the set of states on the i-th layer in H , i.e. Q = Q0] ·· ·]Qh. For
each Qi, we take the powerset construction as in the case of the classical theory of
automata. Then, it is trivial that all transitions within each layer, namely transitions in
℘(Qi) for each i ∈ {0, . . . ,h}, are deterministic. That is, the automaton obtained by the
powerset construction for each layer is deterministic for inputs n∈N and s∈ S , but not
necessarily for 〈〈 and 〉〉, yet. Hence, the things we have to deal with are how to connect
layers by means of 〈〈 and 〉〉 in a deterministic way.

For each state {qi
1, . . . ,q

i
k} ∈℘(Qi), (note that each state in ℘(Qi) is a subset of Qi,)

we define transitions

tr({qi
1, . . . ,q

i
k}, 〈〈)

def
= {qi+1 ∈ Qi+1 | ∃ j ∈ {1, . . . ,k}. qi+1 ∈ tr(qi

j, 〈〈)},

tr({qi
1, . . . ,q

i
k}, 〉〉)

def
= {qi−1 ∈ Qi−1 | ∃ j ∈ {1, . . . ,k}. qi−1 ∈ tr(qi

j, 〉〉)}.
As special cases, if tr(qi

j, 〈〈)= /0 for each j∈{1, . . . ,k}, tr({qi
1, . . . ,q

i
k}, 〈〈)= /0 in℘(Qi+1),

and if tr(qi
j, 〉〉) = /0 for each j ∈ {1, . . . ,k}, tr({qi

1, . . . ,q
i
k}, 〉〉) = /0 in ℘(Qi−1). Note that,

On Nominal Regular Languages with Binders 17

if we take the powerset construction for the whole automaton, we cannot have the dis-
tinction between /0 ∈℘(Qi) and /0 ∈℘(Q j) for i 6= j. So, either way, in this automa-
ton obtained by the powerset construction, we have that for each i ∈ {0, . . . ,h}, each
q ∈℘(Qi) and each α ∈ I N fin(q),{

|tr(q,α)|= 0 (‖q‖= h∧α = 〈〈) ∨ (‖q‖= 0∧α = 〉〉) ,

|tr(q,α)|= 1 otherwise,

hence it is deterministic. This is also straightforward that the deterministic automaton
accepts the same language as the original one. This is because each layer works exactly
the same as in H . ut

Proposition 2. For any deterministic (S ,N fin)-automaton H there is a nominal regular
expression neH such that L(neH) is the language recognised by H .

Proof. Given a deterministic (S ,N fin)-automaton H , let Qs = {qs
1, . . . ,q

s
ms
}, be the s-th

layer of H . Hence, Q is decomposed into

Q0 = {q0
1, . . . ,q

0
m0
}

Q1 = {q1
1, . . . ,q

1
m1
}

...

Qh = {qh
1, . . . ,q

h
mh
}

where h is the maximum of {‖q‖ | q∈Q}, i.e. the highest layer of H . Note that q0 ∈Q0

and we assume that it is q0
1. Let sRk

i, j denote the set of paths from qs
i to qs

j which visit
only states on layers higher than s or states qs

r ∈Qs with r ≤ k. Then, sRk
i, j is defined by

the following double induction on s and k. On the h-th layer (the highest layer):
hR0

i, j
def
= {α

∣∣ qh
j ∈ tr(qh

i ,α)} i 6= j

hR0
i, j

def
= {α

∣∣ qh
j ∈ tr(qh

i ,α)}∪{ε} i = j

hRk
i, j

def
= hRk−1

i,k

(
hRk−1

k,k

)∗
hRk−1

k, j ∪ hRk−1
i, j otherwise

For the s-th layer (s < h), let Γs
i, j

def
= {(i′, j′)

∣∣ qs+1
i′ ∈ tr(qs

i , 〈〈) ∧ qs
j ∈ tr(qs+1

j′ , 〉〉)}.

sR0
i, j

def
= {α

∣∣ qs
j ∈ tr(qs

i ,α)}∪
⋃

(i′, j′)∈Γs
i, j

s+1Rms+1
i′, j′ i 6= j

sR0
i, j

def
= {α

∣∣ qs
j ∈ tr(qs

i ,α)}∪{ε}∪
⋃

(i′, j′)∈Γs
i, j

s+1Rms+1
i′, j′ i = j

sRk
i, j

def
= sRk−1

i,k

(
sRk−1

k,k

)∗
sRk−1

k, j ∪ sRk−1
i, j ∪

⋃
(i′, j′)∈Γs

i, j

s+1Rms+1
i′, j′ otherwise

Hence,
⋃

(i′, j′)∈Γs
i, j

s+1Rms
i′, j′ is the collection of all paths from qs

i to qs
j visiting only states on

the higher layers.

18 A. Kurz, T. Suzuki and E. Tuosto

Next, we show that each sRk
i, j is represented by a nominal regular expression by a

double induction on s and k. If s = h (on the highest layer of H), each hRk
i, j is a set of

paths on the h-th layer as in the classical case. So, we can have a regular expression on
S ∪{1, . . . ,h}∪N fin for hRk

i, j analogously. Notice that, on the s-th layer of deterministic
(S ,N fin)-automata, each state qs

i has exactly one transition for each input s ∈ S , i ∈ s
and n ∈ N fin, hence it is necessary to take the natural numbers in s into consideration.
(So, we do not claim that it is a “nominal” regular expression. Also, to distinguish 1
in the nominal regular expression, i.e. L(1) = {ε}, from the natural number 1, in the
regular expression we let represent {ε} with e which is distinct from any letter and any
free name.)

Now, to consider the induction on layers, we take an injective (canonical naming of
local names) map σ : h→N \N fin (we can weaken this restriction a bit, but it requires
a more complicated definition of σ depending on free names).

On the s-th layer, let us obtain a regular expressions on S ∪ s∪N fin with 〈〈 and 〉〉 by
the induction on k for sRk

i, j. When k = 0, if i 6= j, we let sR0
i, j be

α1 + · · ·+αn + ∑
(i′, j′)∈Γs

i, j

〈σ(s+1).s+1rms+1
i′, j′ 〉

where each αi ∈ {α | qs
j ∈ tr(qs

i ,α)} and each s+1rms+1
i′, j′ is the instance of a regular expres-

sion over S∪s+1∪N fin with 〈〈 and 〉〉 for s+1Rms+1
i′, j′ substituted σ(s+1) for all occurrences

of s+1. Then, by the induction hypothesis, that is a regular expression over S ∪s∪N fin.
And, if i = j, it is analogous to the above but add +e. Also, for any k, we can analo-
gously obtain a regular expression over S ∪ s∪N fin as in the classical case. Therefore,
a nominal regular expression for the automaton is obtained by

∑
q0

j∈F

0rm0
1, j.

Remember that each expression 0rm0
1, j is now a nominal regular expression, because a

regular expression over S ∪0∪N fin, i.e. S ∪N fin, with 〈〈 and 〉〉 is by definition a nominal
regular expression. ut

Lemma 1. HL1M, HL0M, HLnM and HLsM recognise, respectively, L(1), L(0), L(n) and L(s).
Further, HL1M, HL0M and HLsM are (S , /0)-automata, and HLnM is an (S ,{n})-automaton,
i.e. HL1M, HL0M, HLnM and HLsM are all (S ,FN(ne))-automata.

Proof. HL1M accepts only the empty string ε, HL0M does no word, HLnM does the single
name n and HLsM does the single letter s only. Also, by definition, HL1M, HL0M and HLsM
are (S , /0)-automata, and HLnM is an (S ,{n})-automaton, hence they are (S ,FN(ne))-
automata. ut

Lemma 2. HLne1+ne2M is an (S ,FN(ne1 +ne2))-automaton recognising L(ne1 +ne2).

Proof. Let HLne1M be an (S ,FN(ne1))-automaton and HLne2M an (S ,FN(ne2))-automaton
which recognise L(ne1) and L(ne2), respectively. By the construction of HLne1+ne2M,

On Nominal Regular Languages with Binders 19

there is no way to transit between states in HLne1M and those of HLne2M. Hence, HLne1+ne2M
accepts

{εw | w ∈ L(ne1)}∪{εw | w ∈ L(ne2)},

namely L(ne1 +ne2).
Furthermore, FN(ne1 + ne2) = FN(ne1)∪ FN(ne2). Since HLne1M and HLne2M are

now an (S ,FN(ne1))-automaton and an (S ,FN(ne2))-automaton, by the construction,
it is straightforward that HLne1+ne2M is an (S ,FN(ne1 +ne2))-automaton. ut

Lemma 3. HLne1◦ne2M is an (S ,FN(ne1 ◦ne2))-automaton recognising L(ne1 ◦ne2).

Proof. Let HLne1M be an (S ,FN(ne1))-automaton and HLne2M an (S ,FN(ne2))-automaton
which recognise L(ne1) and L(ne2), respectively. By the construction of HLne1◦ne2M, the
only words which can reach q′0,2 are appended with a word in L(ne1), hence the words
accepted by HLne1◦ne2M are words in L(ne2) following by a word in L(ne1) only: i.e.

{w1w2 | w1 ∈ L(ne1),w2 ∈ L(ne2)}.

Therefore, HLne1◦ne2M recognises L(ne1 ◦ne2).
Furthermore, FN(ne1 ◦ ne2) = FN(ne1)∪ FN(ne2). Since HLne1M and HLne2M are

an (S ,FN(ne1))-automaton and an (S ,FN(ne2))-automaton, by the construction, it is
straightforward that HLne1◦ne2M is an (S ,FN(ne1 ◦ne2))-automaton. ut

Lemma 4. HLne∗M is an (S ,FN(ne∗))-automaton recognising L(ne∗).

Proof. Assume that HLneM is an (S ,FN(ne))-automaton which recognises L(ne). By the
construction, it is trivial that HLne∗M accepts L(ne∗).

In addition, since F(ne∗) = FN(ne), it is also straightforward that HLne∗M is an
(S ,FN(ne∗))-automaton because HLneM is an (S ,FN(ne))-automaton by induction hy-
pothesis.

Lemma 5. HL〈n.ne〉M is an (S ,FN(〈n.ne〉))-automaton recognising L(〈n.ne〉).

Proof. Assume that HLneM is an (S ,FN(ne))-automaton which recognises L(ne). By the
construction, the automaton HL〈n.ne〉M accepts

{〈〈n.w〉〉 | w ∈ L(ne)}

namely all free occurrences of n in each word w is bound by 〈〈n. 〉〉. Notice that in the
automaton HL〈n.ne〉M there is no transition labelled by n, anymore. Therefore, HL〈n.ne〉M
recognises L(〈n.ne〉).

Finally, FN(〈n.ne〉) = FN(ne)\{n}. If HLneM is an (S ,FN(ne))-automaton, by the
construction (as every transition labelled with n is replaced with one labelled with 1),
HL〈n.ne〉M is an (S ,FN(〈n.ne〉))-automaton.

20 A. Kurz, T. Suzuki and E. Tuosto

B Comparison with basic history-dependent automata

The automata in Definition 1 correspond to a (proper) subclass of basic history-dependent
automata defined in [20]. In fact, transitions in Definition 1 differ from those of basic
history-dependent automata because the latter are equipped with injections mapping the
names in the target states to those in the source state or to a special name ? representing
fresh name creation.

The canonical representation of names given in § 3 (cf. Remark ??) implicitly
yields such injective maps. In fact, let t be a transition say from q to q′ in a (S ,N fin)-
automaton. We can define the injective map ηt : q′→ q∪{?} as follows:

– ηt is just the identity on ‖q‖ if ‖q‖= ‖q′‖, or
– if t is labelled with 〈〈

ηt :

{
ηt : i 7→ i, if i≤ ‖q‖
‖q‖+1 7→ ?, otherwise

or else
– if t is labelled with 〉〉 then ηt : i 7→ i for i≤ ‖q‖.

The fact that ηt is an injective is obvious in the first case, due to the fact that ‖q′‖ =
‖q‖∪{‖q‖+1} in the second case, and to the fact that ‖q′‖= ‖q‖\max‖q‖ in the last
case.

We remark that basic history-dependent automata have not been used as language
acceptors, which is an original contribution of this paper.

