
A Formal Basis for Reasoning on

Programmable QoS?

Rocco De Nicola1, Gianluigi Ferrari2, Ugo Montanari2, Rosario Pugliese1, and
Emilio Tuosto2

1 Dipartimento di Sistemi e Informatica, Università di Firenze, Via C. Lombroso
6/17, 50134 Firenze (Italy) {denicola,pugliese}@dsi.unifi.it

2 Dipartimento di Informatica, Università di Pisa, Via M. Buonarroti 2, 56100 Pisa
(Italy) {giangi,ugo,etuosto}@di.unipi.it

Abstract. The explicit management of Quality of Service (QoS) of net-
work connectivity, such as, e.g., working cost, transaction support, and
security, is a key requirement for the development of the novel wide area
network applications. In this paper, we introduce a foundational model
for specification of QoS attributes at application level. The model han-
dles QoS attributes as semantic constraints within a graphical calculus
for mobility. In our approach QoS attributes are related to the program-
ming abstractions and are exploited to select, configure and dynamically
modify the underlying system oriented QoS mechanisms.

1 Introduction

Wide-Area Network (WAN) applications have become one of the most important
classes of applications in distributed computing. Currently, Internet and World
Wide Web are the primary environments for designing, developing and distribut-
ing applications. Network services have evolved into self-contained components
which inter-operate easily by exploiting WEB-based access protocols [17]. In
addition, network services may adapt themselves to match the particular capa-
bilities of a variety of devices ranging from traditional PCs, to Personal Digital
Assistants and Mobile Phones having intermittent connectivity to the network.

In this new scenario both final users and WAN application designers put
special emphasis on Quality of Service (QoS) issues. For final users, the perceived
QoS of their computations is not only dependent on the performance of WEB

? R. De Nicola has been supported by MIUR project NAPOLI and EU-FET
project MIKADO IST-2001-32222. G. Ferrari has been supported by MIUR project
NAPOLI and EU-FET project PROFUNDIS IST-2001-33100. U. Montanari has
been supported by MIUR project COMETA and EU-FET project AGILE IST-
2001-32747. R. Pugliese has been supported by MIUR project NAPOLI and EU-
FET project AGILE IST-2001-32747. E. Tuosto has been supported by MIUR
project NAPOLI and EU-FET project PROFUNDIS IST-2001-33100. All au-
thors have been supported by the MIUR project SP4 “Architetture Software ad Alta
Qualità di Servizio per Global Computing su Cooperative Wide Area Networks”.

servers but also on the availability of certain resources. Indeed, in addition to
access services, users are allowed to control the QoS they receive. Here, QoS is
meant as a measure of the non functional properties of services along multiple
dimensions. For instance, network bandwidth is a QoS measure for multimedia
services. Timely response and security are other examples of (higher level) QoS
measures.

In general, QoS attributes are special parameters of network services. Aware-
ness of these information is crucial for choosing network services to match user
requirements. For instance, final users can react to network congestion by binding
their network devices to different sites where the requested services are available.
Similarly, QoS awareness is exploited by WAN application designers to control
resource usage and resource access in order to guarantee and maintain certain
security levels and to provide users with differentiated QoS.

The advances in network technologies and the growth of commercial WEB
services have prompted questions about suitable mechanisms for providing QoS
guarantees. In the last few years, several models have been proposed to meet
the demands of QoS. We mention the Resource Reservation Protocol (RSVP)
[6], Differentiated Services [5], Constraint-based Routing [26], and we refer to
[28] for a detailed discussion of this topic. This stream of research is basically
system-oriented : it focuses on the lower layers of the Internet protocol stack.

Another significant line of research has dealt with enhancing existing dis-
tributed programming middlewares to support QoS features. QoS-aware mid-
dlewares allow clients to express their QoS requirements at a higher level of
abstraction. In this way the application has good degree of control over QoS
without having to deal with low-level details. Examples of QoS-aware middle-
ware are Agilos [22], Mobiware [1], and Globus [13].

Novel computational models exploit the idea of network awareness to man-
age the dynamic nature of network infrastructures. This has led to the develop-
ment of models and foundational calculi where mobility is the basic notion and
applications have control over localities where computation progresses. These
computational models do not provide natural and expressive QoS mechanisms.
Some preliminary results in this direction can be found in [7]; there a calculus
is introduced which incorporates a notion of communication rate (bandwidth)
and describe some programming constructs based on this calculus.

We believe that the ability of identifying and managing QoS requirements
at the early stages of software development (programmable QoS) is a key issue
and the added-value of the evolutionary paradigms for WAN programming. In-
deed, programmable QoS allows one to evaluate the impact of QoS requirements
on the overall software architectures without committing to specific low level
technological details. Moreover, when implementing a specific application, this
information can be used to select and configure the primitives of the underlying
QoS-aware middleware.

Our research goal is to contribute at a formal understanding of programmable
QoS, as a step toward the development of proof techniques and tools for the
automated verification and certification of properties of WAN applications. To

achieve this, we provide an appropriate level of abstraction to describe pro-
grammable QoS together with a semantic model which can be used to experiment
programmable QoS without relying on the current complex network technolo-
gies.

In particular, we have abstracted the basic features of the problem in a cal-
culus with primitives which control explicitly QoS attributes. This calculus, that
we call Kaos (Klaim-based calculus for Application Oriented QoS), is a first
contribution of the paper. Kaos builds on Klaim (Kernel Language for Agent
Interaction and Mobility) [9]. Klaim is an experimental kernel programming
language specifically designed to model and program WAN applications with
located services and mobility. Klaim naturally supports a peer-to-peer program-
ming model where interacting peers (network nodes or sites, in Klaim termi-
nology) cooperate to provide common sets of services. Kaos enriches Klaim

networking constructs [2] with attributes which are used to specify the QoS
properties of peer groups. This QoS attributes may be seen, e.g., as a value
specifying the abstract cost c of using a given connection, or as a pair 〈c, π〉 that
additionally specifies the set π of access rights (in the sense of [10]), or, more
generally, as a vector whose components represent different QoS aspects.

Although Kaos provides semantic idioms to deal with programmable QoS,
it does not directly handle how QoS attributes can be effectively enforced and
guaranteed. To this purpose, we introduce a formal model that enables us to de-
scribe and reason about QoS guarantees. Our model is based on (hyper-)graphs
and local graph synchronization and extends the graphical calculus for mobility
introduced in [15]. Graphs naturally provide the capabilities to describe inter-
networking systems: edges represent network components and vertices model
the network environments. If some edges share a vertex then the corresponding
components may interact by exploiting the underlying network communication
infrastructure. Graph synchronization is purely local and it is obtained by the
combination of graph rewriting with constraint solving. The intuitive idea is that
properties of components are specified as constraints over their local resources.
Hence, local evolutions of components depend on the outcome of a (possibly dis-
tributed) constraint satisfaction algorithm. In other words, the actual behaviour
is the result of a constraint solving algorithm [25, 29].

As a second contribution of the paper we provide an operational semantics
for Kaos in terms of the graphical calculus. The key issue of the approach is that
QoS attributes become semantic constraints of the graphical calculus. In other
words, the model fosters a declarative approach by identifying the points where
satisfaction of QoS requirements has a strong impact on behaviours. Hence,
the goal of finding a connection between two Kaos peers with a certain QoS
level corresponds to find the optimal path with respect to the QoS constraints.
The main result of the paper proves that the graphical semantics provides the
desired properties. In particular, we show that whenever a remote operation is
performed, the graphical calculus always select the optimal path with respect to
the QoS constraints set up by the application.

Throughout the paper we focus on Kaos since the specification of QoS at-
tributes and their enforcement in the graphical semantics are specifically de-
signed for Klaim. However, similar techniques could be applied to other process
languages in which network infrastructures can be specified declaratively.

Structure of the paper. Syntax and semantics of Kaos are given in Sections 2
and 3, respectively. An example of how an application can be modeled with
Kaos is presented in Section 4. Section 5 defines hypergraphs and their seman-
tics in terms of hyperedge replacement. A mapping of Kaos into hypergraphs
and their semantics is defined in Section 6, while productions for edges used in
translations of Kaos nets are detailed in Section 7. Section 8 shows how path
reservation can be obtained by simple changes of productions for hypergraphs of
Kaos nets. Section 9 applies the translation of Section 6 to the example in Sec-
tion 4 and shows that the paths reserved by using the productions in Section 8
are the optimal paths computed by the Floyd-Warshall algorithm applied to
graphs representing Kaos nets. Finally, some concluding remarks are reported
in Section 10.

2 Kaos: a Calculus for Programmable QoS

This section presents the syntax of Kaos (Klaim-based calculus for Application
Oriented QoS) as reported in Table 1. We assume a set N of names ranged
over by metavariables r, s, t, Names provide the abstract counterpart of the
set of communicable values. Generally speaking, communicable values consist
of expressions, processes, tuples (ordered sequences of values), and so on. For
the sake of simplicity, here communicable values are simply localities. These
are the syntactic ingredient used to express the idea of administration domain:
computations at a certain locality are under the control of a specific authority.
We also assume a set of process variables ranged over by X,Y,

Finally, we assume a set of costs which are special values used to measure
and manage QoS attributes. Cost values (ranged over by κ) are equipped with
two binary operations (an additive and a multiplicative operation) together
with a partial order relation v. Formally, the algebraic structure of cost val-
ues is a constraint semiring [3] (or c-semiring, for short). An algebraic structure
〈A,+,×,0,1〉 is a constraint semiring if A is a set (0,1 ∈ A), and + and × are
binary operations on A that satisfy the following properties:

– + is commutative, associative, idempotent, 0 is its unit element and 1 is its
absorbing element;

– × is commutative, associative, distributes over +, 1 is its unit element, and
0 is its absorbing element.

The additive operation of a c-semiring induces a partial order on A defined as
a ≤A b ⇐⇒ ∃c : a + c = b. The minimal element is thus 0 and the maximal 1.
Hence, a ≤A b means that a is more constrained than b.

N ::= Nets

s ::L P Single node

| (ν s)N Node restriction

| N1 ‖ N2 Net composition

γ ::= Actions

(s) Input

| ν(s · κ) Node creation

|
κ
_ s Login

| s
κ
^ Accept

| δ l Disconnect

l ::= Links

〈s, κ〉 Incoming link

| 〈κ, s〉 Outgoing link

P ::= Processes

0 Null process

| γ.P Action prefixing

| 〈t〉 Output

| ε(P)@s Process spawning

| P1 | P2 Process composition

| X Process variables

| rec X.P Recursion

Table 1. Kaos Syntax

The actual definitions of the operations of the constraint semiring depend
on the notion of costs we intend to capture. For instance, the constraint semir-
ing of truth values (the structure ({T, F},∨,∧, F, T)) allows reasoning on the
availability of network connections.

The following examples give an intuition of some c-semiring structures that
will be exploited in next sections.

Example 1. An example of c-semiring is the structure 〈N,min,+,+∞, 0〉, the
c-semiring of natural numbers N where the additive operation is min (which
induces the obvious order) and the multiplicative operation is the sum over nat-
ural numbers. Notice that in this case the partial order induced by the additive
operations (i.e. min) is the inverse of the ordinary total order on natural num-
bers.

Another example is given by 〈℘({A}),∪,∩, A,A}〉 where ℘(A) is the powerset
of a set A, and ∪ and ∩ are the usual set union and intersection operations. Notice
that in the latter example also the multiplicative operation is idempotent. When
this is the case, additional constraint satisfaction algorithms apply (e.g. local
propagation).

Kaos programs, called nets, are the parallel composition of a set of nodes.
A node is characterized by a unique name, representing its locality, and it is
a container of resources (data) and active computational entities (processes).
Syntactically, a node is written

s ::L P

where s is the locality of the node, P is the process running at s, and L is the
network interface of the node, i.e. a set of links. Links (ranged over by l) are
pairs either of the form 〈s, κ〉 or of the form 〈κ, s〉, where s is a locality and
κ is a cost. Pair 〈s, κ〉 (〈κ, s〉) represents a link from (to) node s with costs κ.
Restriction (ν s)N is a binder for s and is used to express the lexical scope of
location s in net N . Intuitively, it is similar to local declarations inside a “block”,

namely, s is a variable whose scope is local to N . Differently from declarations
of usual programming languages, the scope of s can dynamically change. This
is a key feature of name passing process calculi (the well known example is the
π-calculus [24]) formally defined as scope extrusion.

Kaos processes are built up from the special process 0, that does not perform
any action, and from a set of basic actions by using action prefixing, parallel
composition and recursion. Inter-processes communication is local. The output
process 〈s〉 makes available name s in the local repository. Intuitively, the output
operation abstracts the idea of publishing a service (a data) into a directory (the
repository). The input action (s) withdraws a name from the local repository
and uses it to replace the formal name s in the rest of the process; if no name
is available, the executing process is blocked. In our analogy, input abstracts
the idea of resource discovery. The operation for creating a new node ν(s · κ)
has the effect of establishing a link with cost attribute κ between the creating
node and the fresh node (otherwise, the created node would be unreachable, i.e.
completely useless). The only possibly remote operation is ε(P)@s that provides
code mobility. The execution of ε(P)@s has the effect of sending process P for
execution at the node s. Process P1 | P2 is the parallel composition of processes
P1 and P2, namely P1 and P2 are executed concurrently. Process rec X.P is
a recursive process. It is equivalent to execute the process obtained from P
once process variable X has been replaced by its definition. Variable X can be
renamed without affecting the behaviour of rec X.P . Indeed, if Y does not occur
in P , rec Y. P [Y /X] is equivalent to rec X.P ([Y /X] denotes the substitution that
replace occurrences of X with Y in P if they are not in the scope of a rec .
binder).

Actions login, accept and disconnect allow specifying the characteristic of
connections among nodes. A login operation sends to the receiver a message
detailing the QoS attributes of the required connection. The receiver may accept
a login request by performing the accept operation. If a login request is accepted
a link with the specified QoS attributes is set up among the two nodes involved.
The disconnect operation removes the link with the specified QoS attributes
from the network interface of a node.

Names occurring in Kaos processes and nets can be bound. More precisely,
prefix (s).P binds s in P ; this prefix is similar to the λ-abstraction of the λ-
calculus. Prefix ν(s · κ).P binds s in P and, similarly, (ν s)N binds s in N . A
name that is not bound is called free. The sets bn(·) and fn(·) (respectively, of
bound and free names of a term) are defined in Table 2 (where fn(L) denotes the
names occurring in the set of links L). The set n(·) of names of a term is the union
of its sets of free and bound names. We say that two terms are α-equivalent, ≡α,
if one can be obtained from the other by renaming bound names.

Hereafter, we will identify Kaos nets which intuitively represent the same
net. We therefore define structural congruence ≡, namely an equivalence relation
over nets that equates terms denoting the same net and differ only for meaning-
less syntactic details. Relation ≡ relates nets and relies on a relation ≡p which
defines structural congruence over processes and is defined as:

γ fn() bn()

(s) ∅ {s}
ν(s · κ) ∅ {s}

κ
_ s {s} ∅

s
κ
^ {s} ∅

δ 〈κ, s〉 {s} ∅
δ 〈s, κ〉 {s} ∅

P fn() bn()

0 ∅ ∅
γ.P fn(P) \ bn(γ) ∪ fn(γ) bn(P) ∪ bn(γ)
〈s〉 {s} ∅

ε(P)@s fn(P) ∪ {s} bn(P)
P1 | P2 fn(P1) ∪ fn(P2) bn(P1) ∪ bn(P2)

X ∅ ∅
rec X. P fn(P) bn(P)

N fn() bn()

s ::L P {s} ∪ fn(L) ∪ fn(P) bn(P)
N1 ‖ N2 fn(N1) ∪ fn(N2) bn(N1) ∪ bn(N2)
(ν s)N fn(N) \ {s} bn(N) ∪ {s}

Table 2. Free and bound names

– P | 0 ≡p P , for any P ;
– P | Q ≡p Q | P , for any P and Q;
– P | (Q | R) ≡p (P | Q) | R, for any P , Q and R.

The axioms above state that (P, |,0) is a commutative monoid.
We can define net structural equivalence as the smallest relation over nets

such that

1. ‖ is a commutative and associative;

2.
N ≡α N ′

N ≡ N ′
;

3.
P ≡p Q

s ::L P ≡ s ::L Q
.

Notice that ≡ identifies only nets whose equality derives from their syntactical
structure and has nothing to do with the semantics of nets (which has still to
be introduced and shall rely on structural congruence). With a slight abuse of
notation, in the following we write P ≡ Q instead of P ≡p Q; the context will
always clarify whether ≡ is the relation on nets or on processes.

A net s1 ::Ln P1 ‖ ... ‖ sn ::Ln Pn is well-formed if, and only if, for any
i, j, if i 6= j then si 6= sj and if 〈κ, sj〉 ∈ Li (〈sj , κ〉 ∈ Li) then 〈si, κ〉 ∈ Lj

(〈κ, si〉 ∈ Lj). Notice that this definition implies that, in well-formed nets, a
connection from s to t costing κ is possible only if two links, 〈t, κ〉 and 〈κ, s〉 are
in the network interfaces of nodes s and t, respectively. We shall only consider
well-formed nets.

3 An LTS Semantics for Kaos

This section presents the operational semantics of Kaos as a standard labeled
transition system semantics. For simplicity, we write M ∪e (resp. M \e) instead
of M ∪ {e} (resp. M \ {e}).

The semantics is given in terms of a transition relation that describes possible
net evolutions and the corresponding abstract costs (we omit the cost when it
is negligible).

Definition 1 (
α

−−→
ρ

>). The LTS semantics of Kaos is the minimal relation

−→> ⊆ N × 〈α, ρ〉 × N closed under the inference rules of Tables 3 and 4 and

rule

(struct)
N1 ≡ N ′ α

−−→
ρ

> N ′′ ≡ N2

N1
α

−−→
ρ

> N2

.

Labels of transition −→> are defined as follows:

α ::= τ | s C t | s B t | s(η, P)@t | s ε t | X@s

| s
κ
_ t | s

κ
^ t | δ(s, 〈t, κ〉) | δ(s, 〈κ, t〉)

ρ ::= ε | s, κ

In the operational rules we adopt a notational convention borrowed from a
similar notation for terms. In particular,

– bn(α) is equal to η if α = s(η, P)@t, ∅ otherwise,
– n(α) (n(ρ) resp.) denotes the set of all names (free and bound) occurring in

α (ρ resp.).

Finally, we will write κ |= T (P) to indicate that the behaviour of P is compatible
with the cost κ. Intuitively, T (P) represents the type or capabilities of process P .
Like for abstract costs, we intentionally do not specify what T (P) exactly is. For
example, it could be determined by using a type system like the one in [10]. From
a pragmatic point of view, T (P) is a parameter used to discriminate between
processes that can be executed at a site and processes that cannot.

Let us now comment on the semantics. Labels α are used to describe process
activities.

– τ describes internal activity.
– s C t (s B t) says that a process located at s aims at receiving (sending) a

name t.
– s(η, P)@t says that a process at s intends spawning process P for execution

at t. Set η contains the localities occurring in P that must be restricted upon
migration (because their scope must also include the target node t).

– s ε t says that a process from s is migrated to t.
– X@s says that node s does exist and can accept a process for execution at

s; variable X is the placeholder where the migrating process that reaches s
will be substituted for.

– s
κ
_ t says that a process at s intends to establish a link between s and t

with cost κ.
– s

κ
^ t says that a process at s accepts the establishment of a link between s

and t with cost κ.

(out) s ::L 〈t〉
s B t

−−−−→> s ::L 0

(in) s ::L (x).P
s C t

−−−−→> s ::L P [t/x]

(leval) s ::L∪〈s,κ〉 ε(P)@s
τ

−−→> s ::L∪〈s,κ〉 P , if κ |= T (P)

(eval) s ::L ε(P)@t
s(∅, P)@t

−−−−−−−−→
s, 1

> s ::L 0, if s 6= t

(new)
s ::L (ν(x · κ).P) | Q

τ
−−→> (ν x)(s ::L∪〈κ,x〉 P | Q ‖ x ::〈s,κ〉 0),

if x 6∈ n(L) ∪ {s} ∪ fn(Q)

(llogin) s ::L
κ
_ s.P

τ
−−→> s ::L∪{〈s,κ〉,〈κ,s〉} P

(login) s ::L
κ
_ t.P

s
κ
_ t

−−−−−→> s ::L∪〈κ,t〉 P , if s 6= t

(accept) s ::L t
κ′

^ .P
t

κ
^ s

−−−−−→> s ::L∪〈t,κ〉 P , if κ ≤ κ′

(ldisc) s ::L δ〈s, κ〉.P
τ

−−→> s ::L\〈s,κ〉\〈κ.s〉 P

(idisc) s ::L δ 〈t, κ〉.P
δ(s, 〈t, κ〉)

−−−−−−−−→> s ::L\〈t,κ〉 P , if t 6= s

(odisc) s ::L δ 〈κ, t〉.P
δ(s, 〈κ, t〉)

−−−−−−−−→> s ::L\〈κ,t〉 P , if t 6= s

(node) s ::L∪〈r,κ〉 P
X@s

−−−−→
r, κ

> s ::L∪〈r,κ〉 P | X, if X fresh

(rec) s ::L rec X.P
τ

−−→> s ::L P [rec X.P /X]

Table 3. Axioms of Kaos interactive semantics

– δ(s, 〈t, κ〉) (δ(s, 〈κ, t〉)) says that a process running at s wants to remove the
link 〈t, κ〉 (〈κ, t〉) from the network interface of node s.

Labels ρ can be either the empty label ε (that carries no information and will
be omitted) or the pair 〈s, κ〉 which point out that s is used as gateway for a
remote action at node s and κ is the cost of the path from the source node to s.

Axioms in Table 3 describe process activities. The informal semantics has
been explained in the previous section. Here we only add a few comments.

– Axiom (in) gives an “early” flavor to the semantics (in the sense of the
π-calculus [24]).

– Axioms (leval) and (eval) deal with process spawning. The first one says that
local evaluation is authorized only if the type of the process is compatible

with the cost of performing a local spawning. The second axiom accounts
for remote evaluation.

– Axioms (llogin) and (login) deal with the establishment of a new link. A local
link can always be established, while a remote one needs the authorization
of the target node. In both cases, the node network interface is enriched with
an outgoing link.

– Axiom (accept) says that any connection request having a cost κ less than
κ′ can be accepted. The node network interface is enriched with an incoming
link.

– Axioms (ldisc), (idisc) and (odisc) handle requests for removing local, incom-
ing and outgoing links, respectively. Removing local links simply updates the
network interface of a node, whereas, removing a link from/to a remote node
t requires to signal node t that the corresponding link must be removed from
its network interface (see rule (remlink) in Table 4).

– Axiom (node) says that a node s dynamically creates an execution context
named (by the process variable) X where a (possibly remote) process can
be placed. Other than X, the transition label contains the locality r of a
node that can be used as an intermediate node (a sort of gateway) to reach
s (because there exists a link from r to s).

Rules in Table 4 coordinate the behaviour of processes in a net. Most of the
rules (e.g. (par1), (par2) and (res)) are standard. Here, we comment on a few
peculiarities.

– Rule (com) says that communication is always local and asynchronous.
– Rule (connect) says that in order to establish a link, a synchronization must

occur between the requiring process and the accepting one.
– Rule (remlink) says that to remove a link, a synchronization between the

two nodes connected by the link is necessary in order to guarantee that the
network interfaces of these two nodes will be updated coherently. Notice that
this synchronization occurs provided that the link actually exists.

– Scope extrusion of bound names that are exported by migrating processes is
implemented by rules (open) and (close) in the style of the π-calculus [24].

– Rules (route) and (close) check step-by-step the existence of a path of links
from the node s (performing the remote spawning of process P) to the target
node t. In particular, the first premise of these rules checks the existence of
a path from s to an intermediate gateway r′. The second premise checks
the existence of a link starting from r′. If both checks succeed, and if the
type of P complies with the cost of each link along the path, the path can
be extended by including the link from r′ (which is used as an intermediate
node). Additionally, in rule (route) the obtained path connects s to an r 6= t
(see the reduction labels in the conclusion of the rule), hence the free context
X of r is not used to execute P and must be removed. This is done by simply
plugging process 0 inside X and by exploiting the fact that Q | 0 ≡ 0 and
rule (struct). On the other hand, rule (close) obtains a path from s to t, hence
P is now plugged in the execution context X of t (i.e. P is sent for execution

(par1)
s ::L P

α
−−→

ρ
> s ::L P ′

s ::L P | Q
α

−−→
ρ

> s ::L P ′ | Q

(par2)
N1

α
−−→

ρ
> N ′

1

N1 ‖ N2
α

−−→
ρ

> N ′
1 ‖ N2

if bn(α) ∩ fn(N2) = ∅

(com)
s ::L P

s B t
−−−−→> s ::L P ′ s ::L P ′ s C t

−−−−→> s ::L Q

s ::L P
τ

−−→> s ::L Q

(connect)
N1

s
κ
_ t

−−−−−→> N ′
1 N2

s
κ
^ t

−−−−−→> N ′
2

N1 ‖ N2
τ

−−→> N ′
1 ‖ N ′

2

(remlink)
N1

δ(t, l)
−−−−−→> N ′

1

N1 ‖ t ::L∪l P
τ

−−→> N ′
1 ‖ t ::L P

(res)
N

α
−−→

ρ
> N ′

(ν x)N
α

−−→
ρ

> (ν x)N ′ if x 6∈ n(α, ρ)

(open)
N

s(η, P)@t
−−−−−−−−→

r, κ
> N ′

(ν x)N
s(η ∪ {x}, P)@t

−−−−−−−−−−−−→
r, κ

> N ′
if x ∈ fn(P) \ {r, s, t}

(route)

N1
s(η, P)@t

−−−−−−−−→
r′, κ

> N ′
1 N2

X@r
−−−−→

r′, κ′

> N ′
2 κ′ |= T (P)

N1 ‖ N2
s(η, P)@t

−−−−−−−−→
r, κ × κ′

> N ′
1 ‖ N ′

2[
0/X]

if r 6= t

(close)

N1
s(η, P)@t

−−−−−−−−→
r′, κ

> N ′
1 N2

X@t
−−−−→

r′, κ′

> N ′
2 κ′ |= T (P)

N1 ‖ N2
s ε t

−−−−−→
t, κ × κ′

> (ν η)(N ′
1 ‖ N ′

2[
P /X])

Table 4. Inference rules of Kaos interactive semantics

at t). Moreover, the restrictions over the bound names carried along with
P are restored to extend the scope of these names to the resulting net as a
whole. An example of use of these two rules is given in Figure 3.

4 A Kaos Application

This section shows how Kaos can be used to model QoS requirements at ap-
plication level. The scenario is a messaging application. A group of nodes are
connected and have to exchange messages (or files). When a message must be
sent from node s to node t a notification message is first sent to t. At this point,
node t spawns an agent on s that will examine the message and, if all checks
are satisfied, the message is effectively moved on t. Intuitively, the agent acts as
a “filter” that can be programmed to avoid useless messages to roam the net.

This mechanism also enhances network performances when messages are much
greater than notifications and agents. The above message exchange protocol is
depicted in Figure 1 where the bold line represents the fact that an agent is
spawned from t to s and the dashed line represents the fact that the message is
downloaded only if the checking phase is passed.

s

3. download message

2. check message

1. message on s

Send ’msg’ to t

t

Fig. 1. The filter protocol between s and t

Nodes s and t may not be directly connected but can be connected by means
of (a number of) links passing through a number of intermediate nodes that are
used for forwarding messages between t and s. We assume that the attributes of
a link between r and r′ that can affect our messaging application could be

1. the geographical distance between r and r′;

2. the capabilities granted to processes executed at r′ from r (at r from r′);

3. the price of the connection.

Figure 2 depicts a possible way of connecting s and t and the costs associated
to the links. Lines which are arrowed at both extremities, see e.g. the line between
t and x, represent two links, one from t to x and another from x to t, both links
have the same cost (e.g. 〈10, {i, o}, 2〉). Notice that, in the net of Figure 2, t is
connected to s via two paths (the path t− x− z − s and the path t− y − z − s),
while only one path goes from s to t.

x

y

zt

<10,{i,o},2>

<10,{i},20> <150,{i,o},2>

<100,{i,o,n},2>

<300,{i,o},60> s

Fig. 2. A net connecting s and t

We now show how Kaos primitives can be exploited both for declaring the
network connections and for programing the described messaging application.

Costs First we describe costs as triples κ = 〈d,C, p〉 where

1. d is the geographical distance (in Km);

2. C ⊆ {i, o, n} are the capabilities, where i, o and n stand for input, output
and creation of new nodes, respectively;

3. p is the price (in euros).

All the components of costs are elements of the following c-semirings, respectively

1. (N,min,+,+∞, 0),

2. (℘({i, o, n}), glb,∩, {i, o, n}, {i, o, n}),

3. (Q,min,+,+∞, 0).

In [3] it has been proved that the cartesian product of c-semirings is a c-semiring
as well. Therefore, we can define operations × and + of the cost c-semiring as

〈d,C, p〉 × 〈d′, C ′, p′〉 = 〈d + d′, C ∩ C ′, p + p′〉
〈d,C, p〉 + 〈d′, C ′, p′〉 = 〈min{d, d′}, glb{C,C ′},min{p, p′}〉.

Accordingly, the neutral elements of × and +, respectively are defined as 1 =
〈0, {i, o, n}, 0〉 and 0 = 〈+∞, ∅,+∞〉.

In the following, we use the convention that κuv denotes the cost of the link
from u to v. In Figure 2, for instance, κxt is 〈10, {i, o}, 2〉. We also avoid writing
trailing occurrences of 0, hence γ.0 will be abbreviated as γ.

Connections In order to establish connections among nodes t, x, y, z and s
corresponding to Figure 2, we can start with the following Kaos net:

t ::∅ Pt ‖ x ::∅ Px ‖ y ::∅ Py ‖ z ::∅ Pz ‖ s ::∅ Ps

where

Pt
4
= x

κxt^ |
κtx_ x |

κty
_ y

Px
4
= t

κtx^ | z
κzx^ |

κxt_ t |
κxz_ z

Py
4
= t

κty
^ |

κyz
_ z

Pz
4
= x

κxz^ | y
κyz
^ | s

κsz^ |
κzx_ x |

κzs_ s

Ps
4
= z

κzs^ |
κsz_ z.

According to the semantics of Kaos, after all executions of login and accept
actions, the network interfaces of the nodes in the resulting net will correspond

to the graph of Figure 2 and the Kaos net obtained is the following:

t ::{〈x,κxt〉,〈κtx,x〉,〈κty,y〉} 0 ‖

x ::{〈t,κtx〉,〈z,κzx〉,〈κxt,t〉,〈κxz,z〉} 0 ‖

y ::{〈t,κty〉,〈κyz,z〉} 0 ‖

z ::{〈x,κxz〉,〈y,κyz〉,〈s,κsz〉,〈κzx,x〉,〈κzs,s〉} 0 ‖

s ::{〈z,κzs〉,〈κsz,z〉} 0.

(1)

Capabilities In order to consider the intentions of remotely evaluated processes
it is necessary to define T (P). Given a process P , we define T (P) as follows

T (P) =

∅, if P = 0 ∨ P = ε(Q)@t ∨ P = X
{o}, if P = 〈t〉
T (P1) ∪ T (P2), if P = P1 | P2

T (Q), if P = rec X.Q
T (γ) ∪ T (Q), if P = γ.Q

where

T (γ) =

{i}, if γ = (x)
{n}, if γ = ν(x · κ)
∅, otherwise.

Capabilities of processes that are arguments of spawning actions performed
by P are not part of the type of P ; instead, they will be looked at when the
spawning actions are effectively executed (see rules (route) and (close) in Ta-
ble 4).

We can now instantiate relation |= to costs and process types defined in this
section. Given a process P , we say that a cost 〈d,C, e〉 satisfies T (P) (written
〈d,C, e〉 |= T (P)) if, and only if, T (P) ⊆ C. This interpretation states that a
remote evaluation of a process P can traverse a link if all the capabilities that
P might exercise occur in the cost of the link.

Sender, receiver and filter processes The messaging application can be defined
by means of a sender process executed at t, a receiver process executed at s and
the agent that filters the file which migrates from t to s and provides the result
to t. This three rôles can be formalized in Kaos1 as follows:

S
4
= ε(〈“bigfile′′, s〉)@t | 〈“bigfile′′, file〉

R
4
= (f, u).ε(Ff,t)@u.(res)...

Ff,t
4
= (f, v).if test(v) then ε(〈v〉)@t else ε(〈no〉)@t

1 In this example we use tuples, ground values as string or files, the boolean function
test and the if-then-else construct. In the formal definition of Kaos we chose not to
have many constructs and types in order to give a smoother definition of the calculus.
It is, of course, straightforward to extend Kaos to all programming constructs used
in our running example.

Process S (allocated at s) notifies to R (allocated at t) that a “big file” is available
at s (spawning action of S). When R acquires the notification, the filter F is
spawned at u and the result of its check is waited for. Agent F , once in execution,
accesses the file, and tests whether it must be sent to t or not. In the first case,
the file is effectively sent to t while, in the second case, a conventional signal no
is sent.

If S and R are respectively allocated at nodes s and t of net (1) we can
detail how Kaos semantics can deal with the remote operations and costs of
connections. In order to avoid cumbersome replica of link costs, in the following
we use Lu to denote the network interface of node u. Hence, we consider the
initial configuration as given in net (1)

t ::Lt R ‖ x ::Lx 0 ‖ y ::Ly 0 ‖ z ::Lz 0 ‖ s ::Ls S (2)

and show how Kaos semantics can determine a path connecting t and s and,
for each path, its total cost. For instance, let us consider the spawning action of
S. By definition T = T (〈“bigfile′′, s〉) = {o}.

s ::Ls ε(〈“bigfile′′, s〉)@t
s(∅, 〈“bigfile′′, s〉)@t

−−−−−−−−−−−−−−−−→
s, 1

> s ::Ls 0

s ::Ls S
s(∅, 〈“bigfile′′, s〉)@t

−−−−−−−−−−−−−−−−→
s, 1

> s ::Ls 〈“bigfile′′, file〉

︸ ︷︷ ︸
eval−s−z

eval − s − z z ::Lz 0
X@z

−−−−→
s, κsz

> z ::Lz X κsz |= T

s ::Ls S ‖ z ::Lz 0
s(∅, 〈“bigfile′′, s〉)@t

−−−−−−−−−−−−−−−−→
z, 1 × κsz

> s ::Ls 〈“bigfile′′, file〉 ‖ z ::Lz 0

︸ ︷︷ ︸
path−s−z

path − s − z x ::Lx 0
Y @x

−−−−→
z, κzx

> x ::Lx Y κzx |= T

N1
s(∅, 〈“bigfile′′, s〉)@t

−−−−−−−−−−−−−−−−→
x, 1 × κsz × κzx

> N2

︸ ︷︷ ︸
netpath−s−z

netpath − s − z t ::Lt R
Z@t

−−−−→
x, κxt

> t ::Lt R | Z κxt |= T

N1 ‖ t ::Lt R
s ε t

−−−−−−−−−−−−−−−→
t, 1 × κsz × κzx × κxt

> N2 ‖ t ::Lt R | 〈“bigfile′′, s〉

Fig. 3. Proving a net reduction

An example of inference proof that uses the Kaos semantics rules can be
found in Figure 3 where, for the sake of readability, we use the following short-
hands: N1 stands for the net s ::Ls S ‖ z ::Lz 0 ‖ x ::Lx 0 and N2 for the net

s ::Ls 〈“bigfile′′, file〉 ‖ z ::Lz 0 ‖ x ::Lx 0. The first inference is an application
of rule (par1) that uses axiom (eval) as premise. The second inference, uses the
conclusion of the first one (that we call eval − s − z) and axiom (node) for the
premises, and then proceeds by first applying (route) and (struct). The resulting
net reduction (that we call path− s− z because determines a path from s to z)
is then used as the first premise of the third inference proof. This inference also
uses axiom (node) as premise and proceeds by applying (route) and (struct).
Finally, the resulting net reduction (that we call netpath − s − z) and axiom
(node) are the premises of the last inference that concludes by applying rule
(close).

5 A Calculus of Graphs

Graph-based techniques can be usefully adopted for modeling inter-networking
systems. Indeed, (hyper)edges (namely, edges that connect more than two ver-
tices) can be used to represent components, while vertices model the network en-
vironment of components. Edges sharing a vertex means that the corresponding
components may interact by exploiting network communication infrastructure.
Structured versions of graphs (typed graphs, term graphs, hierarchical graphs)
can precisely model complex inter-network configurations [14, 15] and access con-
trol policies [18–20].

Graph synchronization adds to network awareness the ability of dealing with
the temporal dimension of computations. Graphs synchronization is purely local
and it is obtained by the combination of graph rewriting with constraint solving.
The intuitive idea is that local rewritings depends on the outcome of a (possibly
global) constraint satisfaction algorithm.

Graph rewriting based on edge replacement and synchronization was intro-
duced in [8, 11] and related to distributed constraint satisfaction problems in [25].
The version with mobility, which employs a notation based on logical judgments
and inference rules, was introduced recently in [14] and extended in [15] to en-
code the π-calculus. Abstract semantics based on bisimilarity has been discussed
in [21].

Next sections introduce syntax and semantics of graphs.

5.1 Syntax of Graphs

We assume that V is an ordered set of vertices. An edge, is an atomic item with
a label from a ranked alphabet L. We write L(x1, ..., xn) to indicate an edge
labeled L connecting vertices x1,..., xn. In this case, we say that L has rank n
(written as L : n) and that x1, ..., xn are the attachment vertices (or attachment
points) of L. Figure 5.1 represents edge L(a, b, c) where L : 3. Wires connecting
vertices a, b and c to L are called tentacles. Graphs are built from ranked edges
in L and vertices in V. Moreover, we write L(x) with the implicit assumption
that L has rank |x|, namely the length of vector x.

We can now define graphs.

•
b

•a L • c

Fig. 4. An edge

Definition 2 (Syntactic judgments). A (hyper)graph is a syntactic sequent
of the form Γ ` G, where

– Γ ⊆ V is a finite set of vertices called external vertices, and
– G is one of the terms generated by the following grammar, where y ∈ V and

L : |x| is an edge:

G ::= L(x)
∣∣ G | G

∣∣ ν y.G
∣∣ nil.

We call terms G graph terms.

The productions in Definition 2 permits generating single edges (L(x)), compos-
ing terms in parallel (G | G) and hiding vertices (ν y.G). Graph nil represents
the empty graph. We will use fv(G) to denote the set of the vertices of G which
does not occur in the scope of a ν operator. Hereafter, we omit the curly brack-
ets in judgments and write x1, ..., xn ` G instead of {x1, ..., xn} ` G; moreover,
we will often use x ` G instead of x1, ..., xn ` G, if x = (x1, ..., xn), . We use
the notation Γ, x instead of Γ ∪ {x} with the implicit assumption that x 6∈ Γ ;
similarly, we write Γ1, Γ2 instead of Γ1 ∪ Γ2 assuming that Γ1 ∩ Γ2 = ∅.

Example 2. Let us consider the judgment x, y ` ν z.(L(y, z, x) | M(x, z)), where
L : 3 and M : 2; a graphical representation of the judgment is

•x

L

ÄÄ
ÄÄ CC

CC
M

CCCC

•y ◦z

where filled circles and empty circles are used for representing free and restricted
vertices, respectively.

Definition 3 gives the structural congruence rules for graph terms. We take
advantage of such congruence to avoid writing cumbersome parenthesis.

Definition 3 (Structural Congruence). The structural congruence is the
smallest binary relation ≡ over graph terms that obeys axioms in Table 5.

Axioms (AG1), (AG2) and (AG3) define associativity, commutativity and
identity over nil for operation |, respectively. Axioms (AG4) and (AG5) state
that the vertices of a graph can be restricted in any order and that restric-
tion does not play any rôle on non-free vertices of a graph, respectively. Axiom

(AG1) (G1 | G2) | G3 ≡ G1 | (G2 | G3)

(AG2) G1 | G2 ≡ G2 | G1

(AG3) G | nil ≡ G

(AG4) ν x.ν y.G ≡ ν y.ν x.G

(AG5) ν x.G ≡ G, if x /∈ fv(G)

(AG6) ν x.G ≡ ν y.G{y/x}, if y /∈ fv(G)

(AG7) ν x.(G1 | G2) ≡ (ν x.G1) | G2, if x /∈ fv(G2)

Table 5. Graphs structural congruence rules

(AG6) deals with alpha conversion of hidden bound vertices, while (AG7) tunes
the interplay between hiding and the operator for parallel composition. Occa-
sionally, taking advantage of axiom (AG4), we will write ν X, with X =

⋃
xi,

to abbreviate ν x1.ν x2 . . . ν xn.

We will work with well-formed judgments.

Definition 4 (Well-Formed Judgments). A judgment is well-formed if it is
generated by applying the rules in Table 6 up to structural congruence.

(RG1)
x1, . . . , xn ` nil

Γ ` G1 Γ ` G2

(RG3)
Γ ` G1 | G2

L : m y1, . . . , ym ∈ {x1, . . . , xn}
(RG2)

x1, . . . , xn ` L(y1, . . . , ym)

Γ, x ` G
(RG4)

Γ ` ν x.G

Table 6. Well-formed judgments

Rule (RG1) states that graphs with n isolated vertices and no edges are
well-formed. Rule (RG2) states that a graph with n vertices and one edge L
(having sort m) whose tentacles are all connected to vertices of the graph is
well-formed. Notice that (RG2) does not make any assumption on n and m,
hence it could be the case that m ≥ n. This implies that some tentacles of L
can be connected to the same vertex. Rule (RG3) allows one to put together
(using |) two well-formed judgments that share the same set of external vertices.
Finally, rule (RG4) permits hiding a vertex from the environment.

The correspondence theorem expressing that well-formed judgments up to
structural axioms are isomorphic to graphs up to isomorphism has been proved
in [15].

5.2 Graph Rewritings

We propose a new rewriting mechanism for graphs that permits interconnection
modification and relies on edge replacement. The idea is that an edge can be
rewritten if the constraints it imposes on its external vertices accomplish with
constraints of all other edges connected to such vertices. What here is meant for
“constraint” is a pair consisting of a label and a tuple of vertices. The label in a
constraint is an action of a synchronization algebra. A synchronization algebra
is a structure (Act , S : Act ×Act → Act) where Act is a set of actions and S is
a binary function on Act . If a = S(a1, a2) then we say that the a is the action
obtained by synchronizing a1 and a2.

Observation 1 The principal and well studied synchronization algebras are á
la Milner (CCS [23], where S(a, ā) = τ), and á la Hoare (CSP [16], where
S(a, a) = a) synchronizations [27]. The former takes two partner to synchronize
trough complementary actions, while the latter requires that all participants of a
synchronization perform the same action. Hereafter, we consider synchroniza-
tions á la Milner.

As will be clarified later, constraints are used to “select” which adjacent edges
in a graph must be replaced in a graph rewriting.

Figure 5 aims at giving a graphical intuition of edge replacement. Edge L

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

G2G1 L

1
5

4

2
3

�
�
�
�

�
�
�
�

�
�
	
	

�
�

�
�

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

G2’G1

G

L

5

4

3
2

1

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

(a) (b)

Fig. 5. Hyperedge replacement

in Figure 5(a) is connected to graphs G1 and G2, indeed external vertices 1
and 2 are attachment points of both L and G1, while vertices 3, 4 and 5 are
attachment points of both L and G2.

Figure 5(b) represents the graph obtained by replacing edge L with graph G.
The dashed gray part of the Figure 5(b) represents the initial situation which
disappears after the transition has taken place.

The main things to remark are that (i) G1 is not modified after the transition;
(ii) all vertices in G different from 1 and 2 are new vertices generated by the
transition; (iii) some vertices can be “fused” after the transition as 4 and 5 in
Figure 5(b). As will be shown later, this accounts for mobility of components,
that dynamically can change their connections.

5.3 Productions

A graph rewriting system, G = 〈Γ0 ` G0,P〉, consists of an initial graph Γ0 ` G0

and a set of productions:

Definition 5 (Production). Let X ⊆ V be the set {x1, . . . , xn} and L be an
edge label with rank n. A production is a transition of the form

X ` L(x1, . . . , xn)
Λ

−−→
π

> Γ ` G, (3)

where

- function π : X → X is a fusion substitution;
- Λ ⊆ X × Act × V∗ is a set of constraints;
- Γ = π(X) ∪ (v(Λ) \ X);
- fv(G) ⊆ Γ .

Production (3) specifies the constraints that the environment must satisfy in
order to replace L(x) with G. Such constraints are imposed by Λ on the set X
of external vertices of L. Once constraints in Λ are satisfied, vertices must be
coalesced according to fusion substitution π. Λ and π are detailed below.

Function π is a fusion substitution if

∀xi, xj ∈ X.π(xi) = xj ⇒ π(xj) = xj ,

namely π induces an equivalence relation partition 'π over X defined as x 'π

x′ def

⇐⇒ π(x) = π(x′). Equivalence 'π partitions X into equivalence classes
where each vertex x ∈ X is mapped to a representative element π(x).

Λ associates actions in Act and sequences of vertices to (some of the) external
vertices of L. Λ is the graph relation of a partial function with (finite) domain
X and codomain in Act × V∗. Given Λ, we indicate the set of constraints of a
vertex x with Λ(x). If (x, a,y) ∈ Λ then L can synchronize with edges in the
environment that have a tentacle connected to x and satisfy condition a (that
will depend on the chosen synchronization algebra). Intuitively, in order to
perform a transition, all conditions on external vertices must be in accordance
with the synchronization policy. Thus, actions in Act constraint the possible
synchronizations among connected edges.

Let us again consider constraint (x, a,y)2; vector y contains the vertices of
the constraint; we let v(Λ) denote the union of the vertices of the constraints

2 We assume that any label a ∈ Act has an arity ; we let | · | : Act → ω be the arity
function on Act . Arities of actions are needed to maintain consistent constraints on
vertices. More precisely |a| = |y|, for each constraint (x, a, y).

in Λ. Vector y either contains vertices that appear in X or new vertices that
will be present in Γ ` G. We impose a further condition on productions, indeed
we require that v(Λ) ∩ X ⊆ π(X); namely, the external vertices used in the
synchronization must be representative elements according to 'π.

Let us now consider the structure of the right hand side of judgment (4). Γ
consists of the vertices which are image of x1, . . . , xn through π and the new
vertices used in the synchronization, namely those vertices that appear in Λ and
are not in X. In general, G may be any graph provided that fv(G) ⊆ Γ .

Synchronized edge replacement is obtained by graph rewriting combined with
constraint solving. More specifically, we use context-free productions labeled with
actions useful for coordinating the simultaneous application of two or more pro-
ductions. Coordinated rewriting allows the propagation of synchronization all
over the graph where productions are applied. Determining the productions to
synchronize at a given stage corresponds to solving a distributed constraint sat-
isfaction problem [25].

Example 3. Referring to Example 2, let us assume that the following production
is given:

x1, x2, x3 ` L(x1, x2, x3)

{
(x3, send, 〈u〉),
(x1, rec, 〈v〉)

}

−−−−−−−−−−−−−−−→
[x2/x1

]
> x2, x3, u, v ` L′(x3, x2) | L′′(u, x2, v).

The above production states that, once constraints on vertices x1 and x3 are
satisfied by the environment, edge L is replaced by two edges: L′ and L′′. L′

has tentacles to vertices x2 and x3, while L′′ is connected to x3 and to two
newly generated vertices u and v. Fusion substitution [x2/x1

] represents the

mapping

x1 7→ x1

x2 7→ x1

x3 7→ x3

and determines the partition {{x1, x2}, {x3}}, where x2 is

the representative element of {x1, x2}.
The production can be graphically represented as follows:

•send 〈u〉 x3 •x3 •u •v

L

ÄÄ
ÄÄ ??

??
// L′

@@
@@

L′′

||
||

||||

•rec 〈v〉 x1 •x2 •x2

5.4 Edge Replacements

A production rewrites a single edge into an arbitrary graph. Before giving the
formal definition of edge replacement we describe an intuitive procedure that
can be naively regarded as a procedural way of obtaining edge replacement.

A production p : L → R can be applied to a graph G yielding H if there
exists an occurrence of an edge labeled by L in G. Graph H is obtained from G
by

1. removing the occurrence of L,
2. embedding a fresh copy of R in G and
3. coalescing external vertices of R with the corresponding attachment vertices

of the occurrence of edge L.

Example 4. If we apply the production defined in Example 3 to the graph of
Example 2, i.e. to the judgment x, y, z ` L(y, z, x) | M(x, z), we obtain the
following graph rewriting:

•send 〈u〉 x •x •u •v

L

ÄÄ
ÄÄ BB

BB
B M

BBBB

// L′

DD
DD

M

DDDD

L′′

yyyy

||||

•rec 〈v〉 y •z •y •z

As already stated, it is not mandatory that all edges take place in replace-
ments, namely, some components can remain idle while others are replaced.

Graphs over edge labels L and vertices V obey the usual structural congru-
ence axioms in the same style of Section 2; in particular, given a production

x ` L(x)
Λ

−−→
π

> Γ ` G,

renaming can be applied in several ways:

i. external vertices of x can be changed throughout the judgment;
ii. vertices declared in v(Λ) − Γ can be α-converted;
iii. the representative vertices chosen by π can be consistently changed.

5.5 Transitions of Graphs

Productions are synchronized via the inference rules in Table 7. Graph seman-
tics is based on productions to specify edge replacement, while inference rules
essentially synchronize productions and confer dynamic behaviour to graphs.

A transition is a logical judgment

Γ1 ` G1
Λ

−−→
π

> Γ2 ` G2 (4)

where Λ, π, Γ2 and G2 obeys the same conditions imposed on productions.
Essentially, transitions can be seen as productions having general graphs on their
left hand side. Hence transitions describe the dynamic evolutions of graphs.

Transition (4) states that Γ1 ` G1 can take part to rewritings that match
constraints Λ and determine fusion substitution π. Once such conditions are
satisfied, Γ1 ` G1 rewrites as Γ2 ` G2.

Definition 6 (Graph transitions). Let 〈Γ0 ` G0,P〉 be a graph rewriting sys-
tem. The set of transitions T (P) is the smallest set that contains P and that is
closed under the four inference rules in Table 7.

(merge1)

Γ, y ` G
Λ

−−→
π

> Γ ′ ` G′

Λ(y) = ∅ x 'π y ⇒ y 6= π(y)

ρ = [π(x)/π(y)]

Γ ` [x/y]G
ρΛ

−−−−−→
(π; ρ)−y

> v(ρΛ) ∪ (π; ρ)−y(Γ) ` ρG′

(merge2)

Γ, y ` G
Λ ∪ {(x, a, v), (y, a, w)}

−−−−−−−−−−−−−−−−−→
π

> Γ ′ ` G′

x 'π y ⇒ y 6= π(y) ρ = mgu{[[
x/y]w/[x/y]v], [π(x)/π(y)]}

Γ ′′ = v(ρΛ) ∪ (π; ρ)−y(Γ) U = ρ(Γ ′) \ Γ ′′

Γ ` [x/y]G
(ρΛ ∪ (x, τ, 〈〉))

−−−−−−−−−−−→
(π; ρ)−y

> Γ ′′ ` ν U.ρG′

(res)

Γ, y ` G
Λ

−−→
π

> Γ ′ ` G′

Λ(y) = ∅ ∨ Λ(y) = {(y, τ, 〈〉)} x 'π y ⇒ y 6= π(y)

U = Γ ′ \ (v(Λ) ∪ π−y(Γ))

Γ ` ν y.G
Λ \ (y, τ, 〈〉)

−−−−−−−−−→
π−y

> v(Λ) ∪ π−y(Γ) ` ν U.G′

(par)

Γ1 ` G1
Λ

−−→
π

> Γ2 ` G2 Γ ′
1 ` G′

1
Λ′

−−−→
π′

> Γ ′
2 ` G′

2

Γ1 ∩ Γ ′
1 = ∅

Γ1 ∪ Γ ′
1 ` G1 | G′

1
Λ ∪ Λ′

−−−−−→
π ∪ π′

> Γ2 ∪ Γ ′
2 ` G2 | G′

2

Table 7. Inference rules for graph synchronization

A derivation is obtained by starting from the initial graph and by executing a
sequence of transitions, each obtained by synchronizing productions. The syn-
chronization of rewriting rules requires matching of the actions and unification
of the third components of the constraints Λ. After productions are applied, the
unification function is used to obtain the final graph by merging the correspond-
ing vertices.

In Table 7 we use notation [v1,...,vn/u1,...,un
] (abbreviated as [v/u]) to denote

substitutions that are applied both to graphs and sets of constraints. If ρ =
[v/u] is a substitution then ρG is the graph obtained by substituting all free
occurrences of ui with vi in G for each i = 1, ..., n, while ρΛ = {(x, a, ρy) :
(x, a,y) ∈ Λ} where ρy is the vector whose components result from applying ρ
to the corresponding components of y.

Finally, given a function f : A → B and y ∈ A, f
−y : A \ y → B is defined as

f
−y(x) = f(x), for all x ∈ A \ y.

The most important rules in Table 7 are (merge1) and (merge2). They reg-
ulates how vertices can be fused. Rule (merge1) fuses two vertices provided that
no constraint is required on one of them, whereas rule (merge2) handles with
vertices upon which complementary actions are required. Rule (res) describes
how graph transitions can be performed under vertex restriction. Finally, rule
(par) states how transitions on disjoint graphs can be combined together.

Let us comment more on all the rules.

Rule (merge1) fuses vertex x and y provided that no constraint is imposed
on y (i.e. Λ(y) = ∅) and that x and y are equivalent according to π. Premise
x 'π y ⇒ π(y) 6= y imposes that, when y is fused with a different equivalent
vertex x, then y must not be the representative element. A transition from
Γ, y ` G may be re-formulated to obtain the transition where y and x are
coalesced, provided that fusion of their representative elements, ρ, is reflected
on Λ, on π and on continuation Γ ′ ` G′. Indeed, if y is fused with x, also the other
vertices equivalent to them are fused; the fusion substitution in the conclusion
of (merge1) is π; ρ (restricted to Γ), all occurrences of π(y) are replaced with
π(x) in v(Λ) and the final graph is ρG′. It is obtained by merging π(y) and π(x)
in G′.

Rule (merge2) synchronizes complementary actions. The rule permits merg-
ing x and y in a transition where they offer complementary non-silent actions.
As for (merge1), x cannot replace the representative element of its equivalence
class. Most general unifier ρ takes into account possible equalities due to the
transitive closure of substitutions [v/u] after [x/y] has been applied. ρ fuses the
corresponding vertices of the constraints and propagates previous fusions π. The
resulting constraints ρΛ∪{(x, τ, 〈〉)} does not change constraints offered on ver-
tices different from x and y (up to the necessary fusion ρ). Fusion substitution
(π; ρ)

−y acts on Γ by applying ρ. Finally, nodes U are the restricted nodes of
ρG′ and are those nodes that neither are in (π; ρ)

−y(Γ) nor are generated by ρΛ.
This corresponds to the close rule of the π-calculus.

Finally, vertices U are the restricted vertices in ρG′ and are those vertices
that are neither in (π; ρ)

−y(Γ) nor are generated by ρΛ.

Rule (res) deals with vertex restriction. Representative elements cannot be
restricted if other vertices are in their equivalence class. Furthermore, only ver-
tices can be restricted where either a synchronization action takes place or no
constraint is imposed. If those conditions hold, the (possible) silent action on y
is hidden and vertices not in Γ ′ \ (v(Λ) ∪ π

−y(Γ)) are restricted.

Rule (par) simply combines together disjoint judgments. Function π ∪ π′

applied to a vertex x is π(x) or π′(x) depending on x ∈ Γ ′. Note that π ∪ π′ is
well defined because Γ ∩ Γ ′ = ∅.

6 Kaos Translation

In this section, by exploiting the graphical calculus, we define an alternative
semantics for Kaos which takes care of QoS attributes. We first present a trans-

lation scheme from Kaos nets and processes to the graphical calculus, then we
present the productions of edges used in the translation.

Our translation relies on two particular edges: node edges and link edges.
A node edge S

s models Kaos node s while link edge Gκ
t represents a link

to node t with cost κ. Moreover, we use a distinguished vertex ¦ to represent
the communication infrastructure used to interact with other node edges. In
this work we simply represent the communication infrastructure with a special
vertex, however, in general this layer could be arbitrarily complex; for instance
it could be an ethernet or an internet connection. The only assumption on ¦ is
that it must be able to connect any two node edges, indeed ¦ will be exploited
to establish links among Kaos nodes.

It is worth to remark that ¦ does not play any rôle in managing application
QoS features (indeed, in our framework, virtual networks are built over an un-
derlying physical net3) and QoS attributes are established by applications and
are not directly related to the underlying communication infrastructure.

The mapping function [[]] associates a graph to a well-formed Kaos net.
Function [[]] is defined by induction on the syntactical structure of Kaos nets.
The most important case is the translation of a Kaos node s ::L P , where
L = {〈s1, κ1〉, . . . , 〈sm, κm〉, 〈κ1, t1〉, . . . , 〈κn, tn〉}. Since s ::L P is part of a well
formed net, Ls = {l : l = 〈s, κ〉 ∈ L} and Ls = {l : l = 〈κ, s〉 ∈ L} are in bijective
correspondence. We assume fixed a bijective function λ : Ls → Ls. We define a
set of vertices Γ containing vertex ¦ and a vertex for each link occurrence in L:
Let Γ = {u1, . . . , um, v1, . . . , vn, ¦} (hereafter, we write u in place of u1, . . . , um

and v in place of v1, . . . , vn). Then Γ \ ¦ is in bijective correspondence with L
and we say that ui corresponds to 〈si, κi〉 (i = 1, . . . ,m) and that vj corresponds
to 〈κj , tj〉 (j = 1, . . . , n).

[[s ::L P]] = π(Γ ` (ν x, p)([[P]]p | S
s
m,n(u, x, p, ¦) |

n∏

j=1

G
κj

tj
(xj , vj))) (5)

where x is a vector of n pairwise distinct vertices, one for each outgoing link in L
and π : Γ → Γ is a fusion substitution such that π is the identity for all vertices
which do not correspond to links in Ls, whereas for all v ∈ Γ that corresponds to
〈κ, s〉 ∈ Ls, π(v) = u iff u corresponds to l′ and λ(〈κ, s〉) = l′. In other words, π
opportunely connects the outgoing link edges that connects s with itself. Notice
that, depending on the chosen λ, π changes, hence the translation depends on
λ. However, the obtained graphs are equivalent in the sense that they have the
same behaviour up-to renaming of external vertices.

The graph associated to s ::L P contains an edge S
s
m,n(u,x, p, ¦) representing

node s. Vertices in x are used to connect link edges G
κj

tj
to the node edge. A

graphical representation is given in Figure 6. The graph representing process P
allocated at s is connected to S

s on vertex p which is used for synchronizing S
s

with local processes. In some sense, edge S
s is the coordinator of node s and

interfaces incoming links, processes executed at s and links departing from s. The

dotted tentacles in Figure 6 aim at remarking that each edge G
κ′

i
s , corresponding

3 This is a typical peer-to-peer fashion of coordinating distributed computations.

S
s1 ... S

sm

G
κ′

1
s

²²

... G
κ′

m
s

²²
•u1 ... •um

S
s

::tttttt

ddIIIII
// ¦

Graph of
P

// ◦

{{{{{{p
◦x1 ... ◦

RRRRRRRRRRRRR
xn

Gκ1

t1

²²

... Gκn
tn

²²
•v1 ... •vn

Fig. 6. Graphs for Kaos nodes

to a link from si to s, is connected to a restricted node shared with a tentacle
of the node edge of si.

Net N1‖N2 is mapped into a graph obtained by juxtaposing the graphs of
the constituent nets, N1 and N2 and opportunely connecting their link edges.

[[N1‖N2]] = π(Γ1, Γ2 ` G1 | G2), if [[Ni]] = Γi ` Gi, i = 1, 2

Function π : Γ1, Γ2 → Γ1, Γ2 is fusion substitution that plays that same rôle as
in translation of a single done. Indeed, since N1 ‖ N2 is a well-formed net, there
is a bijective correspondence between outgoing links in the network interface of
nodes in N1 and incoming links of nodes in N2 (and viceversa). Hence, if v ∈ Γ1

(v ∈ Γ2) is a vertex corresponding to a link 〈κ, t〉 in the network interface of
node s in N1 (N2) and u ∈ Γ2 (u ∈ Γ1) is the vertex corresponding to 〈s, κ〉,
then π(v) = u.

Restriction of nodes is trivially translated according to the following clause:

[[(ν s)N]] = Γ \ u \ v ` (ν u, v).G, if [[N]] = Γ ` G

where, u and v are the vertices where incoming and outgoing link edge of S
s

are respectively connected, if S
s occurs in G and are empty vectors otherwise.

The graph of a net with a restricted node name, (ν s)N , is computed by first
translating N and then restricting all vertices corresponding to node s.

The mapping for processes is described by the equations below:

[[0]]p = nil

[[〈t〉]]p = L〈t〉(p)

[[γ.P]]p = Lγ.P (p)

[[ε(P)@s]]p = (ν u)(ε
T (P)
s (u, p) | SP (u))

[[P1 | P2]]p = [[P1]]p | [[P2]]p

[[rec X. P]]p = [[P [rec X. P /X]]]p.

The graph of a process P has an outgoing tentacle toward its execution vertex.
The graph relative to the empty process simply is the empty graph; tuple pro-
cesses and action prefixing are mapped to edges attached to p and labeled with
the process. Translation of ε(P)@s consists of two edges connected through the
(hidden) vertex u. On the one hand, edge εT

s (P) is connected to vertex p and
handles migration of SP to its destination node; on the other hand, P cannot
be translated as a normal process because it must be executed when the migra-
tion has taken place. Hence, edge SP is used; as will be clear once productions
will be specified, SP remains “idle” until the destination node is reached and
at that time, P will be executed on the arrival node. The parallel processes are
mapped to the union of the graphs of their parallel components; finally, recur-
sive processes are translated by translating the unfolded process. It is worth to
remark that we consider only “guarded” recursion, namely we require that in
rec X.P any process variable is in the scope of a prefix action. This implies that
translation always terminates.

The following property holds for the presented translation functions:

Theorem 1. If N is a well-formed Kaos net, then for each link edge Gκ
s (, u) in

[[N]] there is a (unique) node edge S
s
m,n(u, , , ¦) in [[N]] such that u appears

exactly once in u.

7 Productions for Kaos

As anticipated in Section 1, graphs permit path reservation. However, we prefer
to introduce first productions which do not consider path reservation, but are
more strictly related to Kaos semantics and, later on, we show how a path can
be reserved and traversed.

We distinguish between activity and coordination productions. Indeed, it is
necessary to coordinate node, link and process edges in order to detect the best
path connecting two vertices. Hence, we separate the presentation of activity and
coordination productions in different sections. Section 7.1 describes the activity
productions necessary for executing Kaos actions; Section 7.2 and Section 7.3
respectively report coordination productions for node edges and for link edges.

7.1 Activity Productions

Activity productions for Kaos deal with actions for accessing tuple spaces, for
managing links, for creating nodes and for spawning processes on remote nodes.
Let us consider actions for accessing tuple spaces; the productions for the corre-
sponding edges are:

p ` L(x).P (p)
{(p, in t, 〈〉)}

−−−−−−−−−−−→> p ` [[P [t/x]]]p

p ` L〈t〉(p)
{(p, in t, 〈〉)}

−−−−−−−−−−−→> p ` nil

The above productions state that edges corresponding to input actions wait on
the vertex p for synchronizing with the production of an output. Notice that, in
the rhs of the last production the edge corresponding to the output process is
removed.

An edge corresponding to ν(r ·κ).P synchronizes with its node edge in order
to acquire the connection to the net (¦) and make the node edge of P to add a
link to r.

p ` Lν(r·κ).P (p)
{(p, ns, 〈y, z〉)}

−−−−−−−−−−−−→> p, y, z ` (ν q, u)([[P]]p | S
r
1,0(u, q, z) | Gκ

r (y, u)).

The above production “reads” into z the attach point to the net; during the
synchronization, the node edge also generates a new vertex y, used to connect
the outgoing link to vertex u. Production (11) is the complementary of the above
production.

Creation of new links requires to synchronize process and node edges.

p ` L κ
_x.P

(p)
{(p, x log κ, 〈〉)}

−−−−−−−−−−−−→> p ` [[P]]p (6)

Production (6) sends a signal for creating a new link with cost κ to (the node
edge of) x.

The accept action can be similarly handled:

p ` L
x

κ
^.P

(p)
{(p, x acc κ, 〈〉)}

−−−−−−−−−−−−−→> p ` [[P]]p.

According to the above production, the process simply “says” to its node edge
that is willing to accept a request of connection from vertex x with cost κ.

Let x and κ respectively be the node and the cost of a link l; the following
productions manage disconnection of l:

p ` Lδ l.P (p)
{(p, κ det x , 〈〉)}

−−−−−−−−−−−−−→> p ` [[P]]p (7)

p ` Lδ l.P (p)
{(p, x det κ, 〈〉)}

−−−−−−−−−−−−−→> p ` [[P]]p (8)

Production (7) removes outgoing links, while incoming links are removed by
production (8).

Remote process evaluation is managed by the productions for edge εT
s (u, p).

Vertex u is used to connect the “quiescent” process that must be spawned

u, p ` εT
s (u, p)

{(r, ev T s, 〈〉)}
−−−−−−−−−−−−→> u, p ` ε′s(u, p).

The previous production asks for a path to s that can be exploited to move
a process with capability T . When the path is found, an s κ signal is received
(where κ 6= 0):

u, p ` ε′s(u, p)
{(p, s κ, 〈y〉), (u, run, 〈y〉)}

−−−−−−−−−−−−−−−−−−−−−→> u, p, y ` nil; (9)

vertex y represents the p-vertex of the remote node. Simultaneously, the quies-
cent process connected to u is waken by the action run.

u ` SQ(u)
{(u, run, 〈y〉)}

−−−−−−−−−−−−→> u, y ` [[Q]]y. (10)

Finally, the quiescent process SQ starts its execution when it synchronizes with
its ε edge on vertex y. This corresponds to move the process Q to the target
node.

7.2 Productions for Nodes

Productions for node edges must coordinate the activity of processes. We start
with the simplest case. If a process wants to create a new node, then the node
edge can immediately synchronize by sending vertex ¦, namely the net connection
where the new vertex must be attached. The following production formalizes
what informally stated:

u, x, p, ¦ ` S
s
m,n(u, x, p, ¦)

{(p, ns, 〈y, ¦〉)}
−−−−−−−−−−−−→> x, y, p, s, ¦ ` S

s
m,n+1(u, y, x, p, ¦). (11)

Notice that production (11) adds a tentacle to the node edge and connects it to
the newly generated vertex y which is also returned to the process waiting on p
(see productions 9 and 10).

A slightly more complex production is required for handling new link cre-
ation:

u, x, p, ¦ ` S
s
m,n(u, x, p, ¦)

Λ
−−→> u, x, p, ¦, y ` ν z.(Ss

m,n+1(u, z, x, p, ¦) | Gκ
y(z, y)),

where Λ = {(p, t log κ, 〈〉), (¦, t acc κ, 〈y〉)}. The intuition is that, when a
process asks to its node edge for a new link to node t with attributes κ (action
on p), then the node edge synchronizes (over ¦) with the node edge at t that
must accept the connection. The new link edge is connected to vertex z and
reaches vertex y. A simpler production is for accepting new links:

u, x, p, ¦ ` S
s
m,n(u, x, p, ¦)

{
(p, t acc κ, 〈〉),
(¦, t acc κ, 〈z〉)

}

−−−−−−−−−−−−−−→> u, x, z, p, ¦ ` S
s
m+1,n(z, u, x, p, ¦).

Indeed, the node edge must simply forward the acc signal to the net.

Finally, incoming link disconnection simply requires to forward the det signal
to the incoming links of node s

u, x, p, ¦ ` S
s
m,n(u, x, p, ¦)

{
(p, t det κ, 〈〉),

(u, t det κ, 〈〉)
}

−−−−−−−−−−−−−→> u, x, p, ¦ ` S
s
m,n(u, x, p, ¦).

The above production synchronizes with an incoming link edge that will disap-
pear.

Removing an outgoing link is more complex because the node edge must
first find which is the tentacle to remove. Hence, the node edge forwards the
disconnection signal (received on p) to its link edges:

u, x, p, ¦ ` S
s
m,n(u, x, p, ¦)

{
(p, κ det t, 〈〉),

(x, κ det t, 〈〉)
}

−−−−−−−−−−−−−→> u, x, p, ¦ ` S
′s
m,n(u, x, p, ¦).

Edge S
′

waits for the links to determine whether they must disconnect or
not:

u, x, p, ¦ ` S
′s
m,n(u, x, p, ¦)

{
(x1, nodet, 〈〉),

...(xi, det, 〈〉), ...
(xn, nodet, 〈〉)

}

−−−−−−−−−−−−−−−→> u, z, p, ¦ ` S
s
m,n−1(u, z, p, ¦)

where z = x1, ..., xi−1, xi+1, ..., xn. The link that replies with the signal (det)
disappears (see production (15)) while all other edges remain connected to the
router.

The last task of node edges is the search of paths for remote process spawning.
First, when a process asks for a path to node t such that a process with capa-
bilities T can roam the path (action (p, ev T t , 〈〉)), the signal ev is forwarded
to the outgoing links:

u, x, p, ¦ ` S
s
m,n(u, x, p, ¦)

{
(p, ev T t, 〈〉),
(x, ev T t, 〈〉)

}

−−−−−−−−−−−−−→> u, x, p, ¦ ` F
s ε t
m,n(u, x, p, p, ¦)

where the signal sent over x contains the type of the migrating process T and
the target node t. As formally stated in the next section, link edges forward
signals ev T t received from their node edge to the remote node edge they are
connected to. Hence, node edges must synchronize with link edges and make the
request traverse the net:

u, x, p, ¦ ` S
s
m,n(u, x, p, ¦)

{
(u, ev T t, 〈〉),
(x, ev T t, 〈〉)

}

−−−−−−−−−−−−−−→> u, x, p, ¦ ` F s ε t
m,n(u, x, p, u, ¦).

Edge F and F have similar productions, the only difference being that F for-
wards search results on vertex p, while F sends them to the incoming links
connected to u. Therefore, in the following we consider only productions for F .
When costs are communicated to F , it starts to forward them to links.

u, x, p, ¦ ` F s ε t
m,n(u, x, p, u, ¦)

{
(x1, t κ1 , 〈y1〉), ...,
(xn, t κn , 〈yn〉),
(u, t κh , 〈yh〉)

}

−−−−−−−−−−−−−−−−→> u, x, p, y, ¦ ` S
s
m,n(u, x, p, ¦)

where κh = κ1 + ... + κn.
Finally, node edges communicate their p-vertex when incoming links require

them with an eval action (see page 31):

u, x, p, ¦ ` S
s
m,n(u, x, p, ¦)

{(ui, eval, 〈p〉)}
−−−−−−−−−−−−−→> u, x, p, ¦ ` S

s
m,n(u, x, p, ¦).

7.3 Productions for Links

Whenever a link Gκ
s (x, v) receives a message for searching a path to a vertex t

(t 6= s) suitable for a process with capabilities T , then it forwards the signal,
provided that κ |= T :

x, v ` Gκ
s (x, v)

{(x, ev T t, 〈〉), (v, ev T t, 〈〉)}
−−−−−−−−−−−−−−−−−−−−−−−→> x, v ` Ĝt,κ

s (x, v).

Ĝt,κ
s (x, v) waits on v for the cost κ′ of the path from s to t and sends back to

the router edge the new value of the optimal path:

x, v ` Ĝt,κ
s (x, v)

(v, t κ′, 〈u〉), (x, t κ′ × κ, 〈u〉)
−−−−−−−−−−−−−−−−−−−−−−−→> x, v, u ` Gκ

s (x, v). (12)

Otherwise, if κ 6|= T , the “infinite” cost 0 is backward propagated:

x, v ` Gκ
s (x, v)

{(x, ev T t, 〈〉)}
−−−−−−−−−−−−→> x, v ` Gt,κ

s (x, v)

x, v ` Gt,κ
s (x, v)

{(x, t 0 , 〈〉)}
−−−−−−−−−−→> x, v ` Gκ

s (x, v).

Finally, when a link enters the target vertex, then it asks for the p-vertex of
the node edge and back-forwards it:

x, v ` Gκ
s (x, v)

{(x, ev T s, 〈〉), (v, eval, 〈y〉)}
−−−−−−−−−−−−−−−−−−−−−−−→> x, v ` G′κ

s (x, v, y)

x, v ` G′κ
s (x, v, y)

{(x, s κ, 〈y〉)}
−−−−−−−−−−−→> x, v ` Gκ

s (x, v). (13)

Given a graph Γ ` G, we say that vertices u and v of G are link-adjacent if
the graph below is a subgraph of Γ ` G.

◦

• oou
S

s
m,n ◦ Gκ

t
// •
v

◦

A link path in G is a sequence of link-adjacent vertices; we say that (free) vertices
of a link path are link-connected . The cost of a link path is the sum of the
costs associated to each link edge appearing in the path. We can now state an
important result on selecting the minimal cost path between two link-connected
vertices.

Theorem 2. Let Γ ` G be a graph and u, v ∈ Γ and v be the vertex where the
edge node is connected. If

Γ ` G
Λ ∪ {(u, t κ, 〈u〉)}

−−−−−−−−−−−−−→> Γ ′ ` G′ (14)

then the following properties hold:

1. if transition (14) can be derived then u and v are link-connected by a path
of cost κ;

2. if

◦ ◦

• oou
S

s
m1,n1

◦ Gκ1

s1

// •
v1

· · · • oouh
S

sh
mh,nh

◦ G
κh
t

// •
v

◦ ◦

is a link-path between u and v in G, then there is a transition like (14) such
that κ ≤ Σh

i=1κi.

Theorem 2 means that the path search triggered by remote actions detects a
link-path if it exists in the graph (first part of the theorem), moreover the search
always selects the minimal cost path connecting two link-connected vertices (sec-
ond part of the theorem).

Finally, we must consider the productions for disconnecting links. When link
edges receive the logout signal from their router edge, they simply disappears.
We model this by transforming the cost of the link in an infinite cost:

x, v ` Gκ
s (x, v)

{(x, κ det s, 〈〉)}
−−−−−−−−−−−−−→> x, v ` G0

s(x, v) (15)

x, v ` Gκ
s (x, v)

{(v, s det κ, 〈〉), (x, det, 〈〉)}
−−−−−−−−−−−−−−−−−−−−−−→> x, v ` G0

s(x, v).

If the link is not the link selected by the logout signal, the link edge remains
connected:

x, v ` Gκ
s (x, v)

{(x, t det κ′, 〈〉)}
−−−−−−−−−−−−−→> x, v ` Gκ

s (x, v).

8 Path Reservation

This section aims at modifying the productions presented so far in order to
permit path reservation and “routing” along reserved link edges. We show how
path reservation is essentially obtained by enriching the behaviour of node and
link edges with new productions and with slight variations of productions for
Kaos actions introduced in Section 7.1.

Let us again consider production:

u, p ` ε′s(u, p)
{(p, s κ, 〈y〉), (u, run, 〈y〉)}

−−−−−−−−−−−−−−−−−−−−−→> u, p, y ` nil. (16)

In order to reserve paths, we change the behavior of edge ε′s. Indeed, vertex y
should be considered as the “next-hop” vertex instead of being the final vertex.
Therefore, we replace production (16) with

u, p ` ε′s(u, p)
{(p, s κ, 〈y〉)}

−−−−−−−−−−−→> u, p, y ` ε′′s (u, y)

Edge ε′′s communicates its destination and waits the vertex where to jump to:

u, y ` ε′′s (u, y)
{(y, dest s, 〈〉)}

−−−−−−−−−−−−→> u, y ` ε̂s(u, y)

u, y ` ε̂s(u, y)
{(y, jump, 〈z〉)}

−−−−−−−−−−−−−→> u, y, z ` ε′′s (u, z)

until a stop signal is received. In this case, ε′′ triggers the roaming process
sending the run message:

u, y ` ε′′s (u, y)
{(y, stop, 〈p〉), (u, run, 〈p〉)}

−−−−−−−−−−−−−−−−−−−−−−→> u, y, p ` nil.

As will be clear later, the last link of the route will synchronize with the above
production and stop the migration.

It is also necessary to communicate to the link edges whether they are re-
served or not. Therefore, the production of F edges must be changed as

u, x, p, ¦ ` F s ε t
m,n(u, x, p, u, ¦)

Λ
−−→> u, x, p, ¦ ` S

s
m,n(u, x, p, ¦) | ∆̂h

n(x)

where Λ = (x1, t κ1 , 〈y1〉), ..., (xn, t κn , 〈yn〉), (u, t κh , 〈yh〉) and κh =

κ1 + ... + κn. Edge ∆̂h
n informs link edges whether they are reserved or not:

x ` ∆̂h
n(x)

Λ
−−→> x ` nil

where Λ = {(xi, nores, 〈〉) : i = 1, ..., n ∧ i 6= h}. This production makes ∆̂h
n

to communicate to the h-th link that it is reserved and to the remaining edges
that they have not been selected. Of course links must interact with ∆ edges
in order to accomplish the previous productions. In particular, productions (12)
and (13) must be respectively changed with

x, v ` Ĝt,κ
s (x, v)

{(v, t κ′, 〈y〉), (x, t κ′ × κ, 〈x〉)}
−−−−−−−−−−−−−−−−−−−−−−−−→> x, v, y ` Prκ

s (x, v, y).

and

x, v ` G′κ
s (x, v, y)

{(x, s κ, 〈x〉)}
−−−−−−−−−−−→> x, v, y ` Prκ

s (x, v, y).

The difference lies on the fact that, once the link has backward propagated
the cost, it moves to a state Prκ

s where either the nores signal is waited or a
migrating packet arrives. Edge Prκ

s (x, v, y) has an incoming tentacle from x, an
outgoing tentacle to v and one to y (where y represents the next-hop vertex).

If a signal nores is received, then Prκ
s becomes the link to v as stated in the

following production:

x, v, y ` Prκ
s (x, v, y)

{(x, nores, 〈〉)}
−−−−−−−−−−−−→> x, v, y ` Gκ

s (x, v).

Otherwise, a packet will be attached to s and Prκ
s will take care of its destina-

tion. If the destination is s, the packet will terminate its travel:

x, v, y ` Prκ
s (x, v, y)

{(x, dest s, 〈〉)}
−−−−−−−−−−−−→> x, v, y ` P̂ r

κ

s (x, v, y).

x, v, y ` P̂ r
κ

s (x, v, y)
{(x, stop, 〈y〉)}

−−−−−−−−−−−−→> x, v, y ` Gκ
s (x, v).

Once Prκ
s receives a signal from an edge ε′′s that wants to reach s, it replies

with a stop message where the last hop vertex is communicated. The intention
is that y is the p-vertex of the node edge of s.

A jump signal is emitted,to let the packet reach vertex t different from s:

x, v, y ` Prκ
s (x, v, y)

{(x, dest t, 〈〉)}
−−−−−−−−−−−−→> x, v, y ` Pr′

κ
s (x, v, y)

x, v, y ` Pr′
κ
s (x, v, y)

{(x, jump, 〈y〉)}
−−−−−−−−−−−−−→> x, v, y ` Gκ

s (x, v).

The productions presented in this section and Theorem 2 in the previous
section ensure that whenever a remote operation is performed the graphical
calculus always selects the optimal path with respect to the QoS attributes
specified by the Kaos networking constructs. This result depends on the outcome
of a distributed constraint satisfaction problem, the rule matching problem [25].
For the result to hold, QoS attributes must form an ordered c-semiring [3],
whose additive and multiplicative operations allow us to compare and compose
QoS parameters.

9 Messaging & Graphs

This section shows how the graphical calculus is applied to the messaging ap-
plication of Section 4. We aim at illustrating how a minimal path between two
nodes can be reserved and traversed by a remotely evaluated process. We also
describe how the Floyd-Warshall algorithm [12] computes the same paths when
applied to the graph.

We consider the configuration reached by net (2) (see page 15) after the
notification message has reached t and has been acquired by R. More precisely,
we discuss how filter process F is remotely executed at s. In particular, we focus
on determining the minimal path from t to s and how F traverses it in the net
topology determined in Section 4.

Figure 7 reports the graphical representation of the described configuration; it
does not faithfully represent the Kaos net in terms of graphs because we avoid
depicting vertex ¦ and all tentacles connecting node edges with it. Moreover,
vertices where process edges are attached are graphically represented as ?. Both
these choices have respectively been adopted because

– no synchronization takes place on vertex ¦ during the routing phase of F ,
and

•
x

Gκzx
x

HHHHHHHH
oo

Gκtx
x

uuuuuuuuu

55kkkkkkkkkkkkkkkk
? S

x

yy
yy

yy
yy

OO

? ◦

◦ ◦ ◦ Gκxz
z

##GGGGGGGG
S

z

²²

HHHHHHHHH

◦ Gκzs
s

// •
s

S
t

GG
GG

GG
GG

G

wwwwwwwww
// •
t

Gκxt
t

wwwwwwww
oo •

z
Gκsz

z
oo ◦ S

s

OO

? ◦ G
κty
y

// •
y

G
κyz
z

ww
ww

ww
ww

w

;;wwwwwwww

?

εT
s

OO

? S
y

OO

◦ L〈“bigfile′′,file〉

OO

◦ SFf,t
oo

F
ig

.
7
.
G

ra
p
h

fo
r

m
essa

g
in

g
n
et

– Figure 7 becomes more readable.

The graph of Figure 7 is the counterpart of Figure 2 in terms of graphs. Node
edges are connected to their outgoing link edges on vertices ◦, while edges for
incoming links are attached on vertices •. Initially, edge εT

s “wraps” the edge
corresponding to the filter process SFf,t

and is connected to the ? vertex corre-
sponding to node edge S

t. This amounts to say that ε(Ff,t)@s is allocated at t.
Similarly, edge L〈“bigfile′′,file〉 is allocated at s.

Instead of detailing the semantical framework for deducing graph transitions,
we describe edge behaviour and synchronization in terms of graphical figures
(similar to Figure 7), where tentacles are annotated by synchronizing actions.
Since tentacles are connected to the vertices where synchronizations take place,
we avoid writing those information in the labels.

Figure 8 summarizes the productions used for searching a (minimal) path
connecting s and t and represents the graph with the annotated edges. Notice
how each node edge S

u enriches ev labels with name u. For instance, edge S
x

“receives” the signal t ev Ts along tentacle to x and forwards the signal tx ev Ts
to its links. We remark that node edge S

z can non-deterministically synchronize
with two different ev actions, i.e. the one triggered by the link from x or from y
nodes. However, the result does not depend on the chosen synchronization.
Differently from the other link and node edges, Gκzs

s and S
s synchronize through

the eval signal because Gκzs
s is a link to the target vertex s. This synchronization

allows Gκzs
s to determine the ? vertex of S

s as will be explained in the following.

According to the edge replacement mechanisms, the graph in Figure 8
rewrites as shown in Figure 9 (where also the productions for the next graph
transition are listed). Figure 9 depicts the graph after the synchronizations en-
abled in the graph in Figure 8 have taken place. We let κ = κzs × κxz × κtx and
κ′ = κzs × κyz × κty. Labels appearing on tentacles do not mention the “next-
hop” vertex as (formally) required by the corresponding productions because it
is graphically represented by the ◦ vertex where link edges are attached at. As
stated above, Gκzs

z has interacted with S
s and has acquired the vertex where

(the graph corresponding to) filter F must be connected and executed. This is
represented by the dotted tentacle in Figure 9.
In this phase, costs are backwardly propagated by link and node edges. Notice
that F t ε s edge connected to t forwads the (minimal) cost on its ? edge, whereas
the other F t ε s edges send the costs on their • vertices. This is due to the fact that
the second and third productions reported in Figure 8 distinguish whether the
ev signal has been received on the ? or the • vertex and consequently determine
the “result” vertex r.

The graph resulting from synchronizing productions in Figure 9 is reported
in Figure 10. As before, dotted tentacles represents next-hop “address” of the
reserved links. Indeed, edge ε′ moves on the ”tail” vertex of the link connecting t
to x. On this vertex, it will synchronize with Prκtx

x through the jump productions
and first reach the (reserved) link from x to z, then the link from z to s and,
finally, it will receive the signal stop together with the p-vertex of S

t.

u, p ` εT
s (u, p)

{(r, ev T s, 〈〉)}
−−−−−−−−−−−−→> u, p ` ε′s(u, p)

x, p, s, ¦ ` S
s
n(x, p, s, ¦)

{(p, ev T t, 〈〉), (x, s ev T t, 〈〉)}
−−−−−−−−−−−−−−−−−−−−−−−−→> x, p, s, ¦ ` F s ε t

n,1 (x, p, s, p, ¦)

x, p, s, ¦ ` S
s
n(x, p, s, ¦)

{(s, σ ev T t, 〈〉), (x, σs ev T t, 〈〉)}
−−−−−−−−−−−−−−−−−−−−−−−−−−−→> x, p, s, ¦ ` F s ε t

n,1 (x, p, s, s, ¦)

x, s ` Gκ
s (x, s)

{(x, σ ev T t, 〈〉), (s, σ ev T t, 〈〉)}
−−−−−−−−−−−−−−−−−−−−−−−−−−→> x, s ` Ĝt,κ

s (x, s)

x, s ` Gκ
s (x, s)

(x, σ ev T t, 〈〉)
−−−−−−−−−−−−→> x, s ` Gt,κ

s (x, s), if s appears in σ

x, s ` Gκ
s (x, s)

{(x, σ ev T s, 〈〉), (s, eval, 〈y〉)}
−−−−−−−−−−−−−−−−−−−−−−−−→> x, s ` G′κ

s (x, s, y)

x, p, s, ¦ ` S
s
n(x, p, s, ¦)

{(s, eval, 〈p〉)}
−−−−−−−−−−−−→> x, p, s, ¦ ` S

s
n(x, p, s, ¦)

•
x

Gκzx
x

tyz ev T s

NN

NN

oo

Gκtx
x

t ev T s
ooo

ooo

t ev T shhhhhh

33hhhhhh

? S
x

tx ev T s
qqq

qqq
tx ev T s

t ev T s

OO

? ◦

◦ ◦ ◦ Gκxz
z

tx ev T s

tx ev T s

NNN

&&NNN

S
z

ty ev T s
²²

tyz ev T s

NNNNNNNN
tyz ev T s

◦ Gκzs
s

tyz ev T s eval // •
s

S
t

t ev T s

MMM

MMM

t ev T sppp

ppp

//

ev T s

•
t

Gκxt
t

tx ev T sppp

ppp

oo •
z

Gκsz
z

oo ◦ S
s

eval

OO

? ◦ G
κty
y

t ev T s

t ev T s // •
y

G
κyz
z

ty ev T s
qqq

qqq

ty ev T sqqq

88qqq

?

εT
s

OO

? S
y

ty ev T s

t ev T s

OO

◦ L〈“bigfile′′,file〉

OO

◦ SFf,t
oo

F
ig

.
8
.
A

sk
in

g
fo

r
p
a
th

s

x, p, s, r, ¦ ` F s ε t
n,i (x, p, s, r, ¦)

(x1, t κ1 , 〈y1〉), ...,
(xn, t κn , 〈yn〉),
(r, t κh , 〈yh〉)

−−−−−−−−−−−−−−−→> x, p, s, r, ¦ ` S
s
n(x, p, s, ¦) | F̂ t κ

i−1(r) | ∆̂h
n(x),

where i ≥ 1 and κh = κ1 + ... + κn

x ` ∆̂h
n(x)

Λ
−−→> x ` nil, where Λ = {(xi, nores, 〈〉) : i = 1, ..., n ∧ i 6= h} ∪ (xh, res, 〈〉)

x, s ` Ĝt,κ
s (x, s)

{(s, t κ′, 〈y〉), (x, t κ′ × κ, 〈x〉)}
−−−−−−−−−−−−−−−−−−−−−−−−→> x, s, y ` Prκ

s (x, s, y)

x, s ` G′κ
s (x, s, y)

{(x, s κ, 〈y〉)}
−−−−−−−−−−−→> x, s, y ` Prκ

s (x, s, y)

•
x

Gs,κzx

x

s 0

JJJ

JJJ

oo

Ĝs,κtx
x

s κ
uu

uu

uu
uu

s κzt×κxzjjjjjjj

44jjjjjjj

? F t ε s
2,1

s 0
vvv

vvv
s κzs×κxz

OO
s κzs×κxz

mm

? ◦

◦ ◦ ◦ Ĝs,κxz
z

s κzs×κxz

s κzs

JJ
JJ

$$JJ
JJ

F t ε s
2,1

²²
s κzs

qq

s κzs

JJJJJJJJ
s 0

◦ G′s,κzs

ss κzs

//

,,

•
s

F t ε s
2,1

s κ′

HH
H

HH
H

s κvvvv

vvvv

//

s κ

--

•
t

Gs,κxt

t

s 0uuu

uuu

oo •
z

Gκsz
z

oo ◦ S
s

OO

? ◦ Ĝ
s,κty
y

s κ′ s κzs×κyz// •
y

Ĝ
s,κyz
z

s κzs×κyz

tt
t

tt
t

s κzstttt

::tttt

?

ε′s

OO

? F t ε s
1,1

s κzs×κyz

OO
s κzs×κyz

11

◦ L〈“bigfile′′,file〉

OO

◦ SFf,t
oo

F
ig

.
9
.
C

o
m

p
u
tin

g
p
a
th

s

◦ SFf,t
oo •

x
Gκzx

x

IIIIIIIII
oo

ε′s

²²

Prκtx
x

vvvvvvvvv

55kkkkkkkkkkkkkkkkk

--

? S
x

ww
ww

ww
ww

w

OO

? ◦

◦ ◦ ◦ Prκxz
z

$$JJJJJJJJJ

¶¶
S

z

²²

IIIIIIIIII

◦ G′s,κzs

s
//

,,

•
s

S
t

EE
EE

EE
EE

yyyyyyyy
// •
t

Gκxt
t

uuuuuuuuu
oo •

z
Gκsz

z
oo ◦ S

s

OO

? ◦ G
κty
y

// •
y

G
κyz
z

uuuuuuuuu

::uuuuuuuuu

?

? S
y

OO

◦ L〈“bigfile′′,file〉

OO

F
ig

.
1
0
.
M

in
im

a
l
p
a
th

In this example, in order to give a smooth presentation, we do not consider
the productions for path reservation that are determined by synchronizing the
first and the second productions in Figure 9. However, such synchronizations
are straightforward and simply make link edges become Pr edges or make them
return in their initial “state”, depending whether they are reserved or not.

Given a graph representing a Kaos net and a process ε(Q)@t allocated on
some node s (as net in Figure 7), we can built a matrix of costs such that the
Floyd-Warshall algorithm [12] can be used to compute (one of) the minimal
path(s) connecting s and t that can be traversed by Q.

Intuitively, if κuv |= T (Q) then position (u, v) of the matrix contains κuv, the
cost of the the link edge from u to v;if κuv 6|= T (Q) or no link edges connects u
and v, then position (u, v) contains 0. Table 8 reports the matrix corresponding
to the net in Figure 7.

t x y z s

t 0 κtx 0 0 0
x κxt 0 0 κxz 0
y 0 0 0 κyz 0
z 0 κzx 0 0 κzs

s 0 0 0 κsz 0

Table 8. The initial matrix

Notice that position (t, y) contains 0 because κty 6|= T (Ff,t).

Given a vertex z 6= t, let z−1 represent the vertex that precedes z in the
list [t, x, y, z, s]. The Floyd-Warshall algorithm is an iterative algorithm that
transforms the matrix of costs according the following relation:

κz
uv = κz−1

uv + (κz−1

uz × κz−1

zv)

where + and × are the c-semiring operations.

Table 9 reports the matrices computed by the iterations of the Floyd-
Warshall algorithm starting from the cost matrix of Table 8. Position (t, s) of
the last matrix in Table 9 contains the cost of the minimal path from t to s.

We remark that the Floyd-Warshall algorithm can be applied when costs of
edges are totally ordered. In our example this was the case, but in general it
is not. For instance, consider two vertices connected by two link edges having
costs 〈1, T, 2〉 and 〈2, T, 1〉, respectively. According to the definition of +, we
have that 〈1, T, 2〉 + 〈2, T, 1〉 = 〈1, T, 1〉, which does not correspond to any path
between the vertices. In order to overcome this problem, we can use the Hoare
powerdomain of the previous c-semiring of costs. In [4] it has been noticed that if
(A,+,×, 0, 1) is a c-semiring then the Hoare powerdomain (℘H(A),∪,×∗, ∅, A)
is also a c-semiring; here

t x y z s

t 0 κtx 0 0 0
x κxt κxt × κtx 0 κxz 0
y 0 0 0 κyz 0
z 0 κzx 0 0 κzs

s 0 0 0 κsz 0

t x y z s

t κtx × κxt κtx 0 κtx × κxz 0
x κxt κxt × κtx 0 κxz 0
y 0 0 0 κyz 0
z κzx × κxt κzx 0 κzx × κxz κzs

s 0 0 0 κsz 0

t x y z s

t κtx × κxt κtx 0 κtx × κxz 0
x κxt κxt × κtx 0 κxz 0
y 0 0 0 κyz 0
z κzx × κxt κzx 0 κzx × κxz κzs

s 0 0 0 κsz 0

t x y z s

t κtx × κxt κtx 0 κtx × κxz κtx × κxz × κzs

x κxt κxt × κtx 0 κxz κxz × κzs

y κyz × κzx × κxt κyz × κzx 0 κyz κyz × κzs

z κzx × κxt κzx 0 κzx × κxz κzs

s κsz × κzx × κxt κsz × κzx 0 κsz κsz × κzs

t x y z s

t κtx × κxt κtx 0 κtx × κxz κtx × κxz × κzs

x κxt κxt × κtx 0 κxz κxz × κzs

y κyz × κzx × κxt κyz × κzx 0 κyz κyz × κzs

z κzx × κxt κzx 0 κzx × κxz κzs

s κsz × κzx × κxt κsz × κzx 0 κsz κsz × κzs

Table 9. Iterations of the Floyd-Warshall Algorithm

– ℘H(A) is the set of all the subsets X of A which are downward closed under
the ordering ≤ induced on A by the + operation4, i.e. ℘H(A) = {X ⊆ A :
∀x ∈ X.∀y ∈ A. y ≤ x ⇒ y ∈ X};

– ∪ is set union and multiplication ×∗ is just × extended to sets, namely
X ×∗ Y = {x × y : x ∈ X ∧ y ∈ Y }.

Moreover, if + induces a total order on A then ℘H(A) is isomorphic to A with an
additional bottom element ∅, hence it does not give any additional information,
whereas, if A is not totally ordered by +, then application of the Floyd-Warshall
algorithm to the Hoare powerdomain computes the costs of all paths. To reduce

4 Remember that x ≤ y ⇔ ∃z.x + z = y.

the computational cost of the algorithm, it is possible to represent each X ∈
℘H(A) with the set of its local maxima which may be small with respect to X.
Then the Floyd-Warshall algorithm computes the costs of all the non-dominated
paths between two nodes, namely all the paths which are maximal and are not
comparable according to the order induced by +. Once the costs of all the non-
dominated paths out of a node s have been computed, to trace an actual path
of cost κ to node t it is sufficient to find an edge out of s with cost κ1 connected
to a node r having a path of cost κ2 to t such that κ = κ1 × κ2, and then to
proceed similarly from r.

10 Concluding Remarks

We have introduced a formal model that provides mechanisms to specify and
reason about application-oriented QoS. We demonstrate the applicability of the
approach by providing the formal modeling of Kaos QoS mechanisms.

The novelty of our proposal is given by the combination of the following
ingredients:

– adopt a declarative approach to the specification of QoS attributes;
– adopt a graphical calculus to describe system evolution;
– reduce declarative QoS specification to semantic constraints of the graphical

calculus.

One may wonder if this approach is too abstract and general and it does not
capture the intrinsic limitations of inter-networking computations. We feel that
on the one side the generality of the approach can be tamed and adapted to the
needs of the various layers of applications, more powerful primitives being made
available to upper layers, like business to business (B2B) or computer supported
collaborative work (CSCW). On the other side, some important network tech-
nologies actually require the solution of global constraints, like modifying local
router tables according to the routing update information sent by the adjacent
routers.

As a future work, we plan to investigate the expressive power of the graphical
model and to develop proof techniques to analyze QoS properties.

References

1. O. Angin, A. Campbell, M. Kounavis, and R. Liao. The Mobiware Toolkit: Pro-
grammable Support for Adaptive Mobile Networking. IEEE Personal Communi-
cations Magazine, August 1998.

2. L. Bettini, M. Loreti, and R. Pugliese. An infrastructure language for open nets.
In Proc. of the 2002 ACM Symposium on Applied Computing (SAC’02), Special
Track on Coordination Models, Languages and Applications. ACM Press, 2002.

3. S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint satisfaction
and optimization. Journal of the ACM, 44(2):201–236, March 1997.

4. S. Bistarelli, U. Montanari, and F. Rossi. Soft constraint logic programming and
generalized shortest path problems. Journal of Heuristics, 8:25–41, 2002.

5. S. Blake, D. Black, M. Carlson, E. Davies, Z. Wand, and W. Weiss. An architecture
for differentiated services. Technical Report RFC 2475, The Internet Engineering
Task Force (IETF), 1998.

6. R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource reservation
protocol (rsvp) - version 1 functional specification.

7. L. Cardelli and R. Davies. Service combinators for web computing. Software
Engineering, 25(3):309–316, 1999.

8. I. Castellani and U. Montanari. Graph Grammars for Distributed Systems. In
H. Ehrig, M. Nagl, and G. Rozenberg, editors, Proc. 2nd Int. Workshop on Graph-
Grammars and Their Application to Computer Science, volume 153 of Lecture
Notes in Computer Science, pages 20–38. Springer-Verlag, 1983.

9. R. De Nicola, G. Ferrari, and R. Pugliese. KLAIM: A kernel language for agents
interaction and mobility. IEEE Transactions on Software Engineering, 24(5):315–
330, 1998.

10. R. De Nicola, G. Ferrari, R. Pugliese, and B. Venneri. Types for access control.
Theoretical Computer Science, 240(1):215–254, June 2000.

11. P. Degano and U. Montanari. A model of distributed systems based of graph
rewriting. Journal of the ACM, 34:411–449, 1987.

12. R. Floyd. Algorithm97 (shortestpath). Communication of the ACM, 5(6):345,
1962.

13. I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and A. Roy. A dis-
tributed resource management architecture that supports advance reservations and
co-allocation. In Proceedings of the International Workshop on Quality of Service,
1999.

14. D. Hirsch, P. Inverardi, and U. Montanari. Reconfiguration of software architecture
styles with name mobility. In A. Porto and G.-C. Roman, editors, Coordination
2000, volume 1906 of LNCS, pages 148–163. Springer Verlag, 2000.

15. D. Hirsch and U. Montanari. Synchronized hyperedge replacement with name
mobility: A graphical calculus for name mobility. In 12th International Conference
in Concurrency Theory (CONCUR 2001), volume 2154 of LNCS, pages 121–136,
Aalborg, Denmark, 2001. Springer Verlag.

16. C. Hoare. Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs,
NJ, 1985. & 0-13-153289-8.

17. IBM Software Group. Web services conceptual architecture. In IBM White Papers,
2000.

18. M. Koch, L. Mancini, and F. Parisi-Presicce. A formal model for role-based access
control using graph transformation. In F. Cuppens, Y. Deswarte, D. Gollmann,
and M. Waidner, editors, ESORICS, volume 1895 of LNCS, pages 122–139, 6th
European Symposium on Research in Computer Security, 2000. Springer Verlag.

19. M. Koch, L. Mancini, and F. Parisi-Presicce. Foundations for a graph-based ap-
proach to the specification of access control policies. In F. Honsell and M. Lenisa,
editors, FoSSaCS, LNCS, Foundations of Software Science and Computation Struc-
tures, 2001. Springer Verlag.

20. M. Koch and F. Parise-Presicce. Describing policies with graph constraints and
rules. In A. Corradini, H. Ehrig, H. Kreowski, and G. Rozenberg, editors, Graph
Transformation, volume 2505 of LNCS, pages 223–238, First International Confer-
ence on Graph Transformation, Barcelona, Spain, October 2002. Springer Verlag.

21. B. Koenig and U. Montanari. Observational equivalence for synchronized graph
rewriting. In Proc. TACS’01, LNCS. Springer Verlag, 2001. To appear.

22. B. Li. Agilos: A Middleware Control Architecture for Application-Aware Quality
of Service Adaptations. PhD thesis, University of Illinois, 2000.

23. R. Milner. Communication and Concurrency. Printice Hall, 1989.
24. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I and II.

Information and Computation, 100(1):1–40,41–77, September 1992.
25. U. Montanari and F. Rossi. Graph rewriting and constraint solving for modelling

distributed systems with synchronization. In P. Ciancarini and C. Hankin, editors,
Proceedings of the First International Conference COORDINATION ’96, Cesena,
Italy, volume 1061 of LNCS. Springer Verlag, April 1996.

26. J. Sobrinho. Algebra and algorithms for qos path computation and hop-by-hop
routing in the internet. IEEE Transactions on Networking, 10(4):541–550, August
2002.

27. G. Winskel. Synchronization trees. Theoretical Computer Science, May 1985.
28. X. Xiao and L. M. Ni. Internet qos: A big picture. IEEE Network, 13(2):8–18,

Mar 1999.
29. M. Yokoo and K. Hirayama. Algorithms for Distributed Constraint Satisfaction:

A Review. Autonomous Agents and Multi-Agent Systems, 3(2):185–207, 2000.

