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Abstract. Graphical notations have been widely accepted as an expres-
sive and intuitive working tool for system specification and design. This
paper outlines a declarative approach based on (hyper-)graphs and graph
synchronization to deal with the modeling of Wide Area Network appli-
cations. This paper aims at contributing to the understanding of crucial
issues involved in the specification and design of Wide Area Network
systems, as a first step toward the development of software engineer-
ing techniques and tools for designing and certificating internetworking
systems.

1 Introduction

The problem of supporting the development of highly decentralized applications
(from requirement and design to implementation and maintenance) is at the edge
of research in software engineering. Several commercial systems (e.g. Napster,
Gnutella) have led to an increasing demand of innovative techniques to model,
document and certify the development of applications. On the one hand, the
traditional software engineering technologies (e.g. client–server architecture) em-
phasize an interaction model which is rather different from the interaction model
of truly distributed applications. For instance, users of traditional distributed ap-
plications can invoke a service regardless of whether the service is local, remote
or under the control of a different network authority. Instead, in the context of
Wide Area Network applications the awareness of network information is crucial
for choosing the best services that match user’s requirements. Indeed, network
awareness can be exploited to provide as much information about the network
facilities as possible to designers, aiming at specifying and implementing robust
modules. On the other hand, in the next few years evolutionary middlewares

based on SOAP-XML-UDDI-WSDL will become the standard in software in-
dustry. It is interesting to note, however, that some innovative applications (e.g.
peer-to-peer) are developed largely ”ad hoc”, exploiting the traditional client-
server interaction model.
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Hence, independently from the underlying technology, we argue that require-
ment engineering technologies must support the shift from the client-server in-
teraction model to other interaction models which better accommodate the con-
straints posed by the new applications. The present paper intends to address
this issue.

The Unified Modeling Language (UML) [6, 40] has been widely accepted
throughout the software industries and has become the de facto standard for
specifying the development of software systems. In fact, UML provides a graph-
ical notation to describe both structural and behavioral aspects of systems. In
particular class and state diagrams are the fundamental units which allow the
designer to specify the behaviour of object-based systems. However, class and
state diagrams provide the abstraction to understand method invocation inde-
pendently from the location of the object. However, as pointed out by Waldo et
al. [47], method invocation in a truly distributed application is inherently differ-
ent from method invocation in a traditional distributed application. A specifica-
tion technique which ignores such a difference will not support at the right level
of abstraction software design pointing out the possible architectural choices in
the system under development.

Previous work on the formalization of UML has produced a semantic frame-
work based on graph transformations (see [20, 29, 35] and the references therein).
The evolution of a UML specification may be understood as a graph transforma-
tion. This paper describes a variation of graph transformation semantics which
directly supports network awareness. Hence, what is missing in the UML speci-
fication can be actually found at the semantic level.

Our approach is based on (hyper-)graphs and local graph synchronization
and extends the graphical calculus for mobility introduced in [33]. Hyper-graphs
naturally provide the capabilities to describe internetworking systems: edges are
used to represent components and nodes model the network environment of
components. The sharing of nodes by some edges means that the corresponding
components may interact by exploiting network communication infrastructure.
Graph synchronization is purely local and it is obtained by the combination of
graph rewriting with constraint solving. The intuitive idea is that properties
of components are specified as constraints over their local resources. Hence, the
local evolutions of components depend on the outcome of a (possibly distributed)
constraint satisfaction algorithm.

In other words, graphs and graph synchronization foster a declarative ap-
proach by identifying the points where satisfaction of certain properties has a
strong impact on behaviours. The key issue of the approach is that components
see the network environment as a set of constraints. Then, the declarative speci-
fication of service requests to the network yields various kinds of constraints for
the graphical calculus. Thus the actual behaviour is the result of a distributed
constraint solving algorithm [39, 50].

This paper aims at providing an understanding of some crucial issues of
Wide Area Network computing, as a step toward the development of software
engineering techniques and tools for the design and certification of such sys-



tems. We first discuss some of the difficult issues involved in building Wide Area
Network applications, thus delineating the corresponding requirements for soft-
ware engineering techniques. To present the basic ideas underlying our graphical
calculus, we outline an operational framework for the Ambient calculus [12] in
terms hypergraphs and hypergraph synchronization. Finally, we delineate a for-
mal methodology that builds over graph synchronization to equip UML with
semantical mechanisms to deal with the modelling of Wide Area Network appli-
cations.

2 WAN Computing: A Roadmap

Wide-Area Network (WAN) applications have become one of the most important
applications in current distributed computing. Indeed, Internet and the World
Wide Web are now the primary environment for designing, developing and dis-
tributing applications. Network services have now evolved into self-contained
components which inter-operate easily with each other by supporting WEB-
based access protocols [34]. In addition, network services may adapt themselves
to match the particular capabilities of a variety of devices ranging from tradi-
tional PCs to Personal Digital Assistants and Mobile Phones having intermittent
connectivity to the network. In other words, WAN applications are highly de-
centralized and dynamically reconfigurable (e.g. network services are assumed to
be linked to other services to achieve the required functionalities). This section
outlines our perspective on the current status of the research on WAN comput-
ing by identifying the fundamental concepts and the proper abstractions which
are useful in specifying, designing and implementing WAN applications.

Network awareness

Current software technologies emphasize the notion of web service as a key
idiom to control design and development of applications. Conceptually, web

services are stand-alone components that reside over the nodes of the network.
Each web service has an interface which is network accessible through standard
network protocols and describes the interaction capabilities of the service (e.g.,
the message format). Wide Area Network applications are developed by com-
bining and integrating together web services, which do not have pre-existing
knowledge of how they will interact with each other.

The exploitation of components in a WAN setting raises a number of issues.
First, given the heterogeneity of the network environment, components should
be highly portable: they should be usable everywhere, provided that certain ser-
vices actually behave properly (i.e. services are used to adapt components to
a variety of infrastructures). Second, security should be ensured in any envi-
ronment: since components downloaded from different authorities have different
security requirements, they should be executed within different run-time envi-
ronments. Third, dynamic adaptability should be ensured: WAN applications
have highly dynamic requirements and they should be able to reconfigure their



structure and their components at run-time to respond to dynamic changes of
the network environment.

Summing up, a WAN application does not appear as a single integrated com-
puter facility to its users as it is the case of traditional distributed applications.
For instance, users of traditional distributed applications can invoke a service re-
gardless of whether the service is local, remote or under the control of a different
network authority. Instead, in the WAN setting the awareness of network infor-
mation is crucial for choosing the best services that match user requirements. For
instance, users can react to phenomena like network congestion by binding their
network devices to different available resources. Similarly, network awareness is
exploited by WAN application designers to control resource usages and resource
accesses in order to ensure and maintain certain security levels. Finally, network
awareness can be exploited to provide as much information about the sources of
network exceptions as possible, in order to allow the designer to specify robust
exception handlers.

Network awareness is thus the distinguished and novel issue of WAN ap-
plications and refers to the explicit ability of dealing with the unpredictable
Quality of Service (QoS) properties of the network environment. Here, QoS is
meant as a measure of the non functional properties of services along multiple
dimensions. For instance, network bandwidth is a QoS measure for multimedia
services. Timely response and security are other examples of (higher level) QoS
measures. In general, the perceived QoS of computations is no longer given by
the performance of the WEB servers but rather by the availability of certain
resources, by the security level provided, by the flow of network traffic, and so
on.

Current distributed technologies allow applications to control network con-
nectivity and resource accesses. A paradigmatic example is provided by the Java
programming language through the socket and the security APIs. Similarly,
the Microsoft .NET architecture supplies a programming technology embody-
ing general facilities for handling heterogeneity. As far as security is concerned,
cryptographic techniques have been exploited to solve several problems related to
security of data communications (authentication, secrecy and integrity). Finally,
firewalls are barriers that administrative domains build to disable the access to
some critical services. In this new scenario both final users and WAN application
designers put special emphasis on QoS issues.

In general, QoS attributes are special parameters of network services. Aware-

ness of these information is crucial for choosing network services to match user
requirements. For instance, final users can react to network congestion by binding
their network devices to different sites where the requested services are available.
Similarly, QoS awareness is exploited by WAN application designers to control
resource usage and resource access in order to guarantee and maintain certain
security levels and to provide users with differentiated QoS.

The advances in network technologies and the growth of commercial WEB
services have prompted questions about suitable mechanisms for providing QoS
guarantees. In the last few years, several models have been proposed to meet the



demands of QoS. We mention the Resource Reservation Protocol (RSVP) [7],
Differentiated Services [5], Constraint-based Routing [45], and we refer to [49]
for a detailed discussion of this topic. This stream of research is basically system-

oriented : it focuses on the lower layers of the Internet protocol stack.
Another significant line of research has dealt with enhancing existing dis-

tributed programming middlewares to support QoS features. QoS-aware mid-
dlewares allow clients to express their QoS requirements at a higher level of
abstraction. In this way the application has good degree of control over QoS
without having to deal with low-level details. Examples of QoS-aware middle-
ware are Agilos [36], Mobiware [3], and Globus [25].

At a foundational level, most models exhibit explicit localities to reflect the
idea of network awareness, e.g. Ambient calculus [12], Klaim [18], and Mobile-
Unity [38] to cite a few. Roughly speaking, locations fully identify the network
environment of a component. The aforementioned approaches have improved the
formal understanding of the complex mechanisms underlying network aware-
ness. For instance, the problem of modeling resource access control of highly
distributed and autonomous components has been faced by exploiting suitable
notions of type [19, 30, 9, 13]. The growing demands on security have led to the
development of formal models that allow specification and verification of crypto-
graphic protocols (see [1, 46, 24, 37, 16] to cite a few). Indeed, the real challenge is
to formally understand which are the features of an integrated security model for
WAN applications. Wide Area Network applications integrate different comput-
ing environments having different security requirements. Moreover, the applica-
tion security policy maker cannot decide with full knowledge of the current state
of the application. Any realistic approach will have to identify which portion of
the state of the WAN application is potentially relevant and may affect or be
affected by security policy decisions. Interestingly, the notion of QoS briefly out-
lined above may help to investigate the proper trade-off between expressiveness
and security concerns (some preliminary results can be found in [17]). However,
a foundational model dealing with all these facets of network awareness is still
missing.

Mobility

Mobility provides a suitable abstraction to design and implement WAN appli-
cations. The main breakthrough is that WAN applications may exchange active
units of behavior and not just raw data. The usefulness of mobility emerges
when developing both applications for nomadic devices with intermittent access
to the network (physical mobility), and network services having different access
policies (logical mobility).

Mobility has produced new design patterns [27] other than the traditional
client-server paradigm:

– Remote Evaluation: the code is sent for execution to a remote host;
– Code On-Demand : the code is downloaded from a remote host to be executed

locally;



– Mobile Agents : processes can suspend their execution and migrate to new
hosts, where they can resume it.

Among these design paradigms, Code On-Demand is probably the most
widely used (e.g. Java Applets). The mobile agent paradigm is, instead, the
most challenging since:

– an agent, in order to run, needs an execution environment, i.e. a server that
supplies resources for execution;

– an agent is autonomous : it executes independently of the user who created
it (goal driven);

– an agent is able to detect changes in its operational environment and to act
accordingly (reactivity and adaptivity).

Another interesting feature of mobile agents is the possibility of executing
disconnected operations [42]: an agent may be remotely executed even if the
user (its owner) is not connected; if this is the case, the agent may decide to
“sleep” and then periodically try to reestablish the connection with its owner.
Conversely, the user, when reconnected, may try to retract the agent back home
(i.e. instruct the remote agent to return its home site).

In addition to this scenario, ad hoc networks [15] allow connection of nomadic
devices without a fixed network structure. Finally, the shift from client-server
to peer-to-peer architectures (e.g. Napster and Gnutella) has introduced a new
pattern for internet interaction where information is shared among distributed
components and changes dynamically.

Clearly, a formal characterization of the key concepts involved in the devel-
opment of mobile applications (e.g. QoS, adaptability, resource discovery) is a
major concern from a software engineering perspective.

Programming languages and systems provide basic facilities for mobility. A
well known example is the Java programming language. Another interesting ex-
ample is provided by Oracle [41], which supports access to a database from a
mobile device by exploiting a mobile agent paradigm. However, current tech-
nologies provide only limited solutions to the general treatment of mobility.

At a foundational level, several process calculi have been developed to gain
a more precise understanding of distribution and mobility. We mention the Dis-
tributed Join-calculus [26], Klaim [18], the Distributed π-calculus [31], the Am-
bient calculus [12], the Seal calculus [14], and Nomadic Pict [48]. Other founda-
tional models adopt a logical style toward the analysis of mobility. MobileUnity

[38] and MobAdtl [22] are program logics specifically designed to specify and
reason about mobile systems exploiting a Unity-like proof system. Spatial logic
[11, 10] allows one to specify properties on both the spatial dimension and the
temporal dimension of WAN applications.

Coordination

Wide Area Network applications are highly decentralized and dynamically re-
configurable. Hence, they should be easily scalable in order to manage addi-



tion/removal of services, subnetworks and users without requiring to be recon-
figured. Coordination is a key concept for modeling and designing WAN appli-
cations. Coordination principles separate the computational components from
composition modules called coordinators which glue together components. Co-
ordinators are therefore the basic mechanism to adapt components to network
environment changes, to discover resources, to synchronize activities, and so on.
For instance, coordinators are in charge of supporting and monitoring the execu-
tion of dynamically loaded modules. Moreover, coordinators are able to observe
evolutions, and therefore they may react to an action by modifying themselves.
Finally, coordination policies must be programmable to meet the evolving com-
position demands and to accommodate the design and the implementation of
open systems. Two recent examples of coordination middlewares for WAN pro-
gramming are represented by Jini and .NET Orchestration, proposed by Sun and
Microsoft, respectively. The distinction between computation and coordination
is also at the basis of the research on software architectures [44].

Many approaches to coordination are based on the Linda model [28] which
proposes the structure of tuple space as the mechanism to represent the envi-
ronment of applications. Experimental programming languages and middlewares
have been designed following this metaphor [4, 43]. Some preliminary results on
defining a discipline for orchestrating web services are outlined in [2]. The
approach is based on the idea of separating web service providers from con-

tract mechanisms (also known under the name of connectors), which regulate
web service coordination. Coordination laws which characterize transactional

mechanisms in the context of distributed middleware have been presented in [8].

Research about coordination languages and models has improved the formal
understanding of dynamically adaptable mobile components. However, the def-
inition of the right level of abstraction coordination and the choice of suitable
constructs to program crucial policies such as adaptation, loading and security
require further research.

3 Hypergraph Synchronization

This section briefly reviews the notion of hypergraph as presented in [33]. First the
definition of hypergraph is given, then hypergraph rewriting systems, transitions

and productions are introduced. Finally, we give an informal description of how
productions are applied to hypergraphs in order to rewrite them.

We assume that N is an ordered set of nodes. A hypergraph has a set of nodes
and a set of hyperedges connected to the nodes.

In a traditional graph, an edge connects two nodes; instead, a hyperedge con-
nects a set of nodes. Intuitively, an edge can be thought of as representing a
binary relation between two nodes, while a hyperedge represents a relationships
among many nodes. We write L(x1, ..., xn) to indicate an edge labeled L con-
necting nodes x1,..., xn. The rank of an hyperedge is the number of nodes that
it connects, hence we say that the L above has rank n (written as L : n) and



that L has a tentacle for each xi; nodes x1, ..., xn are the attachment nodes (or
attachment points) of L.

Hypergraphs are described as syntactic judgments of the form Γ ` G. In a
syntactic judgment, Γ ⊆ N is a set of nodes representing the external interface
of the graph, namely the attachment nodes toward the environment. We shall
call external nodes of the graph the nodes in Γ . Term G is generated by the
following grammar

G ::= nil

∣

∣

∣
L(x)

∣

∣

∣
G|G

∣

∣

∣
ν y.G.

The above productions permits generating the empty graph (represented by nil),
single edges (using L(x)) composing terms in parallel (via G | G) and hiding
nodes (through ν y.G). The nodes in G which are in the scope of ν operator
are called bound nodes; let bn(G) and fn(G) respectively denote the set of the
bound and free nodes of G (the nodes of G which are not bound). A judgment
Γ ` G is legal if fn(G) ⊆ Γ .

Hereafter, hypergraphs, hyperedges or hyperarcs will be simply called graphs,
edges, respectively.

A graph rewriting system, G = 〈Γ0 ` G0,P〉, consists of a graph and special
transitions which we call productions . A transition is a logical sequent

Γ1 ` G1

Λ,π
> Γ2 ` G2. (1)

where Λ ⊆ Γ1 × Act × N ∗ is a set of constraints and π : Γ1 → Γ1 is a fusion

substitution1; both Λ and π are detailed below. The set of actions Act is used
to model synchronized rewriting. We associate actions to (some of) the nodes
of Γ1 ` G1, via Λ. In this way, each rewrite of an edge must synchronize its
actions with one or more of its adjacent edges; thus, in general, more that one
participants will move: the number depends on the synchronization policy.

Transition (1) above rewrites Γ1 ` G1 into Γ2 ` G2 whenever the set of con-
straints Λ is satisfied and the fusion substitution π is applied.
If (x, a, y) ∈ Λ then all edges in G1 that have a tentacle connected to x partici-
pate to the synchronization. They must satisfy condition a that will depend on
the chosen synchronization algebra. The nodes in y are the nodes of the con-
straint; we let n(Λ) denote the union of all such nodes in Λ.
Let us now consider the structure of the right hand side of sequent (1).
Γ2 = π(Γ1) ∪ n(Λ); it consists of the free nodes of G1 as transformed by π and
the new nodes used in the synchronization. In general, G2 may be any graph
whose free nodes are in Γ2.

We impose two further conditions on transitions, namely we require:

1. ∀x, y ∈ Γ1.π(x) = y ⇒ π(y) = y, so that π induce a partition on Γ1, where
all nodes in an equivalence class are mapped to a representative element of
the class.

2. n(Λ)∩Γ1 ⊆ π(Γ1), i.e. the nodes in fn(G1) used in the synchronization have
to be representative elements induced by π.

1 We often omit the fusion substitution in transitions when it is the identity.



A production is a transition of the form

set(x) ` L(x)
Λ,π

> Γ ` G

where L is an edge label of rank n and x is a n-tuple of nodes with set(x) the
set of nodes appearing in x.

Synchronized edge replacement is obtained using graph rewriting combined
with constraint solving. More specifically, we use context-free productions la-
beled with actions for coordinating the simultaneous application of two or more
productions. Coordinated rewriting allows the propagation of synchronization
all over the graph where productions are applied. Determining the productions
to be synchronized at a given stage corresponds to solving a distributed con-
straint satisfaction problem [39]. In [32, 33, 21] synchronized graph rewriting has
been employed to model mobility. There constraint satisfaction amounts to uni-
fication. In the present paper (see Section 4.5) an example is given where the
constraints represent shortest path requirements for the routers.

A production rewrites a single edge into an arbitrary graph. A production
p = (L → R) can be applied to a graph G yielding H if there is an occurrence
of an edge labeled by L in G. Graph H is obtained from G by removing the
previously matched edge and by embedding a fresh copy of R in G by coalescing
its external nodes with the corresponding attachment nodes of the replaced edge.

A derivation is obtained by starting from the initial graph and by executing a
sequence of transitions, each obtained by synchronizing possibly several produc-
tions. The synchronization of a rewriting rule requires matching of the actions
and unification of the third components of the constraints Λ. After productions
are applied, the unification function is used to obtain the final graph by merging
the corresponding nodes.

Given a graph rewriting system 〈Γ0 ` G0,P〉, the set T (P) of possible tran-
sitions is obtained from the productions P using four inference rules. We refer
to [21] for a complete presentation of our graph rewriting system.

4 The Ambient Calculus

This section outlines the application of the graph synchronization framework
to the Ambient calculus. We will not consider the whole calculus, but only a
simple fragment since we aim at presenting the key ideas of the approach. The
interested reader if referred to [21] for a detailed presentation.

4.1 The calculus

The Ambient calculus relies on the notion of ambient that can be thought of as
a bounded environment where processes interact. The syntax of Ambient is2

P ::= a[P ] | P | Q | M.P
M ::= in a | out a | open a | M.M

2 We consider a fragment of Ambient without communication and restriction.



An ambient process is written as a[P ] and represents a “place”, called a,
containing a process P . P is made of the parallel composition of processes
and subambients or it is prefixed with a sequence of capabilities M . An exam-
ple of ambient together with an intuitive graphical representation are given below

a[in c.P | b[Q]] | c[R]

in c.P

a

Q R

c

b

Processes exploit capabilities to control ambient interactions.
For instance, the in-capability in the previous example, allows the (pilot)

process to drive a inside c in accordance with the following reduction

a[in c.P | b[Q]] | c[R] → c[R | a[P | b[Q]]]

c

R
    P

a

Q

b

Dually, the out-capability makes a process to drive its surrounding ambient a
outside the ambient containing a:

b[a[out b.P | Q] | R] → b[R] | a[P | Q].

The semantics of the open prefix is defined by the following reduction:

open a.P | a[Q] → P | Q.

4.2 Graph representation of Ambient calculus

The Ambient calculus can be casted in our graphical framework preserving the
semantics of processes. We do not entirely report the translation which is detailed
in [21] and limit our attention to the following translation:

[[ 0 ]]x = x ` nil
[[ a[P ] ]]x = x ` ν y.(G | n(y, x)), if y 6= x ∧ [[ P ]]y = y ` G

[[ in a.P ]]x = x ` Lin a.P (x)
[[ P1|P2 ]]x = x ` G1 | G2, if [[ Pi ]]x = x ` Gi, where i = 1, 2.

(We have ignored translation of out- and open-capabilities.) The above equations
introduce the mapping [[ P ]]x that returns a graph whose (only) free node x
corresponds to the root of the ambient process P .

The first equation defines the translation of the deadlocked process 0; its
corresponding graph has an isolated node. The graph of a[P ] with free node x
is obtained by constructing the graph of P on node y, attaching it to the edge
a(y, x) and restricting y; note that the ambient name a is interpreted as an edge
from y to x labeled a. The capability in a.P is directly represented by edges
labeled by in a.P . The parallel composition P1 | P2 is obtained by making the
graph of P1 and P2 to share their root node x.



4.3 Graph semantics of Ambient calculus

There are two kinds of productions: activity productions , and coordination pro-

ductions . The activity productions describe the evolution of sequential processes
of the form M.P , which, in our approach, become edge labels: when an action is
performed, an edge labeled by M.P is rewritten as the graph corresponding to P .
For each production, we give both the sequent and its graphical representation.
When (x, µ, 〈y〉) ∈ Λ, node x in the right member is labeled by µ, 〈y〉.

The activity production of an in capability has the form

Lin a.P
// ◦ +3in a

x
[[ P ]]x x ` Lin a.P (x)

{(x,in a,〈〉)}
> [[ P ]]x.

Coordination productions describe ambient interactions. In particular, coor-
dination productions define which are the complementary actions that ambients
must perform in order to fire the required synchronization. For instance, the
coordination productions for the in capability are given as follows.

(input1 )

◦
y

◦
x

in a
b // ◦

y

input a, z
+3 ◦

x
b

))RRRRRR

◦
z

x, y ` b(x, y)
{(x,in a,〈〉),(y,input a,〈z〉)}

> x, y, z ` b(x, z)

(input2 )

◦
x

a // ◦
y

input a, x
+3 ◦

x
a // ◦

y

x, y ` a(x, y)
{(y,input a,〈x〉)}

> x, y ` a(x, y)

Production (input1 ) asserts that when a process inside b wants to drive b in
an ambient a, then the destination of b will become the new node z. Produc-
tion (input2 ) controls the entrance of an external process inside ambient a: this
production simply passes the source x of a to the entering process.

4.4 Example

We now show the correspondence between reductions in the Ambient calculus
and the corresponding graph transitions. Let us consider the ambient reduction

b[in a.P | Q] | a[0] → a[b[P | Q]]

where P and Q are sequential processes. Intuitively, a system evolution should
be of the form (we represent the restricted nodes with • and the free nodes with



◦)

◦
x1

◦
x1

b

??����
a

__????
a

__????

• •
{(x1,τ,〈〉)}+3 •

Lin a.P

??���
LQ

__???

b

??����

•

LP

??���
LQ

__???

(2)

The picture on the left is the graphical representation of [[ b[in a.P | Q] | a[0] ]]x1
,

while the rightmost picture is [[ a[b[P | Q]] ]]x1
.

Transition 2 will indeed be the result of a two-stages procedure:

1. the initial graph is decomposed into its constituent edges; for each edge, the
productions of the edge are considered,

2. external nodes of each component are fused together in order to obtain the
initial graph again; however, in this phase the productions determined in the
previous step are synchronized.

First we decompose the graph in its elementary edges and determine the
productions that correspond to the elementary components of the transition.

x1, y1 ` b(y1, x1)

{

(x1, input a, 〈z1〉),
(y1, in a, 〈〉)

}

,id

> x1, y1, z1 ` b(y1, z1) (3)

y2 ` Lin a.P (y2)
{(y2,in a,〈〉)},id

> y2 ` LP (y2) (4)

x2, z ` a(z, x2)
{(x2,input a,〈z〉)},id

> x2, z ` a(z, x2) (5)

y3 ` LQ(y3)
∅,id

> y3 ` LQ(y3) (6)

Transitions (3) and (5) are instances of the coordination productions (input1 )
and (input2 ), respectively; transition (4) is the activity production of in a.P and
transition (6) is the identity transition that leaves LQ idle.

Graphically, we have:

◦
x1

input a, z1 ◦
x2

input a, z ◦
x1

◦
z1

◦
x2

b

??����
a

__????
b

??����
a

__????

◦y1in a ◦ z +3 ◦y1 ◦ z

◦ y2in a ◦ y3 ◦y2 ◦ y3

Lin a.P

??���
LQ

__???

LP

??���
LQ

__???



The previous graph represents the transition obtained by collecting the produc-
tions (3), (4), (5) and (6). Let

G1 = b(y1, x1) | a(z, x2) | Lin a.P (y2) | LQ(y3)
G2 = b(y1, z1) | a(z, x2) | LP (y2) | LQ(y3)
Γ = {x1, x2, y1, y2, y3, z}

then, in terms of sequents we have:

Γ ` G1















(x1, input a, 〈z1〉),
(x2, input a, 〈z〉)
(y1, in a, 〈〉)
(y2, in a, 〈〉)















,id

> Γ, z1 ` G2 (7)

The synchronization of these productions provides the fusion of the nodes in
order to obtain a graph of the same shape of the ambient process. Let σ be the
function that behaves as the identity on all nodes different from x2, y2 and y3

and

σ :







x2 7→ x1

y2 7→ y1

y3 7→ y1

that determines Λ′ = {(x1, τ, 〈〉), (y1, τ, 〈〉)} and ρ : z1 7→ z and the transition

x1, y1, z ` σ(G1)

{

(x1, τ, 〈〉),
(y1, τ, 〈〉)

}

,id

> x1, y1, z ` ρ(σ(G2))

that is graphically represented as

◦
x1

◦
x1

b

??����
a

__????
a

__????

◦y1 ◦ z

{

(x1, τ, 〈〉),
(y1, τ, 〈〉)

}

+3 ◦ z

Lin a.P

??���
LQ

__???

b

??����

◦y1

LP

??���
LQ

__???

We remark that the above transition requires a synchronization involving three
edges and two nodes: the edges corresponding to in a.P and b (that synchronize
on node y1), and the edges of ambients b and a (that synchronize on node x1).
This makes clear that the in capability of ambients requires the synchronization
of three components. Finally, transition 2 is obtained by applying a rule which
restricts nodes on the left and the right hand side whenever no visible action
occurs on them.

We want to emphasize that the steps of the example above (decomposition-
synchronization) constitute a standard proof technique of our framework. Indeed,
in [21] they have been used to prove a correspondence theorem between the
Ambient reduction semantics and the graph semantics.



4.5 Remote actions and optimal routing

In this Section we underpin the features of our graph-based model which allows
us to describe and reason about non-functional aspects of WAN programming.
We specify the productions of an extended in a capability that permits an am-
bient b to enter a remote ambient a. Furthermore, we sketch how it is possible
to compute and “select” the optimal route to an ambient a by augmenting name
unification with the solution of Bellman-Ford shortest path equations. In [17] a
similar approach has been adopted for a calculus based on Klaim [18] using the
Floyd-Warshall algorithm [23].

Remote actions Productions for in a prefix requires that the moving ambient
has a sibling ambient called a. This “neighborhood” condition reflects the re-
duction rule of the ambient calculus. However, we can relax such requirement
and consider the possibility of having “remote” in a in the sense that the mov-
ing ambient can enter an ambient a that is a sub-ambient of one of its sibling
ambients.

The idea is to add a production (input3 ) that may forward input signals to
its inner ambients

(input3 )

◦ oo
y

input a, z
b ◦

x

input a, z
+3 ◦ oo

y
b ◦

x

◦z

x, y ` b(x, y)
{(x,input a,〈z〉),(y,input a,〈z〉)}

> x, y, z ` b(x, y)

Let us consider the ambient graph

◦ oo b ◦ aoo ◦

c

OO

◦

Production (input3) and the productions in the previous section allow the
evolution whose graph representation is

◦ oo b ◦ aoo ◦

c

OO

◦

Note that c enters a non-sibling ambient a. A similar production would allow to
forward input signals also to outer ambients. Exploiting both productions, an
ambient with an in-capability could enter an ambient labeled a anywhere in the
network.



Optimal routing We consider weighted link edges and router edges ; link edges
represent the connections between sites. Each link edge is labeled with a cost c.
We assume that c is not null. The production schema for a link edge c(u, v) is

◦
u

c + κ′ a, x
c // ◦

v

κ′ a, x
+3 ◦

u
c // ◦

v

◦x

u, v ` c(u, v)
{(u,c+κ′ a,x),(v,κ′ a,x)}

> u, v, x ` c(u, v)

When a link edge c(u, v) finds on v the minimal cost κ′ of a path to an ambient
a, then it “backward” propagates to node u the cost obtained by summing c and
κ′.

A router edge selects the minimal cost between two paths:

◦
ooooou

κ1 a, x1
◦

ooooou

◦
w

κ1 a, x1

µoo +3 ◦
w

µoo

◦

OOOOO
v

κ2 a, x2

◦

OOOOO
v

κ1 ≤ κ2

u, v, w ` µ(u, v, w)















(u, κ1 a, 〈x1〉)
(v, κ2 a, 〈x2〉)
(w, κ1 a, 〈x1〉)















> u, v, w ` µ(u, v, w), κ1 ≤ κ2

The edge µ(u, v, w) propagates to w cost κ1 and node x1, where κ1 is the minimal
cost between the costs κ1 and κ2 of u and v.

Ambient coordination productions are extended with two new productions.
The first production allows an ambient to communicate its name to a router
edge, at zero cost.

◦
x

a // ◦
z

0 a, x
+3 ◦

x
a // ◦

z

x, z ` a(x, z)
{(z,0 a,〈x〉)}

> x, z ` a(x, z)

The production below states that, when an ambient b is asked to enter an am-
bient a from one of its internal processes and the router of b communicates the
continuation x with the minimal cost κ, then b detaches from v and re-connects
itself to x.

◦
u

in a
b // ◦

v

κ a, x
+3 ◦

u
b

&&NNNNN ◦
v

◦
x

u, v ` b(u, v)
{(u,in a,〈〉),(v,κ a,〈x〉)}

> u, v, x ` b(u, x)



It can be proved (similarly to what done in Section 4.4) that the following graph
transition can be obtained.

◦ 3 // ◦ aoo ◦

◦ oo µ

ttttt

JJJJJ ◦

b

OO

◦ 1 // ◦ µoo

ttttt

JJJJJ

◦ ◦ 1 // ◦ aoo ◦

��

◦ 3 // ◦ aoo ◦

◦ oo µ

ttttt

JJJJJ ◦ ◦

◦ 1 // ◦ µoo

ttttt

JJJJJ b
��

◦ 1 // ◦ aoo ◦

Note that the upper-most a is not entered because the path leading to it costs
3, while the bottom-most a has a path cost 2 and has been selected.

5 System Development

In this Section we show how synchronized edge rewriting can be exploited in the
earlier phases of software development. In particular, we will consider UML [40]
specifications and their graph transformation semantics as given in [35]. We first
outline the main ideas of the methodology introduced in [35].

The drive-through example A drive-through can be visited by an ordered set of
clients. Each client has a running number which indicates his/her turn. A client
may submit an order to the drive-through that later will be served. The service
order is established by the running number assigned at visit time.

A UML class diagram describing the main relations among the component
(i.e. the classes) of the system may be depicted as in Figure 1. Other features of
systems are expressed in UML by means of object diagrams that may be thought
of as diagrams describing the state of the system at a given moment. Figure 2
displays an object diagram of a possible evolution of the system described in
Figure 1; a drive-through and three clients have been instantiated. Two of the
clients visit the drive-through and one of them has issued an order. The opera-
tions listed in the class diagram may affect the relations among the objects in a
given state of the system’s evolution. This is captured by transformation rules
related to class diagrams. These rules transforms object diagrams in object dia-
grams. In general, a set of graph transformations is associated to each specified
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Visit

runningnumber: Int

DriveThrough

getorder(c:Client)

serve(c:Client)

drivethrough

visit

client

Client

pay()
eat()
enter(o:Order)

client submit

order

order

Order

tododrivethrough

Fig. 1. UML class diagram

Ada:ClientBob:ClientCher:Client

McD:DriveThrough

Shake:Order

todo

order

client

visitvisit

drivethroughdrivethrough

client

client

order

submit

12

drivethrough

Fig. 2. UML object diagram

operation. Figure 3 illustrates the rule of the serve operation for drive-through
objects. The serve rule expresses that the link between the instance of an order

drivethrough
todo

order

order

submit

client

visit

drivethrough

client

:Order

:DriveThrough

:Client

order

submit

client

visit

drivethrough

client

:Order

:DriveThrough

:Client

Fig. 3. Serve operation

and the instance of the drive-through that processes it is removed when the serve
action is executed.

Dynamic behaviour of the system’s components is described in terms of state

diagrams . State diagrams are associated to classes and describe the state changes
of their objects. They are finite state automata whose transitions are labeled
with an event, a guard and an action. Labels are written as e[g]/o′.e′, where e is
the event that triggers the transition, g is a logic formula specified in OCL [40]



and represents a pre-condition to the firing of the transition. Finally, o′.e′ is the
invocation of the method e′ of object o′.

Figure 4 describes the state diagrams of classes DriveThrough and Client.
The Client diagram details the activity of a client as a cyclic sequence of entering

HasPaid

enter(o)/drivethrough.getorder(self)
ClientLife HasOrdered

eat pay/drivethrough.serve(self)

ReceivedOrderDriveThroughLife

getorder(c)[c=client−>at(1)]/c.pay

serve(c)[c=client−>at(1)]/c.eat

Fig. 4. UML state diagram

an order/asking for the order to be executed, paying/waiting for being served
and eating. When a drive-through must process an order, it checks that the
order has been issued by the client on the top of the stack. In this case, the
client is asked to pay for it and eventually the client is served and can start
eating provided that payment has been performed.

Given a state diagram, it is possible to associate a graph transformation to
each transition of the diagram. For this purpose, we assume that event stacks

are associated to objects. Let us consider a transition t = s
e[g]/o′.e′

// s′ of a state
diagram of class C. We may interpret t as the evolution of each object o in C
whose first event in its event stack is e and the guard [g] is evaluated to true;
transition t also dispatches the event e′ to the event stack of object o′. This
interpretation may naturally be formalized with the graph transformation in
Figure 5 while Figure 6 is an instance of the schema detailed above and describes

s o

x

g

xe

o’y

s’ o

o’e’y

Fig. 5. Graph Transformation of a Transition

the rule corresponding to the serve transition of the drive-through state diagram.



serve(c) x

:DriveThroughReceivedOrder

x

c:Client

y y

:DriveThrough

[c=client−>at(1)]
c:Client

eat

DriveThroughLife

Fig. 6. Transition rule for serve

Roughly, the object transformations represent the global evolution of the sys-
tem caused by the activity of its components, while transitions of state diagrams
represent the local state changes. The graph transformation rules corresponding
to those different facets of system evolution must be mixed together in order
to obtain the so called integrated rules. In the case of the serve rules, we have
Figure 7.

serve(c) x x

y eat

c:Client

y

drivethrough

todo

order

ReceivedOrder :DriveThrough

[c=client−>at(1)]
:Order

order

submitclient

visit

drivethrough

client

c:Client

DriveThroughLife

:Order

order

submitclient

visit

drivethrough

client

:DriveThrough

Fig. 7. Integrated rule for serve

Notice that the rule above do not specify some crucial aspects of the specifi-
cation. For instance, the integrated rule of Figure 7 does not describe howthe eat
event is pushed on the event stack of the client. In other words, the interactions
between the client and the drive-through remain at the abstract level of method
invocation, without being “network aware”.

5.1 Formal specification with edge replacement

In this section we describe how it is possible to associate productions of our cal-
culus to the graph transformation rules given previously. We aim at showing the
use of edge synchronization to formalize the issues that in the above specification
have not been considered.



We consider three different forms of edges; events, controls and objects. They
are graphically represented as

◦u

e

��
◦v

◦xe

s

��
◦xg

◦
99

99

xe

◦

��
��

v

◦xg o

����
��

��9
99

9

◦
y1

· · · ◦
yn

We assume that an edge label e does exist for each event e, and that a control
edge exists for each state in a state diagram. Similarly, an object edge exists
for each class in the UML specification. Edge e has two nodes such that a stack
may be formed by merging node u of an edge labeled by e with a node v of
another event edge. However, v nodes may also be fused with v of object edges.
A control edge has two nodes. Node xe is used to acquire the actual event from
the object edge, while node xg is used for checking guard satisfaction. These
nodes are fused with the corresponding nodes of an object edge. An object edge
has nodes for synchronizing with its control and event edges but also nodes
y1, ..., yn for connections with other objects according to the UML class diagram
of the system.

Event edges must be popped when they synchronize with objects, and they
must be pushed on the existing stack when they are created. Thus event edges
have two productions; the first synchronizes with objects sending to them the
event name. After the transition, the edge disappears and reconnects the rest of
the stack with the v node of the corresponding object by fusing u and v. The
second reacts to a “push” message:

◦
u

e // ◦
v

e 〈〉

u=v +3 ◦
u = v

◦
u

e // ◦
v

push 〈u′〉
+3 ◦

u
e // ◦

u′

◦
v

Note that the event that receives a push synchronization shifts back and fuses the
v′ node with the v node of the relative object edge. We remark that the previous
productions are obtained by considering the intended semantics of event stacks
in the UML specification. Moreover, productions for control and object edges
may be derived from the UML class, object and state diagrams in a uniform
way.

Let us consider the rules for serve in Figure 3 and 6. The following productions
describe the evolution of each component of the system in terms of hypergraphs.



◦

HH
HH

HH
Hxe

serve(c) 〈〉
◦ v

serve(c) 〈〉
◦;;

vv
vv

vv
v xo

◦

II
II

II
I

xe

◦
v

◦xo
◦
u′

◦xg

client→at(1) 〈〉
DT

��

+3 ◦xg DT ′

��

eat

��
◦o′ ev 〈u′, v′〉 ◦o′ ◦ v′

◦

FF
FF

FF
Fxe

◦v′

push 〈u′〉
◦;;

xx
xx

xx
x

x′

o ◦

FF
FF

FF
Fxe ◦ v′ ◦;;

xx
xx

xx
x

x′

o

◦xg
c

��

+3 ◦xg c

��
◦o′ ev 〈u′, v′〉 ◦o′

◦
xe

serve(c) 〈〉
ReceivedOrder // ◦

xg

client→at(1)
+3 ◦

xe

DriveThroughLife // ◦
xg

The first production states that an object edge DT that receives an event
’serve(c)’ on the node corresponding to the event stack, evaluates the guard
’client→at(1)’ and forwards the signal together with the evaluated guard to
its control edge. It also sends the new event ’eat’ on the node o′ connected
to the client; this is obtained by passing to the client object the nodes of the
’eat’ event. As stated before, guards are expressed as OCL formulas; however,
we do not model how they can be mapped into graphs and how they can be
evaluated using edge replacement. The second production is the complementary
rule of the previous production: when the client object receives the ’eat’
event, it pushes the event and its stack. The last production states that the
control edge ’ReceivedOrder’ changes its label to ’DriveThroughLife’ when the
’DriveThrough’ object signals the ’serve(c)’ event and the verification of the
corresponding guard ’client→at(1)’.

The productions introduced above guarantee that it is possible to obtain a
transition which is equivalent to the integrated graph transformation in Figure 7.

In order to make the stack of events properly work, it is necessary to have
an edge that manages the empty stack and allows an object edge to synchronize
on push action only.

void // ◦
push 〈u′, v′〉

v
+3 void // ◦

u′

◦
v

The edge behaves as an event edge that receives a push signal and, after the
transition, it is connected to the node u′ that is the last node of the stack of
events.



The synchronization rules ensure that the following transition can be derived
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◦
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◦
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◦
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e
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◦

llllllllll
x′

g
◦v′ ◦
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o
◦

nnnnnnnnn
x′

g
◦v′ ◦

OOOOOOOO

x′

o

void

OO

void // ◦ eat

OO

Note also that the proof technique used to obtain it is as described in Section 4.4.

6 Conclusions

This paper has introduced a formal model for specifying and designing Wide
Area Network applications. The novelty of our proposal is given as the combi-
nation of the following ingredients:

– the graphical notation is designed to deal with distribution;

– mobility is obtained via local synchronization constraints and their solution
using unification;

– the declarative approach based on constraints can be extended to quantita-
tive QoS requirements, e.g. to Bellman-Ford equations for optimal routing.

We showed the applicability of the approach by considering two illustrative
case studies. Indeed, we gave an interactive distributed semantics for the Ambi-
ent calculus. Moreover, our framework permits extending the Ambient calculus
with capabilities for remote interaction in a straightforward manner. Finally,
we outlined a technique to refine UML specifications to include explicit syn-
chronization among components which have to reconfigure their connections to
accomplish a state change.
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