
SHReQ: Coordinating Application Level QoS

Dan Hirsch Emilio Tuosto

Dipartimento di Informatica, Università di Pisa,

Largo Bruno Pontecorvo 3, I-56127, Pisa, Italy

E-mail: {dhirsch,etuosto}@di.unipi.it

Abstract

Wepresent SHReQ, a formal framework for specifying
systems that handle abstract high-levelQoS aspectswhich
are becoming more and more important for service ori-
ented computing. SHReQ combines Synchronised Hy-
peredge Replacement (SHR) with constraint-semirings.
SHR is a (hyper)graph rewriting mechanism for mod-
elling mobility and reconfiguration of systems. The nov-
elty of the approach relies on the synchronisation mech-
anism which is based on constraint-semirings, algebraic
structures that provide both the mathematics for multi-
criteria QoS and the synchronisation policies underlying
the SHR mechanism.

1. Introduction

Distributed inter-networking systems are very com-
plex and constituted by a varied flora of architectures
and communicating infrastructures. Such systems are
heterogeneous, geographically distributed and highly
dynamic since the communication topology can vary
and the components can, at any moment, connect to
or detach from the system. These features are reflected
also on applications, which can be thought of as built
by connecting (remote) services.

In a very broad sense, Service Oriented Computing
(SOC) has been proposed as an evolutionary paradigm
to build wide area distributed systems and applica-
tions. Services can be dynamically composed to pro-
vide new services, and their interactions are governed in
accordance with programmable coordination policies.
Web services and GRID services may be regarded as
SOC and they are receiving particular attention both
from academia and industry. Applications are intended
as being services that search and bind to other services.
In this respect, they offer a standard layer for represent-
ing data and for abstracting from the communication

protocols of Internet. An ambitious goal is the autom-
atization of the search-bind cycle so that applications
can dynamically chose the “best” service available dur-
ing the computation. Since the programmer does not
completely control the services that her application in-
vokes, it would be reasonable to allow her to use declar-
ative mechanisms for expressing the “minimal” require-
ments on the execution environment.

Recently, awareness of Quality of Service (QoS) is
emerging as a new exigency in both design and im-
plementation of SOC applications. In this work we do
not refer to QoS aspects related to low-level perfor-
mance (as typical in the community of operating or
communication systems). On the contrary, we are con-
cerned with those high-level non-functional features
that might interest applications and mainly regard the
end-users. For final users, the perceived QoS of appli-
cations is not only a matter of low-level performance
but also depends on application dependent require-
ments. For instance, the price of a given service, or the
payment mode, or else the availability of a resource
(e.g., a file in a given format) are typical examples of
application-level QoS aspects that one should be able
to control and/or program. In the rest of the paper,
we intend the acronym QoS to denote application-level
QoS.

Deploying distributed applications that allow pro-
gramming and controlling such features is becoming
more and more important and challenging. The ability
of formally specifying and programming QoS aspects
may represent a significant added-value of the SOC
paradigm. Moreover, QoS information can be used to
drive the design and development of application pro-
gram interfaces and languages for QoS-aware middle-
ware as well as to drive the search-bind cycle of SOC.

SOC can be naturally modelled by means of graph-
based techniques, where edges represent components
and nodes model the communication infrastructure.
Edges sharing a node correspond to components that

may interact. Systems are modelled as graphs and com-
putations correspond to graph-rewriting. Among other
proposals, hypergraphs and synchronised hyperedge re-
placement (SHR, for short) have been proposed for
modelling distributed systems [3, 5] as a natural declar-
ative framework.

The main contribution of this work is SHReQ,
a SHR framework for handling abstract high-level
QoS aspects expressed as constraint-semirings [1]
(c-semirings, for short). The distinguishing ingredi-
ents of SHReQ lay on embedding c-semirings in the
SHR synchronisation mechanism which guides dy-
namic coordination/reconfiguration of systems.
Namely, interactions among components (e.g., geo-
graphically distributed services) are ruled by syn-
chronising them on events that are c-semirings val-
ues. SHReQ builds on SHR where c-semirings yield the
synchronisation mechanism as well as the mathemat-
ical machinery for handling QoS values. Intuitively,
in SHReQ, the programmer declares the behaviour of
each edge L by specifying a set of productions. A pro-
duction for L imposes requirements to the attachment
nodes of L in order to replace it with a new hyper-
graph. Such requirements are expressed as elements
of a c-semiring and are interpreted as the contri-
bution of L to the synchronisation. Synchronising
requirements is the basic coordination mechanism ac-
counting for evolution of systems and corresponds
to the product operation of c-semirings. Such prod-
uct can be regarded as the simultaneous satisfac-
tion of the QoS constraints expressed by L and
by all the other participants to the synchronisa-
tion.

Structure of the paper: Section 2 specifies the running
example of the paper. Section 3 reports the formal def-
inition of hypergraphs. Section 4 introduces SHReQ
productions over weighted hypergraphs and formalises
the running example accordingly. Section 5 defines the
rewriting mechanism of SHReQ. Section 6 describes
how the rewriting mechanism applies to the running ex-
ample. Section 7 concludes the paper with comments
on related work, final remarks and future work.

2. A Case Study: Remote Medical Care

System

This section presents our running example based on
the case study of a telemedicine project carried out by
Parco Scientifico e Tecnologico d’Abruzzo and Univer-
sity of L’Aquila detailed in [11]. The Teleservices and
Remote Medical Care System (TRMCS) aims at en-
forcing a current trend in healthcare that is to trans-
fer patients from hospital care to home care as quickly

• •

S

ddHHHH vvvv

•

R1

//

R2

oo

• •

U1

//

U3

oo

U2

OO

Figure 1. A system instance

as feasible. TRMCS is intended to provide and guar-
antee assistance to at-home or mobile users. These pa-
tients do not need continuous assistance but may need
prioritized assistance when urgencies happen, in which
case they call a help center.

For clarity, the operations of the different compo-
nents have been simplified. The system follows a hier-
archical style with one server S, a variable number of
routers connected to S and a variable number of users
connected to the router (any user is connected to one
router only). Figure 1 shows a system instance with two
routers and three users (the graphical notation will be
clearified later). When Ri detects an alarm from one of
the connected users, it forwards the alarm requests up-
ward to S. Server S receives alarms from Ri and it dis-
patches the assistance to the requesting user.

3. Syntax of Graphs

Given a set of labels L ranged over by L and a set
of nodes N , a hyperedge L(x1, ..., xn) connects nodes
x1, . . . , xn ∈ N , where L has rank n (written L : n).
We say that x1, ..., xn are the attachment nodes of
L(x1, ..., xn). Hypergraphs are built from ranked hy-
peredges in L and nodes in N .

Definition 3.1 (Hypergraphs) A hypergraph is a
term of the following grammar

G ::= nil
∣

∣ L(~x)
∣

∣ G | G
∣

∣ ν y.G,

where L : |~x| is a hyperedge (|~x| is the length of vector ~x)
and y ∈ N .

Hereafter, we call hypergraphs (hyperedges) simply
graphs (edges) and write L(~x) with the implicit as-
sumption that L : |~x|. Grammar in Definition 3.1 per-
mits generating the empty graph (denoted by nil),
graphs with a single edge, graphs built by the paral-
lel composition of graphs and graphs where some nodes
are hidden. As usual, in ν y.G, the occurrences of y in
G are bound and y is said restricted in G. We use fn(G)
to denote the set of the nodes of G not occurring in the
scope of a ν operator.

Example 3.1 Figure 2(a) represents the hyper-
edge L(a, b, c) where wires connecting nodes a, b and
c to L are called tentacles. The arrowed tentacle in-
dividuates the first attachment node. Moving clock-
wise determines the other tentacles. Figure 2(b) de-
picts graph G = ν z.(L(y, x, z) | M(x, z)), where filled
and empty circles represent free and restricted nodes, re-
spectively.

•b

L

yyrrrrrr

LLLLLL

•a • c

(a) A hyperedge

•
x

L

yyrrrrrr

MM
MMM

MM M

ffMMMMMM

•y ◦z

(b) A hypergraph

Figure 2. Hypergraphs

Structural congruence over graph terms allows to
avoid cumbersome parenthesis.

Definition 3.2 (Structural Congruence) The
structural congruence is the smallest binary rela-
tion ≡ over graph terms that obeys the following ax-
ioms:

(G1 | G2) | G3 ≡ G1 | (G2 | G3)

G1 | G2 ≡ G2 | G1

G | nil ≡ G

ν x.ν y.G ≡ ν y.ν x.G

y /∈ fn(G) =⇒ ν y.G ≡ G ∧ ν x.G ≡ ν y.G{y/x}

ν x.(G1 | G2) ≡ (ν x.G1) | G2, if x /∈ fn(G2)

The first three rows define associativity, commutativity
and identity (nil) for operation |. Axioms in the fourth
and fifth rows state that ν is a binder, i.e., the nodes
of a graph can be α-renamed, restricted in any order
(hence, we shorten ν x1.ν x2 . . . ν xn with ν x1, . . . , xn)
and that restriction does not play any role on non-free
nodes of a graph. The last axiom tunes the interplay
between hiding and the parallel composition operator.

4. Graphs and productions for SHReQ

This section introduces SHReQ, a calculus based
on SHR where c-semiring values are embedded in the
rewriting mechanism. In [4], c-semirings have been ex-
ploited as a mathematical abstraction for application-

level QoS since their algebraic properties can natu-
rally describe QoS values and the usual operations on
them. In [12] SHR with mobility of nodes has been
generalised by parameterising the rewriting mechanism
with respect to a synchronisation algebra with mobil-
ity. SHReQ takes advantage of the ideas in [4, 12] ex-
ploiting hypergraphs and SHR with mobility for mod-
elling systems (as in [9, 13]) and c-semirings as syn-
chronisation algebras. Hence, the rewriting mechanism
of SHReQ is parameterised with respect to a given c-
semiring. Basically, values of c-semirings are synchro-
nisation actions so that synchronising corresponds to
operate on c-semiring values. Moreover, a hypergraph
modelling a system is decorated with c-semiring val-
ues on its nodes in order to record quantitative infor-
mation on the computation of the system. A formal
connection can be traced between synchronisation al-
gebras in the sense of [12] and c-semirings, however,
this connection is left as future work.

4.1. Weighted graphs

In this context c-semirings express the requirements
that a component imposes to its neighbour compo-
nents and the quantitative information on computa-
tions that the environment must guarantee. They have
two distinguished features that result very useful in our
context. First, the cartesian product of c-semirings is
still a c-semiring, hence we can uniformly deal with
different types of quantities. Second, the operations
of c-semirings provide a partial order on the values
and a mechanism of choice. These features make c-
semirings suitable for reasoning about multi-criteria
QoS issues [4].

Definition 4.1 (C-semiring [1]) An algebraic struc-
ture 〈S, +, ·,0,1〉 is a constraint semiring if S is a set
(0,1 ∈ S), and + and · are binary operations on S satis-
fying the following properties:

• + is commutative, associative, idempotent, 0 is its
unit element and 1 is its absorbing element (i.e., a+
1 = 1, for any a ∈ S);

• · is commutative, associative, distributes over +, 1
is its unit element, and 0 is its absorbing element
(i.e., a · 0 = 0, for any a ∈ S).

C-semirings are equipped with two binary operations
(an additive and a multiplicative operation). The ad-
ditive operation of a c-semiring induces a partial order
on S defined as a ≤S b ⇐⇒ ∃c : a + c = b. The mini-
mal element is thus 0 and the maximal 1.

The following examples give an intuition of some c-
semiring structures.

Example 4.1 An example of c-semiring is priority c-
semiring P = 〈N, max, min, 0,∞〉 defined on N , the set
of natural numbers with infinity. The additive operation
of P is max (which induces the obvious order) and the
multiplicative operation is min.

Example 4.2 Given a set of actions A, the set of co-
actions is A = {a | a ∈ A} and we let W = A ∪
A ∪ {1W ,0W ,⊥}. The broadcast c-semiring on W is
〈W, +W , ·W ,0W ,1W 〉 specified as:

∀a ∈ Act.a · a = a ∧ a · a = a (1)

∀a, b ∈ Act ∪ Act ∪ {⊥} : b 6∈ {a, a} =⇒ a · b =⊥ (2)

plus commutative rules and the ones for 0 and 1. (3)

The operation +W is obtained by extending the
c-semiring axioms for the additive operation with
a +W a = a, for all a ∈ W and a +W b =⊥,
∀a, b ∈ Act ∪ Act ∪ {⊥}.b 6= a.

Hereafter, we assume a fixed c-semiring
〈S, +, ·,0,1〉.

Definition 4.2 (Weighted graphs) A weighted
graph is a pair Γ ` G of a graph G and a weighting func-
tion Γ mapping a finite set of nodes to S such that
fn(G) ⊆ domΓ.

A weighted graph is a graph having values in S associ-
ated to its free nodes. We write x1 : s1, . . . , xn : sn ` G
for the weighted graph whose weighting function maps
xi to si, for any i ∈ {1, . . . , n}, with the implicit as-
sumptions that nodes xi are all distinct and fn(G) ⊆
{x1, . . . , xn}. If x 6∈ domΓ, function Γ, x : s is the up-
dating of Γ on x.

In the following, we sometimes use vectors and
denote the i-th component of a ~x by ~xi, moreover,

{|~x|}
def
=

⋃

i∈{1,...,|~x|} {~xi}.

4.2. Productions for weighted graphs

The classical SHR approach is a declarative frame-
work where the behaviour of an edge is specified via a
set of productions describing the graph to be replaced
in place of the edge, provided that some requirements
are satisfied by the surrounding environment. A pro-

duction takes the form p : L(~x)
Λ
−→ G where L(~x) is a

hyperedge, G a hypergraph and Λ specifies the require-
ments. Roughly, p states that, in a given graph, an edge
labelled L can be replaced by G provided that the en-
vironment satisfies requirements Λ.

Productions of SHReQ have a slightly different def-
inition and interpretation.

Definition 4.3 (Productions) Let R = S × N ∗ be

said the set of requirements. A 4-tuple χ . L(~x)
Λ
−→ G is

a production iff

• ~x is a tuple of pairwise distinguished nodes and L an
edge label of arity |~x|;

• χ : {|~x|} → S is the applicability function;

• Λ : {|~x|} → R is the communication function
assigning requirements to nodes such that for i ∈
{1, . . . , |~x|}, Λ(~xi) = (s, ~y) and s ∈ Sync =⇒
~y = 〈〉. The communicated nodes of Λ, denoted
by n(Λ), are those nodes that appear in a require-
ment in the range of Λ. The set of new nodes of Λ
is new(Λ) = n(Λ) \ domΛ.

• G is a graph such that fn(G) ⊆ {|~x|} ∪ n(Λ).

A SHReQ production, or simply production, χ.L(~x)
Λ
−→

G states that, in order to replace L with G in a graph
H , the graph H must satisfy the conditions expressed
by the applicability function χ on the attachment nodes
of L. Once χ is satisfied in H , L “contributes” to the
rewriting by offering Λ in the synchronisation with the
other edges connected to its attachment nodes. As will
be more clear later, χ expressed the minimal require-
ment that the execution environment must satisfy in
order to apply the production. Finally, the nodes ap-
pearing in new(Λ) can be freely renamed (avoiding
name-capturing of the nodes in ~x); moreover, nodes
~x are considered local to the production and can be
renamed with fresh names through the whole produc-
tion.

We remark that, in χ.L(~x)
Λ
−→ G, c-semiring values

play different roles in χ and Λ: in the former, they are
interpreted as the minimal requirements that the en-
vironment must satisfy for applying the production; in
Λ they are the “contribute” that L yields to the syn-
chronisation with the surrounding edges.

4.3. C-semirings and productions for
TRMCS

The TRMCS case study can be modelled by defin-
ing productions on the c-semiring given by the carte-
sian product of P and B, i.e., the priority and broad-
cast c-semirings (Example 4.1 and 4.2). The former rep-
resents priorities among users where natural number 1
corresponds to the highest priority and, for simplic-
ity, all users have different priorities (i.e., n 6= m =⇒
Un 6= Um, this simply means that users are distin-
guished by their priority). The multiplication of P (i.e.
min) chooses the user with the highest priority. The
c-semiring B defined on Act = {rem, amb} models the
communication policy of TRMCS, namely broadcast

Sending alarm Receiving ambulance assistance

•(a,n)〈〉x •x

Un

OO

−→ Uwa
n

OO • (amb,n)〈z〉x •x

Uwa
n

OO

−→ Uua
n

��
•z

x :0 . Un(x)
(x,(a,n),〈〉)
−−−−−−→ Uwa

n (x) x : (amb, n) . Uwa
n (x)

(x,(amb,n),〈z〉)
−−−−−−−−→ Uua

n (z)

Restarting (0 < n < m) Receiving remote assistance

• 1〈〉x •x

Uwa
m

OO

−→ Um

OO • (rem,n)〈z〉x •x

Uwa
n

OO

−→ Uur
n

OO

•z

x : (0W , n) . Uwa
m (x)

(x,1,〈〉)
−−−→ Um(x) x : (rem, n) . Uwa

n (x)
(x,(rem,n),〈z〉)
−−−−−−−−→ Uur

n (x,z)

Checking alarm Forwarding alarm

• (a,∞),〈z〉x •x

R

OO

−→ Rra

OO

• (a,∞)〈〉y •y

• (a,∞)〈z〉x •x

Rra

OO

−→ R

OO

• (a,∞)〈z〉y •y

x, y :0 . R(x, y)

(x,(a,∞),〈z〉)

(y,(a,∞),〈〉)
−−−−−−−→ Rra(x, y) x :0, y : (a, 0) . Rra(x,y)

(x,(a,∞),〈z〉)

(y,(a,∞),〈z〉)
−−−−−−−→ R(x,y)

Sending ambulance assistance Sending remote assistance

•
(amb,∞)〈〉

x •
(rem,∞)〈〉

y •x •y

S

__@@@ ~~~
−→ S

__@@@ ~~~

• (rem,∞)〈x〉w •w

•
(amb,∞)〈〉

x •
(rem,∞)〈〉

y •x •y

S

__@@@ ~~~
−→ S

__@@@ ~~~

• (amb,∞)〈y〉w •w

x,y,w :0 . S(x,y,w)

(x,(amb,∞),〈〉)

(y,(rem,∞),〈〉)

(w,(rem,∞),〈x〉)
−−−−−−−−−→ S(x,y,w) x,y,w :0 . S(x,y,w)

(x,(amb,∞),〈〉)

(y,(rem,∞),〈〉)

(w,(amb,∞),〈y〉)
−−−−−−−−−→ S(x,y,w)

where a ∈ {amb, rem}

Figure 3. TRMCS Productions

synchronisation. In our example, we have the actions
rem and amb (and the corresponding coactions) for
alarms requesting remote or ambulance assistance, re-
spectively.

Finally, the cartesian product of B and P yields the
c-semiring, say BP , of weak broadcast together with
selection of the highest priority. When clear from the
context, 1 (resp. 0) denotes 1BP (resp. 0BP), also 1 =
(1W ,∞) and 0 = (0W , 0).

The productions for TRMCS rely on BP and are
those collected in Figure 3. For each production, the
textual and the graphical representation are given; in
the latter case, drawings are simplified by not repre-
senting the applicability functions. Actually, most of
them are production schemas corresponding to a set
of similar productions. For example, Sending alarm
is a production schema where a ranges over actions
{amb, rem} and n ranges over the priorities of users
or else Restarting must be instantiated for all priori-
ties m and n such that 0 < n < m, hence it represents
m− 1 productions for user Um. Moreover, we consider

the following idle productions for users and routers:

x : 0 . Un(x)
(x,1,〈〉)
−−−→ Un(x)

x : 0, y : 0 . R(x, y)
(x,1,〈〉),(y,1,〈〉)
−−−−−−−−→ R(x, y)

expressing that both users and routers can remain idle
during a transition without influencing the synchroni-
sation of the other components. Hereafter, instead of
writing x : s, y : s as done in the idle production for R,
we write x, y : s whenever possible.

Intuitively, productions in Figure 3 model a scenario
where router R checks for alarms and selects the user
Un with highest priority among those that have sent an
alarm (ambulance or remote request are separately at-
tended). Then, once Un has been chosen, R communi-
cates to S the alarm and the ”address” of Un where
the requested assistance must be sent. Detailed com-
ments on the productions follow.

Sending alarm: Un sends an alarm (for ambulance
or remote assistance) together with its priority to

the router attached to node x and changes to state
waiting for assistance (wa).

Receiving ambulance assistance: if Un is the wa
user having the highest priority then Un discon-
nects from x and connects to S on node z. Notice
that the applicability function requires (amb, n)
on attachment node x. Finally, Un changes to un-
der ambulance assistance (ua) state.

Restarting: all the other wa users without the high-
est priority, return to the initial state. The
restarting schema applies when (0, n) is the
weight of the attachment node of Um (for
0 < n < m) so that user Um silently re-
turns to the initial state.

Receiving remote assistance: Un moves from state
wa to under remote assistance (ur) by synchronis-
ing again with R on x (analogously to receiv-
ing ambulance assistance). Remote assistance
is modelled by making Un and S sharing z, i.e.
the node where S connects to provide assistance
to Un.

Checking alarm: this production schema states that
a router R checks for alarms from its users and
changes to state responding to alarm (ra). Indeed,
R synchronises with the users connected to node y
with the action (a,∞) (recall that ∞ is the 1 of P).
This synchronisation yields a value (a, n) record-
ing the type of alarm to be attended (rem or amb)
and the highest priority user sending the alarm.

Forwarding alarm: this production schema gets
node z from user Un that must be attended
and forwards it to S (from node y to node x).
Then S will share node z with the Un. Require-
ments on nodes indicate the type of alarm to at-
tend and ignores priorities given that only Un

can provide node z (the others return to the ini-
tial state). Indeed, notice that ∞ is the neutral
element for the product of P .

Sending remote assistance: S checks on node w for
remote alarms forwarded by a router R and con-
nects the corresponding user to node y. This is
achieved by fusing nodes y and z (provided by
R using forwarding alarm). According to c-
semiring B, server S attends one router at a time
(only one router can synchronise with S). Actions
on nodes x and y are used to synchronise with ua
users.

Sending ambulance assistance: this is similar to
the previous production but in this case the user
is connected to node x for ambulance assistance.

We do not include productions for a user after the as-
sistance is finished, but they can be specified as done
above.

5. Synchronised Rewriting for SHReQ

SHReQ rewriting mechanism relies on c-semirings
where addition structure is defined. More precisely, we
require that

• there are two sets Sync and Fin such that Sync ⊆
Fin ⊆ S and 1 ∈ Sync;

• there is a set NoSync ⊆ S \Fin such that ∀s ∈ S :
∀t ∈ NoSync : s · t ∈ NoSync and 0 ∈ NoSync.

The intuition is that Fin contains those values of S
representing events of complete synchronisations. This
is a technical expedient from synchronisation algebras
with mobility [12] for dealing with restricted nodes. Ba-
sically, values in Fin are those events appearing on re-
stricted nodes that represent a “finished” synchroni-
sation, i.e., an internal synchronisation that does not
require any further interaction with the environment.
A typical example might be synchronisation actions of
process calculi. Among the actions in Fin we can se-
lect a subset of “pure” synchronisation actions, namely
complete synchronisations that do not expose nodes.
Set NoSync, on the contrary, contains the values that
represent “impossible” synchronisations. As more clear
later, values in NoSync avoid synchronisations.

Hereafter, we let Ω be a finite multiset over N ×R.
We write multisets by listing the (occurrences of their)
elements in square brackets, e.g. [a, a, b] is the multi-
set with two occurrences of a and one of b where the or-
der is not important, i.e., [a, a, b] = [a, b, a] = [b, a, a].
Multiset membership and difference are expressed by
overloading ∈ and \, respectively; the context will al-
ways clarify if we are referring to sets or multisets. Mul-
tiset union is denoted by]; sometimes we also write
A] B to denote the multiset [a | a ∈ A]] [b | b ∈ B],
where A or B is a set.

Before giving SHReQ semantics, we establish some
notational conventions:

• domΩ = {x ∈ N | ∃s ∈ S, ~y ∈ N ∗ : (x, s, ~y) ∈ Ω};

• n(Ω) =
⋃

(x,v,~y)∈Ω

{|~y|};

• new(Ω) = n(Ω) \ domΩ;

• Ω@x = [(x, s, ~u) | (x, s, ~u) ∈ Ω];

• WΩ : domΩ → S WΩ : x 7→
∏

(x,s,~y)∈Ω@x

s

• for σ : N → N , Ωσ = [(σ(x), s, ~uσ) | (x, s, ~u) ∈ Ω].

SHReQ semantics exploits a most general unifier ac-
counting for node fusions. We write mgu(Ω) for denot-
ing the function that yields an idempotent substitu-
tion defined if, and only iff, for all (x, s, ~u), (x, s′, ~v) ∈
Ω@x \ [(x, t, 〈〉) | t ∈ Sync] the following conditions
hold:

|~u| = |~v| (4)

∀i ∈ {1, . . . , |~u|} : ~ui ∈ new(Ω) ∨ ~vi ∈ new(Ω) (5)

∀x ∈ domΩ : |Ω@x| > 1 =⇒ WΩ(x) 6∈ NoSync (6)

Condition (4) requires that the lengths of communi-
cated vectors are equal. Condition (5) states that the
unification cannot fuse two “old” nodes (the more gen-
eral notion of [6, 13] can be easily re-casted in our
framework). Finally, condition (6) avoids synchronisa-
tions (and hence rewritings) when a value in NoSync
is the result of the composition.

In the following, it is implicitly assumed that
mgu(Ω) is defined when writing ρ = mgu(Ω) and
that ρ is obtained by computing the most gen-
eral unifier of the equations {~ui = ~vi | ∃s, t ∈ S :
(x, s, ~u), (x, t, ~v) ∈ Ω ∧ 1 ≤ i ≤ |~u|}.

The semantics of SHReQ is a labelled transition sys-
tem specified with inference rules given on top of quasi-
productions.

Definition 5.1 (Quasi-productions) The setQP of
quasi-productions on P is defined as the smallest set con-
taining P such that

χ . L(~x)
Ω
−→ G ∈ QP
∧

y ∈ N \ new(Ω) =⇒ χ′ . L(~x{y/x})
Ω{y/x}
−−−→ G{y/x} ∈ QP ,

where x ∈ {|~x|} and χ′ : {|~x|} \ {x} ∪ {y} → S is defined
as

χ′(z) =

χ(z), z ∈ {|~x|} \ {x, y}
χ(x) + s, z = y ∧ (y ∈ {|~x|} =⇒ s = χ(y))

∨(y 6∈ {|~x|} =⇒ s = 0).

Intuitively, quasi-productions are obtained by substi-
tuting nodes in productions and relaxing the condition
that attachment nodes of the left-hand-side should be
all different. When y is substituted for x, χ′ assigns to y
either χ(x)+χ(y) or χ(x) depending whether y ∈ {|~x|};
nodes z not involved in the substitution maintain their
constraint χ(z).

Proposition 5.1

χ . L(~x)
Ω
−→ G ∈ QP =⇒ domΩ = {|~x|}.

Definition 5.2 (Communication and weighting)
Let ρ = mgu(Ω), then Ω : domΩ → R is the communi-
cation function induced by Ω defined as

Ω(x) =

{

(WΩ(x), ~yρ), (x, s, ~y) ∈ Ω ∧WΩ(x) 6∈ Sync
(WΩ(x), 〈〉), (x, s, ~y) ∈ Ω ∧WΩ(x) ∈ Sync

Let Γ be aweighting function such that domΩ ⊆ domΓ,
the weighting function induced by Γ and Ω is ΓΩ :
domΓ → S, defined as

ΓΩ : x 7→

1, x ∈ new(Ω)
Γ(x), |Ω@x| = 1
WΩ(x), otherwise

For each x ∈ domΩ, Ω computes the requirements re-
sulting from the synchronisation of requirements in
Ω@x. More precisely, it multiplies (according to the
c-semiring product) the values and applies the substi-
tution mgu(Ω) on the communicated nodes (if the re-
sulting values are not in Sync). The weighting function
computes the new weights of graphs after the synchro-
nisations induced by Ω. New nodes are assigned with 1,
nodes x upon which no synchronisation took place (i.e.,
|Ω@x| = 1) maintain the old weight while those where
synchronisations happen (i.e., |Ω@x| > 1) are weighted
according to the induced communication function.

We can now define the LTS of weighted graphs.

Definition 5.3 (Graph transitions) A SHR with
QoS (SHReQ) rewriting system consists of a pair
(QP, Γ ` G), where QP is a set of quasi-productions
on P and Γ ` G is the initial weighted graph. The set
of transitions of (QP, Γ ` G) is the smallest set ob-
tained by applying the inference rules in Table 1 where,
in the rules (ren) and (com), Z = new(Ω) \ new(Ω).

Rule (ren) applies quasi-productions to weighted
graphs provided that Ω admits a mgu and that the
weights on the graphs satisfy conditions χ, namely,
χ(x) ≤ Γ(x), for all x ∈ domχ. Notice that the commu-
nication function and weights in the conclusions are ob-
tained as in Definition 5.2. Similarly, rule (com) yields
the transition obtained by synchronising the transi-
tions of two subgraphs, provided that the (proofs of
the) subgraphs assume the same weights on the com-
mon nodes. According to rule (res) a node x can be
restricted when x is not communicated and the re-
quirements on x are in Fin . Namely, in order to de-
rive a transition from Γ ` (ν x)G, we must find a
transition from a graph where x is free and the syn-
chronisation on x has been completed. We remark
that (res) is a rule schema that must be instanti-
ated for any s, t ∈ S. Rule (open) handles the com-
munication of restricted nodes. When a restricted
node x appears in n(Λ), it can be opened pro-
vided that a transition can be found from the graph
Γ, x : s ` G (where x is a free node), such that ei-
ther the requirement on x is a complete synchronisa-
tion or it is in NoSync. Rules (ren) and (com) restrict
x again when it is fused with other nodes. The lat-
ter condition allows an edge connected to x to checks

(ren)
χ . L(~x)

Ω
−→ G ∈ QP ρ = mgu(Ω) x ∈ domχ =⇒ χ(x) ≤ Γ(x)

Γ ` L(~x)
Ω
−→ ΓΩ ` (ν Z)(Gρ)

(com)
Γ1 ` G1

Λ1−→ Γ′
1 ` G′

1 Γ2 ` G2
Λ2−→ Γ′

2 ` G′
2 ρ = mgu(Λ1] Λ2) x ∈ domΓ1 ∩ domΓ2 =⇒ Γ1(x) = Γ2(x)

Γ1 ∪ Γ2 ` G1 | G2

Λ1]Λ2
−−−→ Γ1 ∪ Γ2Λ1]Λ2

` (ν Z)(G′
1 | G′

2)ρ

(res)
Γ, x : s ` G

Λ
−→ Γ′, x : t ` G′ x 6∈ n(Λ) sΛ(x) ∈ Fin

Γ ` (ν x)G
Λ/x
−→ Γ′ ` (ν x)G′

(open)
Γ, x : s ` G

Λ
−→ Γ′, x : t ` G′

sΛ(x) ∈ NoSync ∪ Fin x ∈ n(Λ)

Γ ` (ν x)G
Λ/x
−→ Γ′, x : t ` G′

Table 1. Hypergraph rewriting rules.

whether other edges share x. Indeed, such a tran-
sition is possible only if one can compute mgu(Λ),
which admits weights in NoSync only if the cardinal-
ity of Λ@x is 1, namely there is only one edge con-
nected to x. Even if this feature is not used in this
paper, we remark that this is a very expressive com-
pared to other SHR approaches.

6. SHReQ for TRMCS

This section gives a flavour of the SHReQ semantics
(Table 1) by synchronising productions in Figure 3 over
the graph of Figure 1. This simple example shows how
SHReQ yields a general framework for dealing with sys-
tem evolution and reconfiguration affected by multiple
”dimensions” of quality.

First, we define sets SyncBP , FinBP and NoSyncBP

as follows:

• SyncBP = {1};

• FinBP = {1} ∪ {(a, n)|a ∈ W, n > 0};

• NoSyncBP = {0} ∪ {(a, 0)|a ∈ W} ∪ {(0W , n)|n ∈
N}.

The only value of SyncBP is 1 so that all coactions con-
tinue to synchronise after the application of rule (1).
Obviously, FinBP contains all coactions given that
they are the result of any complete synchronisation (all
n > 0 are valid priorities). Set NoSyncBP contains all
pairs with at least one 0 in their components.

In Figure 4 we give a graphical representation of
two derivations where S responds to U1 requesting for

ambulance assistance. Instead of reporting the produc-
tions for each rewriting step, edge tentacles are deco-
rated with requirements. For the sake of clarity, we in-
dex routers to refer them in a simple way, we avoid
empty lists of nodes, we represent requirements (1, 〈〉)
with undecorated tentacles and we report only the rel-
evant weights with respect to the considered synchro-
nisation.

In the first derivation, U1 and U3 are requesting am-
bulance assistance to R1 by synchronizing (on node
r) Checking alarm production for R1 and Sending
alarm for U1 and U3. The result of the synchronisa-
tion gives (amb, 1) as the new weight of r and U1 as
the highest priority user (second graph).

The other components do not affect this rewriting
step, R2 and U2 apply idle productions and S applies
one of its productions (which in this step produce no
effect).

The second derivation produces a reconfiguration
where U1 connects to S by synchronising production
Receiving ambulance assistance for U1, Forward-
ing alarm for R1 and Sending ambulance assis-
tance for S (the other components apply idle produc-
tions). This is shown in the third graph of Figure 4.
Moreover, the synchronisation fuses nodes z and x.

We remark that all the applicability functions of
these productions are satisfied by node weights in the
graphs and that productions only ensure that routers
choose the highest priority user. For instance, assume
that also U2 requests assistance. It could be the case
that the synchronisation among R1, R2 and S chooses

•x • y •x • y •x • y

S
(amb,∞)

QQ

(rem,∞)

(amb,∞)〈x〉

S
(amb,∞)

TT

(rem,∞)

(amb,∞)〈x〉

S

OO

•w •w •w

R1

(amb,∞)〈z〉

55

(amb,∞)

R2

ii

=⇒ Rra
1

(amb,∞)〈z〉

33

(amb,∞)〈z〉

R2

jj

=⇒ R1

66

R2

hh

•r • s •r (amb,1) • s •r (amb,1) • s

U1

(amb,1)

55

U3

(amb,3)

ii

U2

OO

Uwa
1

(amb,1)〈z〉

33

Uwa
3

kk

U2

OO

Uua
1

FF

U3

OO

U2

OO

Figure 4. A derivation for attending an ambulance alarm from U1.

R2 instead of R1, namely U2 (instead of U1) will con-
nect to S. Of course, this could be resolved with pro-
ductions ruling synchronisation among routers and the
server in the style of those among routers and users,
however, we prefer not to complicate the example with
cumbersome sophistication.

Figure 5 shows part of the proof for the first rewrit-
ing step in Figure 4 corresponding to the synchronisa-
tion on node r among R1, U1 and U3. The result of
this sychronisation produces a broadcast synchronisa-
tion and the selection of the user with the highest pri-
ority. The three (ren) rules are the instantiation of
the three quasi-productions (we assume that the ini-
tial weight for the graph nodes is 1). Then, the first
(com) rule (named (com1)) synchronises U1 and R1,
where clearly min(1,∞) = 1. Note that in the rule con-
clusion the weight for r contains the new value result-
ing from the synchronisation (i.e., (amb, 1)). The final
(com) rule synchronises the result of (com1) with U3,
where min(1, 3) = 1. We point out that in this exam-
ple, all mgu are empty and in the (ren) rules the ap-
plicability conditions trivially hold by 0 ≤ 1.

7. Final Remarks

We presented SHReQ, a formal framework for spec-
ifying systems that handle abstract high-level QoS as-
pects which are becoming more and more important
for SOC architectures. SHReQ combines SHR with c-
semirings so that the former models mobility and re-
configuration of systems on top of the latter which pro-
vide both the mathematics for multi-criteria QoS and
the underlying synchronisation policies.

As far as we know, SHReQ is the first to exploit
an abstract definition of QoS values as a coordination
mechanism. Indeed, in general QoS are either related
to low-level aspects of systems or they are simply a no-
tation for describing some non-functional properties of

systems. In [9, 13], SHR has been extended with mobil-
ity for modelling both architectural and programming
aspects of mobile distributed applications. SHR with
mobility follows a self-organising approach given by
the combination of hyperedge rewriting systems for lo-
cal component specification and constraint solving for
coordination. Various facets of SHR have been stud-
ied with respect to issues related to distributed sys-
tems [9, 13, 10, 4, 6]. In [4], c-semirings have been ex-
ploited as a mathematical abstraction for application-
level QoS since their algebraic properties can natu-
rally describe QoS values and the usual operations
on them. For instance, multi-criteria QoS can easily
be dealt with cartesian product of c-semirings, which
are c-semirings as well. In [4], a middleware express-
ing quantitative aspects of applications has been pro-
posed and translated into the standard SHR; however,
the synchronisation mechanism simply uses point-to-
point synchronisation and does not consider quantita-
tive aspects as a primitive coordinating mechanism as
presented here. All other SHR frameworks do not con-
sider quantitative aspects.

The work of [8] might be probably considered the
closest to our proposal (from a graph transformation
standpoint). This approach gives a conceptual model
where structural aspects are described in a UML-like
meta-model and graph transformation is used for dy-
namic evolution of systems. Among others, the meta-
model provides a QoSpackage that influences the graph
transformation rules which are required to respect the
QoS package. Despite the similarities, our approach dif-
fers from [8] in the fact that in SHReQ the QoS values
are the rewriting mechanism, not only an additional at-
tribute.

In the area of software architecture, specific QoS
aspects (e.g., dependability, performance) have been
considered. For instance, in [2, 7] run-time monitor-
ing of systems has been considered at the architec-

r :0 . U1(r)
(r,(amb,1),〈〉)
−−−−−−−→ Uwa

1 (r)
(ren1)

r :1 ` U1(r)
(r,(amb,1),〈〉)
−−−−−−−→ r :1 ` Uwa

1 (r)

w, r :0 . R1(w, r)

(w,(amb,∞),〈z〉)

(r,(amb,∞),〈〉)
−−−−−−−−−→ Rra

1 (w, r)
(ren2)

w, r :1 ` R1(w, r)

(w,(amb,∞),〈z〉)

(r,(amb,∞),〈〉)
−−−−−−−−−→ w, r, z :1 ` Rra

1 (w, r)
(com1)

w, r :1 ` U1(r) | R1(w, r)

(w,(amb,∞),〈z〉)

(r,(amb,1),〈〉)
−−−−−−−−−→ w, z :1, r : (amb, 1) ` Uwa

1 (r) | Rra
1 (w, r)

r :0 . U3(r)
(r,(amb,3),〈〉)
−−−−−−−→ Uwa

3 (r)
(ren3)

r :1 ` U3(r)
(r,(amb,3),〈〉)
−−−−−−−→ r :1 ` Uwa

3 (r)

(com1)

(com2)

w, r :1 ` U1(r) | R1(w, r) | U3(r)

(w,(amb,∞),〈z〉)

(r,(amb,1),〈〉)
−−−−−−−−−→ w, z :1, r : (amb, 1) ` Uwa

1 (r) | Rra
1 (w, r) | Uwa

3 (r)

Figure 5. Partial proof for derivation in Figure 4

tural level for handling dynamic self-adaptation that
depends on (on-line) performance analysis. These ap-
proaches, aside from considering a single QoS aspect in-
stead of application-level multi-criteria and parametric
QoS, also apply traditional solutions (e.g., QoS man-
agers) that conceptually differ from SHReQ which dis-
tributes the coordination of QoS issues over production
specifications.

Modern SOCs usually specify different QoS pa-
rameters that depend on applications and should dy-
namically be integrated and handled. In this context,
SHReQ can be generalised to a framework where edges
sharing nodes are not supposed to synchronise over the
same fixed c-semiring but (defining suitable composi-
tion operations among different c-semirings) one could
uniformly combine heterogeneous QoS dimensions.

References

[1] S. Bistarelli, U. Montanari, and F. Rossi. Semiring-
based constraint satisfaction and optimization. JACM,
44(2):201–236, March 1997.

[2] M. Castaldi, A. Di Marco, and P. Inverardi. Data
driven reconfiguration for performance improvements: a
model-based approach. In Proceedings of RAMSS, May
2004.

[3] I. Castellani and U. Montanari. Graph Grammars
for Distributed Systems. In H. Ehrig, M. Nagl, and
G. Rozenberg, editors, Proc. 2nd Int. Workshop on
Graph-Grammars and Their Application to Computer
Science, volume 153 of LNCS, pages 20–38. Springer,
1983.

[4] R. De Nicola, G. Ferrari, U. Montanari, R. Pugliese,
and E. Tuosto. A Formal Basis for Reasoning on Pro-
grammable QoS. In N. Dershowitz, editor, Interna-
tional Symposium on Verification – Theory and Prac-

tice – Honoring Zohar Manna’s 64th Birthday, volume
2772 of LNCS, pages 436–479. Springer, 2003.

[5] P. Degano and U. Montanari. A model of distributed
systems based on graph rewriting. JACM, 34:411–449,
1987.

[6] G. Ferrari, U. Montanari, and E. Tuosto. A LTS Seman-
tics of Ambients via Graph Synchronization with Mo-
bility. In ICTCS, volume 2202 of LNCS, Torino (Italy),
October 4-6, 2001. Springer.

[7] D. Garlan, B. Schmerl, and J. Chang. Using gauges
for architecture-based monitoring and adaptation. In
Working Conference on Complex and Dynamic Systems
Architecture, 2001.

[8] P. Guo and R. Heckel. Conceptual modeling of styles
for mobile systems: A layered approach based on graph
transformation. In Proc.of IFIP TC8 Working Confer-
ence on Mobile Information Systems(MOBIS)), pages
65–78. Springer, 2004.

[9] D. Hirsch. Graph Transformation Models for Software
Architecture Styles. PhD thesis, Departamento de Com-
putación, UBA, 2003. http://www.di.unipi.it/̃ dhirsch.

[10] D. Hirsch, P. Inverardi, and U.Montanari. Reconfigura-
tion of Software Architecture Styles with Name Mobil-
ity. In A. Porto and G.-C. Roman, editors, Coordination
2000, volume 1906 of LNCS, pages 148–163. Springer,
2000.

[11] P. Inverardi and H. Muccini. The Teleservices and Re-
mote Medical Care System (TRMCS). In IWSSD, San
Diego, California, November 2000.

[12] I. Lanese and U. Montanari. Synchronization alge-
bras with mobility for graph transformations. In Proc.
FGUC’04 – Foundations of Global Ubiquitous Comput-
ing, ENTCS, 2004. To appear.

[13] E. Tuosto. Non-Functional Aspects of Wide Area Net-
work Programming. PhD thesis, Dipartimento di Infor-
matica, Università di Pisa, May 2003. TD-8/03.

