
International Journal of Information Security manuscript No.
(will be inserted by the editor)

Andrea Bracciali · Gianluigi Ferrari · Emilio Tuosto

A symbolic framework for multi-faceted security protocol
analysis

Abstract Verification of software systems, and security
protocol analysis as a particular case, requires frame-
works that are expressive, so as to properly capture the
relevant aspects of the system and its properties, formal,
so as to be provably correct, and with a computational
counterpart, so as to support the (semi-) automated cer-
tification of properties. Additionally, security protocols
also present hidden assumptions about the context, spe-
cific subtleties due to the nature of the problem and
sources of complexity that tend to make verification in-
complete.
We introduce a verification framework that is expressive
enough to capture a few relevant aspects of the problem,
like symmetric and asymmetric cryptography and multi-
session analysis, and to make assumptions explicit, e.g.
the hypotheses about the initial sharing of secret keys
among honest (and malicious) participants. It features
a clear separation between the modeling of the protocol
functioning and the properties it is expected to enforce,
the former in terms of a calculus, the latter in terms of
a logic. This framework is grounded on a formal theory
that allows us to prove the correctness of the verification
carried out within the fully-fledged model. It overcomes
incompleteness by performing the analysis at a symbolic
level of abstraction, which, moreover, transforms into ex-
ecutable verification tools.

Andrea Bracciali
Dipartimento di Informatica, University of Pisa
Largo B. Pontecorvo 3 - 56100 Pisa IT
Tel.: +39 050 2212743, Fax: +39 050 2212726
E-mail: braccia@di.unipi.it

Gianluigi Ferrari
Dipartimento di Informatica, University of Pisa
Largo B. Pontecorvo 3 - 56100 Pisa IT
Tel.: +39 050 2212766, Fax: +39 050 2212726
E-mail: giangi@di.unipi.it

Emilio Tuosto
Computer Science Department, University of Leicester
University Road, LE1 7RH Leicester UK
Tel.:+44 (0) 116 252 5392, Fax.:+44 (0) 116 252 3915
E-mail: et52@mcs.le.ac.uk

Keywords formal verification · security protocols ·
symbolic model checking · automated verification tools.

1 Introduction, motivations and related work

Security protocols are designed to keep secret pieces of
relevant information within a context where some actors ,
called principals , communicate through public channels .
Keeping secrets has a very broad sense, subsuming for
instance confidentiality, non-modifiability or authentic-
ity of the information itself, as well as the certification of
the identity of the principals and their privileges. Princi-
pals, which might be software components or customers
and their network services, perform a sequence of com-
munications, often informally specified as a short list of
point-to-point interactions, in order to enforce a desired
security property. Since communication happens through
public channels, it is not possible to guarantee that the
exchanged messages are not accessed, manipulated or de-
stroyed by third parties, called intruders. Security proto-
cols based on cryptographic mechanisms such as encryp-
tion, digital signatures, and hashing have been widely
adopted in distributed systems. Well-known examples in-
clude Kerberos authentication scheme for handling pass-
words and the Secure Socket Layer for internet commu-
nications. Other application domains such as web ser-
vices are currently emerging.

The design and use of cryptographic protocols is er-
ror prone even if perfect cryptography is assumed. De-
spite their apparent simplicity, the analysis of security
protocols is basically intractable [30,22,21,26,55]. For
instance, since the intruder can intercept, analyse, and
modify the messages exchanged among principals, check-
ing the correctness of the protocol requires the analysis
of the potentially infinitely many different behaviours of
the intruder. This calls for verification models that are
grounded on solid formal settings. Considerable success
has already been achieved in the past years in approach-
ing security protocol analysis and a variety of formal
models and reasoning techniques have been developed to

2 Andrea Bracciali et al.

specify and verify their properties, (see [20,42,53,51,32,
10,12,13,36,4] to cite a few). Many of these approaches
have led to the development of automated verification
toolkits. For instance, finite-state model checking tech-
niques have been exploited in the design and implemen-
tation of automated tools [42,25,50]. The use of pro-
cess calculi as formal specification languages for security
protocols dates back to [42], where CSP has been suc-
cessfully adopted for specifying and verifying the well
known Needham-Schroeder public key protocol [52]. This
result, achieved after about 20 years from the defini-
tion of the protocol, paradigmatically shows the needs
for (automated) formal verification. In [34,33] proper-
ties are verified by checking bisimulations among pro-
tocols specified with a cryptographic version of CCS.
To avoid state explosion, some approaches make some
simplifying hypotheses on the underlying model. For in-
stance, they assume a bound on the size of the messages
synthesised by the intruder. Other techniques are based
on symbolic models. These approaches address verifica-
tion issues without making simplifying hypotheses on the
formal model as far as the behaviour of the intruder is
concerned, e.g., [5,3,13,4,61,18,15,1,38,17]. The advent
of spi calculus [2] has made possible the convergence of
two lines of research: symbolic analysis of security pro-
tocols [38] and symbolic semantics of process calculi [37,
16]. Symbolic techniques have been widely exploited in
the last years for verification purposes. For instance, the
state explosion problem of model checking can be faced
by means of abstractions, so as to avoid using concrete
representations of the state space in favour of smaller,
abstract ones that preserve the property of interest [24].
Verification of cryptographic protocols has also adopted
these ideas for reducing the state space, notably [13,
15] have adopted symbolic semantics for process alge-
bras for trace analysis of security protocols, in [3] a sym-
bolic reachability analysis has been described (improv-
ing ideas from [38]), and constraint differentiation [10]
reduces the state space by removing some redundancies
arising in symbolic state spaces. Hence, the verification
of security protocols is being carried out on a substantial
scientific basis, witnessed by the great number of success-
ful research approaches to (semi-)automatic verification.
However, correctness of security protocols depends on a
fairly wide range of assumptions and factors upon which
protocols rely on. To mention a few of these facets, con-
sider the underlying cryptographic system, the intended
sharing of secrets, the class of properties to be enforced,
and the intruder model. The development of a soundly
based framework, capable of uniformly handling the full
range of issues that arise in the designing, specification
and verification of security protocols is still an open and
challenging research problem.

This paper presents a formal verification framework
and the corresponding verification methodology with the
aim of uniformly handling some of the above mentioned

facets. More precisely, our approach features, in a co-
herent verification framework, (i) a clear separation of
the specification of the protocol from the specification
of its properties, (ii) the precise specification of the ini-
tial conditions of protocol executions, (iii) the automatic
treatment of multi-sessions, (iv) the possibility to ex-
press properties abstractly by means of quantification
over sessions. These features, together with the solid for-
mal framework and the related supporting tools, lead to
a versatile verification methodology.

We envisage a security protocol as an open system
where principals may dynamically join and interact in
multi-session runs of the protocol. Multi-session runs are
modelled as the possibility of distinguished copies of the
same principal, called principal instances, to participate
in a set of concurrent executions of the protocol, called
a session. The intruder, modelled as the environment,
may “interfere” with all the communications taking place
in the session. The interpretation of protocols as open
systems is similar to the one in [45], where openness is
represented by a non-completely specified and extensible
context, the principals are expressed in the CCS calculus
(equipped with cryptographic primitives) and properties
are given in a suitable logic. Similarly, our formal frame-
work consists of a calculus to describe the instances of
principals and a logical formalism to express the security
properties to be checked, clearly separating the descrip-
tions of the behaviour and of its expected effects.

The calculus, called cryptographic Interaction Pat-
terns, cIP for short, is a nominal calculus along the line
of the spi-calculus [2]. The operational semantics of cIP
formally models the Dolev-Yao intruder model. In Sec-
tion 4.3 we discuss other models, which the cIP semantics
can be smoothly adapted to.

The logical formalism, called PL logic, after Protocol
Logic, predicates over messages exchanged by the prin-
cipal instances and over the “presumed” identities of the
instances. An original aspect of PL is that it can pred-
icate over protocol sessions, by universally and existen-
tially quantifying over principal instances. This accounts
for formally defining a wide variety of security properties,
like authentication that has been naturally defined in
terms of relations amongst instances [44] (in Section 5.1
a more detailed account of the expressiveness of PL is
given).

Formulas of PL are checked against the semantic
model of cIP. More precisely, the infinite branching of cIP
models is undertaken by a symbolic version of the seman-
tics and PL formulas are checked on symbolic models.
Symbolic verification has been proved sound and com-
plete. Relying on these results, the methodology is prop-
erly supported by a fully-implemented model-checker,
called ASPASyA (Automatic Security Protocol Anal-
ysis via a SYmbolic model checking Approach).

The results illustrated in this paper revise and extend
results firstly appeared in [61,18]. This paper mainly
focuses on the theory underlying the framework. The

A symbolic framework for multi-faceted security protocol analysis 3

related verification methodology is briefly described in
Section 10 and the reader interested in the practical ex-
perimentation is referred to [9,8]. The most relevant as-
pects of protocol verification that are dealt with and the
features of the presented framework can be outlined as
follows.

– Explicit statement of the intended initial conditions.
Distinguishably, the cIP calculus provides linguistic
mechanisms to explicitly state which keys and other
relevant information can be acquired by any principal
when it (dynamically) joins a protocol session. This
mechanism is based on the introduction of a distin-
guished set of variables subject to late-binding mech-
anisms, called open variables. Open variables are the
formal device exploited to represent the intended key
sharing and other initial conditions. This can be done
explicitly, left to exhaustive automated verification,
or subject to constraints expressed as PL formulas,
called connection formulas. These, by constraining
open variables, and hence the set of admissible ses-
sions, allow the analysis to be focused on the (initial)
conditions of interests. For instance, one might rule
out the case of a server accessed by more instances
of the same principal by means of a suitable connec-
tion formula over the open variables modelling the
server connections. In place of this versatile mecha-
nism, most of the other approaches require the hand-
coding of the intended key sharing for each (differ-
ent) protocol formalisation or even lack of an ex-
plicit statement of it. Open variables and the join
mechanism, together with the use of PL formulas as
connection constraints, can be properly interpreted
as a coordination mechanism for open systems. In
this respect, they distinguish our approach from the
one in [45], also based on a similar interpretation of
protocols as open systems. Using strand spaces [60,
32], the approaches in [58,49] express properties in
terms of connections between strands. A strand can
be parameterised with variables and a trace is gener-
ated by finding a substitution for which an interac-
tion graph exists. These approaches provide devices
very similar to our join mechanism but they lack the
possibility of constraining connections among princi-
pal instances. Finally, also the intruder power can be
explicitly tuned by providing it with an initial knowl-
edge about the protocol, e.g., a compromised key if
one wants to test protocol robustness.

– Multi-session verification. Many known attacks are
based on the exploitation of information coming from
different executions of the same protocol. Sessions
are explicitly modelled, in terms of both the distin-
guished linguistic primitives of cIP and the PL logic,
with the quantification over principal instances. Al-
though verification is bounded in the number of dif-
ferent instances in a session, this allows us to spec-
ify properties independently of the (fixed) number
of instances to be tested, while other approaches,

e.g. [15,62], require properties to be specified, if not
hand-coded, for each different multi-run session un-
der verification. Session handling also relies on open
variables, which at the best of our knowledge, are a
specific feature of cIP and there is no corresponding
notion within other similar frameworks. A related ap-
proach, not featuring open variables, is in [27], and it
will be discussed in Section 4.2.

– Separation of concerns. The formalisation of princi-
pals’ behaviour is neatly separated from the proper-
ties it is intended to enforce. Methodologically, and
similarly to the previous point, this appears as a rele-
vant enhancement allowing orthogonal aspects to be
dealt with separately. Indeed, this is one of the key
features of our framework. Section 10 shows the flex-
ibility of our verification methodology. That is evi-
dent when contrasted with others, e.g. in [62] secu-
rity properties are “embedded” in the protocol spec-
ification and the verification phase just consists of
invoking the verifier. Hence, it is necessary to modify
the protocol representation in order to set different
verification scenarios.

– Adopted crypto-systems. Symmetric and asymmet-
ric crypto-systems are both supported in our frame-
work. Some straightforward extensions to other cryp-
tographic systems are discussed in Section 3, together
with others that appears not viable, since they would
make analysis incomplete.

– Use of symbolic semantics. Symbolic semantics has
been adopted to deal with incompleteness issues. It is
based on unification and represents a sound and com-
plete approximation of the semantics of the frame-
work presented in its full-fledged expressive power.
The most similar use of symbolic semantics is per-
haps the one proposed in [15] for generic crypto-
systems. Our construction is more complex, paying
the price for explicitly treating asymmetric cryptog-
raphy and for having an abstraction that exactly pre-
serves the concrete computations and avoids to con-
struct symbolic messages that have no concrete coun-
terpart. The symbolic semantics in [15] is simpler
and exploits most general unifiers, but it is an (over-
)approximation of the concrete model (from which
the additional spurious behaviours can – and are –
filtered out). Despite the similarities in the symbolic
semantics, the two approaches are, however, quite dif-
ferent with respect to the analysis techniques. In [15]
the analysis proceeds by checking correspondence as-
sertions on the symbolic traces, while our framework
introduces the PL logic. We argue that PL logic
appears to more naturally express and model-check
properties (a detailed comparison of PL logic and
correspondence assertions is given in Section 5.1).

The presented model relies on several technical re-
sults that allow us to state the decidability of the model
checking problem of our logical formalism, which justifies
the verification methodology. A first decidability result

4 Andrea Bracciali et al.

concerns the intruder model, namely the decidability of
message derivation from a finite knowledge for asymmet-
ric cryptography. This result (Theorem 1) complements
an analogous result given in [25] for symmetric cryptog-
raphy. The proof and the issues arising from asymmet-
ric keys let us remark that asymmetric cryptography is
not simply a direct extension of the symmetric case (and
its complication has been sometimes underestimated, see
Sections 3 and Section 6). Even if the result for the sym-
metric case is not spoiled when lifted to the asymmetric
case, it seemed worth giving an explicit construction for
the latter, which was to the best of our knowledge miss-
ing, even if the result is generally accepted and used. The
proof we propose highlights how the similarity between
message derivation and natural deduction exploited in
the proof in [25] cannot be used anymore, basically be-
cause asymmetric decryption is not invertible, and a new
ordering of message derivation rules is needed. Building
on top of this result, we then prove soundness and com-
pleteness of symbolic semantics (Theorems 4 and 5) and
decidability properties for the logic for concrete (Theo-
rem 2) and symbolic semantics (Theorem 8).

After having specified protocol principals as cIP pro-
cesses and the expected properties and PL formulas, the
protocol can be automatically verified by means of the
ASPASyA symbolic model checker. From the method-
ological viewpoint, the separation of concerns amongst
assumptions, specification and properties of protocols al-
lows the definition of a verification methodology where
different facets of security protocols are neatly grasped.
The intruder power and the initial assumptions (as the
sharing of keys and the way principal instances are con-
nected one to another) can be suitably controlled by
means of the explicit declaration of the intruder ini-
tial knowledge and suitable connection formulas. This
is done without modifying neither the protocol or the
property specification. Initial conditions clearly deter-
mine the space of the reachable states, and hence they
can be used to control the portion of the state space
to be explored (see Section 10). Finally, the automatic
verification phase can be iterated easily modifying the
conditions of the experiment, if needed according to the
insights about the, maybe unexpected, behaviour of the
protocol gained in previous iterations (details about the
verification methodology are given in Section 10).

This paper is organised as follows. Security protocols
and their models are briefly introduced before formally
presenting the intruder model, cIP and the PL logic.
Then, the symbolic approach adopted is illustrated, high-
lighting both its finiteness and correctness properties and
how it supports the verification of PL formulas. A con-
crete example of verification, supported by ASPASyA,
is discussed and, finally, some concluding remarks are
drawn.

2 Security protocols and their formalisation

We start by briefly reviewing security protocols and their
basic ingredients so as to fix the context. The inter-
ested reader is referred to [59,46,23] for more compre-
hensive presentations. Moreover, we take the opportu-
nity to point out some issues about the formal modelling
of protocols, to discuss how these have been generally ad-
dressed in the literature and to explain the motivations
that have led us to sometimes opt for different choices.

Cryptography. Cryptography is the process of hid-
ing information by encoding the content of a message
m, called cleartext, in a “secret” format, called cryp-
togram. Given a cryptographic key k, the message m is
encrypted in the cryptogram {m}k and the original in-
formation can be retrieved only by decrypting it by us-
ing a suitable decryption key. Keys are supposed to be
opportunely kept secret between communicating part-
ners, called principals. Cryptographic algorithms, which
are instead public, belong to two main classes: symmet-
ric algorithms and public-key algorithms. In the case of
symmetric algorithms the same key is used for encryp-
tion and decryption. Instead, in public-key algorithms a
pair of distinct keys is associated to each principal. The
public key is publicly available, while the private key is
meant to be known only by the principal itself. The pri-
vate key can decrypt messages encrypted with the public
key and vice-versa. The secrecy of the private key guar-
antees that i) anyone can send a message encrypted with
the public key, however, the message can be decrypted
only by the intended receiver, and ii) anyone can decrypt
a message encrypted with the private key by the prin-
cipal, being therefore certain as to the identity of the
sender. It is worth reminding that the way in which se-
cret keys are off-line or dynamically assigned and shared
is an essential step for determining the identity and the
actual roles played by the principals during the execution
of the protocol.

Protocols. Principals participate into a protocol by
executing a finite number of possibly encrypted commu-
nications. More instances of the same principal can be
interleaved together in a protocol session. We denote
principals by A,B, S, ..., while A− and A+ are the pri-
vate and public keys of a principal A, λ ranges over sym-
metric and asymmetric keys and λ− is its complemen-
tary key (i.e. A+ if λ = A−, A− if λ = A+, and k if
λ = k is a symmetric key), m,n, p, q, o are messages or
nonces (after “name once”: fresh names, e.g. timestamps,
used to mark messages as fresh) and (m,n) is the pair
of messages m and n. A malicious principal that does
not behave according to the protocol, called intruder, is
denoted by I.

Traditionally, protocols have been expressed in an
informal mix of natural language and ad hoc notation,
called narration as:

(1) A→ B : {n}k

A symbolic framework for multi-faceted security protocol analysis 5

“in the first communication, A sends the datum n en-
crypted by the key k toB”. Actually, the precise meaning
of the statement results to be more complex, since many
relevant details are not explicitly described, like that A
and B may be principal instances of interleaved protocol
executions, they are supposed to exclusively share a com-
mon key k and the communication may be intercepted
and altered by an intruder. The framework we are pre-
senting aims at providing the right abstractions to nat-
urally represent such kind of “hidden assumptions”, so
as to ease the error-prone modelling process. Similarly, a
strong effort has been done to keep separate the different
aspects of modelling.

The first problem to be addressed is to define a suit-
able formal representation of the protocol, starting from
its informal description. Since a protocol consists of the
interaction amongst principals, a quite natural choice is
to enrich with cryptographic primitives the formalisms
that have traditionally been used to model concurrency.
Examples exist based, for instances, on Petri Nets and
Process Algebras, other approaches use different tech-
niques, like Strand Spaces [32]. Within Process Alge-
bras, the spi-calculus [2], an extension of the π−calculus
that accounts for cryptography, has emerged as an ac-
cepted standard. The above mentioned communication
can be modelled in spi-calculus by means of a pair of
input/output actions made by different processes:

A
△
= ... c〈{n}k〉 ...

B
△
= ... c(x) . case x of {y}k in ...

where c is a shared channel between A and B. The
message received by B in the input action c(x) is as-
signed to x and then decrypted by using pattern match-
ing: case x of {y}k in This action, when (the value
of) x matches the “structure” of a cryptogram encrypted
with k, instantiates y with the cleartext n for the con-
tinuation of the process.

We have followed the same approach, devising a for-
mal framework that is based on a slightly modified calcu-
lus, adapted so as to more precisely express some features
of interest:

⊲ Focusing on communications within untrusted en-
vironments, we do not consider (private) channels:
communications happens on a single public channel
(not mentioned in the communication primitives) and
can be protected only by cryptography. Indeed, in
spi-calculus restriction over names is used mainly for
keys or nonces, rather than channels, similarly to our
framework where names, e.g. keys, are local. Also,
in [13] channel names are used to determine the prin-
cipal identities, while communications happen on a
single public channel.

⊲ In order to simplify the calculus, cryptography is em-
bedded into communications: the structure of the ex-
pected messages and the decrypting keys used must
be declared in input actions. The message can be ex-
changed and decrypted only if the sent cryptogram

suitably matches the structure of the message de-
clared in the input action. The notion of matching
involves the correspondence of encrypting and de-
crypting keys.

⊲ The open variables of the cIP calculus provide for a
precise representation of the initial sharing of infor-
mation amongst principals. Open variables must be
instantiated before communication can happen and,
by means of suitable instantiations, it is possible to
formally specify the intended sharing of keys as well
as to test specific cases of interest. However, if no
condition is imposed on open variables, protocol ver-
ification can also be carried out against all the pos-
sible initial key sharing. It is important to remark
that open variables are a mechanism to describe ini-
tial conditions, as the sharing of long term symmet-
ric keys or public keys, which are typically managed
off-line and often out of the protocol formalisation.
Besides, each principal instance can locally declare
and then communicate distinguished, i.e. fresh, local
names like session keys and nonces.

In our calculus, the above fragments of processes are
written as

A
△
= (z)[... out({n}z) ...]

B
△
= (w)[... in({y}w) ...]

where the open variables z and w are intended to be
instantiated with the same key k. Only when z = w = k
the sent message {n}k matches the expected pattern
{y}k, the communication happens and y is instantiated
with n, a message freshly generated by A, in the contin-
uation of B. Note the lack of any explicit link from A to
B in this communication.

⊲ A last difference with mainstream calculi a-lá spi-
calculus, is an explicit annotation of principals so as
to distinguish their different instances participating
to a multi-session execution of the protocol. A large
number of known attacks is based on the intruder
playing the part of the man in the middle [42,47],
i.e. it exploits information gathered from one proto-
col execution into another one, greatly enhancing its
competence, and, for instance, cheating about identi-
ties. Hence, a clear specification of how protocol ex-
ecutions can be interleaved and of the security prop-
erties expected after such concurrent runs are neces-
sary, as recognised for instance in [20].

Our approach consists in annotating each principal,
its data and variables, with a fresh index that makes its
identity and communications unique over all the anal-
ysed multi-session protocol. An instance ofA above, once
its open variable have been instantiated, is e.g.,

A3
△
= [... out({n3}k) ...]

Note that the symmetric key k is not a private key of
A3, and, hence has not been annotated. The choice of in-
troducing this annotation is motivated by the relevance

6 Andrea Bracciali et al.

of multi-session analysis (e.g. [47] shows that in princi-
ple is not possible to avoid considering general multi-
sessions, given that analysis limited to a finite number
of sessions may result incomplete). In general, the pro-
posed formalisms for protocol analysis lack of an explicit
abstraction to represent this kind of information, which
is rather coded by hand in the model, for instance by
naming all the different principals involved in the spe-
cific multiple session under analysis. As it will be clear
from Section 5, the treatment of multi-sessions has an
impact on the expressiveness of the logic used to char-
acterise the properties of interest, and on the ease of
the verification process. Indeed, one may wish to express
properties independently of the specific number of in-
stances under considerations, i.e. formulas that may be
universally or existentially quantified over principal in-
stances, like “there exists no principal instance whose
secret keys can be acquired by the intruder”.

The intruder. The verification model, other than
the precise description of principal behaviour, must en-
compass a description of what an intruder is entitled
to do in order to attempt to break the protocol. We
follow a widely accepted model, namely the Dolev-Yao
model [29]. The intruder enhances its knowledge about
the protocol, hereafter indicated as κ, by interfering with
virtually all the communications, with the only limit of
the perfect functioning of the cryptography layer: it can
attempt to violate the protocol in many different ways,
but not guess cryptographic keys.

Security properties. Protocols are designed to en-
force that a desired security property holds after their
execution. Perhaps, the basic requirements to encrypted
communications have been that nobody can read the
secret message, i.e. secrecy, that nobody can corrupt
or even destroy the message, i.e. integrity, that nobody
can impersonate someone else, i.e. authentication. Nowa-
days, security protocols may also be devised in order to
guarantee different kinds of properties, for instance non-
repudiation: nobody can retract a commitment. Though
their informal meaning is widespread understood, for-
malising security properties appears even more difficult
than formalising protocols. This problem is however out
of the scope of this paper. We provide a suitable logic
that captures quite general properties, i.e. those that
have traditionally been subject of extensive verification
in the literature. The logic well fits in the framework,
for instance featuring quantification over principal in-
stances. Following our example, the secrecy of message
n is simply expressed as

∀i : A. κ 6⊲ ni,

that means “any message ni, sent by any instance i of
principal A, does not belong to, i.e. it cannot be derived
from (6⊲), the intruder knowledge κ”. Other properties
can be defined in terms of the messages sent, the rela-
tionships between sending and receiving instances, the

knowledge κ and the way keys are shared. The verifica-
tion of the properties, expressed as PL formulas, against
the protocol behaviour, represented as cIP processes, is
then fully supported by automated tools. Within this
framework, reminding that each instance performs a fi-
nite number of actions and that a symbolic semantics
has been adopted, we will prove that the problem of the
existence of a reachable state in which a property does
not hold, and hence the protocol is violated, is decidable
once that the maximum number of participating princi-
pal instances has been fixed. Such results are based on
extensions of known decidability results that have been
then exploited within the multi-faceted framework we
are presenting.

3 A decidable Intruder model

The behaviour that a malicious principal is entitled to
perform in order to violate a protocol is defined as the
intruder model. We adhere to the very general and ac-
cepted Dolev-Yao model [29]: the intruder acquires a
knowledge κ by interfering with virtually all the com-
munications in the protocol. It can copy, destroy, store
and modify any message sent on the network and send
any message derivable from κ, but cannot guess keys
(perfect encryption hypothesis). Knowledge κ is a finite
subset of the possible messages circulating in a proto-
col and it can grow as long as communications happen.
We describe here the model (implemented in the verifi-
cation environment ASPASyA discussed in Section 10),
outlining also its limitations and possible extensions. A
protocol proved safe against this model gives reasonable
guarantees when executed in a real environment, where
intruders may typically be weaker in some aspects, e.g.
they might not control the whole communication net-
work. An extension of the model, according to which
keys can be guessed up to a given probability, has been
recently studied in [65], showing that with safe (long
enough) keys the two models coincide.

The model has been defined for symmetric and asym-
metric cryptography. The set of exchanged messages con-
sists of a free algebra whose constants are basic messages,
as names, nonces and keys, and the operators represent
pairing and encryption. The intruder can generate an
infinite number of messages by encrypting, decrypting,
pairing and projecting those in its finite knowledge. Sim-
ilarly to other proposals (e.g. [3,15,53,42]), we consider
only atomic keys, while equational theories over messages
are not allowed. Possible extensions to non-atomic keys,
other cryptographic operators or equational theories will
be discussed later on in this section. We first define the
syntax of messages.

Definition 1 (Messages) The set M of ground mes-
sages is defined as:

M ::= PN | K | PN+ | PN− | NO |
{M}K | {M}PN+ | {M}PN− | (M,M)

A symbolic framework for multi-faceted security protocol analysis 7

where PN , K, PN+, PN−, NO represent principal
names, symmetric keys, public and private keys, and
nonces, and { } and (,) are the encryption and pairing
operators respectively.

The intruder can derive from a non-empty κ an infi-
nite set of messages according to the next definition.

Definition 2 (Message derivation) A message m is
derivable from a knowledge κ if and only if κ ⊲ m can
be proved by the following rules

m ∈ κ
κ⊲m

∈
κ⊲m κ⊲ n

κ⊲ (m,n)
()i

κ⊲m κ⊲ λ

κ⊲ {m}λ

{}i

κ⊲ (m,n)

κ⊲m
()e1

κ⊲ (m,n)

κ⊲ n
()e2

κ⊲ {m}λ κ⊲ λ−

κ⊲m
{}e

A message m can be constructively derived from a
knowledge κ, κ⊲im, if and only if κ⊲m can be proved by
means of the constructor introduction rules only, namely
∈, ()i and {}i.

We show, complementing a result by Clarke et al. [25]
about symmetric cryptography, that message derivation
from κ is decidable also for asymmetric cryptography.
This result, although generally accepted and used, was,
at the best of our knowledge, not formalised yet, and
is needed to prove decidability of properties verification
within our multi-session framework. Decidability of ⊲

is proved by reducing it to decidability of constructive
derivations.

Proposition 1 (⊲i is decidable) Given a knowledge
κ and a message m ∈M , κ⊲i m is decidable.

Proof The constructive derivation of a message is mono-
tone (and κ is a finite set). ⊓⊔

The decidability result in [25] relies on the similarity
of message derivation with natural deduction. Indeed,
in both the formal systems, each operator has a com-
plementary constructive and destructive interpretation
that are invertible (i.e. each operator has an introduc-
tion and an elimination inference rule). This allows us to
finitely decompose all the known messages, and then use
their atomic components to monotonically construct any
derivable message from the knowledge (similarly to nat-
ural deduction proofs, where all the constructor elimina-
tion rules can be reordered at the beginning of the proof,
which then proceeds monotonically). Since asymmetric
destruction cannot be inverted, i.e. from {m}A+ and A−

it is possible to obtain m and A−, but not vice-versa,
the same proof cannot be used anymore. We show a dif-
ferent construction for message derivation that, after a
finite set of possibly destructive steps, proceeds mono-
tonically, and hence is decidable. It is based on a “re-
membering” transformation of κ, the e-limination func-
tion, that applies the elimination rules, taking care not

to forget messages that cannot be reconstructed (for the
sake of simplicity, e() is actually defined so as to, redun-
dantly, remember all the messages).

Definition 3 Given a knowledge κ, its explicit form is
e(κ), where function e() takes a knowledge and returns
a knowledge as follows:

e(κ) =

{
e(κ′ ∪ {p, q}) ∪ {m} m = (p, q) ∈ κ
e(κ′ ∪ {n}) ∪ {m} m = {n}λ ∈ κ ∧ λ− ∈ κ
κ otherwise

where κ′ = κ \ {m}.

Proposition 2 e() is well defined.

Proof The proof consists of showing that the function
always terminates and returns a uniquely determined
set (Appendix A.1). ⊓⊔

Finally, decidability of ⊲ can be proved by reducing
derivation from κ to constructive derivation from e(κ).

Theorem 1 (κ ⊲ m is decidable) Let m ∈ M be a
message, and κ a knowledge, then

κ⊲m⇔ e(κ) ⊲i m,

(and hence, by Proposition 1, κ⊲m is decidable).

Proof By induction on the length of the proofs for ⊲ and
⊲i, respectively (Appendix A.2). ⊓⊔

Example 1 Let be κ = {kb, {(no, nn)}A+ , {A−}kb}. We
prove that κ⊲ A− as follows:

{A−}kb ∈ κ

κ⊲ {A−}kb

∈ kb ∈ κ

κ⊲ kb
∈

κ⊲ A−
{}e

Then we show that κ⊲ {no}A−

{(no, nn)}A+ ∈ κ

κ⊲ {(no, nn)}A+

∈
...

κ⊲ (no, nn)
{}e

κ⊲ no
()e1 ...

κ⊲ {no}A−

{}i

where ... stands for the derivation of A− from κ.
Notice that, given the explicit form

e(κ) = {no, nn, kb,A−, (no, nn), {(no, nn)}A+ , {A−}kb},

e(κ) ⊲i {no}A− is proved by using rules ∈ and {}i.

Our intruder model relies upon some assumptions
on the use of keys, mainly adopted to make it decid-
able. Even if a completely unrestricted use of keys may
lead to incompleteness, it is worth discussing to what
extent these assumptions can be relaxed. We will con-
sider admitting non-atomic keys, since they appear in
widespread protocols as SSL 3.0 [35], and equational the-
ories over the algebra of messages. The impossibility of

8 Andrea Bracciali et al.

constructing keys (e.g. λ− ∈ κ in Definition 3) allows
message derivation steps to be suitably reordered as ex-
plained (see also the proof of Theorem 1). The use of
non-atomic keys spoils this reordering strategy, where
all the destructive steps precede the constructive ones.

For instance, κ⊲m, with κ = {{m}
n

︷ ︸︸ ︷
(p,...,p), p}, requires n

constructive steps for deriving the key (p, . . . , p), before
deriving m. A derivation strategy, which guarantees the
reduction of the message complexity at each step, has
been proved sound and complete in [49] for non-atomic
symmetric keys, signatures, hashes, and a limited form of
asymmetric cryptography. The integration of this result
within our intruder model1 appears straightforward, en-
abling the use of non-atomic symmetric keys. However,
the extension to non-atomic asymmetric keys requires
further work and is scope for future research.

Equational theories over the free algebra of messages
could also have been considered, for instance to deter-
mine suitable decrypting keys, e.g. a key k fulfilling k =
λ−, for a given key λ. As recognised in [49], the treatment
of cryptographic operators involving equational theories,
like the commutative xor or Diffie-Hellman exponentia-
tion, is more difficult: in general, decidability of message
derivation may revert to the decidability of the equa-
tional theory. Hence, trivially, decidable theories could
be admitted, possibly increasing the computational cost
of the analysis, while undecidable theories would spoil
the completeness of the framework. Finally, it is inter-
esting to remark that there are attacks that the free-
algebra models can fail to recognise, as shown in [48] for
the case of explicit decryption operators. Indeed, in [48]
it is shown how messages derivable with equational the-
ories cannot be considered by pure free-algebra models.
Informally speaking, let us indicate with }m{k the opera-
tion of “explicitly” decrypting a message m with the key
k (note that m is not known to have a structure { }).
Given κ = {n, {m}k, k

′}, in our model κ 6 ⊲ m. Let us
suppose that the equality }m{k′= n, indicating that n
can be obtained by explicitly decrypting m with k′, can
be proved in a model extended with the above operator.
Then, since κ⊲n, it is possible to prove κ⊲ {n}k′ = m.
Although a way to overcome the problem has been sug-
gested in [48] for symmetric keys, the full understanding
of the issue within our framework is scope for future
work.

4 cIP: a Cryptographic calculus of Interacting
Principals

The cryptographic Interaction Pattern calculus (cIP),
introduced in [18,61], is a nominal calculus for modelling
principal interaction within protocol sessions, like the

1 This could also be achieved in ASPASyA by modularly
updating the module for message generation.

spi-calculus [2]. Differently from the spi-calculus, cIP fea-
tures asynchronous communications and does not have
silent actions and (private) communication channels and
uses names for cryptographic keys, nonces or principal
names. The execution of a protocol is modelled by means
of the execution of a session joined by principal instances
according to a given sharing of keys and other relevant
information.

4.1 Syntax

The cIP processes that represent protocol principals are
defined as follows.

Definition 4 (Principal) A cIP principal P is defined
as:

P ::= PN
△
= (X)[E]

E ::= 0 | α.E | E||E | E + E
α ::= in(MV) | out(MV)

where V = {wa,wb, xa, xb, ya, yb, x, y, . . . } is a set of
variables, X ⊂ V is the (finite) set of open variables, E
is the behavioural expression of the principal, and the
set of data MV is

MV ::= PN | K | PN+ | PN− | NO | V | ?V |
{MV }MV

| (MV ,MV)

where PN,K, PN+, PN−, NO are as in Definition 1,
and ?V denotes a binding occurrence of a variable (here-

after, a principal A
△
= (X)[E] can also be denoted as A

or (X)[E]).

Open variables represent an explicit declaration of
keys and names used by the principal. When principals
join a session, these variables are instantiated so as to
suitably share keys and other required names. The action
out(MV) outputs MV to the environment. The message
in the action in(MV) is used to declare the structure
of the expected input message. For instance, in({?x}k)
means that a cryptogram encrypted by the symmetric
key k is expected to be received and decrypted. k must
be know by the principal, for instance by means of the
instantiation of an open variable. The communication
and the decryption can happen only if the sent mes-
sage matches MV , according to Definition 7. If this is
the case, the x in in({?x}k) will be instantiated with
the cleartext. A mechanism similar to scope extrusion in
π-calculus can be used to further share keys, e.g. by re-
ceiving the message {k}B+ , B can safely, if B− is secret,
acquire the key k. A behavioural expression may be the
inaction 0 (sometimes omitted), a communication action
α prefixed (“.”) to a behavioural expression, or a parallel
(||) or non-deterministic (+) composition of behavioural
expressions.

Variable scoping is ruled by two binders: binding oc-
currences and open variables. Binding occurrences can
appear only inside input actions and, there, at most once.
The scope of a binding occurrence, ?x say, within m in

A symbolic framework for multi-faceted security protocol analysis 9

in(m).E covers the next (according to a left-to-right or-
der) occurrences of x in m, and all the occurrences of
x in E. The occurrences of variables within the scope
of a binder are called bound occurrences, while those
not in the scope of any binder are called free occur-
rences. A binding occurrence ?x with x ∈ X binds all the
free occurrences of x in its scope. Moreover, we require
that variables occurring as keys in input actions cannot
be binding occurrences (since decrypting keys must be
known, and cannot be instantiated at the moment of de-
cryption), and cannot be bound by binding occurrences
within the same cryptogram, i.e. ?x cannot occur within
m in {m}x (since a key received within an encrypted
message cannot be used to decrypt the message itself).
An open variable, x ∈ X say, binds all the free occur-
rences of x in E. The set of bound and binding occur-
rences in an action α, a behavioural expressionE, a prin-
cipal (X)[E], respectively, is indicated as bv(α), bv(E),
bv((X)[E]). The set of free occurrences of variables in E
(resp., (X)[E]) is indicated as fv(E) (resp.,fv((X)[E]).

A principal A
△
= (X)[E] is closed if fv((X)[E]) = ∅. In

the following, principals are closed, and all the binders
are distinct (renamed if needed). Substitution works as
expected, (if χ, σ are substitutions, mσ, Eσ, κσ indicate
the application of σ to a message, an expression or a
knowledge, respectively, while χσ indicates substitution
composition).

Example 2 The Wide Mouthed Frog (WMF) protocol
let A send a session key kab, i.e. a key valid for a limited
temporal interval, to B through a trusted server S:

(1) A → S : (A, {(ta,B, kab)}kas)
(2) S → B : {(ts, A, kab)}kbs

A sends S its name and a cryptogram containing the
name of B, the session key kab and a nonce ta. Then, S
sends B a cryptogram with the session key kab, the name
of A, and a new nonce ts. The two messages have been
encrypted by means of keys shared between A and S, and
S and B, respectively. Nonces guarantee the freshness of
the session key. A, B and S can be formalised in cIP as
follows:

A
△
= (q, xas)[out((A, {(ta, q, kab)}xas))]

B
△
= (zbs)[in({(?s, ?x, ?w)}zbs)]

S
△
= (u, ya, v, yb)[in((u, {(?t, v, ?r)}ya)).out({(ts, u, r)}yb)]

Each principal is formalised as a cIP principal (Defini-
tion 4) where the behavioural expression is determined
by the narration of WMF. For instance, (1) yields the
first actions of A and S where S receives in the binding
occurrences ?t and ?r respectively the nonce ta and the
session key kab freshly generated by A (observe that ?t
and ?r bind the occurrences t and r in the out action of
S). The open variables of A are intended for the name of
a principal with which A will share the session key, and
for the key shared with S (notice that e.g., open variable

u binds the two occurrences of u in the behavioural ex-
pression of S). This mechanism allows us to describe the
behaviour of A in isolation, independently of the actual
principal instances with which it will interact. Moreover,
it will allow us to formalise properties that do not de-
pend on the specific principal instance interacting with
A. B only needs an open variable to share a key with S.
S needs the open variables for the keys shared with A
and B, and also, together with the keys, the names of the
principals to which the keys are associated. This mech-
anism requires the association between keys and their
owners to be explicit (hence restricting the set of mes-
sages S is ready to receive). ⋄

4.2 Multi-session executions

The semantics of cIP is given as a semantics of ses-
sions: sets of distinguished principal instances that exe-
cute the protocol one or more parallel and independent
times. The distinguished choice of providing an abstrac-
tion for sessions within the framework allows us to pre-
cisely model multi-run protocol executions, whose impor-
tance for protocol verification has already been pointed
out. Sessions are built by uniquely labelling the several
instances of a principal, and stating how secret keys are
shared between instances by assigning their open vari-
ables. For the purposes of verification, it is possible to
automatically generate (a specific subset of) all the pos-
sibilities, or to provide off-line specific combinations of
interest (Section 10).

Definition 5 (Instance and session) An instance

(Xi)[Ei] of a principal A
△
= (X)[E] is obtained by in-

dexing all variables occurring in X or E and all names
(except symmetric keys) occurring in E with an index i,
viz. a positive natural number (hereafter, (Xi)[Ei] can
also be denoted as Ai).

A session {(Xi1)[Ei1], ..., (Xin
)[Ein

]} is a (possibly
empty) finite set of instances of principals.

Indexes distinguish instances and their data. Only
symmetric keys, which do not properly belong to a spe-
cific instance, are not indexed. It is assumed that the
same symmetric key appears in different instances only
after that it has been used to instantiate their open vari-
ables. We use I to indicate indexed sets. Uniquely in-
dexed principal instances can be joined to the session, as
formalised by a join operation.

Definition 6 (Join) Let us consider

– a session C = {(Xi1)[Ei1], . . . , (Xin−1)[Ein−1]},

– an instance Ah of A
△
= (Y)[F] for a fresh index h, and

– a partial mapping γ : D → K ∪ PN+
I ∪ PN−

I ∪
PNI ∪NOI (where D = Xi1 ∪ . . .∪Xin−1 ∪Yh) from
variables to (indexed) symmetric or asymmetric keys,
principal names and nonces.

10 Andrea Bracciali et al.

Then

join(Ah, γ,C) =

n−1⋃

j=1

{(Xij
\D)[Eij

γ]} ∪ {(Yh \D)[Fhγ]}

is the session where Ah joins C by means of γ.

Mapping γ is not required to be total since instances
might share keys with other instances that join the ses-
sion later.

Semantics of sessions is given by means of a labelled
transition system inductively defined by a set of transi-
tion rules. We distinguish between transition rules that
describe the semantics of principals (behavioural expres-
sions), and transition rules that describes the interaction
of instances within sessions.

The transition rules of behavioural expression seman-
tics are illustrated in Figure 1 (instance labels have been
omitted for simplicity). It consists of a subset of stan-
dard π-calculus rules for action execution, parallel (||)
or choice (+) composition, and structurally equivalent
terms (as usual, ≡ is the smallest congruence induced by
the commutative monoidal laws for || and +, with 0 as
the neutral element, and including α-conversion). There
are no communication rules as intra-principal communi-
cation is not allowed. Notice that no rule for the cryp-
tographic operators is present as cryptography has been
embedded in communication. Actions appear as labels.

Interaction between principal instances is modelled
by the transition rules of Figure 2, built on top of →
and the definition of (join) operation. The states of the
transition system are configurations 〈C, χ, κ〉, where C is
a session, χ is the substitution for variables determined
by communications and join executions, and κ is the in-
truder knowledge, storing the instances that have joined
the session, their public keys and the data transmitted in
the protocol. Communications are asynchronous (ideally,
from and to the communication network) and all involve
the intruder. Labels represent actions, as executed by the
intruder.

Whenever a principal sends a (ground) message m,
the message is recorded in κ and the principal instance
evolves according to relation →. Messages are required
to be well-formed (m ∈ MI), otherwise the transition
cannot fire (rule (out)).

The case for a principal receiving a message (rule
(in)) is more complex, since it encompasses cryptogra-
phy. Input actions specify the structure d of the expected
message, decrypting keys included. They are executed
only if the intruder can derive a suitable message m from
its current knowledge κ, in which case both communica-
tion and decryption happen. In fact, if a substitution
σ exists such that dσ ∼ m, i.e. m matches d once its
variables are instantiated with σ, then the correct keys
have been provided, and variables within cryptograms
are assigned with cleartexts. The notion of matching is
provided by the following definition.

Definition 7 (Matching) Let m,m′ ∈MI be two in-
dexed messages. We say that m and m′ match (m ∼ m′)
if, and only if, one of the following alternatives applies:

– m = m′ ∧m,m′ ∈ PNI ∪K ∪PN+
I ∪PN−

I ∪NOI ,
– m = (e, f) ∧ m′ = (e′, f ′) ∧ e ∼ e′ ∧ f ∼ f ′,
– m = {e}λ ∧ m′ = {e′}λ′ ∧ e ∼ e′ ∧ λ′ = λ−.

An indexed datum d ∈MVI
matches an indexed message

m ∈MI if, and only if, there exists a substitution σ such
that dσ ∼ m.

Atomic messages match when equal, pairs when their
components match. Cryptograms m = {e}λ and m′ =
{e′}λ′ match only if their contents e and e′ match and
they have been encrypted by complementary keys, λ and
λ−. This ensures that decryption is correctly modelled.
For instance, following rule (in) (indexes have been omit-
ted), if d = {?x}A− , i.e. a principal instance is waiting
for a message to be decrypted with the private key of A,
then any {e′}A+ such that κ⊲ {e′}A+ , i.e. any message
encrypted with A+ that the intruder can derive, would
fit. Indeed, σ = [x→ e′] is such that dσ ∼ e′. Contextu-
ally,m is decrypted since the cleartext e′ is assigned to x,
σ is applied to the continuation of the principal instance,
where x may occur, and recorded in χ, which keeps trace
of the effects of the communications happened in the ses-
sion. Finally, the principal instance evolves according to
the transition relation →.

A new principal instance can join the session accord-
ing to rule (join): given an instance Ai and an assign-
ment to its open variables γ, Ai is added to the session,
γ is applied to the new session and recorded in χ, and
Ai and A+

i (all the public key are assumed to be known)
are added to κ. The application of γ to the session al-
lows keys to be shared by principals. The transition is
labelled with j(Ai, γ). As explained, γ is not defined by
the semantics, and in the practice of verification can ex-
haustively comprise all the possibilities, be constrained
to fulfil some property, or determine a specific case of
interest, like the intended key sharing. Observe that rule
(join) in Figure 2 requires freshness of the index i in
order to properly deal with sessions.

To the best of our knowledge, this is a distinguishing
feature of cIP. In [15] multiple instances cannot dynami-
cally join the execution context and must be specified by
hand before executing the session. Indexed instances are
also used in SPL [28,27], which is a variant of the asyn-
chronous π-calculus. SPL has many similarities with cIP,
for instance input prefixes embed a pattern matching
mechanism such that variables are instantiated when a
matching message is received. Both SPL and cIP use in-
dexes in protocol sessions, however SPL lacks a notion of
join and uses indexes, differently from cIP, to individuate
the roles in charge of executing an action rather than the
instances. Multi-sessions consist of copies of principals,
namely, each instance is distinguished by other instances
only when generating different events, e.g., when creat-
ing a new nonce. Differently, in cIP, principal instances

A symbolic framework for multi-faceted security protocol analysis 11

E ≡ E′ E′ α
→ F ′ F ′ ≡ F

E
α
→ F

(struct)
α . E

α
→ E

(pre)

E
α
→ E′

E || F
α
→ E′ || F

bv(α) ∩ fv(F) = ∅ (par)
E

α
→ E′

E + F
α
→ E′

(sum)

Fig. 1 Principal semantics

Ej
out(m)
→ E′

j m ∈ MI

〈{(Xj)[Ej]} ∪ C, χ, κ〉
i(m)
7→ 〈{(Xj)[E′

j]} ∪ C, χ, κ ∪ {m}〉
(out)

Ei
in(d)
→ E′

i κ⊲m dσ ∼ m

〈{(Xi)[Ei]} ∪ C, χ, κ〉
o(m)
7→ 〈{(Xi)[E′

iσ]} ∪ C, χσ, κ〉
(in)

C′ = join(Ai, γ,C) Ai
△
= (Xi)[Ei] i new

〈C, χ, κ〉
j(Ai,γ)
7→ 〈C′, χγ, κ ∪ {Ai, A

+
i }〉

(join)

Fig. 2 Asynchronous session semantics

are distinguished by indexes freshly generated when the
instances join the context. This has an impact on the
verification techniques of the two approaches that are
quite different. cIP exploits a symbolic model while SPL
is equipped with an event-based semantics that accounts
for the derivation of properties and proof principles. The
event-based semantics of SPL establishes a tight con-
nection between SPL and strand spaces [31], and the
inductive proof methods for the verification of protocols
e.g., [54].

4.3 On weakening the Dolev-Yao intruder

The intruder model of Dolev-Yao fits well with the veri-
fication of the most common security properties like se-
crecy, integrity, authentication or authenticity. However,
it happens not to be perfectly suitable for other secu-
rity properties. As highlighted in [56,57], the Dolev-Yao
intruder is too powerful for verifying protocols against
certain properties, hence weaker models of the execu-
tion environment are desirable. As an evidence, consider
fairness [6] and non-repudiation [64] for e-commerce
protocols (e.g., fair-exchange protocols). In this context,
the underlying communication infrastructure is usually
abstracted either as an unreliable channel (loss of mes-
sages), or as a resilient channel or as a synchronous net-
work. We start sketching how to model unreliable and
resilient communications in cIP through a smooth exten-
sion, while we do not consider the unrealistic case of a
synchronous network [41]. Messages can be typed as dis-
chargeable and untouchable. When a dischargeable mes-
sage is sent, the intruder non deterministically decides
if it is added or not to its knowledge. When a message
must be generated for matching an untouchable input,

exactly the message meant for the input will eventually
be supplied by the intruder. In this case, type informa-
tion will comprise the needed references to senders and
receivers, according to their roles once joined in a session.
This simple type system accounts for representing unre-
liable communications and resilient channels, and can
be adapted to model exactly one of the two: by typing
all messages as dischargeable, we get completely unre-
liable communications, while by typing all messages as
untouchable we obtain resilient communications.

This extension would require small changes that af-
fect the syntax of cIP (messages come equipped with
type information), the rules of Figure 2 (as (in) and
(join)) and the definition of ⊲ for message generation
should be extended to deal with message typing. Overall,
the rest of the verification framework is left unchanged;
PL is not affected and the schema of the model check-
ing algorithm remains unchanged as well. Remarkably,
adapting our framework requires fairly limited changes
exactly because of the separation of concerns discussed
before.

However, although it seems that the execution con-
text in terms of the communication infrastructure can
be easily embedded in our framework, the verification
of properties, like the one used for e-commerce proto-
cols, still remains difficult to be carried out in the Dolev-
Yao model. This is mainly due to both the strong power
granted to the intruder, unrealistic in the discussed con-
text (e.g. the control of all the communications), and to
the properties itself, which often cannot be expressed as
trace invariants (e.g., abuse-freeness for contract sign-
ing protocols), and can hardly be verified within envi-
ronments that check trace invariants [57]. Our verifica-
tion framework suffers this limitation and, once extended
with suitable abstractions for communications as dis-

12 Andrea Bracciali et al.

cussed above, it can be still profitably used for checking
properties that can be reverted to trace invariants (e.g.,
fairness [57]). However, dealing with more general prop-
erties would require structural extensions to the model
and the verification strategy that are far beyond the
scope of this paper.

4.4 Traces

The traces of interest are those that originate from an
empty session and reach a state that represents a session
where all the principals have been reduced to 0 (such a
session is indicated as C∅). The knowledge κ in an ini-
tial state may be non empty in order to model the case
in which the intruder may know some useful informa-
tion about the protocol, for instance to test the protocol
robustness when one of the keys is compromised.

Definition 8 (Traces) A state 〈C, χ, κ〉 is

– initial if and only if C = ∅, and χ is the empty sub-
stitution;

– final if, and only if, for each P ∈ C P = ()[E] and
E ≡ 0.

A trace is a sequence

T = Σ0.α1.Σ1 . . . αn.Σn

where Σ0 is an initial state and Σi−1
αi7→ Σi (1 ≤ i ≤ n).

T is terminating if Σn is a final state.

Example 3 A session of the WMF protocol can be ob-
tained by populating an initial empty session with in-
stances of A, S and B, as defined in Example 2. By
applying rule (join), we obtain the configuration Σ0 =
〈{A3, S2, B1}, γ0, {A3, A

+
3 , S2, S

+
2 , B1, B

+
1 }〉, where

A3
△
= ()[out((A3, {(ta3, B1, kab3)}kas))]

B1
△
= ()[in({(?s1, ?x1, ?w1)}kbs)]

S2
△
= ()[in((A3, {(?t2, B1, ?r2)}kas).out({(ts2, A3, r2)}kbs)]

and γ0 = {zbs1 7→ kbs, xas3 7→ kas, ya2 7→ kas, yb2 7→
kbs, q3, v2 7→ B1, u2 7→ A3} represents the intended
sharing of keys. Easily, we can obtain the terminating
trace

Σ0. i((A3, {(ta3, B1, kab3)}kas)). Σ1.
o((A3, {(ta3, B1, kab3)}kas)). Σ2. i({(ts2, A3, kab3)}kbs).
Σ3. o({(ts2, A3, kab3)}kbs). 〈C∅, γ, κ ∪ κ0〉

where, in the final configuration 〈C∅, γ, κ ∪ κ0〉,

κ = {(A3, {(ta3, (B1, kab3))}k), {(ts2, (A3, kab3))}k}
γ = γ0{t2, s1 7→ ta3, r2, w1 7→ kab3, x1 7→ A3}.

The intruder has only recorded and forwarded the mes-
sages.

It is worth remarking that the presented semantics
is infinitely branching, i.e. a state may have an infinite

number of successor states, and this, although well de-
fined mathematically, makes formal verification poten-
tially incomplete and difficult to be automated. As al-
ready addressed in [25], reasons for this are:

The infinite generative power of the intruder. The
premise of rule (in) can be fulfilled by any message deriv-
able from κ that matches d. For instance, if d is a vari-
able any of the infinitely many m that can be derived
from a non empty κ fits. Similarly to other recent pro-
posals in the literature, we have defined a symbolic se-
mantics (Section 6) that, for each trace, reduces infinite
branching due to messages derivable from κ into a fi-
nite number of symbolic transitions. These classes are
tailored on the structure of the input message by means
of a process similar to unification, but more complex be-
cause of the presence of asymmetric keys that do not
“unify” with themselves, but with their complementary
instances. Decidability results previously presented will
be used to prove that the session semantics is represented
by the symbolic one in a correct and complete way and
that the associated logic is still decidable.

The unbounded number of principal instances. Even
if it has been proved that there are properties that are
not decidable by testing sessions with a finite number
of principals instances (e.g., [47,30]), in practice verifica-
tion has to be anyway limited to sessions with a bounded
number of principal instances to avoid non-termination.
However, most of the known attacks have been discov-
ered by analysing sessions with few principal instances.
Hence, devising frameworks that contribute to enhance
and facilitate the treatment of multi-sessions, e.g. in the
semantics of the calculus, in the expressiveness of the
logic, and consequently in the supporting tools, has ap-
peared to be anyway methodologically relevant.

5 The PL logic

The properties that the execution of a security proto-
col should enforce are expressed as formulas of PL, the
Protocol logic introduced in [18,61]. They refer to the
messages exchanged in the protocol, the relations among
the principals that exchange them, and the amount of the
knowledge that the intruder can acquire interfering with
the execution of the protocol. Coherently with the multi-
session approach introduced, the logic features quantified
variables ranging over instance indexes, so as to express
(causal) relations over data and the instances in which
they occur. Quantified formulas allow us to abstract from
the actual number of instances participating in a given
multi-session execution of the protocol.

This logic results expressive enough to cover most of
the more commonly addressed properties. For instance,
integrity, generalising the approach introduced in [2], can
be modelled by a formula that expresses that “a da-
tum does not differ from its expected value”, secrecy as
non-membership of the intruder knowledge, and authen-

A symbolic framework for multi-faceted security protocol analysis 13

tication by a formula that expresses relations between
the values assumed by indexed variables and their in-
stances. This last representation comprises what is gen-
erally expressed by means of correspondence assertions
[63], which express causality relations over observed ac-
tions. Section 5.1 discusses relations with correspondence
assertions.

The logic insists on a representation of the data, i.e.
messages and variables, whose indexes may also be vari-
ables. Such variables {i, j, l, . . . }, called index variables,
range over the set of indexes and the set of the so ex-
tended data is indicated as MVI

. For instance, A+
3 is the

public key of instance A3, while A+
i is the public key of

an instance of A.

Definition 9 (PL – Syntax) Let be m, xai ∈ MVI
,

and A ∈ PN . The formulas φ and ψ of the logic PL
(protocol logic) are defined as follows:

φ, ψ ::= xai = m | κ⊲m | ∀i : A. φ | ∃i : A. φ |

¬φ | φ ∧ ψ | φ ∨ ψ

A formula can

– be an equality amongst a variable and a message
(which in turn may contain variables). This allows
data sent and received, i.e. once they have been as-
signed to variables, to be compared;

– represent the derivability of a message from the in-
truder knowledge: κ ⊲ m (for both the logical oper-
ator and the process of message derivation the same
symbol ⊲ has been used);

– be universally and existentially quantified over the set
of the indexes of principal instances. Such quantifiers,
namely ∀i : A and ∃i : A, are read respectively as “for
all the instances i of A” and “exists an instance i of
A”. Quantifiers bind occurrences of index variables;

– be composed of the standard boolean operators. The
derived formulas φ → ψ, xi 6= m and κ 6 ⊲ m are
read as usual as ¬φ ∨ ψ, ¬(xi = m) and ¬(m ⊲ κ),
respectively.

Examples of quantified formulas are ∀i : A. xai 6= yai

stating that “for each instance of A, the two variables
xa and ya never assume the same value”, ∀i : A. ∀j :
A. xai 6= yaj stating that “it never happens that any two
instances of xa and ya assume the same value, whichever
instance of A they may occur in”, ∀i : A. κ 6⊲ A−

i stat-
ing that “the intruder does not know any of the private
keys of the instances of A” and ∀i : A. xai = k “all
the instances of A associate to the variable xa the same
symmetric key k”. Formulas like ∀i : A. xai... where xa
does not occur in A are considered as erroneously spec-
ified properties. Other statements can be expressed by
means of implications and others operators, like “given
a server instance, if there is an instance of another prin-
cipal which the server believes to be connected to, then
they share a key and any other principal instance playing
the role of B cannot share the same key” or “if an in-
stance Bi receives a message from Aj , then Aj must have

a reference to the receiver” which, adapted to the WMF
protocol of Example 2, can be respectively formalised as
∀i : S.∀j : A.(ui = Aj → (xasj = yai ∧ ∀h : B.xasj 6=
zbsh)) and ∀i : B.∀j : S.(zsbi = Sj → vj = Bi).

The satisfaction of a formula depends on the point in
the execution of a the protocol in which it is tested, so
that the models of the logic are naturally defined in terms
of χ and κ, i.e. the assignments due to communications
and the intruder knowledge relative to a specific execu-
tion state. For the purposes of verification, we focus on
final states, which surely contain enough information to
instantiate the variables in the formula, according to the
intuition that properties must be enforced by protocols
as a consequence of their correct execution. Checking non
final states could also be possible, as far as enough infor-
mation has been collected (or a notion of model for non
ground formulas is given). In general, this seems compu-
tationally expensive and unnecessary since, if a security
property φ fails to hold in a state, it will not be recovered
in states extending the trace to a final trace (instantiated
variables of φ cannot be changed). Considering deadlock
states is more delicate. They also can be checked with-
out changing our framework (provided that they contain
enough information), but we avoid it. Indeed, we conjec-
ture that the intruder is always able to collect enough
information so as to let any principal terminate, when
principals are derived from protocols narration. Namely,
all the pending input actions can eventually be matched
by messages generated from intruder’s knowledge.

Models of the logic are pairs 〈κ, χ〉 and the relation
κ |=χ φ, read as “the set κ under the variable assignment
χ is a model for the formula φ”, defines the semantics of
closed (w.r.t. index variables) formulas.

Definition 10 (Model for PL formulas) Let χ be a
substitution from indexed variables to indexed messages,
κ a knowledge and φ a closed formula of PL. Then 〈κ, χ〉
is a model for φ if κ |=χ φ can be proved by the following
rules (where n stands for an instance index):

xanχ = mχ
(=)

κ |=χ xan = m

κ⊲mχ
(⊲)

κ |=χ κ⊲m

exists n s.t. An ∈ κ κ |=χ φ[n/i]
(∃)

κ |=χ ∃i : A. φ

forall n s.t. An ∈ κ κ |=χ φ[n/i]
(∀)

κ |=χ ∀i : A. φ

κ |=χ φ κ |=χ ψ
(∧)

κ |=χ φ ∧ ψ

κ |=χ φ
(∨1)

κ |=χ φ ∨ ψ

κ |=χ ψ
(∨2)

κ |=χ φ ∨ ψ

κ 6|=χ φ
(¬)

κ |=χ ¬φ

The definition of equality xan = m and derivabil-
ity κ ⊲ m are straightforward, mχ is expected to be
ground, since under the assumptions made, at the end

14 Andrea Bracciali et al.

of a protocol execution all the variables are expected to
be instantiated, if not, it is reasonable to assume that
the formula does not hold. Formulas are required to be
closed with respect to index variables and quantifiers are
eliminated according to the (finite) set of instances that
have taken part into the protocol execution (recorded
in the intruder knowledge, An ∈ κ). The quantifier also
specifies the principal which instances belong to (i : A).
Quantifier elimination makes index variables to disap-
pear from (closed) formulas. Rules for ∨, ∧ and ¬ are
standard. Our finitary interpretation of the logic allows
the following result to be proved.

Theorem 2 (Decidability of |=) Given a PL for-
mula φ, a knowledge κ and an assignment χ, the state-
ment κ |=χ φ is decidable

Proof By structural induction on φ. For the basic cases,
= (syntactic equivalence) is trivially decidable, and ⊲ is
decidable by Theorem 1.
The inductive step easily follows: the cases for (∧), (∨1)
and (∨2) are defined in terms of structurally simpler for-
mulas, the cases for (∃) and (∀) are defined in terms of
a finite set of structurally simpler formulas, and the case
for (¬) holds by observing that κ |=χ φ is decidable by
inductive hypothesis and hence also κ 6|=χ φ is decidable.

⊓⊔

Example 4 The natural property that the WMF proto-
col is expected to guarantee is the secrecy of the session
key kab generated by A. This property can be expressed
by a formula like

∀i : A. κ 6⊲ kabi.

As it can be discovered by performing an exhaustive
analysis on the possible sharing of keys (Section 10),
this property does not hold in the hypothesis that the
intruder impersonates an instance of B, and A tries to
exchange the session key with that instance. Technically,
this is the case when I appears in the set of principals
and it is allowed to share a key with S. In this case, the
session would be {A1, S2}, where

A1
△
= ()[out((A1, {(ta1, I, kab1)}kas))]

S2
△
= ()[in((A1, {(?t2, I, ?r2)}k)).out({(ts2, A1, r2)}ksi))]

with ksi the key shared by I and S, γ = {xas1, ya2 7→
kas, yb2 7→ ksi, q1, v2 7→ I} and the initial knowledge
was κ0 = {I, ksi}. A trace exists that yields, in a fi-
nal state, κ = {(A1, S2, I, ksi, (A1, {(ta1, I, kab1)}kas),
{(ts2, A, kab1)}ksi}, and χ = {xas1, ya2 7→ kas, yb2 7→
ksi, q1, v2 7→ I, t2 7→ ta1, r2 7→ kab1}, such that

{. . . ksi, . . . , {(ts1, A, kab1)}ksi} ⊲ kab1
(⊲)

κ |=χ κ⊲ kab1
(∀)

κ |=χ ∀i : A. κ⊲ kabi.

This “unintended but legal” attack can be easily ruled
out by further specifying the desired property:

∀i : A. (qi 6= I → κ 6⊲ kabi)

“the key is secret, unless A discloses it directly to the
intruder” (the open variable qi of A is for its partner
name).

The previous simple example underlines i) the sub-
tleties and difficulties of precisely characterising the de-
sired property and the assumptions about the execution
context, ii) the utility of a framework equipped with suit-
able abstractions for modelling all the facets of the pro-
tocol and its context, iii) the expressiveness of the logic.

5.1 On the expressiveness of PL

In order to present the expressiveness of PL, we discuss
how it relates to a widely accepted formalism for ex-
pressing security properties, namely correspondence as-
sertions [63] (CA, for short). Moreover, we illustrate the
relevance of one of the main features of our framework,
namely connection formulas.

The basic ingredient for defining properties as CAs
is to formalise principals as finite sequences of actions
(basically as in cIP). A CA is a statement α →֒ β where
α and β are uniquely identifiable actions within a prin-
cipal2.

As for cIP, a protocol execution consists of the in-
terleaving of actions from a finite number of instances
of principals. Then, it is necessary to distinguish be-
tween the actual executed actions since a protocol sat-
isfies α →֒ β when, for all its execution traces, any oc-
currence of α is into a one-to-one correspondence with
a previously appeared occurrence of β. There can be
many way of distinguishing occurrences of actions ex-
ecuted by different instances of the same principal, for
instance, in [63] indexes are used (as in our framework)
while in [15] there is a combined use of names labelling
actions and indexes.

In order to state security properties as CAs, input
and output actions come together with specific actions
(called internal actions) that do not require interactions
with other principals. For instance, the CA

B.endResp(A) →֒ A.beginInit(B) (1)

is an authentication property for the WMF protocol of
Example 2. The intended meaning of (1) is “whenever
an instance of B finishes the protocol supposing that an
instance of A had initiated it, then the instance of A
actually started the protocol intending to interact with
the instance of B”.

Notice that, in general, principal formalisation should
be extended with internal actions (e.g., endResp() and

2 Namely, α and β contain all the necessary information for
uniquely determining, in the formalisation of the protocol, the
principal that can execute α or β.

A symbolic framework for multi-faceted security protocol analysis 15

beginInit()) in order to state (1) and, for instance us-
ing cIP, the principals of Example 2 should be modi-
fied by letting beginInit(q) and endResp(x) be the
first and the last actions of A and B, respectively. In
our framework, this is unnecessary because PL can ex-
press the same properties by exploiting quantification

on instances and open variables. Indeed, PLWMF
△
= ∀i :

B.∀j : A.(xi = Aj → qj = Bi) is the PL formula corre-
sponding3 to (1). Also, this is important from a method-
ological point of view for two reasons. First, when us-
ing CAs, the formalisation of principals depends on the
property to be checked, namely it must be “augmented”
introducing actions related to the property (as above
for A and B). On the contrary, cIP allows principals
to be derived quite straightforwardly from the protocol
narration and without considering the security property,
while PL enables us to state security properties simply
by considering cIP processes. Remarkably, this is due
to the presence of open variables together with session
quantifiers that allow us to express causal dependency
as shown above in PLWMF . Second, we argue that ex-
pressing security properties in terms of CAs might result
a complex activity since they require to reason about ex-
ecution traces in order to express causality conditions.
Differently, in PL properties can be straightforwardly
expressed by giving the expected relations between vari-
ables in principal specifications.

On the other hand, the definition of CAs might seem
intuitive and simpler than the definition of PL; also, it
is syntax independent, i.e., based on the underling exe-
cution traces rather than on the variables occurring in
the principals. Therefore, CAs can be used to give gen-
eral secrecy properties [63], namely properties that do
not depend on the protocol specification. However, the
price to pay is breaking the orthogonality between the
formalisation of principals and security properties be-
cause principals must conform to the formula express-
ing the property. Also, it is sometime necessary to in-
troduce special actions (not present in any principal de-
scription) to enforce correspondences, which usually is
error prone because it deviates from the narration of the
protocol. For instance, the general secrecy of a message
m is stated in [15] as g(m) →֒ ⊥ where ⊥ and g are
special actions and “regular” principals run in parallel
with a “guardian” process equivalent to the cIP process
()[g(x).0]. In PL, a general notion of secrecy can be sim-
ply stated as a properly universally quantified formula of
type κ ⊲ m. Apparently, both PL and CAs can hardly
be used to give general versions of security properties
other than secrecy, albeit schemata formula can heuristi-
cally be individuated in PL. For instance, authentication
formulas frequently have the same pattern as PLWMF

above.

3 Observe that, in PL the one-to-one correspondence is
implicitly given by the fact that instances are distinguished
by indexes, hence (indexed) variables (e.g., xi or qj) spot the
(unique) instance they occur in.

Finally, it is worth pointing out the distinguished use
of PL logic and open variables to constrain the possi-
ble connections among principals, by suitably restrict-
ing the set of names that can be used to instantiate a
given open variable (e.g., as done in Example 4). Let
us consider again the WMF server of Example 2 and
suppose we want to check the protocol under the as-
sumption that a principal cannot play at the same time
the role of initiator and responder. This can be easily
expressed with the connection formula ∀i : S.ui 6= vi.
Basically, a connection formula is a PL formula not con-
cerning variables used in binding occurrences. Namely,
a connection formula involves only open variables and
names. As clarified in Section 10, connection formulas
are useful for avoiding that uninteresting executions of
the protocols are checked. This is a further advantage of
modelling different facets of security protocol verification
using orthogonal concepts. Indeed, connections formulas
are specified independently from the formulas stating se-
curity properties. Section 10 provides more examples of
usage of connection formulas.

6 Symbolic semantics of cIP

The semantics of cIP given in Section 4 (hereafter re-
ferred to as concrete semantics) is adequate for formally
characterising the possible traces of protocols. However,
it is not suitable for verification purposes, the main draw-
back being infinite branching. Indeed, any input pattern
might be matched by a possibly infinite number of mes-
sages derivable from the knowledge in the current con-
figuration (see the final remarks of Section 4).

We undertake the infinite branching due to the choice
of messages by defining a symbolic semantics where the
actual instantiation of variables is delayed, in a sort of
“lazy-evaluation”. Roughly, a variable x is replaced by
the symbolic variable x[κ], which represents all the mes-
sages derivable from κ that can be assigned to x; even
if no choice is committed for x, all possibilities are pre-
served by x[κ]. Hence, computations are now symbolic
traces, namely traces where symbolic variables can ap-
pear. A (symbolic) trace represents a possibly infinite set
of concrete traces, namely, the set of traces obtained by
instantiating the symbolic variables with concrete mes-
sages derivable from the associated knowledge.

Hereafter, we use N for PN ∪ NO and K for K ∪
PN+∪PN− and, for the sake of the presentation, we ig-
nore indexed messages and variables (constructions and
theorem do not depend on instance indexes and, there-
fore, can adapt to indexed instances of principals).

Definition 11 (Symbolic variable and message)
The set of symbolic variables is

V
△
= {x[κ], x̂[κ] | x ∈ V ∧ κ ∈ ℘fin(M)}

(x̂[κ] is said a marked symbolic variable). We use x[κ]
for denoting either x[κ] or x̂[κ].

16 Andrea Bracciali et al.

The set of symbolic messages M (ranged over by m)
is generated by the following productions:

M ::= N | K | ?V | x[κ] | (M,M) | {M}M

where x[κ] ∈ V .

Symbolic messages consist of (concrete) messages where
symbolic variables may occur, analogously, a symbolic
knowledge is a finite subset of M , again indicated as κ.
Notice thatM and V are defined by mutual recursion. As
in the concrete case, symbolic messages can be derived
from a knowledge κ according to Definition 12, which is
the symbolic counterpart of Definition 2. (In the follow-
ing, symbolic messages appearing in in actions are called
data.)

Definition 12 (Symbolic message derivation) Re-
lation D ⊆ ℘fin(M)×M is the smallest relation satisfying
the following rules:

m ∈ κ

κDm

κDm κD n

κD (m,n)

κDm κD λ

κD {m}λ

κD (m,n)

κDm

κD (m,n)

κD n

κD {m}λ κD λ−

κDm

κDm for all m ∈ κ′

κD x[κ′]

We say that κ derives m (or m is derived from κ) if
κDm holds.

The first rules of Definition 12 recast those in Definition 2
for symbolic messages and knowledge. The last rule in
Definition 12 allows the intruder to generate symbolic
variables from κ. When the hypothesis holds, we say that
κ covers κ′ (or, equivalently, κ covers x[κ′]); similarly, κ
covers m ∈M if either κ covers all the symbolic variable
occurring in m or κ D m whenever m ∈ M . Finally, κ
covers a symbolic substitution σ if κ covers any symbolic
variable in dom(σ) and any message in cod(σ).

The intended meaning of symbolic variables is evi-
dent when considering how they match each other, which
is basically obtained by lifting matching from messages
(Definition 7) to symbolic messages.

Definition 13 (Symbolic matching) Two messages
m,n ∈M symbolically match (written as m ≃ n) iff one
of the following alternatives applies:

– m = n ∧ m,n ∈ N ∪K,
– m = (p, q) ∧ n = (p′, q′) ∧ p ≃ p′ ∧ q ≃ q′,
– m = {m′}λ ∧ n = {n′}λ− ∧ m′ ≃ n′,
– m = n = x̂[κ].

Symbolic matching reduces to syntactic equality when
names or keys are considered, two pairs symbolically
match if their corresponding components do so and, if m

symbolically matches m′ then {m}λ and {m′}λ− sym-
bolically match. Matching of symbolic variables requires
special care, indeed, it only holds between x̂[κ] and itself.
Symbolic marked variables x̂[κ] have been introduced to
overcome a specific problem arising when using asym-
metric cryptography. For instance, consider κ = {A+},
then x[κ] ≃ x[κ] would not reflect matching for all the
concrete messages derivable from κ, e.g., {A+}A+ 6∼
{A+}A+ . Therefore, in such cases, x̂[κ] will avoid con-
sidering those substitutions that cause this problem, ac-
cording to the following definition.

Definition 14 (Symbolic substitution) A symbolic
substitution is a partial function σ : V ∪ V → M such
that, whenever σ : x[κ] 7→ m, κ D m and, if x[κ] is
marked, any sub-term of m is not a cryptogram en-
crypted with an asymmetric key.

A symbolic substitution σ is valid for m ∈ M with
respect to a behavioural expression E if, and only if,
(x[κ])σ ∈ K ∩ κ, for all x[κ] appearing in E or in m as
encryption key. We let ε denote the symbolic substitution
with empty domain.

Valid symbolic substitutions guarantee that variables are
kept consistent with their use in the protocol (a symbolic
variable used as a key must be instantiated only to keys).

The symbolic semantics mimics the concrete one, its
states are triples 〈C, χ, κ〉 where principals in C may ex-
change symbolic messages, χ is a symbolic substitution
and κ ∈ ℘fin(M) is a (finite) set of symbolic messages.

Definition 15 (Symbolic session semantics) The
symbolic session semantics is the smallest relation in-
duced by the inference rules in Figure 3.

Rules (out) and (join) work as in the concrete semantics

of cIP. The interesting rule is (in) where the chosen mes-
sage m is derived from κ and must symbolically match
d via a valid substitution σ that instantiates m by re-
placing each x[κ′] appearing in key position within E
with a key derivable from κ′. Basically, σ represents the
constraints on symbolic variables of its domain that are
propagated within the session, recorded in the bindings
χσ and used to update the knowledge. The choice of σ
makes the (in) rule a source of non-determinism but,
differently from the concrete semantics, the number of
alternatives can be made finite, as shown in Section 7.

Remark 1 Symbolic semantics preserves a useful sort of
“monotonicity” of sets κ. In fact, if κ covers any message
in κ, then so does the knowledge in the target state of
a transition between symbolic sessions. Indeed, either a
message is generated from κ or it is an already covered
message and added to κ. Since we will consider traces
that start from states having concrete knowledge, here-
after we assume that any symbolic knowledge enjoys the
cover property and this guarantees that composition of
substitutions in subsequent states works as expected.

A symbolic framework for multi-faceted security protocol analysis 17

E
out(m)
−−−→ E′

(out)

〈{(X̃)[E]} ∪ C, χ, κ〉
i(m)

///o/o/o 〈{(X̃)[E′]} ∪ C, χ, κ ∪m)〉

E
in(d)
−−→ E′ κDm σ valid symb. substit. for m wrt E s.t. mσ ≃ dσ

(in)

〈{(X̃)[E]} ∪ C, χ, κ〉
o(mσ)

///o/o/o 〈{(X̃)[E′σ]} ∪ Cσ,χσ, κσ〉

C′ = join(Ai, γ, C) i new
(join)

〈C, χ, κ〉
j(Ai γ)

///o/o/o 〈C′, χγ, κ ∪ {Ai, A
+
i }〉

Fig. 3 Session symbolic semantics

Any session may be non-deterministically extended
with new principals added by join transitions. As dis-
cussed in Section 4.2, this form of infinite branching is
addressed4 by considering a finite number of principal
instances [50,38,13].

7 Regaining finite branching

This section shows how cIP symbolic semantics can be
finitely represented. Intuitively, in rule (in) of Figure 3
only the “most general” messages are considered instead
of all suitable ones. Basically, when ?x can be assigned
with an infinite number of messages derivable from κ, the
symbolic substitution simply records that x must take
a message derivable from κ, rather than considering a
substitution for each such messages. Example 5 shows
our construction in a simple case.

Example 5 Let d = {?x}k and κ = {{A}k, k} be the
messages to be used for deriving d after having assigned
a (suitable) message to x. For instance, σ : x 7→ A is
such a substitution because κD dσ. However, instead of
substituting x with A, we consider the symbolic substi-
tution x 7→ x[κ] which encompasses σ. Hence, we can
simply consider the more general transition and safely
discharge the other one in the symbolic transition sys-
tem.

Most general matching messages and the correspond-
ing substitutions are computed by means of the mutually
recursive functions µ and ν defined below. The former
constrains symbolic variables of the datum as weakly
as possible, while the latter has the burden of check-
ing whether can symbolic variables be instantiated with
cryptograms and to mark them if necessary.

4 This problem is dealt with differently in the static analysis
approach, e.g., [12]. It does not consider actual computations
but exploits static information of the protocol specification
to detect attacks. This yields semi-decidable procedures for
analysing protocols; indeed, either a protocol is found cor-
rect regardless the number of sessions or suspected attacks
are reported. In fact, the outcome of the static analysis can
only suggest possible attacks that might not take place within
actual computations.

Definition 16 (Intruder output messages) Func-
tion µ : (M × ℘fin(M)) → ℘(M × [(V ∪ V) →M]) is
defined in Figure 4.

Function µ yields the set of pairs (m, σ), where m ∈ M
and σ is a substitution, such that κ D m and mσ ≃ dσ
(Proposition 3 shows that µ(d, κ) is finite when κ is fi-
nite). The choice of a message m derivable from the cur-
rent knowledge κ matching an input datum d, is driven
by d itself. In the basic case d =?x, the current κ is as-
sociated to x yielding the substitution x 7→ x[κ]. If d is
a name derivable from (actually, belongs to) κ then µ
returns d together with the empty substitution. If d is
a symbolic variable x[κ′], then it must have been gen-
erated in a previous communication and hence κ covers
κ′. However, according to Definition 13, it is necessary
to constraint x[κ′] to x̂[κ′]. If d = (e, f) then first µ(e, κ)
is computed; next, for each (e′, σe) ∈ µ(e, κ), the substi-
tution σe is propagated to f and κ and µ(fσe, κσe) is
computed; finally, the substitutions are composed (the
order in which (e, f) is visited is imposed by the scoping
rules of cIP). If d = {e}λ− and λ ∈ κ, the problem reverts
to producing the content of the cryptogram. Moreover, κ
might contain cryptograms {e′}λ (regardless if λ− ∈ κ or
not). In this case, the problem is not to construct m and
σ such that mσ ≃ eσ, but to check whether e′σ ≃ eσ
for a suitable σ. This is the task of function ν (Defini-
tion 17). When none of the previous cases applies, the
function µ returns the empty set of substitutions corre-
sponding to the absence of matching messages derivable
from κ.

Function µ relies on ν to verify if {e}λ and {e′}λ−

can match under an appropriate substitution.

Definition 17 (Checking substitution) Given two
sets of messages κ1 and κ2, let be κ1⊓κ2 = {m ∈ κ1∪κ2 :
κ1 Dm∧ κ2 Dm}. If m ∈M is a message and d ∈M is
a datum, then function ν : (M ×M) → [(V ∪ V) →M]
is defined in Figure 5.

Most of the cases in Figure 5 are straightforward, hence
we comment only the non trivial ones. If m = x[κ] and
d = y[κ′] are symbolic variables, then they are con-
strained to the symbolic variable x̂[κ] such that κDm and

18 Andrea Bracciali et al.

µ(d, κ) =

{(x, x 7→ x[κ])}, d =?x

{(d, ε)}, d ∈ N ∪K ∧ κD d

{(x[κ′], x[κ′] 7→ x̂[κ′])}, d = x[κ′] ∧ κ covers κ′

{
((e′, f ′), σeσf) : (e′, σe) ∈ µ(e, κ) ∧

(f ′, σf) ∈ µ(fσe, κσe)

}

, d = (e, f)

{

({e′}λ, σe) : (κD λ ∧ (e′, σe) ∈ µ(e, κ)) ∨
({e′}λ ∈ κ ∧ σe ∈ ν(e′, e))

}

, d = {e}λ−

∅, otherwise

Fig. 4 Definition of µ

ν(m,d) =

{x 7→ m}, d =?x

{ε}, d = m ∈ N ∪ K

{

σeσf : σe ∈ ν(e, e′) ∧
σf ∈ ν(fσe, f ′σe)

}

m = (e, f) ∧ d = (e′, f ′)

ν(e, e′), m = {e}λ ∧ d = {e′}λ−

{x[κ], y[κ′] 7→ x̂[κ], x̂[κ]}, m = x[κ] ∧ d = y[κ′] ∧ κ̄ = κ ⊓ κ′ 6= ∅

{(y[κ] 7→ m′)σ : (m′, σ) ∈ µ(m,κ)}, m ∈M \ V ∧ d = y[κ]

{(x[κ] 7→ n)σ : (n, σ) ∈ µ(κ, d)}, m = x[κ] ∧ d ∈ M \ V

∅, otherwise

Fig. 5 Definition of ν

κD d. We remark that operation ⊓ allows to constraint
x[κ] and y[κ]′ to larger set of messages κ⊓κ′ that covers
the messages derivable from both κ and κ′ (indeed, by
induction on the structure of m, it can be proved that
κDm ∧ κ′ Dm ⇐⇒ κ ⊓ κ′ Dm). If d = y[κ]′ and m is
not a symbolic variable, it is necessary to check if κ can
generate a message that matches m. This is obviously
done by µ(κ,m) (similarly for m = x[κ] and d ∈M \V).

The following proposition states that µ terminates on
finite set of messages.

Proposition 3 If κ ⊆ M is finite, then µ(d, κ) is fi-
nite, for any datum d.

Proof The proof trivially follows by induction on the
structure of d considering that (i) the base cases always
yield finite sets and (ii) recursive calls in Figure 4 are
done on terms having a decreasing complexity and pre-
serve finiteness of knowledges. ⊓⊔

Example 6 Consider the set of symbolic messages κ =
{k, {no}B− , no, {y[A+, {A+}k]}C+}. If d = z[κ1] with
κ1 = {{no}k, {no}B−}, then κ D z[κ1] and µ(d, κ) =
(d, z[κ1] 7→ ẑ[κ1]).

If d = {w[k,A+]}C− , is a cryptogram containing
a symbolic variable and {y[A+, {A+}k]}C+ ∈ κ, then
µ(d, κ) invokes ν which computes κ = {A+, {A+}k}. Fi-
nally, the symbolic variables are mapped to ŵ[κ].

(Notice also that Example 6 shows that ⊓ 6= ∩.)
Function µ takes into account all the possible cases,

hence the symbolic semantics faithfully represent all the
evolutions derivable according to the concrete semantics.

Proposition 4 Let d be a datum and κ ∈ ℘(M) covers
d. If (m,σ) ∈ µ(d, κ) then dσ ≃ mσ and κDm.

The proof is given in Appendix B.

Theorem 3 Let d be a datum, m ∈ M a concrete
message and κ ∈ ℘fin(M) such that κ D m. For any
symbolic substitution σ covered by κ and mσ ≃ dσ,
there are a substitution ρ and (m,σ) ∈ µ(d, κ) such
that dom(ρ) ⊆ dom(σ), σρ = σ and mσ ≃ m.

Proof By induction on the structure of d (we show the
details of the base cases since the others easily follow by
the inductive hypothesis).

A symbolic framework for multi-faceted security protocol analysis 19

If d =?x then, by definition, µ(d, κ) = {(x, x 7→
x[κ])}. Any σ covered by κ such that mσ ≃ xσ must
associate to x either a symbolic variable x[κ′] or a mes-
sage m′ derivable from κ′. In either case, κ covers xσ by
hypothesis, hence σ can only be a further instantiation
of x 7→ x[κ].

If d ∈ N ∪ K then mσ ≃ dσ = d, hence κ D d and
µ(d, κ) = {(d, ε)} and either m = d or σ : m 7→ d; if
m = d then σ = ε, while, in the other case εσ = σ.

If d = x[κ′] then µ(d, κ) = {(x[κ′], x[κ′] 7→ x̂[κ′])}
and dσ is either a symbolic variable or a message. In the
former case, it must be a marked variable ŷ[κ′] which can
be obtained by further instantiations of x[κ′] 7→ x̂[κ′]
while in the latter case σ : x[κ] 7→ m′ whose domain
contains x[κ′] and κDm′. ⊓⊔

Theorem 3 states that any “unifier” of d andm deriv-
able from κ can be obtained by further instantiating a
substitution computed by µ. If (m,σ) ∈ µ(d, κ), then σ
is “minimal” (with respect to κ). Namely, any other sub-
stitution σ such that mσ ≃ dσ, can be decomposed as
σρ for a suitable substitution ρ. Intuitively, µ determines
“the most general matching” substitution among m and
d and this is basically achieved by constraining the sym-
bolic variables as weakly as possible. Indeed, µ takes into
account any pair (m,σ) satisfying the hypothesis of the
rule (in) in Figure 3. Messages matching a datum d ei-
ther have a structure similar to d or, at some level, they
are replaced by symbolic variables. Since µ always intro-
duces symbolic variables that cover any other variable
that can be generated by κ, we can use such messages
for considering all the possible symbolic (in) transitions.

Our construction has many similarities with the cor-
responding construction presented in [15]. For instance,
the knowledge in a state of a symbolic trace of cIP cor-
responds to the basis of a frame in [15], while our µ and
ν correspond to a message reduction relation relying on
a most general unifier. We remark that, in order to state
decidability of symbolic frames, the image finiteness of
basis is required in [15], while in our construction this
hypothesis is not required. Moreover, the use of unifica-
tion in [15] introduces symbolic traces that do not corre-
spond to any concrete computation, hence further work
is required to eliminate those spurious symbolic compu-
tations. On the contrary, Theorem 3 is also relevant to
relate symbolic and concrete traces, in the sense that any
instantiation of a symbolic trace yields a concrete one.

8 Relating concrete and symbolic semantics

This section shows how the symbolic semantics of cIP
faithfully represents its concrete semantics. More pre-
cisely, we give a clear correspondence between the traces
of the symbolic and concrete semantics. Symbolic traces
can be defined as done for concrete traces, but, of course,
with respect to the symbolic semantics.

Definition 18 (Symbolic trace) A symbolic trace is
a sequence

T = Σ0.α1.Σ1αn.Σn

where Σ0 is an initial state and Σi−1
αi

///o/o/o Σi (1 ≤
i ≤ n). If Σn is a final state, T is a terminating trace.
For any i ∈ {1, . . . , n}, we say that T reaches Σi and
write T ց Σ (and similarly for concrete traces).

Symbolic traces can be instantiated to concrete ones
through suitable substitutions that replace all symbolic
variables x[κ] with concrete messages that can be derived
from κ.

Definition 19 (Concretising substitution) A sub-
stitution ρ : V →M is a concretising substitution for χ
if, for any x[κ] occurring in messages in cod(χ), κρ ⊆M
and κρ⊲ (x[κ])ρ.

If T is a symbolic trace whose last state has bindings χ
and ρ is a concretising substitution for χ, then we say
that ρ is a concretising substitution for T .

Given a state Σ = 〈C, χ, κ〉 and a substitution ρ, we
write Σρ to denote the component-wise application of ρ
to Σ, namely Σ = 〈Cρ, χρ, κρ〉. Similarly, given a trace
T , Tρ is obtained by applying ρ to each state and each
label in T .

Symbolic semantics is coherent with respect to the
concrete one. Indeed, any symbolic trace can be concre-
tised to a non-symbolic trace as stated by the following
theorem.

Theorem 4 (Correctness of symbolic semantics)
If T is a symbolic trace, for all ρ concretising substitu-
tions for T , Tρ is a trace in the concrete semantics.

The proof is by induction on the length of T and is re-
ported in Appendix B.

Basically, Theorem 4 states that symbolic semantics
is correct with respect to the concrete one. Namely, as
long as symbolic traces are properly instantiated, con-
crete traces are obtained. The following theorem states
the completeness of symbolic semantics with respect to
the concrete one.

Theorem 5 (Completeness of symbolic seman-
tics) If T is a concrete trace starting from 〈∅, ε, κ0〉
then there are

1. a symbolic trace T ց 〈C′, χ′, κ1〉 from 〈∅, ε, κ0〉 and
2. a concretising substitution ρ for χ′

such that Tρ = T .

The proof is by induction on n and case analysis (see
Appendix B).

20 Andrea Bracciali et al.

9 Symbolic models

Symbolic traces contain all the necessary information for
detecting flaws (if any) in a protocol and retrieving the
corresponding attacks of the Dolev-Yao intruder.

By constructing symbolic traces, it is possible to give
a finite representation of the bindings and of the knowl-
edge that the intruder acquires during the execution of
protocols.

Definition 20 (Symbolic model and attack) Let
κ ∈ ℘fin(M) and χ be a symbolic substitution. The pair
〈κ, χ〉 is a symbolic model for a closed formula φ (written
κ |≡χ φ) if, and only if, a concretising substitution ρ for
χ exists such that κρ |=χρ φ holds.

A symbolic attack for φ is a symbolic terminating
trace T reaching a state 〈C, χ, κ〉 such that κ |≡χ ¬φ.

Given a protocol and a property φ, a symbolic attack is
a symbolic trace that, after “concretisation” has taken
place, gives rise to a trace of the concrete semantics such
that bindings and knowledge of the last state in the trace
are model for ¬φ.

There is a strong relation between concrete and sym-
bolic models: the next two theorems prove that they are
actually equivalent.

Theorem 6 (Correctness of |≡) Given a symbolic
trace T and a PL-formula φ such that T ց 〈C, χ, κ〉 and
κ |≡χ φ then there is a concretisation T of T reaching
a state 〈C′, χ′, κ′〉 such that κ′ |=χ′ φ.

Proof By Definition 20, there is a concretising substitu-
tion ρ for χ such that κρ |=χρ φ. Substitution ρ is a con-
cretising substitution of T as well because covering is pre-
served by symbolic semantics and the symbolic variables
in κ and C are in dom(χ), hence, Tρց 〈Cρ, χρ, κρ〉. ⊓⊔

Theorem 7 (Completeness of |≡) Let φ be a PL-
formula, and T a concrete trace such that T ց 〈C, χ, κ〉
and κ |=χ φ. If T is a concretisation of T , then there
is a symbolic configuration 〈C′, χ′, κ′〉 such that T ց
〈C′, χ′, κ′〉 and κ′ |≡χ′ φ.

Proof By Definition 20, we must prove that there is a
concretising substitution ρ for χ′ such that κ′ρ |=χ′ρ φ.
This is trivially given by the concretising substitution ρ
such that Tρ = T . ⊓⊔

Instead of seeking concretising substitutions of sym-
bolic traces, symbolic models allow us to check a formula
φ without resorting to concrete models. Concretisation
of a symbolic substitution can indeed be driven by phi
without affecting satisfiability. Impossibility of such a
concretisation corresponds to unsatisfiability. Intuitively,

– φ is transformed in an equivalent formula where
– quantifiers have been eliminated (as usual by re-

placing ∀ with conjunctions and ∃ with disjunc-
tions),

– ¬ is pushed as far as possible inside the formula
and, finally,

– the result is transformed in a disjunction of con-
juncts.

– Disjuncts further constrain symbolic variables

The procedure sketched above can also yield the unde-
fined substitution or a contradictory set of inequalities
meaning that κ and χ are not a symbolic model for φ.

It is useful to represent PL formulas in disjunctive
normal form

∨

i∈1,...,u(ψi,1 ∧ ...∧ ψi,ji
) where ψi,j ’s are

negative or positive atoms (i.e., formulas of the form
x[κ] = m or κ ⊲ m). Of course, it is straightforward to
transform any PL formula into an equivalent disjunctive
normal form (see Appendix B.3).

Example 7 Quantifier elimination from φ
△
= ∀i : A.∃j :

B.(xi = yj ∧ κ⊲ yi) in κ = {A1, B2, A3, B4}, yields the
normal form formula

((x1 = y2 ∧ κ⊲ y2) ∨ (x1 = y4 ∧ κ⊲ y4))∧
((x3 = y2 ∧ κ⊲ y2) ∨ (x3 = y4 ∧ κ⊲ y4))

from which, applying the De Morgan laws, we obtain
normal forms for φ, e.g.,

(x1 = y2 ∧ κ⊲ y2 ∧ x3 = y2 ∧ κ⊲ y2)∨
(x1 = y2 ∧ κ⊲ y2 ∧ x3 = y4 ∧ κ⊲ y4)∨
(x1 = y4 ∧ κ⊲ y4 ∧ x3 = y2 ∧ κ⊲ y2)∨
(x4 = y4 ∧ κ⊲ y4 ∧ x3 = y4 ∧ κ⊲ y4)

Given a conjunction of positive atoms φ, we consider φ
to be a set of atoms instead of a conjunct of atoms, since
it is a more suitable representation for the algorithm that
computes the refinement substitution from φ.

Definition 21 (Constraining equalities) Given κ ∈
℘fin(M) and a symbolic substitution χ, Ψκ,χ is the refine-
ment substitution under κ and χ and is defined in Fig-
ure 6 where m−1 is the message obtained from replacing
any encryption key λ in m with its inverse λ−.

Given a set of atoms φ, Ψκ,χ chooses an atom from φ
and determines a substitution that, if defined (i.e., dif-
ferent from ⊥), is propagated on κ and χ in the recursive
invocations of Ψ . If the returned substitution is ⊥ then
Ψκ,χ returns ⊥ too. Basically, Ψ checks, for each atom,
whether symbolic variables can be replaced by messages
to either unify right-hand- and left-hand-side of equali-
ties, or determine the values that make a message belong
to the intruder knowledge. Figure 6 defines Ψκ,χ(φ) by
induction on the set φ. If δ1 = δ2 is an equality in φ,
then three cases are possible when we apply χ to the
equality: (i) two symbolic variables are equated, (ii) a
variable and a message are equated, (ii) the equation
is a tautology on names. In case (i), first it is checked
whether the two symbolic variables can be refined with
a non-empty common knowledge (κ̄ 6= ∅) and, if so, the
variables are refined and Ψ continues on the remaining
atoms. In case (ii), Ψ checks if κ1 can generate the mes-
sage and propagates the computed substitution σ. Fi-
nally, in case (iii), tautologies are simply removed. The

A symbolic framework for multi-faceted security protocol analysis 21

Ψκ,χ(φ ∪ {δ1 = δ2}) =

Ψκσ,χσ(φ′),
δ1χ = x[κ1] ∧ δ2χ = y[κ2] ∧ κ̄ = κ1 ⊓ κ2 6= ∅ ∧
σ = x[κ1], y[κ2] 7→ x[κ̄], x[κ̄]

Ψκσ,χσ(φ′),
δ1χ = x[κ1] ∧ δ2χ ∈ M \ V ∧ x not occur in δ2χ ∧
σ′ in µ((δ2χ)−1, κ1) ∧ σ = σ′[x[κ1] 7→ δ2χσ′]

Ψκ,χ(φ′), δ1 = δ2 ∈ N ∪ K

Ψκ,χ(φ ∪ {κ ⊲ δ}) = Ψκσ,χσ(φ′), σ′ in µ((δχ)−1, κ) ∧ σ = σ′[x[κ1] 7→ δχσ′]

Ψκ,χ(∅) = χ

Ψκ,χ(φ) = ⊥, otherwise

Fig. 6 Constraint refinement function

atom κ⊲δ is exploited to check if κDδ and yields the con-
straints on symbolic variables computed by µ. When φ
is empty, Ψκ,χ terminates returning χ. All the other pos-
sibilities correspond to unsatisfiability of atoms, hence
Ψ returns ⊥. Trivially, Ψ terminates on finite κ and φ
because µ does so.

Once a substitution has been refined exploiting posi-
tive atoms, negative ones test whether the refined model
satisfies the whole conjunction. When all negative atoms
are satisfied we have found a model that can be con-
cretised to obtain a non-symbolic model of the initial
conjunction. Moreover, this test is simpler than the re-
finement mechanism of positive atoms because we must
only consider three cases: x[κ] 6= m, x[κ] 6= y[κ′], κ 6⊲m.
By observing that a non-empty set of messages can gen-
erate infinite messages, we can immediately derive that
the first case is always true, and the second is true when
x differs from y (x[κ] 6= x[κ] is a contradiction). The last
case means that κ 6 Dm must be checked.

As stated by Theorem 8, Ψ yields an effective pro-
cedure to decide the validity of a formula in a symbolic
model.

Theorem 8 (Decidability of |≡) Let φ be a PL-
formula, κ ∈ ℘fin(M) and χ a symbolic substitution.

κ |≡χ φ ⇐⇒ Ψκ,χ(φ) 6= ⊥

(the proof is reported in Appendix B).

10 Verification in practice

Our formal framework has been turned into a verifica-
tion environment called ASPASyA (Automatic Security
Protocol Analysis via a SYmbolic model checking Ap-
proach, [8]). The verification with ASPASyA consists
of a quite human-interactive process where the exper-
tise of the analyst is exploited to formalise the protocol
and to point the verification process at the properties
of interest. Then, a fully automated phase is exploited
to explore and analyze the possible protocol execution.
The analyst is allowed to vary the intruder knowledge,
the portion of the state space to be explored, and the
specification of the implicit assumptions, without modi-
fying neither the protocol nor the property specification.

This appears to be relevant as soon as one realises that,
given the complexity of the problem, verification may
become an iterative process pointing at precisely setting
the desired experiment. We briefly illustrate the use of
ASPASyA showing how the choices done for the theory
are reflected on the practice of semi-automated verifica-
tion. This is illustrated by means of a simple case study,
where an “atypical” attack is found by means of a veri-
fication session that well illustrates the versatility of the
tool, and by another attack that has been discovered by
others using different verification techniques, illustrat-
ing the generality of the tool. The purpose of this sec-
tion is not to present the tool and its experimental use
into detail, but rather discuss its methodological rele-
vance. A more precise description of ASPASyA is in [9].
The reader interested in the practical experimentation
is referred to [8,7], where the tool and the relative doc-
umentation can be downloaded, together with reports
on the verification of some well-known protocols, as the
Needham-Schroeder, KSL, Yahalom, Denning-Sacco key
distribution, Beller-Yacobi, Bilateral key exchange and
Carlsen protocol.

ASPASyA is written in Ocaml and uses a depth-
first strategy when exploring the state space. Though no
heuristic has been used, ASPASyA further abstracts cIP
symbolic semantics for optimising the state space (e.g., a
simple type system permits us not to concretely expand
some states but to abstractly represent them by typing
some variables). The state space is maintained as com-
pact as possible by means of connection formulas that
are checked whenever new instances join a protocol ses-
sion so that “undesired” configurations are ruled out. Fi-
nally, ASPASyA can operate under several modalities,
more precisely, it can halt as soon as one attack is found
(as generally model checkers do) or it can search the
whole state space. Though not technically relevant, this
is rather useful during the analysis because formulas and
set of messages used in the verification can be more eas-
ily “tuned”. A more complete description of ASPASyA

technical aspects can be found in [7] (Chapter 5) and
in [9].

22 Andrea Bracciali et al.

10.1 The verification process

The verification process consists of four steps:

1. formalisation of both the protocol narration in cIP
and the security property as a PL formula;

2. specification of the PL connection formula that yields
the constraints on the open variables to be fullfilled
by the join operation;

3. definition of the intruder initial knowledge;
4. the automatic phase of the verification starts. Ac-

cording to the results returned by ASPASyA steps
2 and 3 can be iterated, in order to tune the connec-
tion conditions and the initial knowledge.

Step 1 is clearly the most dependent on the analyst
expertise, since the translation form the protocol narra-
tion into cIP cannot be automated. The practice can give
some rule of thumbs, e.g. the initiator usually needs an
open variable to be connected to the responder, no open
variables should be needed to manage partner identity
when this is acquired by means of communications, open
variables are generally needed to share keys with servers,
etc. The difficulty of exactly expressing a property as a
PL formula has also been underlined. Sometimes formu-
las can be incrementally refined by observing the results
of the analysis until the intended property has been pre-
cisely characterised.

Step 2 allows the verification to be restricted to given
initial conditions, in particular about the sharing of keys.
More precisely, ASPASyA builds all the possible ses-
sions5 and, among them, those for which the connection
formula does not hold are discharged, and only the others
are considered for the verification of the property. This is
a distinguished feature that facilitates the precise state-
ment of the initial context by ruling out the uninteresting
cases so that the accuracy of the verification process is
improved.

Step 3 sets the initial power of the intruder. This can
be used to let the intruder know some secrets (e.g. com-
promised keys), for instance to test the robustness of the
protocol, and to let the intruder know something about
past interactions between principals, e.g. cryptograms
exchanged in previous sessions. This is particularly use-
ful, for instance, in finding replay attacks where the in-
truder exploits messages appeared in previous sessions.

10.2 Experiments: an example

We revisit the analysis of the KSL protocol [39], a simpli-
fication of Kerberos [40], originally reported in [9]. The
protocol aims at the repeated authentication between A
and B and consists of two phases.

5 These are the sessions with a number of principal in-
stances lower than the fixed maximal number of instances
and connected in all possible ways.

In the first phase (not reported here and verified as
safe in [9]) A and B exchange a session key kab (gener-
ated by a trusted server S) and a ticket {Tb, A, kab}kbb

containing the expiring time Tb, the name of A and the
session key. Only B, that has issued the ticket for A,
knows kbb. At the end of the first phase the following
facts hold: (i) A and B are aware to have reciprocally
interacted together, (ii) A and B share a key and the
ticket issued by B in the current session, (iii) the ticket
and other exchanged data are known by the intruder and
(iv) the key is valid in virtue of the ticket issued by B.

In the second phase, until the ticket is valid, A uses
kab to re-authenticate itself to B without the help of S:

(2.1) A→ B : ma, {Tb,A, kab}kbb

(2.2) B → A : mb, {ma}kab

(2.3) A→ B : {mb}kab

First, A sends a nonce ma and the ticket to B that,
provided that ticket is valid, accepts it as referring to A
and sends mb together with the cryptogram {ma}kab to
A, proving it knows kab. In the last message, A proves
to B that it also knows kab. In cIP, A and B can be
represented as follows:

A
△
= (b, sk, tk)[
out(ma, {b,A, sk}tk).in(?xmb, {ma}sk).out({xmb}sk)]

B
△
= (a, sk, tk)[
in(?xma, {B, a, sk}tk).out(mb, {xma}sk).in({mb}sk)]

where, b and a are used to reconstruct the ticket shared
by A and B (facts (i-ii)). Here, time is not modelled
(i.e., fact (iv) is assumed) and the time-stamp generated
by B is simply substituted by the name of B itself (as
something that B can recognise). Fact (iii) is formalised
with the initial knowledge κ0 that contains the names
of the principals that executed the first phase together
with {B1, A3, sk1}tk1 , the ticket that they exchanged.
The modular setting of the initial conditions provided
by ASPASyA, as the knowledge in this case, helps in
verifying separate parts or phases of a protocols.

Authentication is based on the mutually exchanged
(and decrypted) nonces, and formalised as follows:

ψ̄KSL
△
= ∀l : B. ∀j : A.

(bj = Bl ∧ al = Aj → xmal = maj ∧ xmbj = mbl)

any pair of properly connected “partners” Bl and Aj

(bj = Bl ∧al = Aj) eventually exchange the nonces maj

and mbl.
The results of a series of experiment where the num-

ber of instances, the intruder’s knowledge and connec-
tion formulas are varied are reported in Table 1. Each
row corresponds to different knowledge and join condi-
tions, while columns correspond to the case of sessions
with two, three or four instances, respectively. Each of
these columns reports the number of explored states, the
elapsed time (overall, in the format min:sec.hundredth,

A symbolic framework for multi-faceted security protocol analysis 23

2 Instances 3 Instances 4 Instances

Join/Know. States Time (S-J-V) Attacks States Time (S-J-V) Attacks States Time (S-J-V) Attacks

true, κ0 104 0.83 (1-1-0) 0 3918 2.89 (2-1-1) 48 132996 4:05.63 (1:33-1:37-0:58) 2126
true, κ̄0 104 0.83 (1-1-0) 0 6261 4.52 (3-1-1) 84
φ̄1KSL, κ0 101 0.87 (1-1-0) 0 3162 2.93 (2-2-1) 32 89278 10:43.35 (0:55-8:57-0:54) 1000
φ̄2KSL, κ0 71 0.81 (1-1-0) 0 2553 2.68 (1-2-1) 32 72718 10:25.68 (0:44-8:52-0:53) 1000
φ̄3KSL, κ0 62 0.82 (0-1-0) 0 1228 92.29 (1-92-1) 2

Table 1 Attack report for KSL repeated authentication part

and an approximation of the time spent in searching the
space (S), joining the principals (J), and verifying the
security property (V)).

The first row shows, as expected, the exponential
growth of the problem in the number of the principal
considered. Here no connection formula has been ap-
plied. The second row shows the case of an extended
initial knowledge κ̄0 = κ0 ∪ {{B2, A3, sk2}tk2}, i.e., κ0

augmented with a ticket generated by B2 for A3. Illus-
trating for a naive case the relevance of initial conditions,
this change doubles the number of attacks, and increases
correspondingly the execution times (the case for four
principals has not been tested).

Correctly, in the case of two instances, no attack is
found. Attacks are found for three and four instances
(thus stressing the relevance of multi-session analysis
techniques). One of the attacks reported by ASPASyA

for the case of three instances is the following:

(1) A3 → I : ma3, {B2, A3,ks}kb2

(2) I → B2 : ma3, {B2, A3,ks}kb2

(3) B2 → I : mb2, {ma3}ks

(4) I → B1 : mb2, {B1,A3,ks}kb1

(5) B1 → I : mb1, {mb2}ks

(6) I → B2 : {mb2}ks

(7) I → A3 : mb1, {ma3}ks

(8) A3 → I : {mb1}ks

(9) I → B1 : {mb1}ks

I is able to authenticate itself to B1 as A3, even if A3

has never intended to communicate with B1 ((4), (5)
and (9)). Noteworthy, the attack is possible because two
instances of B (i.e., B1 and B2) use the same session
key. Remarkably, this possibility has not been forbidden
(it was actually assumed in [43], where the attack has
been reported while analysing the robustness of KSL).
In our framework, once spotted, this case could be easily
ruled out from subsequent experiments by means of a
suitable connection formula. Moreover, communications
between A3 and B2 are also not correct. Indeed, in (6),
B2 receives mb2 instead of ma3 and in (7), A3 receives
mb1 (generated by B1) instead of mb2 that B2. This,
amongst the rest, clearly violates ψ̄KSL, since xmb3 =
mb1 (from (7), xmb3 is the variable of A3), while, being
A3 and B2 partners, it should have been xmb3 = mb2.

The use of connection formulas is shown in the last
rows of Table 1. Three formulas, beyond true, have been
used in the set of experiments presented here. We remark
that the connections formulas are independent from the
checked security protocols and do not require any change
to the cIP principals.

The first connection formula restricts the analysis to
the cases in which A andB properly share the same third
party certificate:

φ̄1KSL
△
= ∀i : A. ∀j : B.

(tki = tkj → aj = Ai ∧ bi = Bj ∧ ski = skj)

for any Ai and Bj sharing a ticket encrypted by means of
the same key (tki = tkj) the content of the ticket must be
the one generated byBj , session key included (ski = skj ,
see facts (i-ii) and (iv) above). This allows for a reduction
of the number of the explored states and of the found
attacks, significant for the case of four instances (third
row). On the other hand, more time is required by the
join operation (most of the time consumed for the case
of four instances), which needs to verify all the possible
assignments for open variables. A second formula is used
to further restrict the cases of interest by adding the
requirement that at least one A and one B instances are
present in the tested sessions:

φ̄2KSL
△
= φ̄1KSL ∧ (∃o : A. true) ∧ (∃o : B. true)

that slightly improves time and space consumption with
respect to the previous test. Inspecting the found at-
tacks, it is easy to realise that many of them are due to
the fact that two different instances of A are given the
same session key sk. This unintended possibility is ruled
out by the third connection formula:

φ̄3KSL
△
= φ̄2KSL ∧ (∀j : B. tkj 6= skj) ∧ (∀i : A. ∀j : A.

(ski = skj → (∃l : B. al = Ai ∧ al = Aj))

that states that the session key and the key used by B
for encrypting the ticket must be different (tkj 6= skj)
and that two instances of A can use the same session key
only if they are both connected to the same instance of
B, namely they are the same instance (the open variable
al of B can be instantiated only with one instance of
A). The use of this formula allows for a neat character-
isation of the protocol flaw, now detected by means of
only two attacks reported (one of which discussed above),
which allow the problem to be easily understood. On the
other hand, this requires a significantly longer verifica-
tion time, contained in few tens of seconds for the mini-
mal case detecting the attack and amounting to several
hours for the case of four instances (not reported in the
table, . . .).

24 Andrea Bracciali et al.

Summarizing, the experiments reported show how
connection formulas can be used to tune the analysis
towards the cases of interest. Indeed, many of the at-
tacks ruled out by the use of connection formulas consists
of special cases, or cases of scarce interests, e.g. two in-
stances of B using the same session key and the same key
for encrypting the tickets (which is unrealistic). A care-
ful discipline of the use of connection formulas, as well as
the optimisation of the implementation of formula veri-
fication, not attempted in the current implementation of
ASPASyA, might further improve the performance of
the tool (in other experiments, see [8,9], the successful
use of connection formulas has helped in improving per-
formances of one order of magnitude). This is scope for
future work.

10.3 Another attack report

As a further example of usage of our methodology, we
show an analysis done on the Beller-Yacobi MSR pro-
tocol showing an attack firstly discovered by means of
static analysis techniques in [11]. The protocol is an im-
proved version of the Beller-Yacobi protocol designed to
let a mobile base B exchange a session key with a control
point A. When B enters a new cell asks A for its pub-
lic key A+ (not modelled here). The phase our analysis
focus on starts with A sending B its identity together
with its public key and a certificate issued by a shared
trusted server S (not modelled here). Then, B generates
the session key k and sends it encrypted with A+. The
narration of the protocol is:

(1) A→ B : A, {A}S− , A+

(2) B → A : {k}A+

(3) B → A : {B, {B}S−}k

In message (1), the certificate issued by a trusted third
party S confirms the identity of A to B which, in turn,
(message (2)) replies with a session key k encrypted with
A+ (received in message (1)). In message (3) B sends the
certificate of its own identity encrypted with the session
key k. The cIP specification of principals A and B is:

A
△
= (b, sa)[out(A, {A}sa, A+).in({?r}A−).in({b, {b}sa}r)]

B
△
= (sb)[in(?a, {a}sb, ?ak).out({k}ak).out({B, {B}sb}k)]

In our framework, interactions with the trusted server
S need not to be explicitly modelled. Indeed, open vari-
ables sa and sb are used to let A and B share a key
representing S.

The desired security property is represented by the
PL formula ψ

ψ
△
= ∀i : B.((κ⊲ ki → ai = I) ∧

(∀j : A.(bj = Bi → (rj = ki ∧ ai = Aj ∧ κ 6⊲ki))))

that states that the intruder I should know the session
key k of an instance B only if I initiated the protocol

with B, while, if an instance A intends to interact with
B then session key k should be shared between A and B
without the intruder being able to acquire it. A connec-
tion formula is needed to restrict the analysis to the cases
in which A and B share the same third party certificate.
This is formalised by the PL formula φ

φ
△
= ∀i : A.((∃j : B.bi = Bj ∧ sai = sbj)∨

(∃l : A.bi = Al ∧ sai = sbl) ∨ (bi = I))

which states that the server used by any instance of A is
either used by some other instance of regular principals
A or B, or else by I.

Performing a search with ASPASyA yields the afore-
mentioned flaw, as presented in the following automat-
ically generated table, where the behaviour of the in-
truder has been reported.

Violated Constraints: Open Variables:

b2 = B1, b2 → B1

a1 6= A2 s2 → s1 → ks

Knowledge: Model:

{B1, {B1}ks}k1
, {k1}

A
+
2

, {A2}ks, A2, A
+
2 , a1(κ) → A3

B1, B
+
1 , {A3}ks, A3, I0, I

+
0 , I

−

0 ak1(κ) → A
+
2

Intruder:

(1)A2 → I : A2, {A2}ks, A
+
2

(2)I → B1 : A3, {A3}ks, A
+
2

(3)B1 → I : {k1}
A

+
2

(4)B1 → I : {B1, {B1}ks}k1
(5)I → A2 : {k1}

A
+
2

(6)I → A2 : {B1, {B1}ks}k1

As shown, the intruder is able to let B1 “believe” he
is running the protocol with A3 (viz. a1(κ) → A3) but
authenticates himself to A2 (viz. b2 → B1) which falsifies
the second conjunct in ψ.

We conclude by remarking how open variables (resp.,
sa and sb) can be used to model in a straightforward way
entire part of the protocol complex interactions (resp.,
interactions of A and B with the server).

11 Concluding remarks

In this paper we have presented a framework where sev-
eral aspects of security protocols and their verification
are considered uniformly. The framework is mainly fo-
cused on problematic issues of specification and verifi-
cation of protocols. In particular, a great attention has
been reserved to the separation of concerns between the
formal definition of protocols and the formal definition of
properties. On the one hand, we propose the cIP calculus
as a calculus of sessions, namely a calculus with explicit
linguistic mechanisms for representing multi-sessions and
sharing of secrets among principals; on the other hand,
the specification of security properties is delegated to
the companion logic PL, that, on top of cIP principals,
can express the security properties of interest. One of
the specific merits of our framework lies exactly on the
separation between cIP and PL. This allows many pa-
rameters of the verification phase to be properly and in-
dependently tuned. For instance, once the protocol has

A symbolic framework for multi-faceted security protocol analysis 25

been specified, it can be checked under different capabil-
ities of the intruder by varying its initial knowledge or,
also, open variables can be used to enforce assumptions
that at a first sight have been neglected. We remark that
this is a distinguished feature of our framework, indeed
other similar proposals (e.g., [14,62,38]) require a rather
complex process for repeating verification on a protocol
with different parameters and, often, this requires the
protocol specification itself to be modified.

The ASPASyA toolkit provides a model checker for
PL formulas that are checked on cIP transition systems
of protocol specifications, fully and properly supporting
the verification framework proposed. Another important
feature of ASPASyA is the possibility of using connec-
tion formulas for experimenting with the protocol under
specific assumptions on the secret sharing. This feature
adds an extra distinguished parameter to the verifica-
tion, strengthening the control over the dimension of the
searched state space.

The presented framework is grounded on a theory
that proves the decidability of the model checking algo-
rithm implemented by ASPASyA. The theory underly-
ing cIP and PL exploits a symbolic semantics in order to
overcome the infinite branching problem arising from the
infinite set of possible messages that the Dolev-Yao in-
truder can build for principals. Possible extensions and
relaxations of the intruder model have been discussed.
We have shown that the messages derivation from a fi-
nite intruder knowledge is decidabible also in presence of
asymmetric cryptography, and then that the session se-
mantics is equivalent to a symbolic semantics that faith-
fully preserves the traces. Indeed, the defined symbolic
semantics is a precise abstraction yielding a finite state
space (when the number of session is bound). Finally,
the symbolic model checking technique is proved sound
and complete with respect to the naive model checking
of PL formulas in the concrete case.

As future work we intend to adapt our methodology
to other asymmetric cryptographic mechanisms (for in-
stance, hashing functions), extend it with abstractions
for time and timestamps, and embed non-atomic key
treatment, as outlined in the paper. We conjecture that
the theory (and hence the whole framework) fairly scales
to other asymmetric crypto-system because we have not
used specific features of public-key cryptography. Finally,
we would like to extend the open variables and the con-
strained join mechanism, now based on connection for-
mulas, to the more general case of open system veri-
fication, where open variables represent resources, and
the join is constrained by formulas aimed at guarantee-
ing more general composition properties, as initially sug-
gested in [19].

A Proofs for the framework

A.1 Proof of Proposition 2

Proof The proof consists of two parts:

1. The function always terminates. Either e() is recursively
called on a set having a strictly smaller number of paren-
thesis and brackets, or it returns the set itself. Trivially,
the number of parenthesis and brackets can not become
negative. It follows that recursion terminates.

2. The function is deterministic. The function has a non-
deterministic definition, since the conditions m = (p, q) ∈
κ and m = {n}λ ∈ κ ∧ λ ∈ κ are not mutually exclusive.
It must be shown that, despite the possible choices for the
recursive calls, e() returns a unique value. It is necessary
to prove that, given a knowledge κ

∃ κ1, κ2. κ1 = e(κ) ∧ κ2 = e(κ) ⇒ κ1 = κ2

Let us assume, by absurdum and without loss of general-
ity, that ∃ m. m ∈ κ1 ∧m 6∈ κ2. The proof proceeds by
induction on the definition of e(). Assuming that recur-
sive calls of e() over smaller knowledges are well defined,
it is possible to show that e() is well defined. In the rest
of the proof the observation that if m ∈ κ, then m ∈ e(κ)
will be used (in fact no rule of the definition of e() elim-
inates an item of κ). The proof is given by cases on the
construction of κ1 = e(κ).
(a)

κ1 = e(κ) = κ (2)

The other rules can not applied and hence the only
outcome of e(κ) is κ itself.

(b)

κ1 = e(κ) = e(κ \ o ∪ p ∪ q) ∪ o (3)

Analogously, κ2 can be constructed from κ in two dif-
ferent ways.

i. κ2 = e(κ) = e(κ \ o′ ∪ p′ ∪ q′) ∪ o′

Obviously o 6= o′, otherwise, applying the induc-
tive hypothesis, κ1 = κ2. Since m ∈ κ1, from (3),
either m = o or m ∈ e(κ \ o ∪ p ∪ q).
In the first case, by the side conditions of rule (3),
m ∈ κ, and hence m ∈ κ \ o′ ∪ p′ ∪ q′ and finally
m ∈ e(κ \ o′ ∪ p′ ∪ q′) ⊂ κ2. Absurdum.
On the other hand, assuming m 6= o ∈ e(κ \ o ∪
p∪ q), from rule (3), it follows that m ∈ e(κ) \ o.
Recalling that m 6= o′, it also follows that m ∈
e(κ) \ o′ ⊂ κ2. Absurdum.

ii. κ2 = e(κ) = e(κ \ {n}λ ∪ n) ∪ {n}λ

Necessarily m 6= {n}λ, otherwise it would be-
longs to κ2. Let us suppose again that m = o.
Thenm ∈ κ,m ∈ κ\{n}λ∪n,m ∈ e(κ\{n}λ∪n),
and finally m ∈ κ2 \ {n}λ ⊂ κ2. Absurdum.
On the other hand, assuming that m 6= o ∈ e(κ \
o∪p∪q), from rule (3), it follows thatm ∈ e(κ)\o.
Recalling that m 6= {n}λ, it also follows that
m ∈ e(κ) \ {n}λ ⊂ κ2. Absurdum.

(c)

κ1 = e(κ) = e(κ \ {n}λ ∪ n) ∪ {n}λ (4)

Again, the two possible cases of the construction of
κ2 must be considered.

i. κ2 = e(κ) = e(κ \ o ∪ p ∪ q) ∪ o
First, we observe that m 6= o, otherwise it would
belong to κ2. Since m ∈ κ1, from (4), either m =
{n}λ or m ∈ e(κ \ {n}λ ∪ n).

26 Andrea Bracciali et al.

In the first case, necessarily, m 6= o. By the side
conditions of rule (4), m ∈ κ, and hence m ∈
κ \ o∪ p∪ q and finally m ∈ e(κ \ o∪ p∪ q) ⊂ κ2.
Absurdum.
On the other hand, assuming m 6= {n}λ ∈ e(κ \
{n}λ∪n), from rule (4), it follows that m ∈ e(κ)\
{n}λ. Recalling that m 6= o, it finally follows that
m ∈ e(κ) \ o ⊂ κ2. Absurdum.

ii. κ2 = e(κ) = e(κ \ {n′}λ′ ∪ n′) ∪ {n′}λ′

In this last case, it is straightforward to observe
that {n}λ 6= {n′}λ′ , otherwise, by applying the
inductive hypothesis, κ1 = κ2 holds. Moreover,
by the definition of κ2, necessarily m 6= {n′}λ′

Let us suppose that m = {n}λ, then, by the side
conditions of rule (4), it holds that m ∈ κ, and
m ∈ e(κ \ {n′}λ′ ∪ n′) ⊂ κ2. Absurdum.
On the other hand, if m 6= {n}λ ∈ e(κ\{n}λ∪n),
by rule (4), m ∈ e(κ) \ {n}λ. Recalling that m 6=
{n′}λ′ , it finally follows that m ∈ e(κ) \ {n′}λ′ ⊂
κ2. Absurdum.

⊓⊔

A.2 Proof of Theorem 1

The proof is based on the following lemmas.

Lemma 1 Let m ∈ M be a message, and κ a knowledge,
then m ∈ κ ⇒ m ∈ e(κ).

Proof By definition of e() (no element is never deleted). ⊓⊔

Lemma 2 Let m ∈ M be a message, and κ a knowledge,
then m ∈ e(κ) ⇒ κ⊲m.

Proof (by structural induction on e). The set e(κ) can have
been obtained by applying one of the three rules of the defi-
nition of the function e().

e(κ) = κ
In this (base) case, m ∈ κ and hence, by applying rule ∈,
κ⊲m.
e(κ) = e(κ \ o ∪ p ∪ q) ∪ o
The side conditions for this case imply that o = (p, q) ∈ κ.
Either m = o ∈ κ, but then κ ⊲ m (by rule ∈), or m ∈
e(κ \ o ∪ p ∪ q). By the inductive hypothesis, it follows
that κ \ o ∪ p ∪ q ⊲ m, and equivalently κ ∪ p ∪ q ⊲ m.
Since o = (p, q) ∈ κ, by applying ()e1 and ()e2, it holds
that κ⊲ p and κ⊲ q. Trivially (reasoning on the proofs):

κ ∪ p ∪ q ⊲m ∧ κ⊲ p ∧ κ⊲ q ⇒ κ⊲m

e(κ) = e(κ \ o ∪ n) ∪ o
Analogously, o = {n}λ ∈ κ and κ ⊲i λ (and, obviously,
κ ⊲ λ). If m = o ∈ κ, then κ ⊲ m. Otherwise, m ∈
e(κ\o∪n), and then, by inductive hypothesis, κ∪n⊲m.
Since o ∈ κ, κ⊲ n by {}e. Trivially:

κ ∪ n⊲m ∧ κ⊲ n⇒ κ⊲m
⊓⊔

The proof for the Theorem 1 follows.

Proof κ⊲ m ⇒ e(κ) ⊲i m: by induction on i, the length of
the proof for κ⊲m).
Base case: the only proof of length one is

m ∈ κ
κ⊲m

∈,

and then, by Lemma 1, m ∈ e(κ), and hence e(κ) ⊲i m.
Inductive step: message m is derived by a proof which can
terminate by applying one of the remaining five rules.

If m = (p, q) is obtained by applying the rule

κ⊲ p κ⊲ q

κ⊲ (p, q)
()i,

then, by inductive hypothesis e(κ)⊲i p and e(κ)⊲i q, and
hence

e(κ) ⊲i p e(κ) ⊲i q

e(κ) ⊲i (p, q)
()i.

If m = {n}λ is obtained by applying the rule

κ⊲ n κ⊲ λ

κ⊲ {n}λ
{}i,

then, by inductive hypothesis e(κ)⊲in and e(κ)⊲iλ, and
hence

e(κ) ⊲i n e(κ) ⊲i λ

e(κ) ⊲i {n}λ

{}i.

If m = p is obtained by applying the rule

κ⊲ (p, q)

κ⊲ p
()e1,

then, by inductive hypothesis e(κ)⊲i (p, q). The proof for
this last judgment can be concluded in two ways. A case
occurs when applying the rule

e(κ) ⊲i p e(κ) ⊲i q

e(κ) ⊲i (p, q)
()i,

which implies that e(κ) ⊲i p. The other case occurs when
the rule

(p, q) ∈ e(κ)

e(κ) ⊲i (p, q)
∈

is applied. If (p, q) ∈ e(κ), from the definition of e(), it
follows that also p ∈ e(κ) (if not the recursive construc-
tion of e() could not have terminated). It follows that
e(κ) ⊲i p.
The case for ()e2 is symmetric to the previous one.
The last case is analogous to the previous two. If m = n
is obtained by applying the rule

κ⊲ {n}λ κ⊲ λ−

κ⊲ n
{}e,

then, by inductive hypothesis e(κ)⊲i {n}λ and e(κ)⊲i λ.
The proof for e(κ)⊲i {n}λ can be concluded in two ways.
A case occurs when applying the rule

e(κ) ⊲i n e(κ) ⊲i λ

e(κ) ⊲i {n}λ

{}i,

which implies that e(κ)⊲i n. The other case occurs when
the rule

{n}λ ∈ e(κ)

e(κ) ⊲i {n}λ

∈

is applied. If {n}λ ∈ e(κ), from the definition of e(), it
follows that also n ∈ e(κ) (if not the recursive construc-
tion of e() could not have terminated). It follows that
e(κ) ⊲i n.

e(κ) ⊲i m ⇒ κ⊲ m: by induction on i, the length of the
proof for e(κ) ⊲i m).
Base case: the only proof of length one is

m ∈ e(κ)

e(κ) ⊲i m
∈,

A symbolic framework for multi-faceted security protocol analysis 27

and then, by Lemma 2, κ⊲m.
Inductive step: two rules can be applied to derive e(κ) ⊲i m

in more than one step, namely ()i and {}i. In the first case
m = (p, q), and

κ⊲i p κ⊲i q

κ⊲i (p, q)
()i,

then, by inductive hypothesis κ⊲ p and κ⊲ q, and hence

κ⊲ p κ⊲ q

κ⊲ (p, q)
()i.

Analogously, if m = {n}λ and {}i is used, then

e(κ) ⊲i n e(κ) ⊲i λ

e(κ) ⊲i {n}λ
{}i.

By inductive hypothesis κ⊲ n and κ⊲ λ, and hence

κ⊲ n κ⊲ λ

κ⊲ {n}λ

()i.

⊓⊔

B Effectiveness of symbolic constructions

The technical proofs of Sections 7 and 8 are collected in this
appendix.

B.1 Proof of Theorems 4 and 5

Theorem 4 relies on Proposition 4 which on turn relies on the
following two auxiliary lemmas.

Lemma 3 Let κ ∈ ℘(M) and σ a symbolic substitution such
that κ covers messages in dom(σ) ∪ cod(σ). If κσ Dm then
κDm.

Proof By hypotheses any x[κ1] is replaced in κ with a mes-
sage m′ that can be generated by κ. Indeed, it must be the
case that κ1 Dm′, hence, κDm′ because κ covers κ1. Hence,
κσ cannot built m using sub-messages that cannot be built
by κ. ⊓⊔

Lemma 4 Let κ ∈ ℘(M) and d a datum such that κ covers
d. For all (m,σ) ∈ µ(d, κ), κ covers m and κ covers any
message in dom(σ) ∪ cod(σ) .

Proof By inspecting Figure 4 and Table 5 it is easy to see
that all symbolic variables introduced while computing µ are
obtained by κ or by a set κ1 already occurring in d. By hy-
pothesis, κ1 and d are covered by κ. ⊓⊔

Proposition 5 (Proposition 4) Let d be a datum and κ ∈
℘(M) covers d. If (m,σ) ∈ µ(d, κ) then dσ ≃ mσ and κDm.

Proof The proof proceeds by induction on the structure of d.
By definition of substitution and D, the proposition holds

in the first three cases (the base cases).
The computation of µ((e, f), κ) proceeds by first comput-

ing µ(e, κ) and then µ(fσe, κσe), where σe is a substitution
resulting from µ(e, κ) (recall that binding variables have at
most one occurrence and bind all the remaining occurrences).
If µ(e, κ) = ∅ then a matching message for d cannot be de-
rived, while, if (e′, σe) ∈ µ(e, κ) then e′σe ≃ eσe ∧ κD e′ (by
inductive hypothesis). With a similar searsoning we deduce
f ′σf ≃ fσeσf ∧ κσe D f ′ (or µ(fσe, κσe) = ∅). Observing

that κσeσf D (e′, f ′) and κ covers σeσf , by Lemma 3 and by
Lemma 4

dσeσf ≃ ((eσeσf), (fσeσf)) ≃

≃ (((e′σe)σf), ((f ′σe)σf)) ≃ (e′, f ′)(σeσf),

Let d be {e}λ− ; we distinguish two cases.

1. If κD λ, then the matching substitution for e is returned
and the induction hypothesis guarantees the proposition.

2. However, cryptograms {e′}λ ∈ κ must be considered. In-
deed, ν returns (if exist) the symbolic substitutions such
that e′ matches e. Basically, ν works as µ but avoids ma-
nipulating its second argument, hence, by induction, for
any σe ∈ ν(e, e′), eσe ≃ e′σe.

This concludes the proof. ⊓⊔

Finally, we can prove Theorems 4 and 5.

Theorem 9 (Theorem 4) If T is a symbolic trace, for all ρ
concretising substitutions for T , Tρ is a trace in the concrete
semantics.

Proof Assuming T = Σ0.α1.αn.Σn, the proof easily fol-
lows by induction on n.

If n = 0 then Σ0 is a concrete state by definition and
Σ0ρ = Σ0, for any concretising substitution ρ.

Assume that the theorem holds on traces T of length
n, and consider Tαn+1Σn+1 where Σn+1 = 〈C′, χ′, κ1〉. By
construction, χ′ either extends χ with substitutions of new
symbolic variable or refines variable already in χ. Hence, any
concretising substitution for χ′ is a concretising substitution
for χ because of Remark 1 and covering is preserved by re-
finement. We proceed by case analysis on αn+1 (hereafter,
〈C, χ, κ〉 represents the last state of T).

If αn+1 = j Ai γ then Σn+1ρ = 〈join(Ai, γ, Cρ), χργ, κργ〉,
since γ does not introduce symbolic variables, γρ = ργ.
Clearly, Σnρ 7→ Σn+1ρ can be obtained by applying the
(join) rule.

If αn+1 = o mσ, a principal in C performs an action in(d)
and σ is valid substitution. Without loss of generality
(for Proposition 4), there i (m,σ′) ∈ µ(d, κ) such that σ
is obtained by concretising some symbolic variable in σ′

to keys. This implies that mσρ is deducible from κρ and
matches dρ. Finally, Cρ contains the concretisation of the
principal performing the in(d) action, therefore, we can
apply rule (in).

(The case αn+1 = i m is dealt as done for αn+1 = o mσ). ⊓⊔

Theorem 10 (Theorem 5) If T = 〈∅, ε, κ0〉 7→ . . . 7→
〈Cn, χn, κn〉 is a concrete trace then there are

1. a symbolic trace T ց 〈C′, χ′, κ1〉 from 〈∅, ε, κ0〉
2. and a concretising substitution ρ for χ′

such that Tρ = T .

Proof The proof follows the same pattern of the proof of The-
orem 4. The cases of rules (join) and (out) are straightfor-
ward because they essentially restrict the possible concretis-
ing substitutions along the trace.

The interesting cases are the transitions obtained by ap-
plying rule (in) and we give a proof by contraddiction. Let
assume that it is not possible to mimic a concrete input ac-
tion where a message matching the input datum is derived
from the intruder knowledge. By inductive hypothesis, such
knowledge can be obtained by concretising a corresponding
symbolic one. Hence, such concretisation would also generate
the message chosen in the transition by Theorem 3. ⊓⊔

28 Andrea Bracciali et al.

B.2 Proof of Theorem 8

Theorem 11 (Decidability of |≡) Let φ be a PL-formula,
κ ∈ ℘fin(M) and χ a symbolic substitution.

κ |≡χ φ ⇐⇒ Ψκ,χ(φ) 6= ⊥

Proof By Proposition 6, we can assume that

φ ≡
∨

i∈1,...,u

(ψi,1 ∧ ... ∧ ψi,ji
)

where the ψi,j are atoms.

(⇐) Let σ ∈ Ψκ,χ(φ) and assume, per absurdum, that a con-
cretising substitution of ρ of χ such that κσρ |=χσρ φ does
not exist. Namely, for any ρ concretising substitution of
χ and for any i ∈ {1, . . . , n}, there is h ∈ {1, . . . , ji} such
that Ψi,h does not hold in 〈κσρ, χσρ〉. By case analysis on
the form of φi,h:
– if φi,h is x[κ1] = y[κ2], a message m such that κ1 ⊲
m∧ κ2 ⊲m does not exists; this contraddicts the hy-
pothesis κ1 ⊓ κ2 6= ∅ required for φκ,χ(φ) 6= ⊥.

– If φi,h is x[κ′] = m, then κ′ 6 ⊲m (otherwise φi,h

would be satisfiable in 〈κ, χ〉); hence, µ(m−1, κ′) = ∅
and then φi,h = ⊥ which contraddicts the hypothesis.

– If φi,h is κ ⊲m, then the thesis follows reasoning as
in the previous case.

(⇒) Let ρ such that κρ |=χρ φ and, by contriddiction, assume
Ψκ,χ(φ) = ⊥. Then, for i ∈ {1, . . . , n}, ψi,ji

are all sat-
isfied in 〈κρ, χρ〉, but there is h ∈ {1, . . . , ji} such that
Ψκ,χ(ψi,h) = ⊥. As before, we proceed by case analysis
on φi,h.
– if φi,h is x[κ1] = y[κ2] then ρ maps both x[κ1] and
y[κ2] to a message m, i.e., (x[κ1])ρ = (y[κ2])ρ = m.
By Definition 19, κ1 ⊲m∧κ2 ⊲m which contraddicts
κ1 ⊓ κ2 = ∅ necessary for φκ,χ(φ) 6= ⊥.

– If φi,h is x[κ′] = m, similarly to the previous case
κ′ ⊲ mρ, but it must be µ(m−1, κ′) = ∅ which by
Proposition 4 implies κ′ 6 ⊲m which yields a contrad-
diction.

– If φi,h is κ⊲m, the thesis follows reasoning as in the
previous case.

⊓⊔

B.3 Normal forms

Proposition 6 For any PL formula φ, any κ ∈ ℘fin(M) and
substitution any χ, there exists a normal form ψ such that,
κ |=χ φ ⇐⇒ κ |=χ ψ.

Proof By induction on the structure of φ. ⊓⊔

By Proposition 6, model checking PL formulas can be re-
duced to model check formulas in normal form. A further
simplification is to consider only atomic conjuncts because
it suffices to find a model for one of the disjunct to obtain
a model for the whole formula. First, positive atoms can be
exploited for determining a substitution (if any) that “re-
fines” the symbolic variables, then negative atoms are used
to establish inequalities that must hold in the models of the
formula.

Acknowledgements The authors wish to thank the anony-
mous referees for their helpful suggestions.

References

1. M. Abadi and C. Fournet. Mobile values, new names,
and secure communication. In POPL ’01. Proceedings
of the 28th ACM SIGPLAN-SIGACT on Principles of
programming languages, 2001, ACM SIGPLAN Notices,
2001. ACM Press.

2. M. Abadi and A. Gordon. A Calculus for Cryptographic
Protocols: The Spi Calculus. Information and Computa-
tion, 148(1):1–70, January 1999.

3. R. Amadio and D. Lugiez. On the reachability problem
in cryptographic protocols. In C. Palamidessi, editor, In-
ternational Conference in Concurrency Theory, volume
1877 of Lecture Notes in Computer Science, pages 380–
394. Springer-Verlag, 2000.

4. R. Amadio, D. Lugiez, and V. Vanackère. On the sym-
bolic reduction of processes with cryptographic functions.
Theoretical Computer Science, 290(1):695–740, 2003.

5. R. Amadio and S. Prasad. The game of the name in cryp-
tographic tables. In P. S. Thiagarajan and R. Yap, ed-
itors, Advances in Computing Science - ASIAN’99, vol-
ume 1742 of Lecture Notes in Computer Science, pages
15–26. Springer-Verlag, 1999.

6. N. Asokan. Fairness in Electronic Commerce. PhD the-
sis, University of Waterloo, 1998.

7. G. Baldi. Security Protocols Verification by Means of
Symbolic Model Checking Ms.Thesis, University of Pisa,
Available at [8].

8. G. Baldi, A. Bracciali, G. Ferrari, and E. Tuosto. AS-
PASyA: Automated tool for Security Protocols Analysis
based on a Symbolic Approach. Available at http://
www.cs.le.ac.uk/people/et52/aspasya/aspasya.html.

9. G. Baldi, A. Bracciali, G. Ferrari, and E. Tuosto. A
Coordination-based Methodology for Security Protocol
Verification. In N. Busi, R. Gorrieri, and F. Martinelli,
editors, International Workshop on Security Issues with
Petri Nets and other Computational Models, volume 121
of Electronic Notes in Theoretical Computer Science,
pages 23–46, 2005. Elsevier.

10. D. Basin, S. Mödersheim, and L. Viganò. Constraint
differentiation: a new reduction technique for constraint-
based analysis of security protocols. In CCS ’03: Proceed-
ings of the 10th ACM conference on Computer and com-
munications security, pages 335–344, 2003. ACM Press.

11. C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and
H. Riis Nielson. Control Flow Analysis Can Find New
Flaws Too. In Workshop on Issues on the Theory of Se-
curity (WITS’04), Electronic Notes in Theoretical Com-
puter Science, Elsevier, 2004.

12. C. Bodei, P. Degano, F. Nielson, and H. Nielson. Static
analysis for the π-calculus with applications to security.
Information and Computation, 168: 68-92, 2001.

13. M. Boreale. Symbolic trace analysis of cryptographic pro-
tocols. In F. Orejas, P. Spirakis, and J. van Leeuwen,
editors, Colloquium on Automata, Languages and Pro-
gramming, volume 2076 of Lecture Notes in Computer
Science. Springer-Verlag, 2001.

14. M. Boreale and M. Buscemi. A Framework for the
Analysis of Security Protocols. In L. Brim, P. Jančar,
M. Křetinský, and A. Kučera, editors, International Con-
ference in Concurrency Theory, volume 2421 of Lecture
Notes in Computer Science, pages 483–498. Springer-
Verlag, 2002.

15. M. Boreale and M. Buscemi. A method for symbolic anal-
ysis of security protocols. Theoretical Computer Science,
338(1-3):393–425, 2005.

16. M. Boreale and R. De Nicola. A Symbolic Seman-
tics for the π-calculus. Information and Computation,
126(1):34–52, 1996.

A symbolic framework for multi-faceted security protocol analysis 29

17. J. Borgström, S. Briais, and U. Nestmann. Symbolic
Bisimulation in the Spi Calculus. In P. Gardner and
N. Yoshida, editors, International Conference in Concur-
rency Theory, volume 3170 of Lecture Notes in Computer
Science, pages 161–176. Springer-Verlag, 2004.

18. A. Bracciali. Behavioural Patterns and Software Com-
position. PhD thesis, Dipartimento di Informatica, Uni-
versità di Pisa, 2003.

19. A. Bracciali, A. Brogi, G. Ferrari, and E. Tuosto. Secu-
rity and Dynamic Compositions of Open Systems. In
H. Arabnia, editor, Conference on Parallel and Dis-
tributed Processing Techniques and Applications, vol-
ume 3, pages 1372–1377, 2002. CSREA Press.

20. M. Burrows, M. Abadi, and R. Needham. A logic of au-
thentication. ACM Transactions on Computer Systems,
8(1):18–36, February 1990.

21. Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Tu-
ruani. Deciding the security of protocols with Diffie-
Hellman exponentiation and products in exponents. vol-
ume 2914 of Lecture Notes in Computer Science, pages
124–135. Springer-Verlag, 2003.

22. Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Tu-
ruani. An NP decision procedure for protocol insecurity
with XOR. In Annual Symposium on Logic in Computer
Science, pages 261–270. IEEE Computer Society, 2003.

23. J. Clark and J. Jacob. A survey of authentication proto-
cols 1.0. Technical report, University of York, 1997.

24. E. Clarke, O. Grumberg, and D. Long. Model checking
and abstraction. ACM Transactions on Programming
Languages and Systems, 16(5):1512–1542, 1994.

25. E. Clarke, S. Jha, and W. Marrero. Using State Space Ex-
ploration and a Natural Deduction Style Message Deriva-
tion Engine to Verify Security Protocols. In IFIP Work-
ing Conference on Programming Concepts and Methods
(PROCOMET), 1998.

26. H. Comon, V. Cortier, and J. Mitchell. Tree automata
with one memory, set constraints, and ping-pong pro-
tocols. In F. Orejas, P. Spirakis, and J. van Leeuwen,
editors, Colloquium on Automata, Languages and Pro-
gramming, volume 2076 of Lecture Notes in Computer
Science, pages 682–693. Springer-Verlag, 2001.

27. F. Crazzolara. Language, Semantics, and Methods for
Security Protocols. PhD thesis, BRICS, May 2003.

28. F. Crazzolara and G. Winskel. Events in security pro-
tocols. In Proceedings of the 8th ACM conference on
Computer and Communications Security, pages 96–105,
2001. ACM Press.

29. D. Dolev and A. Yao. On the security of public key
protocols. IEEE Transactions on Information Theory,
29(2):198–208, 1983.

30. N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Un-
decidability of bounded security protocols. In N. Heintze
and E. Clarke, editors, Workshop on Formal Methods
and Security Protocols, Part of the Federated Logic Con-
ference, 1999.

31. J. Fabrega, J. Herzog, and J. Guttman. Strand spaces:
Why is a security protocol correct? In RSP: 19th IEEE
Computer Society Symposium on Research in Security
and Privacy, 1998.

32. J. Fabrega, J. Herzog, and J. Guttman. Strand spaces:
Proving security protocols correct. Journal of Computer
Security, 7(2,3):181–230, January 1999.

33. R. Focardi and R. Gorrieri. A Classification of Security
Properties. Journal of Computer Security, 3(1), 1995.

34. R. Focardi and R. Gorrieri. The Compositional Security
Checker: A tool for the verification of information flow
security properties. IEEE Computer Society, 23(9):550–
571, 1997.

35. A. Freier, P. Karlton and P. Kocher. The SSL protocol
version 3.0, 1996. Available at http://home.netscape.
com/eng/ssl3.

36. A. D. Gordon and A. Jeffrey. Authenticity by typing
for security protocols. J. Comput. Secur., 11(4):451–519,
2004.

37. M. Hennessy and H. Lin. Symbolic Bisimulations. The-
oretical Computer Science, 138(2):353–389, 1995.

38. A. Huima. Efficient finite-state analysis of security pro-
tocols. In Formal methods and security protocols, FLOC
Workshop, 1999. INRIA.

39. A. Kehne, J. Schönwälder, and H. Langendörfer. Mul-
tiple authentications with a nonce-based protocol using
generalized timestamps. In Proc. ICCC ’92, 1992.

40. J. Kohl and B. Neuman. The kerberos network authenti-
cation service (version 5). Internet Request for Comment
RFC-1510, 1993.

41. S. Kremer, O. Markowitch, and J. Zhou. An intensive
survey of non-repudiation protocols. Computer Commu-
nications, 25(17):1606–1621, 2002.

42. G. Lowe. Breaking and fixing the Needham-Schroeder
public-key protocol using FDR. In Tools and Algorithms
for the Construction and Analysis of Systems, volume
1055, pages 147–166. Springer-Verlag, 1996.

43. G. Lowe. Some New Attacks upon Security Protocols. In
Proceedings of 9th IEEE Computer Security Foundations
Workshop. IEEE Computer Society, 1996.

44. G. Lowe. A hierarchy of authentication specifications. In
Computer Security Foundation Workshop. IEEE Com-
puter Society, 1997.

45. F. Martinelli. Analysis of security protocols as open sys-
tems. Theoretical Computer Science, 209(1):1057–1106,
2003.

46. A. Menzies, P. van Oorschot, and S. Vanstone. Handbook
of Applied Cryptography. CRC Press, 1997.

47. J. K. Millen. A necessarily parallel attack. In N. Heintze
and E. Clarke, editors, Workshop on Formal Methods
and Security Protocols, Part of the Federated Logic Con-
ference, 1999.

48. J.K. Millen. On the freedom of decryption. Information
Processing Letters, 86:329-333, 2003.

49. J. K. Millen and V. Shmatikov. Constraint solving
for bounded-process cryptographic protocol analysis. In
ACM Conference on Computer and Communications Se-
curity, pages 166–175, 2001.

50. J. Mitchell, M. Mitchell, and U. Stern. Automated anal-
ysis of cryptographic protocols using murφ. In Computer
Security Foundation Workshop, pages 141–151. IEEE
Computer Society, 1997.

51. J. Mitchell, V. Shmatikov, and U. Stern. Finite-state
analysis of SSL 3.0. In Proceedings of the 7th USENIX
Security Symposium (SECURITY-98), pages 201–216.
Usenix Association.

52. R. Needham and M. Schroeder. Using encryption for
authentication in large networks of computers. Commu-
nications of the ACM, 21(12):993–999, 1978.

53. L. Paulson. Proving properties of security protocols by
induction. In Computer Security Foundation Workshop.
IEEE Computer Society, 1997.

54. L. Paulson. The inductive approach to verifying crypto-
graphic protocols. Technical report; no. 443. 4006797499.
University of Cambridge, Computer Laboratory, 1998.

55. V. Shmatikov. Decidable analysis of cryptographic proto-
cols with products and modular exponentiation. volume
2986 of Lecture Notes in Computer Science, pages 355–
369. Springer-Verlag, 2004.

56. V. Shmatikov and J. Mitchell. Analysis of a fair exchange
protocol. In Symposium on Network and Distributed Sys-
tems Security (NDSS 2000), pages 119–128, 2000. Inter-
net Society.

57. V. Shmatikov and J. Mitchell. Finite-state analysis of
two contract signing protocols. Theoretical Computer
Science, special issue on Theoretical Foundations of Se-
curity Analysis and Design, 283(2):419–450, 2002.

30 Andrea Bracciali et al.

58. D. Song, S. Berezin, and A. Perrig. Athena, a novel ap-
proach to efficient automatic security protocol analysis.
Computer Security, 9(1,2):47–74, 2001.

59. D. Stinson. Cryptography: Theory and practice. CRC
Press, 1995.

60. J. Thayer, J. Herzog, and J. Guttman. Honest ideals on
strand spaces. In Computer Security Foundation Work-
shop. IEEE Computer Society, 1998.

61. E. Tuosto. Non-Functional Aspects of Wide Area Net-
work Programming. PhD thesis, Dipartimento di Infor-
matica, Università di Pisa, 2003.

62. V. Vanackére. The TRUST protocol analyser. Automatic
and Efficient Verification of Cryptographic Protocols. In
VERIFY02, 2002.

63. T. Woo and S. Lam. A semantic model for authentication
protocols. In RSP: IEEE Computer Society Symposium
on Research in Security and Privacy, 1993.

64. J. Zhou. Non-repudiation. PhD thesis, University of
London, 1996.

65. R. Zunino and P. Degano. Weakening the perfect encryp-
tion assumption in Dolev-Yao adversaries. Theoretical
Computer Science, 340(1):154–178, 2005.

