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Abstract

Wide-Area Network (WAN) applications have become one of the most popular ap-
plications in current distributed computing. Internet and the World Wide Web
are now the primary environment for designing, developing and distributing appli-
cations. This scenario imposes different programming metaphors with respect to
traditional applications.

Theoretical models for formally reasoning on WAN applications must consider
many crucial aspects and their mutual relationships, e.g. mobility, network aware-
ness, security, service level agreement, etc.

This dissertation attempts to formally define declarative approaches for dealing
with various facets of actual WAN programming and verification issues.

We propose a declarative approach based on hypergraphs that provide founda-
tional framework for “declaring” components’ behaviours of a distributed system.
It is exercised with two well-known models for distributed computations as Ambient
and Klaim. Moreover, we extend Klaim with constructs for specifying, at applica-
tion level, network connections and related Quality of Service (QoS) requirements.
It is also shown how a suitable translation of our Klaim extension into hypergraphs
can be exploited for detecting and reserving optimal routing path with respect to
the QoS constraints imposed by applications.

We also introduce a process calculus and a logic that specifies a formal framework
for declaring security protocols and properties. By means of symbolic verification
technique, the framework can be exploited as a verification environment for model
checking security protocols. The declarative flavour of the analysis and the ability
of dealing with multi-session verification is the major advantage of the proposed
approach.

Finally, we describe a verification environment based on a semantic minimization
algorithm for π-calculus agents presented in co-algebraic setting. The final part
of this dissertation introduces and discusses an implementation of the algorithm
together with other verification facilities of the framework. A proofs that shows the
correctness of the implementation with respect to the co-algebraic specification is
given.
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Chapter 1

Introduction

Wide-Area Network (WAN) applications have become one of the most important
applications in current distributed computing. Indeed, Internet and the World Wide
Web are now the primary environment for designing, developing and distributing
applications. The problem of supporting WAN computing from specification to
architectural design and implementation is at the front-line of the research in the
field of Software Engineering since the traditional approaches (e.g. client-server
architecture) are no longer sufficient to meet the new demands. New paradigms for
WAN computing can be put side by side to previous models in order to achieve the
new programming challanges of WAN applications.

One of the most important characteristic of WAN is that control is not central-
ized. Indeed, WAN have no central point of control and are formed by a number of
administrative domains. Applications access resources allocated on possibly remote
administrative domains and can, at most, control resources allocated on their own
administrative domain. One evolutionary programming techniques adopted for de-
ploying WAN applications relies on web-services (WS) that can be described as self-
contained components which inter-operate with each other by supporting web-based
access protocols [102]. Web services may adapt themselves to match the particular
capabilities of a variety of devices ranging from traditional PCs, to Personal Digital
Assistants and Mobile Phones having intermittent connectivity to the network. In
other words, WS can be naturally exploited to deal with highly decentralized and
dynamically reconfigurable (e.g. WS are assumed to be pluggable to other services
to achieve the required functionalities). Moreover, networked heterogeneous appli-
cations are becoming the primary part of modern software environments nowadays.
These applications (e.g. as web-browsers for cellular phones) require stationary
servers and mobile devices to cooperate and exchange services while the application
is running.

In this scenario, the dynamic integration of network services is a crucial aspect.
Indeed, the services offered by a component are described using an interface descrip-
tion language [47]. Recent developments have focused on extending these languages
so as to allow the specification of the interaction protocols of components. Service
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integration is obtained by means of composition languages (also called coordination
languages) that describe how components are glued together. Furthermore, other is-
sues are relevant when constraints over communications are necessary. For instance,
e-conferencing, video on demand or real video applications require that some quality
of services (in the following, QoS’s) are set by applications in order to guarantee an
adequate result.

The scenario that we have depicted above induces to consider formal reasoning
on WAN applications as a problematic task. Usually, components are stand-alone
“black-boxes” that encapsulate services and have standard interfaces. A component
reflects service behavioural features through suitable interaction protocols and must
be deployed with no assumption on the possible interactions that will be instanti-
ated at execution time. Hence, it is very difficult to state and certify properties of
WAN applications. Essentially the reasons of these difficulties can be found in the
fact that components are developed by different programmers and along different
periods. Moreover, allocation of services and resources can dynamically change at a
fast rate and applications are not necessarily aware of those changes. Finally, WAN
applications are executed in an unknown environment which also make security is-
sues become primary concerns. Authentication, integrity and secrecy are properties
that WAN applications must guarantee, but, depending on the application, other
properties might be important: For instance we can cite non-repudiation properties
in e-commerce applications.

The above considerations drive us to the conclusion that it is very difficult to vir-
tualize the execution environment of WAN application even at the very early stages
of software development. In particular, applications must take account of resource
and control distribution, administrative authorities, coordination and communica-
tion characteristics, etc. All those non-functional aspects must be considered when
a WAN application is designed. Hence, WAN programming requires new innovative
methods and techniques to model, specify, design and certify properties.

WAN applications have many peculiarities that distinguish them from traditional
applications and that require different programming metaphors, primitives and tools
to fit the various facets of computations of WAN applications. A non-exhaustive
list of concepts that are strictly related to WAN applications is given by

◦ interoperability,

◦ mobility,

◦ network awareness,

◦ coordination,

◦ security,

◦ service level agreement,
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All those items will be later discussed in more detail. The main contributions of
this dissertation are all related to the specification, modeling and verification of
computations of WAN applications.

• We introduce a graphical model based on synchronized hyperedge replacement
that has various benefits:

– The calculus permits to define WAN application in a declarative fashion
and in such a way that different conceptual components of the applica-
tions are defined independently;

– The different stages of WAN applications development can be described
in a uniform way within the graphical framework. In particular graph-
ical calculus is exploited to refine high level UML specification to more
concrete and formal ones.

– The graphical calculus is also used as intermediate language for mapping
foundational models (e.g. the Ambient calculus [39] and Klaim [19, 57]).
The translation of Ambient calculus accounts for a simple interactive se-
mantics for the calculus and the definition of new “Ambient-like” primi-
tives. The translation of Klaim permits programming attributes related
to QoS attributes at application level.

• We introduce a calculus for the formalization of security protocol together
with a suitable logic. They allow one to state protocols and their properties
in a declarative fashion such that protocols are amenable of being verified in a
framework able to consider multiple sessions in a uniform and automatic way.

• We have implemented a verification environment, called Mihda, which allows
reasoning on the behavioural properties of WAN specifications. A main prop-
erty is the direct correspondence between the semantic structures and the
implementation structures that facilitates the proof of correctness of the im-
plementation.

– The algorithm has been specified co-algebraically [73] and the implemen-
tation is proved to be correct with respect to the specification. The proof
remarks the correspondence between the specification and the implemen-
tation.

– Mihda has been equipped with a web-interface that also permits the in-
tegration with different tools. In this way a web-based verification envi-
ronment is built.

1.1 WAN Features: an Overview

The problem of supporting WAN computing from specification to architectural de-
sign and implementation is at the front-line of the research in the field of Software
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Engineering since the traditional approaches (e.g. client-server architecture) are no
longer sufficient to meet the new demands. In this section we outline our perspec-
tive on the current status of the research on WAN computing by identifying the
basic concepts and the proper abstractions which are useful in specifying, designing,
certifying and implementing WAN applications.

Hereafter, we use the adjective ’distributed’ as referred to wide are networks,
hence a ’distributed system’ is a wide area network and ’distributed programming’
refers to programming WAN applications.

Interoperability A key concept in the definition of modern WAN applications is
the interoperability concept. Applications should be executed on architectures hav-
ing different hardwares or operating systems. From a programming point of view,
interoperability help developers to write once and run everywhere their applications
This aspects have been already addressed by SUN-Microsystems with the defi-
nition of Java language [9]. Java face with the problem of mitigating the differences
between execution platform. Java tackles the lacking of platform homogeneity by
providing an intermediate language, the byte code, in which source Java programs
are translated. Each platform is then provided with a specific virtual machine, i.e.
the Java V irtual M aching (JVM), that essentially implements an interpreter of the
byte code for the target machine.

Basically, Java proposes a unique front-end for application programmers and
multiple back-end ’s as execution environments.

Recently, Microsoft Corporation has proposed .NET that further stresses
the concept of interoperability. The .NET proposal [124] aims at achieving lan-
guage and platform independence. The idea is the definition of a Common Runtime
Language (CLR) [91] that provides a unique intermediate language for multiple
front-end’s. This allows a generalization of the Java programming environment to
different programming languages. In this way it is possible to re-compile and inte-
grate applications that had been written in different languages.

Mobility The concept of mobility provides a suitable abstraction to design and
implement both foundational calculi and languages for WAN programming. De-
pending on the level of abstraction, different forms of mobility can be considered.
We can identify three kinds of mobility:

1. data mobility,

2. link mobility,

3. process/device mobility

Data mobility is the elementary condition for providing communication in a dis-
tributed setting.
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Link mobility has been extensively studied and seems to be the simplest form of
mobility that also provides powerful theoretic tools to study and analyze distributed
systems. The π-calculus [162, 129, 130] is probably the most known example of
calculus that can model link mobility. The idea is that processes are linked and,
during their interactions, they can exchange links, creating new connections and
possibility of communications. The most interesting feature of the calculus can be
recognized in the possibility of declaring links that are “local” to a process and that
can also be exported to other processes. Namely it is possible to extrude the scope
of a local link. One of the main advantages of the calculus is that it has a robust
mathematical theory that allows one to formally reason about systems. In particular,
π-calculus systems are considered as reactive: they are plugged and executed into
an environment that can interact with them by means of stimuli to which systems
react. We remark that, despite of its conceptual simplicity, link mobility can model
many phenomena that arise in WAN programming. For instance, in [161] it has
been proved that higher-order calculi (i.e. calculi with process mobility) can be
suitably represented in π-calculus. Moreover, slight variations on π-calculus, allow
to set the theoretical and practical framework for studying and verifying security
protocols [2, 22, 23, 28, 26]; these proposals have great benefits from scope extrusion
that is a very appropriate linguistic construct for expressing creation of nonces1 or
sharing secrets.

At the higher level of abstraction, a main breakthrough is that WAN applications
may exchange active units of behaviour and not just raw data. The usefulness
of mobility emerges when developing both applications for nomadic devices with
intermittent access to the network (physical mobility), and network services having
different access policies (logical mobility). Process mobility has given rise to new
design patterns [52] other than the traditional client-server paradigm:

• Remote Evaluation: the code is sent for execution to a remote host;

• Code On-Demand : the code is downloaded from a remote host to be executed
locally;

• Mobile Agents: processes can suspend their execution and migrate to new
hosts, where they can resume their execution.

Among these design paradigms, Code On-Demand is probably the most widely used
(e.g. Java Applets). The paradigm of mobile agent is, on the other hand, the most
challenging since:

• in order to run an agent needs an execution environment , i.e. a server that
supplies resources for execution;

1A nonce is random sequence of bits that is normally used in cryptographic protocol “to mark”
protocol runs. It is supposed to be unguessable and different from any other datum.
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• an agent is autonomous : it executes independently of the user who created it
(purpose driven);

• an agent is able to detect changes in its operational environment and to act
according to these changes (reactivity and adaptivity).

Another interesting feature of mobile agents is the possibility of executing dis-
connected operations [145]: an agent may be remotely executed even if the user (its
owner) is not connected; if this is the case, the agent may decide to “sleep” and then
periodically try to reestablish the connection with its owner. Conversely, the user,
when reconnected, may try to retract the agent back home (i.e. instruct the remote
agent to come back to its home site).

In addition to this scenario, ad-hoc networks [46, 51] allow connection of nomadic
devices without needing a fixed network structure. However, ad-hoc networks are
at a very early stage of definition and are still not precisely characterized, hence a
model for them is still missing. Finally, the shift from client-server to peer-to-peer
architectures (e.g. Napster, Gnutella) has introduced a new pattern for the Internet
interaction where information is shared among distributed components and change
dynamically.

Clearly, a formal characterization of the key concepts involved in the development
of mobile applications (e.g. QoS, adaptability, resource discovery and usages) is a
major concern from a software engineering perspective.

Programming languages and systems provide basic facilities for mobility. A well
known example is provided by the Java programming language. Another interesting
example is provided by Oracle [142] which supports access to a database from a
mobile device by exploiting a mobile agent paradigm.

At a foundational level, several process calculi have been developed to gain a more
precise understanding of distribution and mobility. We mention the Distributed
Join-calculus [82], Klaim [57], the Distributed π-calculus [155], the Ambient cal-
culus [39], the Seal calculus [169], and Nomadic Pict [174]. Other foundational
models adopt a logical style toward the analysis of mobility. MobileUnity [121] and
MobAdtl [78] are logics specifically designed to specify and reason about mobile sys-
tems exploiting a Unity-like proof system. Finally, spatial logic [32, 33, 34] allows
one to specify properties on both the spatial dimension and the temporal dimension
of WAN applications.

Network Awareness Current software technologies emphasize the notion of web

service as a key idiom to control the design and the development of applications.
Conceptually, web services are stand-alone components that reside over the nodes
of the network. Each web service has an interface which is network accessible
through standard network protocols and describes the interaction capabilities of the
service (e.g., the message format). WAN applications are developed by combining
and integrating together web services, which do not have pre-existing knowledge
of how they will interact with each other.
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The exploitation of components in a WAN setting raises a number of issues.
First, given the heterogeneity of the network environment components should be
highly portable: components could be used anywhere but require some services to
behave properly (i.e. services are used to adapt components to a variety of infrastruc-
tures). Second, security should be ensured: components downloaded from different
authorities have different security requirements, and they should be executed within
different run-time environments. Third, dynamic adaptability should be ensured:
WAN applications are highly dynamic and can reconfigure their structure and their
components at run-time to respond to dynamic changes of the network environment.

Summing up, a WAN application does not appear as a single integrated computer
facility to its users as it is the case of traditional distributed applications. For
instance, users of traditional distributed applications can invoke a service regardless
of whether the service is local, remote or under the control of a different network
authority. Instead, in the WAN setting the awareness of network information is
crucial for choosing the best services that match user’s requirements. For instance,
users can react to phenomena like network congestion by binding their network
devices to different available resources. Similarly, network awareness is exploited by
WAN application designers to control resource usages and resource accesses in order
to ensure and maintain certain security levels.

At a foundational level to reflect the idea of network awareness most models
exhibit explicit localities, e.g. Ambients [39], Klaim [57], and MobileUnity [157] to
cite a few. Roughly speaking, locations fully identify the network environment of a
component. The aforementioned approaches have improved the formal understand-
ing of the complex mechanisms underlying network awareness. For instance, the
problem of modeling resource access control of highly distributed and autonomous
components has been faced by exploiting suitable notions of type [59, 93, 95, 30, 42].

Coordination WAN applications are highly decentralized and dynamically recon-
figurable. Hence, they should be easily scalable in order to manage addition/removal
of services, subnetworks and users without requiring to be reconfigured. Coordina-
tion is a key concept for modeling and designing WAN applications. Coordination
principles separate the computational components from composition modules called
coordinators which glue components together. Therefore, coordinators offer the basic
mechanism to adapt components to the network environment changes, to discover
resources, to synchronize activities, and so on. For instance, coordinators are in
charge of supporting and monitoring the execution of dynamically loaded modules.
Moreover, coordinators are able to observe evolutions, and therefore they may re-
act to an action by modifying themselves. Finally, coordination policies must be
programmable to meet the evolving composition demands and to accommodate the
design and the implementation of open systems. Two recent examples of coordi-
nation middlewares for WAN programming are represented by Jini [10] and .NET
Orchestration [124], proposed by Sun and Microsoft, respectively The separation of
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concerns between computation and coordination is also at the basis of the research
on software architectures [166, 6]

Many approaches to coordination are based on the Linda model [86, 87, 40, 41]
which provides the structure of tuple space as mechanism to represent the environ-
ment of applications. Experimental programming languages and middlewares have
been designed following this metaphor [57, 17, 150, 18]. Some preliminary results on
defining a discipline for orchestrating web services is outlined in [8]. The approach
is based on the idea of separating web service providers from contracts mecha-
nisms (also known under the name of connectors), which regulate web service

coordination.

The activities in the field of coordination languages and models have improved
the formal understanding of dynamically adaptable mobile components. However,
the right level of abstraction coordination and the definition of suitable constructs
to program crucial policies such as adaptation, loading and security requires further
research.

Security Nowadays network computing has to face with distribution of informa-
tion and computations over local or wide area networks. Accesses to distributed
resources must be regulated in order to guarantee that applications cannot read or
modify information, unless explicitly authorized. One of the most relevant peculiar-
ities of WAN architectures is the fact that no central authority can impose policies
on the access modality to resources that hold for the whole network. Therefore,
it is necessary to take care of possible malicious applications that may gain access
to resources supposed to be not accessible for them and steal or modify sensible
information. Moreover, security is complicated by the impossibility of controlling
connections between the sites of the network. Those considerations implies that
system security must be faced at different levels: From access control policies to
network communication protocols. These considerations have a great impact on the
models for WAN programming. All those peculiarities must be considered. As a
representative example, it will suffice to consider the amount of efforts that design-
ers for distributed languages spend in order to consider all those characteristics in
the very early stages of the definition of the languages primitives. The program-
mer should be provided with the linguistic mechanisms that permits him/her to
define applications that protects their computations and resources from malicious
or even “benign” non desired accesses or interactions. In fact, even under the as-
sumption that no malicious participant can take part to computations, there is a
very large number of possible connections among services that are not under the
control of a single programmer, but rather, they are achieved by interactions of
different applications. This implies that WAN programming has to face with a
high degree of non-determinism arising from the way in which applications will be
connected at execution time. Therefore, unforeseen connections/communications
can drive an application to non-desired computations that might be limited with
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appropriate linguistic tools that allow applications to control network connectivity
and resource accesses. A paradigmatic example is provided by the Java program-
ming language through the socket and the security APIs [114]. Similarly, the
Microsoft .NET [149] architecture supplies a programming technology embodying
general facilities for handling heterogeneity. As far as security is concerned, crypto-
graphic techniques have been exploited to solve several problems related to security
of data communications (authentication, secrecy and integrity). Finally, firewalls
are barriers that administrative domains build to disable the access to some critical
services.

Another implication of security concerns is the robustness of the protocols ex-
ploited to perform network interactions. Most of them are cryptographic protocols
and try to achieve “safe” communications over an non-trusted medium. In general
this is not enough to avoid undesired interferences. Indeed it is possible to cheat
remote partners of a communication even if the cryptographic protocol is supposed
to be “perfect”, namely if encrypted messages can be understood only by the owner
of the appropriate keys and cryptograms can be generated only if the encryption
key is owned. In order to limit this kind of attacks/errors many techniques have
been developed. Several approaches assume that applications operate in a hostile
environment that has “complete” control over exchanged messages (under the con-
straint of the perfect encryption assumption). More precisely, the environment can
modify the sequence of messages, or can forbid communications, forge messages that
“resemble” generated by regular applications, and so on.

Finally, an important issue is the analysis and certification of properties of com-
munication protocols. In particular, it should be clearly stated which kind of prop-
erties a network communication protocol aims at guaranteeing and under which
assumptions this goal is achieved. Therefore, it seems very important to formally
analyze protocols adopting formal methods that can provide the necessary con-
fidence in protocol correctness. Many formal frameworks have been defined and
implemented for analyzing and verifying security protocols. We cite here few of
them [79, 163, 80, 115, 164, 69, 68, 2, 117, 160, 22] and refer to Section 10.5 for
more detailed comments.

Service level agreement Network awareness is thus the distinguished and novel
issue of WAN applications and refers to the explicit ability of dealing with the unpre-
dictable Quality of Service properties of the network environment. Here with Quality
of Service we mean properties such as security, performance, bandwidth, transac-
tion support, cost of service, etc. In general, the perceived QoS of applications is
no longer given by the performance of the servers but rather by the availability of
certain resources, by the security level provided, by the flow of network traffic, and
so on. However, current technologies provide solutions for some aspects related to
process/device mobility under very strong simplifying hypothesis. In general, the
proposed abstractions have limited expressiveness in order to guarantee safe com-
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putations of dynamic and evolutionary WAN applications. Moreover, most research
on QoS is system oriented by focusing on properties of the lower layers of the In-
ternet protocol stack (e.g. the next version of the Internet Protocol IPv6). Hence,
proposed technologies do not allow applications having an explicit and direct control
over QoS properties.

The growing demands on security have led to the development of formal mod-
els that allow specification and verification of cryptographic protocols. Indeed, the
challenge is to formally understand which are the features of an integrated secu-
rity model for WAN applications. Moreover, the application security policy cannot
make any decision using knowledge of the entire current state of the application.
Any realistic approach will have to identify which portion of the state of the WAN
application is potentially relevant and may affect or be affected by the security
policy decisions. Interestingly, the notion of QoS briefly outlined above, may help
to investigate the proper trade-offs between expressiveness and security concerns.
However, a foundational model dealing with all these facets of network awareness is
still missing.

We will concentrate on the aforementioned aspects of WAN computing. We think
that they are strictly related. For instance, interoperability, dynamic evolution, code
mobility and security are all related and of great relevance for WAN applications. It
suffices to think that dynamic linking of remote library requires run-time verification
of “untrusted” code and it would be meaningless to imagine infrastructures for inter-
operant applications that do not consider the relations among those issues [91, 114].

The list of topics discussed above is not exhaustive, it suffice to think that long
term transactions have a great importance when considered in a WAN scenario and
main research is ongoing on those topics.

1.2 Process Calculi

Process calculi have been considered as a formal framework for specifying concurrent
or distributed systems and their behaviour [98, 129, 130]. In general, they provide
formal operational semantics that give “executable” specifications of various con-
structs related to systems interactions, resource distribution and accesses, mobility
and many other aspects of distributed systems.

As their name suggests, process calculi usually consider systems as obtained by
composing processes in an algebraic fashion. They are equipped with a labelled tran-
sition systems (LTS, for short) that is a set of inference rules which specifies the
operational semantics of the calculus. LTS semantics can be defined exploiting the
syntactic structure of the terms representing processes [152]. For instance, consid-
ering CCS [126], a process may have the form α.p where α is an action. Term α.p
must be intended as a process waiting for a synchronizing action with another pro-
cess offering the complementary action ᾱ. CCS synchronization can take place in a
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system built out of two parallel process, e.g. p | q that can perform complementary
actions. This behaviour is formally expressed in the following inference rule:

p
α
−→ p′ q

ᾱ
−→ q′

p | q
τ
−→ p′ | q′

(1.1)

where τ is the silent label that represents synchronization. Rule (1.1) shows how the
behaviour of the system p | q is determined from the behaviours of its subsystems p
and q.

A different approach to the semantics of process calculi is the definition of a
reduction relation. This approach dates back to early nineties when the use of the
Chemical Abstract Machine (CHAM) was introduced in [16]. This kind of relations
specifies how a term can be rewritten because of an internal reaction. For instance,
a reduction rule that describes an interaction between two CCS processes can be
stated as:

(α.p+ p′) | (ᾱ.q + q′) −→ p | q (1.2)

In some sense, reduction semantics tries to mitigate the rigidity imposed by the
syntax. Even though reduction semantics is a familiar concept coming from term-
rewriting systems, it is not straightforwardly applicable to process calculi. A main
difficulty is that redexes, namely the sub-terms of a term that “react”, can not be in
the form required by rules like (1.2) this imposes to define a structural congruence
relation that accounts for transforming the terms in order to narrow reacting sub-
terms.

Observation 1.2.1 Reduction and labelled transition semantics have complemen-
tary advantages at the cost of a complementary drawbacks. Reduction semantics is
simpler and intuitive than LTS semantics, in general, it is however more difficult
to define labelled transition systems instead of reduction relations. One of the main
advantages of labelled transition systems with respect to reduction semantics is that
behaviours are related to the syntax, therefore the structure of the proofs about be-
haviours follows the term representing the system. Moreover, reduction relation does
not give any account of the behaviour of a system with respect to its environment,
while LTS’s describe observational semantics.

Observational equivalences, disregarding the structure of states in a LTS, relates
systems that offer “the same” behaviour to the surrounding environment. Many
different equivalences have been given, for instance under testing equivalence [60]
two systems are equivalent if they “pass” the same class of tests, where a test is an
“observer”, expressed as a process that executed in parallel with the system can or
not fire a “success” transition represented by a distinguished label.

A finer equivalence is bisimulation that can be defined for process calculi
equipped with interactive semantics. If we think of LTS as an automaton where
the states are the terms of the process calculi and the transitions are the transitions
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Figure 1.1: Bisimulation

that can be derived from the inference rules of the process calculus, then we can lift
bisimulation relation on processes to bisimulation on automata. Process bisimilar-
ity is an important conceptual instrument both for theoretic investigation and for
practical issues.

From a theoretic point of view, it provides a natural behavioural equivalence for
reactive systems. Moreover, in some cases, it is interesting to study under which
conditions concerning to LTS inference rules of a process calculus the resulting
bisimulation is a congruence with respect to the operators of the calculus, in order
to achieve compositionality.

On the practical perspective, if we think of process calculi as specification and
implementation languages, we can use bisimilarity to check whether a system spec-
ification matches its implementation. We can also apply minimization algorithms
that preserves bisimilarity and then use the minimal realization of the automata
for model checking properties of the system. Roughly, two automata are bisimilar if
there is a binary symmetric relation between their states such that their initial states
are in that relation and, whenever two states are related, each transition of one of
the states has a corresponding transition from the other one and the corresponding
target states remain bisimilar. The left part of Figure 1.1 represents two bisimilar
automata, where the related states are connected by dotted lines, while on the right
part two non-bisimilar automata are depicted. Let us observe that the non-bisimilar
automata accept the same traces (i.e. {αβ, αγ}) implying that bisimilarity differs
from the classical equivalence of automata that consider equivalent two automata
if, and only if, they recognize the same language.

1.3 Hypergraphs

Foundational researches on global computing aim at describing, by modeling and
analyzing the complex interactions taking place in inter-network computations en-
compassing several physical networks, multiple administration domains and a variety
of possible users. Several models have been proposed to tackle the new computa-
tional phenomena.

Most of the proposed models for distributed computing mainly focus on the
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spatial structure of systems. To reflect the idea of administration domains, these
models exhibit explicit localities, which help to model distributed computations
and the discovery of network resources and services. As a paradigmatic example
we can cite Klaim [57] or Ambient calculus [39]. These features distinguish the
models of global computing from traditional models (and paradigms) for distributed
programming (e.g. CORBA [140]), the motto being network awareness: localities
are under programmer’s control.

However, network awareness is only one relevant tile of the mosaic of global
computing. Another important aspect concerns the temporal structure of computa-
tions. The run-time environment typically interleaves computational activities with
structuring and managing activities. Temporal structure takes care of describing
how rearrangements and security checks take place along computations. A proper
understanding of both spatial and temporal structures is clearly needed to allow
formal verification.

Graph-based techniques can be usefully adopted for modeling inter-networking
systems. Indeed, hyperedges can be used to represent components and nodes to
model the network environment of components. Edges sharing a node means that
the corresponding components may interact by exploiting network communication
infrastructure. Structured versions of graphs (typed graphs, term graphs, hierarchi-
cal graphs) can precisely model complex inter-network configurations [96, 97] and
access control policies [107, 108, 109].

Graph synchronization adds to network awareness the ability of dealing with the
temporal dimension of computations. Graphs synchronization is purely local and
it is obtained by the combination of graph rewriting with constraint solving. The
intuitive idea is that local rewritings depends on the outcome of a (possibly global)
constraint satisfaction algorithm. Nodes can be exchanged during synchronizations,
hence constraint solving must encompass unification in order to fuse node.

We propose a new edge rewriting mechanism that allows interconnection modi-
fication. The idea is that an edge can be rewritten if the condition it imposes on its
synchronization nodes are matched with all other edges connected to such nodes.
Figure 1.3 aims at giving a graphical intuition of edge replacement. The edge a in
Figure 1.3(a) is replaced by a new graph made of edges c and d connected as shown
in Figure 1.3(b), where the initial situation is represented by the dashed part of
the graph that disappears after the synchronization. Note that the tentacle of the
edge b is attached to a different node because nodes p and q have been fused. This
amounts to mobility of components, that dynamically can change their connections.
Moreover, notice that, after the transition, node r is created, whereas the rest of the
graph is not changed. The edge substitution is triggered by the fact that, all the
constraints imposed by the edge at its interface nodes are matched by all the other
connected components.

One may wonder if this approach is too abstract and general and it does not
capture the intrinsic limitations of inter-networking computations. We feel that on
the one side the generality of the approach can be tamed and adapted to the needs
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Figure 1.2: Hyperedge replacement

of the various layers of applications, more powerful primitives being made available
to upper layers, like business to business (B2B) or computer supported collaborative
work (CSCW). On the other side, some important network technologies actually
require the solution of global constraints, like modifying local router tables according
to the routing update information sent by the adjacent routers.

Graph rewriting based on edge replacement and synchronization was introduced
in [43, 61] and related to distributed constraint satisfaction problems in [136]. The
version with mobility, which employs a notation based on logical sequents and infer-
ence rules, was introduced recently in [96] and extended in [97] to encode π-calculus.
Abstract semantics based on bisimilarity has been discussed in [110].

1.4 Verifying Properties

One of the main advantages of applying formal methods to system design and speci-
fication is the possibility of constructing an abstraction of systems and their compu-
tations that are, at least at a certain extent, amenable of automatic verification of
properties. Many techniques have been studied, implemented and used for verifying
systems. Many of them are based on simulation, testing or deductive reasoning . Re-
cently, one of the most successful formal technique for verification of systems finite
state systems is model checking .

Simulation and testing techniques requires that some experiments are conducted
on a prototypical realization of the system (testing) or an abstract model of it
(simulation). In both cases the idea is to submit the (model of the) system to some
stimuli at its input interface and detect the results at output interface. Even if many
errors can be found using these techniques, however, their main limitation is that
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not all errors can be generally detected because of the number of possible inputs is
infinite, or the number of possible input configurations is very large.

Deductive reasoning is probably the most intriguing method for system verifica-
tion and has significantly influenced software development for instance, the notion
of invariant is a product of this line of research. Probably, the most important theo-
retical base for deductive reasoning can be recognized in type theory [119, 120], and
the Curry-Howard isomorphism [100, 53] which states that propositions can be in-
terpreted as types and proofs as programs. Indeed, by exploiting the Curry-Howard
isomorphism it is possible to state a property φ as a type τφ. If a program which
has type τφ can be built then the program enjoys φ. This idea had been applied
to obtain several tools like “proof assistants” or proof editors. Proof assistant drive
the programmer in writing programs which has the desired type. In fact, in general,
this is not a mechanizable task and requires human intervention [62, 55, 139, 148].
This essentially constitutes the main drawback for deductive methods because many
expertise is required to interact with proof assistants.

Roughly, model checking describe system behaviours as state transitions and
properties that must be checked usually are temporal logic formulae whose models
are state transitions representing behaviour of systems that essentially provide the
Kripke structures of interest. In order to model check a system with respect to a
given formula it is necessary to check whether its state transition is a logical model
of the formula. Model checking has been extensively used for hardware and software
verification and has some advantages over other methods:

• by exploiting very refined data structures (e.g. BDDs), or symbolic techniques,
it is possible to obtain very high efficiency;

• usually, model checkers provide counterexamples when a system does not sat-
isfy some property. This gives to designers and implementors information on
design choices of implementation errors.

• in general model checking is completely automatic, provided that finiteness of
the model is guaranteed.

On the other hand, model checking cannot deal with infinite state systems which is
instead possible with deductive techniques. Perhaps a very useful line of research is
the integration of deductive and model checking techniques for having the benefit
of both the two methods.

1.5 Main Contributions

WAN applications impose new challenges in defining theoretical frameworks, lin-
guistic paradigms and tools for analyzing and verifying distributed systems. Several
techniques and programming paradigms have been proposed (e.g. those cited in
Section 1.1). However, they suffer the lack of formal methods that can uniformly
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be applied to reason on deployed distributed systems. Indeed, in this context a the-
oretical framework that can encompass all (or, at least, many) of the issues raised
from WAN applications’ deployment is still lacking.

This dissertation attempts to formally define declarative approaches for dealing
with various facets of actual WAN programming and verification issues. We try to
contribute to the distributed programming along two principal directions.

The first achievement is related to WAN programming.

1. We propose a declarative approach based on a hypergraphical calculus that
extends the calculus proposed in [97] allowing arbitrary fusions on nodes. This
approach tries to provide a formal framework that allows programmers to
“declare” the components’ behaviours of a distributed system.

2. In Chapter 5 it is shown how the graphical calculus can be exploited for en-
coding the well-known Ambient calculus. Theorems 5.4.1 and 5.4.2 formally
give evidence to the fact that Ambient requires multi-party synchronizations
and arbitrary node fusions for being faithfully represented with hypergraphs.

3. In Chapter 6 the Qlaim calculus is presented. Qlaim has been obtained
as a natural extension of the Klaim dialect proposed in [18]. The key fea-
tures of Qlaim are its mechanisms for specifying, at application level, network
gateways equipped with QoS requirement.

4. We have also proved that Qlaim can be mapped in the hypergraphs calculus.
As a major benefit of the encoding Theorem 6.3.1 and Section 6.4 show that
the graphs obtained by the translation can detect and reserve the optimal
routing path with respect to the QoS constraints imposed by the application.

A second achievement is related to verification of properties of distributed ap-
plications.

1. The decidability result of [48] is exended to the case of asymmetric key cryp-
tography in Section 9.3.

2. We introduce a process calculus and a logic that, starting from the ideas
of [130, 2, 22], specifies a formal framework for declaring security protocols
and properties.

3. Symbolic verification techniques can be exploited for model checking security
properties of cryptographic protocols specified in our framework.

4. A peculiarity of our verification environment with respect to similar proposals,
lies in the declarative flavour of the analysis and the ability of dealing with
multi-session verification automatically.
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Finally, we describe a verification environment based on a semantic minimization
algorithm for π-calculus agents presented in co-algebraic setting. The co-algebraic
presentation of the algorithm has been given in [73].

1. The final part of this dissertation introduces and discusses an ocaml imple-
mentation of the algorithm together with other verification facilities of the
framework.

2. A proofs that shows the correctness of the implementation with respect to the
co-algebraic specification is given. The implementation can be exploited for
checking π-calculus agents bisimilarity.

As a final comment, we would like to suggest a possible interpretation of the
results. All the proposed frameworks are very centered on the concept of naming
that has pervasively been applied to many concurrent and distributed frameworks
for the last decades.

The hypergraphical calculus we propose can be seen as a “declarative” version
of the π-calculus. Indeed, many of the π-calculus features have been inherited by
our calculus. The innovative aspect is the possibility of imposing constraints on the
interfaces of distributed components and to exploit those constraints for expressing
the hyperedge replacement mechanism. This aspects fits well with the mechanisms
that have been defined by other π-like calculi as Ambient or Klaim. Moreover,
it can also suggests new primitive in the style of those calculi as will be clear in
Section 5.5.

Similarly, the proposed calculus and logic for security protocol analysis can be
seen as π-calculus mechanisms variants that adapts to the modeling issues related
to security protocols and properties.

Finally, the implementation of the minimization algorithm has been designed to
be easily extensible to name-passing calculi. Indeed, once the co-algebraic functor
of the name passing calculus has been defined2, by exploiting the polymorphic type
system of ocaml, it is easy to reuse the same algorithm for the new calculus.

1.6 Outline of the Thesis

Chapter 2 collects some notational conventions that we have adopted through the
dissertation and represents a quick reference for notational concerns. (Notations
that are used only in certain point of the thesis are introduced when needed.)

Chapter 3 outlines some technical background that is essential to the under-
standing of the remaining part of the thesis. In particular

- Section 3.1 reports some necessary definitions on π-calculus which is the un-
derlying model of all the proposed frameworks.

2The functor must satisfy some hypothesis that will be given in Section 12.1.
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- Section 3.2 reports syntax and semantics of the Ambient calculus.

- Section 3.3 reports syntax and semantics of the Klaim.

- Section 3.5 informally discusses some issues related to security protocols3.

- Section 3.4 tries to give account of other approaches that, even though not fully
considered in our presentation, must be mentioned in order to relate them to
our approach.

The original contributions of the thesis are organized in three different parts,
while Part IV resumes some concluding remarks and discusses some possible future
directions of our research. Parts I, II and III begin with short abstracts that resume
the results. Despite of some redundancy, we hope that this should help reading.

Part I details the hypergraphical calculus that we propose as formal programming
model of WAN applications together with Qlaim, a calculus propose for specifying
QoS attributes at application level. This part also contains the translations of
Ambient and Klaim into the hypergraphical model. It is divided into four chapters.

• Chapter 4 introduces hypergraphs, their syntax and the semantics based on
hyperedge replacement. The final section of the chapter introduces a hyper-
edge replacement semantics that allows multiple hyperedge replacements to
be contemporary applied.

• Chapter 5 details the translation of Ambient into the hypergraph model. It
is proved that the translation “preserves” the semantics of the calculus. Last
section of the chapter contains the definitions of new Ambient-like primitives
that can easily be defined on the graphs obtained by translating Ambient
processes.

• Chapter 6 gives some motivations for the need of primitives for specifying
QoS requirements at the level of WAN applications. Then a slight variation of
Klaim is introduced in order to obtain Qlaim, a calculus that explicitly allows
programmers to express QoS constraints in their applications. Section 6.3
details how Qlaim nets can be mapped into hypergraphs that respects their
semantics. Moreover, it is shown how such hypergraphs can be exploited for
searching and reserving the optimal routing path, where the optimality criteria
are imposed by the QoS requirement imposed at the application level.

• Chapter 7 presents a methodology exploited to use the model of hypergraphs
as a formalization of UML specifications. The added value of the transla-
tion lies in the possibility of using the obtained hypergraphs as a distributed

3We have preferred to postpone the technicalities of this part to PART II because many
formalizations have been proposed for security protocols and we think that it is better for the
non-expert reader to be first narrowed to the topic by means of an informal discussion.
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architecture even though the initial system had not been specified with any
distribution purpose.

Part II is devoted to the analysis and verification of security protocols. This part
details a process calculus for specifying cryptographic protocols and, on the top of
the calculus, a logic for expressing security properties. This part is constituted by
three chapters.

• Chapter 8 collects some basic notions of cryptography, protocols and secu-
rity properties that allows us also to recap some notations and terminology
normally adopted in security literature.

• Chapter 9 first illustrates the intruder model of Dolev-Yao that is normally
assumed in analysis of cryptographic protocols, then the informal description
of the intruder is formalized and exploited in the definition of the cryptographic
calculus proposed in this dissertation (called cIP). The final section of the
chapter introduces the logic for expressing security protocols and defines its
models in terms of the computation traces of the cIP calculus.

• Chapter 10 defines a symbolic semantics of cIP in order to permit finite model
checking of properties expressed in the proposed logic. We show how the
symbolic semantics can faithfully consider the “concrete” traces of cIP that
lead to attack of the protocol (if any).

Part III describes an implementation of a semantic minimization algorithm for
π-calculus agents. The algorithm exploits HD-automata for representing transition
systems of π-agents. Then HD-automata are minimized by collecting bisimilar states
in a single state and by considering only the names that have meaning. The theo-
retical framework of the algorithm lies on a co-algebraic setting that is reported as
a necessary background of Part III. This part is divided in four chapters.

• Chapter 11 reviews notions of algebras and co-algebras. In particular, it is
recalled how automata can be suitably described as co-algebras of particular
functors.

• Chapter 12 first outlines HD-automata by considering their main advantages
in representing labelled transition systems of π-agents, then the co-algebraic
functor which allows us to define the minimization algorithm as an iterative
procedure that constructs the final element in a suitable co-algebra is de-
scribed.

• Chapter 13 details Mihda, that is the ocaml implementation of a verification
environment based on the minimization algorithm of HD-automata. The main
aspects of the implementation are introduced and discussed and it is also shown
how they are related to the co-algebraic specification of the algorithm.
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• Chapter 14 describes a web interface that has been defined in order to provide
a web-based verification environment obtained by interfacing Mihda and the
pre-existing history dependent automata laboratory (HAL).

1.7 Origins of the Chapters

Some of the results presented in this dissertation have been submitted for publica-
tion, others have been presented in some conferences and some of them have been
already published in preliminary form. However, many changes have been made
with respect to the published material. Even though the formalisms have usually
been refined and the material has been extended in this thesis, the basic ideas be-
hind the results remain the same, hence we give a list of references that point to the
paper that describe the initial versions of the works.

• Hypergraphs with synchronized hyperedge replacement and the mapping of
the Ambient calculus have been introduced in [76].

• The application of hypergraphs to Klaim model of distributed programming
and application level QoS has been detailed in [56];

• Relationships between hypergraphs, hyperedge replacement and software de-
sign has been presented in [77].

• Security issues have been investigated in [27, 28].

• Mihda and the related web verification environment have been described in [75]
and in [72].



Chapter 2

Notations

This chapter resumes the main notational conventions that will be adopted through
this dissertation. We intend to give the reader the possibility of quickly referring
this chapter when doubts on some technicalities may arise. However, we warn that
other notations (adopted only in some parts of the thesis) will be introduced when
needed.

Sets In the next chapters there will be many definitions where operation on sets
involves singletons. In order to avoid clumsy parenthesized expressions we will
abbreviate such set-theoretic operations as follows:

A \ a
Not
= A \ {a}, A ∪ a

Not
= A ∪ {a}, A ∩ a

Not
= A ∩ {a}.

Given a set A, ℘(A) denotes the set of all subsets of A. Since we must frequently
consider finite subset of a given A, we introduce the notation ℘fin(A) for indicating
the set of all finite subset of A.

Functions If we want to explicitly remark that a function f : A −→ B is an
injective or bijective function, we write

f : A
inj
−→ B, f : A

bij
−→ B

respectively.
Through the dissertation, we will often deal with partial functions, namely func-

tions f : A −→ B that can possibly be not defined on some elements of A. In this
case, we write f(a) ↓ (f(a) ↑) to say that f is defined (undefined) on a. Moreover,
we define

dom(f) = {a ∈ A : f(a) ↓} cod(f) = {f(a) ∈ B : a ∈ dom(A)}.

and write f : A ◦−→ B to indicate the fact that f is a partial function from A to B.
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Substitutions Through many parts of the thesis substitutions will be used. It is
worth to fix some syntactical conventions that will permit to have compact repre-
sentations for substitutions.

Substitutions of names, typically are extensively used and necessary for modeling
semantics of name passing calculi. In this case, if N is the (infinite) set of names, a
substitution on N is function σ : N −→ N such that

{n ∈ N : σ(n) 6= n} is finite,

whereas, for infinitely many names σ behaves as the identity. This definition allows
us to represents substitutions with expressions of the form

[n1/m1, ...,
nh /mh

] (2.1)

that represents the substitution that replaces mi with ni for each i = 1, ..., h. We
will sometimes prefer the more compact [n1,...,nh/m1,...,mh

] notation to (2.1).
If t is a term that contains free and bound names, then tσ denotes the term

obtained by replacing free occurrences of names according to σ. In general, appli-
cation of a substitution to a term requires α-conversions of bound names to avoid
name capture phenomena; in those case, we assume that α-conversions are silently
exercised. Finally, as usual, tσσ′ reads as (tσ)σ′.

In Part II we use substitutions that maps variables into terms. We will adopt
the same notations detailed above.
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3.1 The π-calculus

The π-calculus [130] is the best known example of core calculus for mobility. It
is centered around the notion of naming : mobility is achieved via name passing.
Channel names can be created, communicated and are subjected to sophisticated
scoping rules. The capability of exchanging channel names gives π-calculus the
ability of dynamically reconfiguring process acquaintances.

Name passing primitives are simple but expressive; indeed π-calculus can model
objects (in the sense of object oriented programming [172]) and higher order com-
munication [161].

In this section we outline the syntax and the early semantics of the calculus and
refer the reader to [130, 162, 129] for a detailed presentation of the variegated facets
of π-calculus.

3.1.1 Syntax

We assume as given an infinite set of names N and we let a, b, . . . , x, y, . . . to range
over N . Agents of π-calculus are built over terms generated by the following pro-
ductions:

p ::= 0 | α.p | p | q | p + q | (ν y)p | [x = y]p | A(x1, ..., xn)
α ::= τ | x(y) | xy

(3.1)

A process can be the void process, a process prefixed with actions, the parallel
composition of processes, the non-deterministic alternative between two processes,
a process obtained by restricting a name, a process guarded by equality of names or
the recursive invocation of an agent. In (3.1) we let A to range over a set of process
identifiers and, for each A, we assume that

• there is a unique definition A(y1, ..., yn)
4
= q where the yi’s are all distinct and

fn(q) ⊆ {y1, ..., yn};

• whenever A is used, its arity is respected;

• if A(y1, ..., yn)
4
= p is the definition of A, each process identifier in p is in the

scope of a prefix (guarded recursion).

Actions of π-calculus are

• τ , also called silent action, that represent non-observable or internal compu-
tation,

• input action x(y) representing the reception along channel x of a name to be
replaced for y,

• output action xy represents the output of name y along channel x.
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α fn(α) bn(α) n(α)
τ ∅ ∅ ∅

x(y) {x} {y} {x, y}
xy {x, y} ∅ {x, y}

Table 3.1: Free and bound names of π-calculus prefixes

For input and output action we call x the subject and y the object name, respectively.
The input action and the restriction operator x(y). and (ν y) act as binders for

name y with scope the argument process. However, they have different nature: in
the first case, y indicates the placeholders where the received name must be placed;
in the second case, y is a new, private name. Notions of free names of a prefix
action α, fn(α), of bound names of α, bn(α) arise as expected and are reported in
Table 3.1. Given a process p, we can define free names of p, fn(p) and bound names

of α, bn(α) as done in Table 3.2, where A(y1, ..., yn)
4
= q. The set of names of p is

p fn(p) bn(p)
0 ∅ ∅
α.q (fn(α) ∪ fn(q)) \ bn(α) bn(α) ∪ bn(q)
q1 | q2 fn(q1) ∪ fn(q2) bn(q1) ∪ bn(q2)
q1 + q2 fn(q1) ∪ fn(q2) bn(q1) ∪ bn(q2)
(ν y)q fn(q) \ y bn(q) ∪ y
[x = y]q fn(q) ∪ {x, y} bn(q)

A(x1, ..., xn) fn(x1, · · · , xn) ∅

Table 3.2: Free and bound names of π-calculus processes

the set n(p) = fn(p)∪bn(p). We shall write fn(p, q) in place of fn(p)∪fn(q) (similarly
for bn(·) and n(·)).

We adopt the following usual syntactic conventions: α.p | q stands for (α.p) | q,
(ν x)p | q for ((ν x)p) | q and (ν x1 . . . xm)p for (ν x1) . . . (ν xm)p. Moreover, trailing
occurrences of 0 shall usually be omitted.

A structural congruence relation, ≡, is defined on π-calculus agents. It is the least
congruence relation that satisfies the axioms in Table 3.3. The structural congruence
basically provides an equational algebra for manipulating and rearranging processes
without affecting their behaviour and simplifying the rules of operational semantics.
For instance, process a(x).xb | (ν y)ay is structurally equivalent to (ν y)(a(x).xb | ay)
because we can enlarge the scope of the ν operator. Moreover, structural congruence
performs some garbage collection of dead processes.

It is worth to add some comments to the syntax of the calculus in order to give an
intuition of the meaning of its terms before giving their formal semantics. Process
0 stands for a process that has no possibility of interacting with other processes.
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(alpha) processes which differ by α-conversion are equivalent
(par) | is associative and commutative, and 0 is its identity
(sum) + is associative and commutative and 0 is its identity
(scope) p | (ν a) q ≡ (ν a)(p | q) if a 6∈ fn(p)
(res) (ν a) (ν b) p ≡ (ν b) (ν a) p
(nil) (ν a)0 ≡ 0
(match) [a = a]0 ≡ 0

Table 3.3: π-calculus structural congruence

A process prefixed by an action α.q can evolve after the action α has been fired;
if α is the silent action, then the process evolves without synchronizing with other
processes, otherwise another process must offer a complementary action1 for the
synchronization: While such action is not offered, the process cannot evolve. Paral-
lel composition of q1 and q2, q1 | q2, evolves to q′1 | q2 when q1 evolves to q′1 without
interacting with q2 (and similarly for q2), or evolves to q′1 | q

′
2 when q1 and q2 syn-

chronize. Differently, if q1 evolves to q′1 then non-deterministic choice q1 + q2 evolves
to q′1 too disregarding the alternative q2 (and similarly for q2). As stated above,
(ν y)p hides y to the processes outside the scope p; we will see that the scope of the
restriction can dynamically change. Matching-guarded process [x = y]p evolves as p

only if the condition x = y holds, otherwise it is stuck. Finally, if A(y1, ..., yn)
4
= q,

then a recursive invocation A(x1, ..., xn) is the same as q[x1,··· ,xn/y1,··· ,yn
], namely, as

the process obtained by substituting each free occurrence of the formal parameter
yi with the actual parameter xi.

3.1.2 Early semantics of π-calculus

The early semantics of π-calculus was first introduced in [131]. We report here a
slightly simplified variation given in [151]. The labels of the labelled transition sys-
tem for the early semantics of π-calculus are specified by the following productions:

µ ::= τ | xy | xy | x(y)

and are respectively called synchronization, free input , free output and bound output
actions. Table 3.4 reports the definition of free names, bound names and names of a
label µ, respectively written as fn(µ), bn(µ) and n(µ). The labelled transition system
for the early semantics of π-calculus is specified by the rules in Table 3.5. Let us
remark that actions are different from prefixes because the free input and the bound
output actions are not prefixes. Indeed input prefixes have the form x(y) while free
inputs are xy. The notation should be reminiscent of the fact that input prefixes act

1if α is an output on x the complementary actions are input actions on x, or else output actions
on x, if α is an input on x.
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µ fn(µ) bn(µ) n(µ)
xy {x, y} ∅ {x, y}
xy {x, y} ∅ {x, y}
x(y) {x} {y} {x, y}
τ ∅ ∅ ∅

Table 3.4: Free and bound names of π-calculus labels

[tau] τ.p
τ
−→ q [out ] xy.p

xy
−→ p

[in] x(z).p
xy
−→ p[y/z] [sum ]

p
µ
−→ p′

p+ q
µ
−→ p′

[par ]
p

µ
−→ p′

if bn(µ) ∩ fn(q) = ∅
p | q

µ
−→ p′ | q

[comm]
p

xy
−→ p′ q

xy
−→ q′

p | q
τ
−→ p′ | q′

[match]
p

µ
−→ p′

if x 6∈ bn(µ)
[x = x]p

µ
−→ p′

[res]
p

µ
−→ p′

if x 6∈ n(µ)
(ν x)p

µ
−→ (ν x)p′

[open]
p

xy
−→ p′

if x 6= y

(ν y)p
x(y)
−→ p′

[close]
p

xy
−→ p′ q

x(y)
−→ q′

if y 6∈ fn(q)
p | q

τ
−→ (ν y)(p′ | q′)

[rec]
p[x1,··· ,xn/y1,··· ,yn

]
µ
−→ p′

if A(y1, ..., yn)
4
= p

A(x1, ..., xn)
µ
−→ p′

[cong ]
p ≡ p′ p′

µ
−→ q′ q′ ≡ q

p
µ
−→ q

Table 3.5: Early semantics of π-calculus
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as binders for the object variables, instead the objects in free inputs are the effective
received values in input actions. The bound output transitions are the peculiarity of
the π-calculus. A bound output transition represent the communication of a name
that has previously been restricted and, therefore, it corresponds to the generation
of a name new with respect to “the names of the environment”. This mechanism
is called name extrusion and is formalized by the interplay between rule [open] and
rule [close]. Rule [open] reads as: if p can perform a free output transition xy and
continues as p′ then (ν y)p can make a bound output transition x(y) and continues
as p′, provided that x 6= y. Note that after bound output transition y is no longer
restricted. If a synchronization involving a bound output and a free input action
takes place, after the transition we restrict again the “newly generated” name y.
Side conditions of the rules [par ], [open] and [close] are necessary for avoiding name
capture of free names. The remaining rules, are basically the formalization of their
informal description given at the end of Section 3.1.1.

Observation 3.1.1 An important aspect concerning early semantics and verifica-
tion of π-agents must be remarked. The peculiarity of early semantics lies in the
rule [in] that instantiates the object name when the input transition is derived. This
implies that a process x(z).p can trigger an infinite number of transitions (one for
each instantiated name y). If we think of π-agents as nodes in an automaton, this
gives rise to infinite branch on any input node. We will discuss this issues in deeper
detail in Chapter 12.1.

Now we present the definition of early bisimulation for π-calculus.

Definition 3.1.1 (Early bisimulation) A binary relation R over π-agents is an
early bisimulation if, whenever pRq then

for each p
µ
−→ p′ such that bn(µ)∩ fn(p, q) = ∅, there is some q

µ
−→ q′ such

that p′Rq′.

Two π-agents are early bisimilar, written p ∼ q, whether there is a bisimulation R
such that pRq.

Condition bn(µ)∩ fn(p, q) = ∅ in Definition 3.1.1 is necessary to guarantee that the
name chosen to represent the newly created name in a bound output transition is
“fresh” for both agents. The following example should make more clear the need
for name freshness in bound output transitions.

Example 3.1.1 Let us consider the π-agents p ≡ (ν y)xy.0. It is easy to see that
the transition

(ν y)xy.0
x(y)
−→ 0

can be inferred by rules [out ] and [open] in Table 3.5. Intuitively, p should not be
distinguished from

q ≡ (ν y)xy + (ν z)zw
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[in l ] x(y).p
x(y)
−→ p [comm l ]

p
x(y)
−→ p′ q

xz
−→ q′

p | q
µ
−→ p′[z/y] | q

′

[close l ]
p

x(y)
−→ p′ q

x(y)
−→ q′

p | q
τ
−→ (ν y)(p′ | q′)

Table 3.6: Late semantics of π-calculus

Indeed, q
x(y)
−→ 0 is the unique transition that can be inferred for q because, output on

z is prevented by the restriction that violates side conditions of rules [res] and [open]
and therefore, {(p, q), (0, 0)} is a bisimulation relation according to Definition 3.1.1.
However, if we discard condition bn(µ)∩ fn(p, q) = ∅ we could chose w for the newly
generated name of p that does not fit for q because w is not new for it. This would

prevent q to match the transition p
x(w)
−→ 0.

3.1.3 Late semantics

Late π-calculus, is an alternative semantics given in [130]. The main difference
between late and early semantics is “the moment” at which input names are in-
stantiated. Rule [in ] in Table 3.5 states that y is substituted for z when the input
prefix is encountered. On the contrary, the late semantics instantiates it only when
a synchronization effectively takes place.

We outline the late semantics of π-calculus “by difference” with respect to the
early semantics reported in Section 3.1.2. The late actions that an agent can perform
are defined as:

µ ::= τ | x(y) | x̄y | x̄(y).

The only difference with respect to the labels of the early semantics is the bound
input action. The parenthesis should remind that y does not represent a name; it
will be used as a “placeholder” that indicates where the effectively received name
should be substituted in the continuation. Hence, we have that fn(x(y)) = {x} and
bn(x(y)) = {y}.

The transition rules remain the same of the early semantics apart from those
reported in Table 3.6. The reader may notice that rule [in l ] simply declares that
an input action can be performed by a process without instantiating the formal
parameter y to any actual value. When a free output action (rule [comm l ]) will syn-
chronize on name x, the actual name z will be substituted for y in the continuation
of the input process. Rule [close l ] is similar but it does not require any instantiation
because bound input and output transitions can always be renamed such that the
bound names are turned into the same name.
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An interesting exercise is to compare the natural bisimulation relation that arises
from the late semantics.

Definition 3.1.2 (Late bisimulation) A binary relation R over π-agents is a
late bisimulation if, whenever pRq then

• for each p
µ
−→ p′ with µ 6= x(y) and bn(µ) ∩ fn(p, q) = ∅, there is some q

µ
−→ q′

such that p′Rq′;

• for each p
x(y)
−→ p′ with y 6∈ fn(p, q) there is some q

x(y)
−→ q′ such that, for all

z ∈ N , p′[z/y]Rq′[z/y]

Two π-agents are late bisimilar whether there is a late bisimulation R such that
pRq.

The first thing to remark is that for non-input transitions, late and early bisimulation
are defined in the same manner, namely, the first clause of Definition 3.1.2 is the
same of the one in Definition 3.1.1. For input actions definitions differ each other;

indeed, late bisimulation is stronger than early bisimulation because if p
x(y)
−→ p′ the

choice of a transition q
x(y)
−→ q′ must not depend on the received name z. On the

contrary, for the early semantics, we choose a free input transition of q depending
on the received name in the transition of p.

Example 3.1.2 Let us consider the following π-agents:

q = x(y).τ.0 + x(y).0 and p = q + x(y).[y = z]τ.0.

Intuitively, p and q are early bisimilar because p can trivially mimic all transitions
of q and q can mimic input transitions of the further addend of p because when y
is substituted for z, we can choose the transition q

xz
−→ τ.nil, otherwise, we choose

q
xw
−→ 0 for the remaining transitions. In other terms, relation

Re = {(p, q), ([z = z]τ.0, τ.0)} ∪ {([y = z]τ.0, 0) : y 6= z}

is an early bisimulation that relates p and q.

On the other hand, p and q are not late bisimilar because transition p
x(y)
−→ [y =

z]τ.0 cannot be matched by q. Indeed, according to the late semantics, there are

only two possible transitions that we might choose either q
x(y)
−→ 0 or q

x(y)
−→ τ.0. In

the former case, Definition 3.1.2 requires that ([y = z]τ.0)[w/y] and 0[w/y] must be
bisimilar for any w, which is not the case when w is z; whereas, in the latter case
([y = z]τ.0)[w/y] is bisimilar to τ.nil[w/y] only when w = z.
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3.1.4 Variants of π-calculus

Several variants of the π-calculus have been proposed to study many aspects of con-
current and distributed systems. Since π-calculus has been widely used for modeling
many facets of concurrent and distributed computation, pretending to give a com-
plete list of citations would be too much ambitious. We focus here on some variants
of π-calculus that are more closely related to our dissertation.

Some presentations of the calculus adopt replication [128], usually written as !p,
in place of recursion. Process !p can be intuitively explained as infinite copies of p
in parallel. As far as expressiveness is concerned, the two methods for expressing
infinite behaviours are equivalent (at the cost of additional silent actions). However,
replication complicates the identification of a syntactic class of finitary agents. An
agent is finitary if the number of parallel components of all its derivatives is bound.
It is not decidable whether an agent is finitary or not, but it is possible to find
syntactic conditions that ensures it. In the case of π-calculus with recursion, agents
that do not have parallel composition in recursive definitions are finitary. Those
agents are called finite control agents [54].

The asynchronous π-calculus [99, 24, 7] is a simple variant of the π-calculus
where asynchrony is achieved by imposing the void continuation to the output ac-
tions. In other words, the (synchronous) π-calculus uses both input and output
actions as prefixes while its asynchronous counterpart does not allow output pre-
fixes: Outputs are processes of the form xy.0. Although from a theoretical point of
view asynchronous π-calculus is less expressive than its synchronous version [144],
it is still enough expressive in practice [99], and, in many respects, more adequate
for modeling distributed computing.

The join-calculus [81] is an “extended subset” of asynchronous π-calculus
which combines the three operators for input, restriction and replication into a single
operator, called definition, that has the additional capability of describing atomic
joint reception of values from different communication channels. The Distributed
join-calculus [82] adds abstractions to express process distribution and process
mobility.

Another linguistic extension is the introduction of polyadicity introduced in [128].
The polyadic version of the allows one to send and receive tuples of names instead
of one single name along channels.

A significant variation of polyadic π-calculus is constituted by the Fusion Cal-
culus introduced in [146]. The interesting aspect of Fusion Calculus is the complete
symmetry between input and output actions. Indeed, input prefixes do not bind
their object names. The effect of the synchronization of complementary actions
is that object names are (globally) identified as shown in the communication rule
below

p
xỹ
−→ p′ q

xz̃
−→ q′

p | q
[ỹ=z̃]
−−→ p′ | q′
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where [ỹ = z̃] stands for [y1 = z1, ..., yn = zn].
Another extension of the polyadic calculus is Distributed π-calculus [94, 154].

This extension defines an explicit notion of locality that also affects channels that
are allocated . Distributed π-calculus models distributed computations and access
control policies. Locations reflect the idea of having administrative domains and
located channels can be thought of as channels under the control of certain author-
ities. Moreover, distributed π-calculus provides a form of process mobility because
processes can move from through localities.

3.2 Ambient Calculus

The syntax and the reduction semantics of Ambient calculus [39] is given below.
The calculus relies on the notion of ambient that can be thought of as a bounded
environment where processes interact. An ambient has a name, a collection of local
agents and a collection of subambients. Ambients can be moved as a whole under
the control of agents which are confined to ambients. Processes use capabilities for
controlling interaction.

We do not consider synchronization and restriction, and replication is replaced
by (guarded) recursion.

3.2.1 Syntax of Ambient

Ambient calculus proposes a different approach for modeling localities and migra-
tion of processes. An ambient system can be thought of as a number of localities,
called ambients , that contain running processes or inner ambients, so realizing a
hierarchical structure. By exercising movement capabilities, a process can pilot its
surrounding ambient through the structure of the hierarchy. The syntax of Ambient
is

Definition 3.2.1 (Ambient Syntax) Let N be an infinite set of names ranged
over by a, b, c, ..., n,m, p, r...; let X, Y, Z, ... be process variables.

M ::= in n | out n | open n
P,Q ::= 0 | n[P ] | M.P | P |Q | recX.P | X

We assume that X is guarded by M in recX.P .
We denote with Proc the set of the Ambient calculus processes.

We consider a fragment of Ambient without communication and restriction. Am-
bient processes use capabilities for controlling interaction. Indeed, by using capa-
bilities, an ambient can allow other ambients to perform certain operations over it
without having to reveal its actual name (which would give a lot of control over it).
A name n is a capability to enter, exit or create a new copy of an ambient named
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n. Capability in n serves for entering into ambient n, out n for exiting out of n and
open n for opening up n.

A process is the void process 0, a process n[P ] obtained by wrapping P in an
ambient n, a sequential process M.P , the parallel composition of two processes P |Q,
the recursive process recX.P or a process variable X. Process n[P ] is an ambient
with name n and process P running inside. Nothing prevents the existence of two or
more ambients with the same name. Process M.P executes the action corresponding
to capability M and then behaves like P .

Also for Ambient calculus we can define a structural equivalence that disregard
some syntactical aspects of terms.

Definition 3.2.2 (Ambient Structural equivalence) The semantics of the
Ambient calculus relies on the structural equivalence defined by the following rules:

1. The parallel operator | is associative, commutative and 0 is its identity;

2.
P ≡ Q

M.P ≡M.Q

P ≡ Q

n[P ] ≡ n[Q]
;

3. recX.P ≡ rec Y. P [Y /X ], if Y 6∈ fv(P );

4. recX.P ≡ P [rec X. P/X ].

The usual algebraic properties of the parallel composition and the 0 process are
assumed (rule 1); structural equivalence is preserved by prefixing and ambient wrap-
ping (rule 2); process variable X is bound in recX.P and may be renamed (rule 3);
finally, recursive terms can be arbitrarily unfolded (rule 4).

3.2.2 Ambient semantics

The semantics of Ambient calculus is given by the reduction relation detailed in the
following definition:

Definition 3.2.3 (Ambient Semantics) The reduction relation→ ⊆ Proc×Proc
is the relation inductively generated by the axioms and rules in table 3.7 and closed
under the structural equivalence given in Definition 3.2.2.

Even if simple, it suffers of the problems of reduction semantics discussed in Sec-
tion 1.2 (see Observation 1.2.1) The first two axioms in Table 3.7 state that an
ambient n can be driven by a sequential process inside it to exit the wrapping ambi-
ent (out m.P ) or to enter a parallel ambient m (in m.P ). The third axiom is relative
to the open n capability: an ambient may be dissolved by an external process. Note
that all the capabilities are “asynchronous”, in the sense that the only condition
under which they can be fired is the presence of a particular ambient.

We give an example of Ambient terms a relative reduction.
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m[n[out m.P | Q] | R]→ n[P | Q] | m[R]

n[in m.P | Q] | m[R]→ m[n[P | Q] | R]

open n.P | n[Q]→ P | Q

P → Q

P | R→ Q | R

P → Q

n[P ]→ n[Q]

Table 3.7: Ambient calculus reduction relation

Example 3.2.1 Let consider the Ambient process together with an intuitive graph-
ical representation given below:

a[in c.P | b[Q]] | c[R]

a

Q R

c

b
in c.P

Then the in-capability can be fired so that a is driven inside c in accordance with the
following reduction

a[in c.P | b[Q]] | c[R]→ c[R | a[P | b[Q]]]

c

R
    P

a

Q

b

3.3 Klaim

Klaim [57] is an asynchronous higher–order process calculus which extends the
Linda [86, 40] coordination paradigm (processes communicate via a shared multiset
of tuples) to distributed and mobile processes. Klaim can also be seen an exper-
imental kernel programming language specifically designed to model and program
distributed concurrent applications with code mobility. Klaim naturally supports
a peer-to-peer programming model where interacting peers (sites, in Klaim termi-
nology) cooperates to provide common sets of services.

Klaim extends the basic Linda model by handling multiple distributed tuple
spaces. Tuple spaces are placed on sites that are part of a net. Each site con-
tains a single tuple space and processes in execution, and can be accessed through
name which uniquely identifies it within the net. Hence, expression ‘site’ may be
consistently used in place of ’site name’, without generating misunderstandings.

Here we consider a version of Klaim that differs from [57, 58, 59] and we will
discuss the main differences between our Klaim dialect and the earlier proposals in
Section 3.4.
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Fields and Tuples f ::= v | s
t ::= f | f, t

Template Fields and Templates F ::= f | !x | !u
T ::= F | F, T

Table 3.8: Tuple syntax

3.3.1 Klaim syntax

Basically, Klaim is a variant of the asynchronous π-calculus whose actions are the
Linda primitives enriched with information about the addresses of the sites where
processes and tuples are allocated. There are three types of values: basic values,
sites (i.e. net addresses) and processes. Basic values are simply integers or strings
or other elements of the elementary types that we do not specify. We shall use v,
v1, v2 . . . as generic basic values and x, y, z . . . as generic variables for basic values.
We let S be a set of sites and let U be a set of site variables ranged over by s and
u, respectively; we use ` to denote a site or a site variable.

Observation 3.3.1 We are not interested at formally specifying syntax for basic
values. It may suffice to say that we can assume usual expression grammars normally
defined for languages, the only constraint being that we assume variables to be basic
values, namely element in U ∪ S are basic values.

Table 3.8 reports the grammar for tuple constituting tuple spaces. A tuple space is
a multiset of tuples ; these are sequences of information items called actual fields (i.e.
expressions or localities). Tuples are anonymous and content-addressable. Pattern-
matching is used to select tuples in a tuple space by means of templates ; these
are containers of actual fields and formal fields (i.e. variables). Syntactically, a
formal field is denoted with !ide, where ide is an identifier. The matching predicate,
match(T, t), is defined by the rules in Table 3.9. A template and a tuple match if

match(v, v) match(s, s)

match(! x, v) match(! u, s)
match(F, f) match(T, t)

match((F, T ), (f, t))

Table 3.9: Matching rules

they have the same number of fields and corresponding fields match: a formal field
matches any value of the same type, and two actual fields match only if they are
identical. For instance, the template (“foo”, !x) matches with the tuple (“foo”, 1+2).
After matching, the variable of a formal field gets the value of the matched field: in
the previous example, x will contain the value 3.
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Nets N ::= 0 Empty net

| s :: P Single site

| N1 ‖ N2 Net composition

Actions γ ::= in(T )@` Input

| read(T )@` Read

| eval(P )@` Process creation

| new(u) Site creation

Processes P ::= 0 Null process

| out(t) Output

| γ.P Action prefixing

| P1 | P2 Process composition

| A〈˜̀, ṽ〉 Process invocation

Table 3.10: Klaim syntax

Observation 3.3.2 For simplicity, we assume that templates are linear which
means that different formal fields of T use different variables and if !x (!u) is a
formal field of a template T then the only occurrence of x (of u) in T is the occur-
rence of the formal field . For instance, if we consider

!x, x+ 1 !x, !x

are not linear templates, whereas y, !x, 1 is a linear template.

The syntax of the calculus is reported in Table 3.10. A net can be an empty
net 0, a single site or the parallel composition of two nets N1 and N2 with disjoint
sets of sites. A site s :: P , will be identified by its name s, where P is the processes
running at s. It is of course possible that P , the process running at s, is the parallel
composition of many other processes. The tuple space of s is modeled as a bunch
of processes out(t) allocated at s.

Processes can perform four basic, possibly remote, operations over sites. in(T )@`
looks in the tuple space located at ` for a tuple that matches T . Whenever the
matching tuple t is found, it is removed from the tuple space. The values of the
fields of t are assigned to the corresponding formal fields of T and the operation
terminates. If no matching tuple is found, the operation is suspended until one is
available. read(T )@` differs from in(T )@` only because the matching tuple is not
removed from the tuple space located at `.
eval(P )@` spawns process P for execution at site `.
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New sites can be created through the operation new(u) and then accessed via the
site variables u. This operation is not indexed with a site identifier because it is
always executed at the current execution site.

Processes are built from the basic operations by using standard operators bor-
rowed from process calculi: null process, action prefixing, parallel composition and
process invocation. Processes can be defined parametrically by equations of the form

A(ũ, x̃)
def
= P , where A is a process identifier and P is a process which may contain

recursive calls (with the obvious parameter passing substitution). For each process
identifier A there exists a single defining equation.

Variables occurring in process terms can be bound by action prefixes and pro-
cess equations. More precisely, prefixes in(T )@`. , read(T )@`. and new(u) act as
binders for variables in the formal fields of t and for u, respectively. Process identi-

fier definition A(ũ, x̃)
def
= P is considered as a binder for variables {ũ, x̃}. Albeit in

Klaim variables and names (values or sites) are distinguished, we continue to use
fn( ), bn( ) and n( ) for free, bound and variables of action, processes or nets.

Two processes that differ for α-renaming will be considered structurally equiva-
lent. Moreover, we assume the usual monoidal laws for | and ‖ (the neutral elements
being 0 and 0, respectively). We write P ≡ Q to denote that P is structural equiv-
alent to Q and, similarly, N ≡ N ′ denotes the structural equivalence between nets
N and N ′.

3.3.2 Klaim semantics

The operational semantics of the language is defined by the labelled transition sys-
tem in Tables 3.11, 3.12 and 3.13. The semantics is given in terms of a transition
relation, �−→, that describes possible net evolutions (see Table 3.13). Relation �−→
relies on:

• a labelled transition
a
−−→>, that describes process intentions to perform specific

operations (see Table 3.11). Labels have the form a( ) where a is an element
of the set {n, r, o, i, e} (reminiscent of the Klaim actions) and its argument
depends on the action;

• a labelled relation
a
−−→>, that accounts for the intention of allocated processes,

i.e. processes running on specific sites. In particular this relation considers the
availability of resources (i.e. tuples and sites) in nets (see Table 3.12). Labels
in Tables 3.12 (and 3.13) can be “allocated”, namely they can be decorated
with a site name or they can be of the form s :: P which states that site s :: P
is available in the net.

We briefly comment on the rules in Tables 3.11. Rule (tuple) corresponds to
signal the presence of a tuple. Prefixes (in) and (read) give account of the intention
of a process that wants to access the tuple space located at s. (eval) is the rule for
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out(t)
o(t)
−−−−→> 0 (Tuple)

in(T )@s.P
i(T, s)
−−−−−→> P (In)

read(T )@s.P
r(T, s)
−−−−−−→> P (Read)

eval(P )@s.Q
e(P, s)
−−−−−−→> Q (Eval)

s 6∈ n(P )

new(u).P
n(s)
−−−−→> P [s/u]

(Newloc)

P [
˜̀,ṽ/ũ,x̃]

a
−−→> Q

A(ũ, x̃)
def
= P

A〈˜̀, ṽ〉 a
−−→> Q

(PrDef)

P1
a
−−→> P ′

1
bn(a) ∩ fn(P2) = ∅

P1|P2
a
−−→> P ′

1|P2

(PrComp)

Table 3.11: Process Semantics

spawning a process on a remote site s′. Rule (Newloc) generates a new site; note
that the new created site is substituted for u in the continuation process. Finally,
the last two rules are standard and similar to the corresponding π-calculus rules.

Table 3.12 details the behaviour of processes are running in a net and considers
the resource availability. In particular, rule (Site) signals the presence of site s :: P
in the net, as well as (NetOut) signals the availability of a given tuple at site s.
Continuation of rule (Site) is the empty net; at a first look, it can seem strange that
s “disappear”. However, rule (Site) is used only for determining the transition of
rule (NEv) in Table 3.13 where the net semantics of eval prefix is given and the site
“reappear” in the net. (NetComp), (comp) and (CompNew) lift the intention of
processes at the net level. Note that last condition on the rule ensures that name
captures are avoided by means of α-renaming.

Table 3.13 lists the rules for the net reduction semantics. (NEv) is the rule for
executing an eval prefix. When a process wants to spawn P ′ on s, it is checked if site
s is present or not. In the first case, P ′ is put in parallel with the processes already
allocated at s, otherwise the eval prefix is blocked. Rule (NIn) synchronizes in and
out actions provided that the respective template and tuple match. In this case,
the formal variable are substituted in the continuation with the respective values in
the tuple. Rule (NRead) is similar, however, in this case, it is necessary further
machinery in order to avoid remotion of output tuple. Finally, (NNew) creates a
new site that initially has no allocate process.
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s :: P
s :: P
−−−−→> 0 (Site)

P
o(t)
−−−−→> Q

s :: P
o(t)@s
−−−−−−→> s :: Q

(NetOut)

P
a
−−→> Q a 6= o(t)

bn(a) ∩ fn(N2) = ∅
s :: P

a
−−→> s :: P ′

(NetComp)

N1
a
−−→> N ′

1 a 6= n(s)

N1 ‖ N2
a
−−→> N ′

1 ‖ N2

(Comp)

N1

n(s)
−−−−−→> N ′

1
s 6∈ n(N1 ‖ N2)

N1 ‖ N2

n(s)
−−−−−→> N ′

1 ‖ N2

(CompNew)

Table 3.12: Located Processes Semantics

3.4 Related Works

This section tries to comments variants or other proposals of the presented process
calculi. Since, works related to the π-calculus have been already discussed in Sec-
tion 3.1.4, we limit ourselves in considering those proposal that can most closely be
ascribed to families of calculi related to Ambient or Klaim.

Ambient Remarks Many aspects related to distributed programming and Am-
bient have been investigated by several researchers.

A first challenging problem is the definition of a label transition system that
faithful represents the reduction semantics of the calculus. Some basic researches
have tried to equip an interactive semantics for the Ambient calculus. A LTS op-
erational semantics for ambients has been defined by Gordon and Cardelli in an
unpublished note [38]. It requires the introduction in the calculus of co-actions, ab-
stractions, concretions and outcomes. As far as we know, the bisimilarity abstract
semantics based on this operational semantics has not been compared with the re-
duction semantics. A modal logic for reasoning about spatial and temporal aspects
of ambients has be developed in [32, 33, 34], which is equipped with specialized
modalities to deal with the spatial and the temporal dimensions of global comput-
ing. Sewell [165] introduces a technique to develop an LTS-based semantics from
a reduction semantics; however the resulting transition semantics exploits arbitrary
contexts and, moreover, it is not inductive on process operators. Recently, an LTS
semantics for Ambient calculus has been devised in [13]. The proposed methodol-
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N1

e(P ′, s)
−−−−−−→> N ′

1 N ′
1

s :: P
−−−−→> N2

N1 �−→ N2 ‖ s :: P |P ′
(NEv)

N1

o(t)@s
−−−−−→> N ′

1 N ′
1

i(T, s)
−−−−−→> N2 match(T, t)

N1 �−→ N2[
t′/t]

(NIn)

N1
s :: P
−−−−→> N ′

1 P
o(t)
−−−−→> Q N ′

1

r(T, s)
−−−−−−→> N2 match(T, t)

N1 �−→ N2[
t′/t] ‖ s :: Q | out(t)

(NRead)

N1

n(s2)
−−−−−→> N2

N1 �−→ N2 ‖ s2 :: 0
(NNew)

Table 3.13: Net Semantics

ogy is a general framework for the analysis of open systems and can be exploited
for reasoning on spatial and temporal properties of Ambient processes.

Graph-based semantics of Ambient have been proposed in [85]. In [85] a transla-
tion of Ambient into particular hypergraphs is given. Dynamic behaviour of Ambient
processes is obtained using the Double Pushout approach [50].

Recently, to cope with the interferences that arise when implementing interaction
protocols, a variant of the Ambient calculus have been proposed [113] that makes
use of co-actions. In such a variant, each Ambient action has a complementary
action and a reduction can occur only whenever two complementary actions do
synchronize. A type system guarantees that well-typed terms will never generate
undesired interferences at execution time.

In [37, 36] Ambient has been proposed as a foundational model for semi-
structured data. In particular, a query language for semi-structured has been
defined; the language is based on the Ambient logic and can “manipulate” semi-
structured data modeled as Ambient processes.

Ambient calculus has also been extended for expressing issues related to resource
control in reconfigurable parallel systems [168]. This Ambient extension is equipped
with a type system that makes possible to control resource accesses.

An experimental implementation of the Ambient calculus, called Ambit, can be
found at http://www.luca.demon.co.uk/Ambit/Ambit.html and consists of just
a Java applet. A distributed implementation of the calculus is presented in [83].
The implementation relies on a formal translation of Ambient in Distributed Join
Calculus and uses JoCaml as implementation language.



3.4. RELATED WORKS 57

Klaim remarks Originally, Klaim distinguished between logical and physical
localities [57, 58, 59]. This distinction is a peculiarity of Klaim and allows to
separate two concerns, namely programming the web and allocate an application on
the physical sites. A programmer can think of a link as a symbolic link disregarding
of the real allocation of resources. Klaim processes are executed afterward an
allocation phase that maps them onto the sites of a net has take place. Once the
application is allocated, an allocation environment is associated to any physical site.
This is an interesting mechanism if related to code mobility provided by Klaim

because permits to use dynamic scoping and, therefore, computations depend and
their execution sites.

We avoid such distinction essentially for presentation purposes. The fragment
detailed in 3.3 does not consider allocation environment because we want to focus
on an extension with constructs that explicitly build connections between sites that
must be accessed in order to make different sites to cooperate. We will provide a
translation of this Klaim variant in the graph model presented in 4.2. We remark
that allocation environments and dynamic scoping can be easily added to the cal-
culus and the mapping to hypergraphs at the cost of complicating productions that
would obscure the main advantages of our translation.

A minor consequent difference is also the fact that mobility is obtained in our
variant only by means of the eval construct, while, in the original calculus, pro-
cesses can also be exchanged in tuples. The reason is that in the original calculus
processes exchanged in tuples offer the opportunity of having also static scoping.
Indeed processes in tuples are closures, i.e. a process equipped with an allocation
environment that is used for resolving the symbolic links referred in the process.
This allows one to move processes together the original environment that is used
for resolving the symbolic link at execution time. Since we do not have allocation
environment, this would not be very useful in our calculus.

Many aspects of WAN programming have been considered in various Klaim di-
alect; in [59] Klaim has been equipped with a type system for controlling accesses
to resources; the type system ensures that well-typed nets never give rise to unau-
thorized accesses. Hierarchical networks have been considered in [18], whereas [19]
equips Klaim with primitives for programming dynamic changes of network connec-
tivity. An experimental implementation of Klaim, called X-Klaim, can be down-
loaded at http://rap.dsi.unifi.it/klaim.html. The implementation consists
of two layers: the X-Klaim compiler and the intermediate language Klava that is
obtained by extending the Java language [9] with a new package, called Klava. The
Klava package [17] contains all the classes which implement the X-Klaim runtime
system and operations.
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3.5 Security Issues

Computations of WAN applications consist of communications in an environment
where communication links are not under the control of a central (trusted) author-
ity, namely network links are “public”. Hence, it is possible for an intruder to
“compromise” the intended interactions by accessing to the public communication
structure. An intruder can “read” all the information exchanged by components
of WAN applications, steal messages directed to other receivers or substitute them
with fake messages.

Cryptography and security protocols have been introduced to enhance, as far as
possible, robustness of WAN systems and applications with respect to malicious in-
truders. Cryptography is used to provide authentication, to distribute cryptographic
keys for new conversations or, more generally, to communicate secrets through non-
trusted media.

Protocol design is guided by the security properties that the protocol aims at
guaranteeing. Indeed, usually a protocol guarantees some properties but it cannot
ensure any property. However, a good protocol design must take into account many
aspects; for instance, the overall hypothesis is that principals2, operate in an open
hostile environment and some of the participants may be untrusted; even if the
protocol guarantees that some secret information, as encryption keys, cannot be
leaked, an attacker might obtain those informations in other ways and, therefore, a
good protocol should minimize the effects of such events.

Even when security protocols have been carefully developed by experts and re-
viewed carefully by other experts, they might be later found to have flaws that
make them “attackable”. A well known example is the Needham-Schroeder public
key protocol [138] found to be flawed by Lowe [115] after being supposed correct for
many years.

For such reasons, methods to formally reason about and analyze protocols are
required. Analyzing security protocols consists mainly in two complementary activ-
ities. The first is to find flaws in those protocols that are not correct. The second
is to establish convincingly the correctness of those that are. These activities are
interrelated, because the discovery of a flaw may suggest an altered protocol that
we may wish to prove correct, and because a failure to prove the correctness of a
protocol may suggest a particular flaw [69].

In Chapter 8.1 we will consider topics related to security.

2A principal is a “regular” participant in protocol sessions.
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A Model for Declarative WAN
Programming





Abstract

This part of the thesis proposes a declarative approach to WAN programming. The
approach is based on a graphical calculus that allows one to specify components and
their synchronization requirements as hyperedges and constraints on their interface,
respectively. Computations are modeled by means of a rewriting mechanism that
allows hyperedge replacement. A hyperedge is replaced when constraints on its
synchronization interface are satisfied by the other connected hyperedges. This
amounts to mobility of components, that dynamically can change their connections.

We feel that on the one side the generality of the approach can be tamed and
adapted to the needs of the various layers of applications, more powerful primi-
tives being made available to upper layers. In particular, we exploits the graphical
calculus as an intermediate language for representing Ambient and show how the
mechanisms of the calculus suggests new Ambient-like primitives. On the other
side, some important network technologies actually require the solution of global
constraints, like modifying local router tables according to the routing update infor-
mation sent by the adjacent routers. With respect to this issue, we propose a variant
of Klaim that permits to express attribute on connections between sites of the net
and show how its translation into our graphical calculus accounts for managing
network connections and modeling application declared routing requirements.

Finally, a methodology where the graphical calculus is used for specifying and
refining systems is pointed out.
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Chapter 4

Hypergraphs

Abstract

Graph-based techniques can be usefully adopted for modeling inter-
networking systems. Indeed, hyperedges can be used to represent components
and nodes to model the network environment of components. Edges sharing
a node means that the corresponding components may interact by exploiting
network communication infrastructure.

Graph synchronization adds to network awareness the ability of dealing
with the temporal dimension of computations. Graphs synchronization is
purely local and it is obtained by the combination of graph rewriting with
constraint solving. Nodes can be exchanged during synchronizations, hence
constraint solving must encompass unification in order to fuse node. We
propose a new edge rewriting mechanism that allows interconnection modifi-
cation.

This chapter extends the notion of hypergraph as presented in [97]. First
hypergraph definition is given, then hypergraph rewriting systems are intro-
duced; finally, hypergraphs operational semantics is defined.
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4.1 Graph Grammars

Graph grammars [158] have been proposed as an extension of grammars of strings.
Grammars of strings specify how strings can be rewritten according to a set of
productions, which are rules of the form α −→ β, where α and β are strings over
a fixed alphabet (containing terminal and non-terminal symbols). Depending of
the form α and β different classes of grammars can be defined. For instance, the
well-known contex-free grammars are defined as the grammars having productions
α −→ β where α is a string made of a single non-terminal symbol.

Many similitudes can be traced between grammars of strings and graph gram-
mars. Productions of a graph grammar specify how graphs can be rewritten ac-
cording to some productions; they can be more complex than productions of string
grammars. For the sake of simplicity, let us assume that productions of graph gram-
mars have the form L −→ R where L and R are graphs. The concept of “context-
freeness” can be also found in graph grammars: More precisely, productions with a
left-hand side which is either a node or an edge confer a “context-free” flavour to
graph grammars. Indeed, such productions do not consider the “surroundings” of
their left-hand sides.

Other approaches to graph rewriting have be proposed, as well. In particular,
we mention the algebraic approaches: The Double Push Out (DPO) and the Sin-
gle Push Out (SPO). Since DPO and SPO replace sub-graphs instead of nodes or
edges, the analogy with string grammars is that they are not contex-free grammars,
indeed, they generalize the type-0 Chomsky string grammars. We will not discuss
in detail all those approach (the interested reader is referred to [158] for complete
presentation).

4.1.1 Hyperedge replacement: An informal introduction

All the approaches described in Section 4.1 can be extended to hypergraphs that will
formally be defined in Section 4.2. For the moment it suffices to say that hyper-
graphs are graphs made of nodes and a particular type of edges called hyperedges.
Essentially, a hyperedge may be thought of as being an edge connecting more than
two nodes. Figure 4.1(a) depicts an hyperedge L relating five nodes.

In [43, 61] edge replacement and synchronization has been proposed as a mecha-
nism for rewriting graphs. In [136] synchronized edge replacement has been related
to distributed constraint satisfaction problems. In this dissertation we will intro-
duce a new rewriting mechanism which extends the synchronized edge replacement
proposed in [97].

As will be formally stated in the sequel, synchronizations are used to coordinate
adjacent edges in a hypergraph. Indeed, synchronized hyperedge replacement will
be exploited to constraining graph rewriting.

Figure 4.1 aims at giving an intuition of hyperedge replacement. The hyperedge
L in Figure 4.1(a) is connected to G1 and G2 through its external nodes (or at-
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(a) An hyperedge L
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(b) Replacement of L with G

Figure 4.1: Hyperedge replacement

tachment points) 1, . . . , 5: Nodes 1 and 2 are attachment points of both L and G1,
while nodes 3, 4 and 5 are attachment points of both L and G2.

Figure 4.1(b) represents the hypergraph obtained by replacing L with hypergraph
G. The dashed gray part of the Figure 4.1(b) represents the initial situation and is
the part that disappears after the replacement of L has taken place.

The main things to remark are that

i. parts of the graph may not be involved in the rewriting, e.g. G1 is not modified
after the transition;

ii. after the rewriting new nodes can appear; indeed, all nodes in G different from
1 and 2 are new nodes generated by the transition;

iii. some nodes can be “fused” after the transition; in Figure 4.1(b) node 4 is
fused with 5. As will be shown later, this amounts to mobility of compo-
nents, that dynamically can change their connections. In fact, notice that, in
Figure 4.1(b), the part of G2 that was connected to node 4 corresponds, in
Figure 4.1(c), to the part of G2′ connected to node 5.

The replacement is triggered by the fact that, all the conditions imposed by L
at its attachment nodes are matched by all the other connected components.

We want to point out the motivations for using edge replacement instead of
DPO or SPO approaches. The main reason is that the contex-free flavour of edge
replacement allows us to exploit graph rewriting for defining a declarative approach
to WAN programming. Intuitively, a component of a distributed system is repre-
sented by a edge connected to (several) nodes. Edge that share nodes can interact
and coordinate their activities. Hence, nodes can be thought of as synchronization
ports where communications take place.

This approach is “declarative” because the behaviour of each component is spec-
ified by declaring some condition on their synchronization ports indipendently from
the other components. Once the system is built (by opportunely connecting its
components) it will evolve according to the possible synchronizations of the edges.
It should be clear that the same features are difficult to be achieved using DPO or
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SPO. Indeed, productions involves complex sub-graphs and not single components.
Therefore, it is difficult to specify the behaviour of a part of a system independently
from other parts.

4.1.2 Hyperedge replacement: An informal example

A production rewrites a single edge into an arbitrary graph. Before giving the formal
definition of edge replacement we give an intuitive description of our synchronized
hyperedge replacement mechanisms.

Productions p1 : L1 → R1,..., ph : Lh → Rh can be applied to a graph G yielding
H if, for any i = 1, ..., h there exists an occurrence of an edge labelled by Li in G
such that, for any external node of the edge that is subject to a condition in pi, all
the adjacent edges in G

• either have labels different from all Lj ,

• or they are labelled by Lj (for some j 6= i) and the corresponding condition in
pj is in accordance with the synchronization algebra adopted.

In the former case the adjacent edge does not take part in the synchronization; while
in the latter case they must agree according to the adopted synchronization policy.
If the previous conditions hold, H is obtained from G by

1. removing the occurrence of L1,...,Lh

2. embedding a fresh copy of Ri (for any i = 1, ..., h) in G and

3. coalescing external vertices of all Ri’s with the corresponding attachment ver-
tices of the occurrence of edge Li.

This description can be naively regarded as a procedural way of obtaining hy-
pergraph rewritings.

In order to give an intuition of synchronized hyperedge replacement with fusions,
we give an informal account of how the open primitive of the Ambient calculus (see
Section 3.2, page 48) can be simply modeled with a graph grammar. A detailed
definition of productions for the Ambient calculus will be introduced in Chapter 5.
For the moment we do not consider exchanging of nodes in the productions because
we want to focus the attention of the reader on node fusions determined by the
productions.

An ambient process a[ ] and a capability open a can be represented by edges

•
x

a // •
y
, Lopen a

// •
z

where x is the attachment node for processes inside a, while y and z respectively
are the attachment nodes of a and Lopen a to their surrounding environment.
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Observation 4.1.1 In the Ambient calculus, ambients (e.g. a[ ]) are used to model
“localities”, but are here represented by hyperedges connecting two nodes. In general,
nothing prevents to represent localities with nodes instead of hyperedges. However,
localities in calculi like Ambient (and Klaim) act as coordinators, hence it is better
to represent them as hyperedge and model their coordination activities with suitable
productions.

Let us consider the following production for a:

•
x

a // •
y

open a

[y/x] +3 •
y = x

(4.1)

the left-hand side of production (4.1) represents edge a and the synchronization
constraint on its external nodes; the substitution on the arrow maps nodes on the
left-hand side into themselves and gives the fusions that must take place once the
production is applied; the right-hand side is the graph that replaces edge on the
left-hand side. Production (4.1) can be read as:

An edge a connecting nodes x and y and representing an ambient process
cancels itself and fuses x (the attachment node of its inner processes) on
y (the attachment point toward the surrounding environment) provided
that the environment satisfies the synchronization constraint open a.

The production for Lopen a follows:

Lopen a
// • +3

open a

z
•
z
, (4.2)

it simply states that edge Lopen a disappears when the surrounding environment
satisfies constraint open a (we do not represent the identity substitution on the
arrow).

Let us now consider the ambient term a[Q] | open a.0 that can be represented
with the following graph:

G // •
u

a

��?
??

?

•
v

Lopen a

11

where G is the graph that corresponds to Q.
In order to synchronize productions (4.1) and (4.2), first we must find their

occurrences on the correspondence with the external nodes in the graph, as reported
in Figure 4.1.2(a) where the dotted lines represent the correspondence among the
external nodes. Then, as shown in Figure 4.1.2(b), the edges in the graph are
removed and fresh copies of the right-hand sides of the productions are added to the
graph (in this case the rhs of the first production simply is the node y, while the
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•
��

x
a

��?
??

?

G // •
u

a

��?
??

? •
��

y

• oo
v
•
z

Lopen a

11

Lopen a

nn

•

G // •
u

•
��

oo
y = x

• oo
v
•
z

•

G // •
v = u

(a) Finding occurrences (b) Embedding rhs (c) Fusing nodes

Figure 4.2: Synchronized edge replacement

rhs of the second production simply is the node z). Finally, nodes are fused; notice
that u and v are fused because they correspond to x and y respectively and those
have been fused as prescribed by production (4.1).

We point out that the external nodes of edges a and Lopen a in the graph satisfy
the requirements for replacing edges. Indeed, node u corresponds to x which has
no condition in production (4.1) while v corresponds to y and z and the conditions
imposed on them by the productions are complementary, hence they can be syn-
chronized. As a final remark, notice that G is not involved in the synchronizations,
however, after the synchronization G is attached to node v.

4.2 A Calculus of Hypergraphs

In the following we consider fixed a set of nodes N and a set of labels L ranked by
natural numbers; L : n denotes a label L ∈ L with rank n.

Hypergraphs are built out from hyperedges and nodes.

Definition 4.2.1 (Hypergraph) A Hypergraph H over L is a five-tuple
(V,E, att, lab, ext) where

• V ⊆ N is a finite set of nodes;

• E is a finite set of hyperedges;

• lab : E → L is a labelling function;

• att : E → V ∗, where V ∗ is the set of sequence of nodes in V . For each e ∈ E,
att(e) are the attachment nodes (or attachment points) of e and |att(e)| = n
iff lab(e) : n;

• ext ∈ V ∗ are the external nodes of H.

A hyperedge e (or simply an edge) is an atomic item with a label lab(e) and an
associated sequence of attachment nodes att(e). The number of attachment nodes
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of an edge must be the rank of its label. We write L(x1, ..., xn) to indicate an edge
labelled L connected to the attachment nodes x1,..., xn.

Example 4.2.1 Let L(a, b, c) be an edge where L ∈ L and L : 3; we draw L(a, b, c)
as follows

•b

•a L1

2

3 •c

where wires connecting vertices a, b and c to L are called tentacles and are indexed
according to the sequence of attachment nodes.

In drawings hypergraphs we will omit indexes of tentacles when they are clear
from the context; moreover we depict external nodes with • while non-external nodes
are drawn with ◦.

In the sequel, we represent hypergraphs by means of syntactic judgments :

Definition 4.2.2 (Syntactic judgments) A syntactic judgment is a judgment of
the form Γ ` G, where

• Γ ⊆ N is a finite set of nodes and

• G is a term generated by the following grammar

G ::= nil
∣∣ L(~x)

∣∣ G | G
∣∣ ν y.G,

where ~x is a sequence of nodes, L ∈ L is such that L : |~x| and y ∈ N . We
call terms G hypergraph terms.

The nodes in G which are in the scope of ν operator are called bound nodes; let
bn(G) and fn(G) respectively denote the set of the bound and free nodes of G (the
nodes of G which are not bound).

A judgment Γ ` G is legal if fn(G) ⊆ Γ.

Productions in Definition 4.2.2 permits generating the empty graph (represented by
nil), single edges (using L(~x)) composing terms in parallel (via G | G) and hiding
nodes (through ν y.G).

Hereafter, we use ’graph’ as a synonym of ’hypergraph’ and omit curly brackets
in judgments writing x1, ..., xn ` G instead of {x1, ..., xn} ` G; moreover, given a
sequence of nodes ~x = x1, ..., xn, ~x ` G denotes x1, ..., xn ` G. We use the notation
Γ, x to denote the set obtained by adding x to Γ, assuming x 6∈ Γ. Similarly, we
will write Γ1,Γ2 to state that the resulting set of names is the disjoint union of Γ1

and Γ2. Two judgments Γ1 ` G1 and Γ2 ` G2 are disjoint if Γ1 ∩ Γ2 = ∅ and,
Γ1 ` G1 ⊗ Γ2 ` G2 denotes the judgment Γ1,Γ2 ` G1 | G2 provided that initial
judgments are disjoint.
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(AG1) (G1 | G2) | G3 ≡ G1 | (G2 | G3)

(AG2) G1 | G2 ≡ G2 | G1

(AG3) G | nil ≡ G

(AG4) ν x.ν y.G ≡ ν y.ν x.G

(AG5) ν x.G ≡ G, if x /∈ fn(G)

(AG6) ν x.G ≡ ν y.G{y/x}, if y /∈ fn(G)

(AG7) ν x.(G1 | G2) ≡ (ν x.G1) | G2, if x /∈ fn(G2)

Table 4.1: Graphs structural congruence rules

Example 4.2.2 Let us consider the judgment x, y ` ν z.(L(y, z, x) | M(x, z)),
where L : 3 and M : 2; a graphical representation of the judgment is

•x

L

��
�� CC

CC
C M

CCCC

•y ◦z

Productions for G in Definition 4.2.2 are very similar to the respective produc-
tions for π-calculus grammar. Definition 4.2.3 gives the structural congruence rules
for graphs. We take advantage of such congruence to avoid writing cumbersome
parenthesis.

Definition 4.2.3 (Structural Congruence) The structural congruence is the
smallest binary relation ≡ that obeys axioms in Table 4.1.

Axioms (AG1 ), (AG2 ) and (AG3 ) define associativity, commutativity and identity
over nil for operation |, respectively. Axioms (AG4 ) and (AG5 ) state that the nodes
of a graph can be restricted in any order and that restriction does not play any rôle
on non-free nodes of a graph, respectively. Axiom (AG6 ) deals with alpha conversion
of hidden bound vertices, while (AG7 ) tunes the interplay between hiding and the
operator for parallel composition. Occasionally, because of axiom (AG4 ), we will
write ν X, with X =

⋃
xi, to abbreviate ν x1.ν x2 . . . ν xn. Note that using the

axioms, for any judgment we can always have an equivalent normal form Γ ` ν X.G,
with G a sub-term containing only parallel composition of edges. It is clear from
Definition 4.2.3 that Γ and X can be made disjoint sets of nodes using the axioms
and that nodes of G are included in (Γ ∪X).

We will work with well-formed judgments.
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(RG1)
x1, . . . , xn ` nil

Γ ` G1 Γ ` G2
(RG3)

Γ ` G1 | G2

L : m y1, . . . , ym ∈ {x1, . . . , xn}
(RG2)

x1, . . . , xn ` L(y1, . . . , ym)

Γ, x ` G
(RG4)

Γ ` ν x.G

Table 4.2: Well-formed judgments

Definition 4.2.4 (Well-Formed Judgments) A judgment is well-formed if it is
generated by applying the rules in Table 4.2 up to structural congruence.

Rule (RG1 ) creates a graph with no edges and n isolated nodes and rule (RG2 )
creates a graph with n nodes and one edge labelled by L and with m tentacles (note
that there can be repetitions among nodes in ~y, i.e. some tentacles can be attached
to the same node). Rule (RG3 ) allows to put together (using |) two graphs that
share the same set of external nodes. Finally, rule (RG4 ) allows to hide a node from
the environment.

The correspondence theorem expressing that well-formed judgments up to struc-
tural axioms are isomorphic to graphs up to isomorphism has been proved in [97].
This result allows us to consider syntactic judgments as hypergraphs; in the sequel,
we will sometime refer to edges in a graph by saying ’edge L(~x)’ which is not formally
correct, but the result proved in [97] permits this abuse of terminology.

We can extend concepts and definitions for ordinary graphs to hypergraphs. We
need to give a formal definition for paths and cyclic graphs.

Definition 4.2.5 (Hyperpath) A hyperpath is a term of the form L1(~x1) | ... |
Lk(~xk) such that, for any i = 1, .., k− 1, there exists a node n ∈ N such that Li and
Li+1 are connected to n. In this case we say that Li and Li+1 are adjacent edges.

Definition 4.2.5 states that two nodes are connected by a path whether the adjacent
hyperedge on the path share at least one of their attachment nodes. This permits
us to define ambient graphs (see Definition 5.1.2 on page 85) and paths on graphs
defined in Chapter 6 where a path between two nodes obtained alternating two dif-
ferent labelled eges (namely site and gateway edges) represent a possible connection
between two site of a Klaim net.

Definition 4.2.6 (Hypercycles) A cycle is a hyperpath L1(~x1) | ... | Lk(~xk) such
that Lk and L1 are adjacent.

A term G is acyclic if, for any path L1(~x1) | ... | Lk(~xk), if there is a finite set
of nodes X and a term G′ such that G ≡ (ν X)(L1(~x1) | ... | Lk(~xk) | G′), then
L1(~x1) | ... | Lk(~xk) is not a cycle.
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Definitions 4.2.5 and 4.2.6 can trivially be extended to judgments and will be ex-
ploited in the sequel.

4.3 Hypergraph Rewriting

This section formalizes the hypergraph rewriting mechanism that we have infor-
mally described in Section 4.1. Synchronized edge replacement is obtained by graph
rewriting combined with constraint solving. More specifically, we use context-free
productions labelled with actions useful for coordinating the simultaneous applica-
tion of two or more productions. Coordinated rewriting allows the propagation of
synchronization all over the graph where productions are applied. Determining the
productions to synchronize at a given stage corresponds to solving a distributed
constraint satisfaction problem [136].

In [97] a synchronized hyperedge replacement mechanism has been defined. The
main feature of this approach is that an hyperedge can be replaced when the condi-
tions it imposes on its external nodes are in accordance with the conditions imposed
by adjacent hyperedges and with the adopted synchronization policy.

Observation 4.3.1 Each edge rewriting must synchronize its actions with one or
more of its adjacent edges. Depending on the chosen synchronization algebra, the
number of edges can vary.

The main and well studied synchronization algebras are á la Hoare (CSP [98],
where S(a, a) = a) and á la Milner (CCS [127], where S(a, ā) = τ) synchroniza-
tions [173]. The former takes two partner to synchronize trough complementary
actions, while the latter requires that all participants of a synchronization perform
the same action. Hereafter, we consider synchronizations á la Milner.

Replacements can generate new nodes, exchange nodes and fuse them. However, the
approach of [97] imposes a restriction on node fusion: Two nodes can be coalesced
only if at least one of them is new, namely it is not possible to fuse two “old” nodes.

Our approach extends the proposal in [97] by permitting fusions without any
restriction as described in the informal example of Section 4.1.2.

4.3.1 Productions

In the following, we assume fixed Act , a set of actions used for naming conditions
imposed on the external nodes of hyperedges for constraining graph rewritings. Since
we use Milner synchronizations, Act also has two furhter ingredients:

• a complementation operation ·̄ : Act → Act such that for any a ∈ Act , ¯̄a = a;

• a distinguished silent action τ that denotes synchronizations.



4.3. HYPERGRAPH REWRITING 73

Moreover, we assume that any label a ∈ Act has an arity ; we let | · | : Act → ω be
the arity function on Act and, for any a ∈ Act , |a| = |ā|.

A graph rewriting system, G = 〈Γ0 ` G0,P〉, consists of an initial graph Γ0 ` G0

and a set of productions:

Definition 4.3.1 (Production) Let X ⊆ N be the set {x1, . . . , xn} and L be an
edge label with rank n. A production is a transition of the form

X ` L(x1, . . . , xn)
Λ
−−→

π
> Γ ` G, (4.3)

where

- Λ ⊆ X ×Act ×N ∗ is a set of constraints which are triples (x, a, ~y) such that
|a| = |~y|. Λ is the graph relation of a partial function with (finite) domain X
and codomain in Act ×N ∗.

Given Λ, we say that ~y are the nodes of the constraint (x, a, ~y) ∈ Λ and Λ(x)
indicates (a, ~y), while Λ(x) ↑ states that Λ does not imposes constraints on x
(i.e. (x′, a, ~y) ∈ Λ implies x 6= x′). We let n(Λ) denote the union of the nodes
of the constraints in Λ.

- function π : X → X is a fusion substitution, namely

∀xi, xj ∈ X.π(xi) = xj ⇒ π(xj) = xj .

A fusion substitution π induces an equivalence relation partition 'π over its

domain X defined as x 'π x
′ def

⇐⇒ π(x) = π(x′). Equivalence 'π partitions X
into equivalence classes and each node x ∈ X is mapped to the representative
element π(x) of its class. The representative element y of a class is the unique
element such that π(y) = y.

We impose a further condition on productions, indeed we require that n(Λ) ∩
X ⊆ π(X); namely, the external nodes used in the synchronization must be
representative elements according to 'π.

- Γ = π(X) ∪ (n(Λ) \X);

- fn(G) ⊆ Γ.

Nodes x1, . . . , xn are the attachment nodes of L to the surrounding environment,
namely L can share nodes inX with other edges. Productions specify the constraints
that the environment must satisfy in order to replace edges. Such constraints are
imposed by Λ on the set X of external nodes of L; arities of actions must be equal to
the number of nodes of the constraint. Λ associates actions and sequences of nodes
to (some of the) external nodes of L. Intuitively, actions associated to attachment
nodes constrain the possible rewritings of a graph; indeed, production (4.3) can be
applied only if the actions on the external nodes synchronize with actions imposed
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by the productions of adjacent edges according to the synchronization adopted pol-
icy. If (x, a, ~y) ∈ Λ then L can synchronize with edges in the environment that
have a tentacle connected to x and satisfy condition a. Sections 4.3.1 will formally
state how constraints are satisfied by means of synchronizations (for á la Milner
synchronization).

Once constraints in Λ are satisfied, nodes must be coalesced according to fusion
substitution π.

For any constraint (x, a, ~y) ∈ Λ, ~y either contains nodes that appear in X or new
nodes that will be present in Γ ` G.

Let us now consider the structure of the right hand side of judgment (4.4). Γ
consists of the nodes which are image of x1, . . . , xn through π and the new nodes
used in the synchronization, namely those nodes that appear in Λ and are not in X.
In general, G may be any graph provided that fn(G) ⊆ Γ.

Example 4.3.1 Referring to Example 4.2.2, let us assume that the following pro-
duction is given:

x1, x2, x3 ` L(x1, x2, x3)

{
(x3, send, 〈u〉),
(x1, rec, 〈v〉)

}

−−−−−−−−−−−−−→
[x2/x1 ]

> x2, x3, u, v ` L′(x3, x2) | L′′(u, x2, v).

The above production states that, once constraints on nodes x1 and x3 are satisfied
by the environment, edge L is replaced by edges L′ and L′′. Edge L′ has tentacles
to nodes x2 and x3, while L′′ is connected to x3 and to two newly generated nodes u
and v. Fusion substitution [x2/x1 ] represents the mapping





x1 7→ x2

x2 7→ x2

x3 7→ x3

and determines the partition {{x1, x2}, {x3}},

where x2 is the representative element of {x1, x2}.
The production can be graphically represented as follows:

•send 〈u〉 x3 •x3 •u •v

L

��
�� ??

??

[x2/x1 ]
+3 L′

@@
@@

L′′

||
||

||||

•rec 〈v〉 x1 •x2 •x2

This picture is similar to those in Section 4.1; however, here also new nodes are
generated by the productions. Indeed, node u and v do not appear in the left-hand side
of the production but are names of constraints in the production, hence they appear
on the right-hand side. When this production synchronizes with other productions
that offer conditions on x1 and x3 complementary to rec and send and exposes node
v′ and u′ that will be fused with u and v after the sychronization.
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Graphs over edge labels L and nodes N obey the usual structural congruence
axioms in the same style of process calculi (e.g. π-calculus, Klaim or the Ambient
calculus). Moreover, recalling the informal description of hyperedge replacement
described in Section 4.1, we can notice that nodes appearing in productions can be
seen as “placeholders” that must be associated to nodes in a graph. Hence, we can
freely rename nodes in productions; more precisely, given a production

x1, ..., xn ` L(x1, ..., xn)
Λ
−−→

π
> Γ ` G,

renaming can be applied in several ways:

i. External nodes can be changed throughout the judgment, namely we can re-
place each xi with a node y provided that y 6∈ {x1, . . . , xn}∪ fn(G)∪n(Λ). For
instance, if x2 is replaced with y in production of Example 4.3.1, we obtain

x1, y, x3 ` L(x1, y, x3)

{
(x3, send, 〈u〉),
(x1, rec, 〈v〉)

}

−−−−−−−−−−−−−→
[y/x1 ]

> y, x3, u, v ` L′(x3, y) | L′′(u, y, v).

ii. nodes declared in n(Λ)−Γ can be α-converted. For instance, we can α-convert
u (or v) in Example 4.3.1 with z and obtain the production

x1, x2, x3 ` L(x1, x2, x3)

{
(x3, send, 〈z〉),
(x1, rec, 〈v〉)

}

−−−−−−−−−−−−−→
[x2/x1 ]

> x2, x3, z, v ` L′(x3, x2) | L′′(z, x2, v).

iii. the representative nodes chosen by π can be consistently changed. For in-
stance, in Example 4.3.1 nothing prevents us to use x1 instead of x2 as the
representative element of the equivalence class {x1, x2}; in this case we would
have the production

x1, x2, x3 ` L(x1, x2, x3)

{
(x3, send, 〈u〉),
(x1, rec, 〈v〉)

}

−−−−−−−−−−−−−→
[x1/x2 ]

> x1, x3, u, v ` L′(x3, x1) | L′′(u, x1, v).

As already stated, it is not mandatory that all edges take place in replacements,
namely, some components can remain idle while others are replaced. Idle productions
are defined to formalize this intuition:

Definition 4.3.2 (Idle productions) Let id be the identity function on the set of
nodes {x1, ..., xn}.

An identity productions is a production of the form

x1, ..., xn ` L(x1, ..., xn)
∅
−−→

id
> x1, ..., xn ` L(x1, ..., xn).

An idle production is either an identity production or a production of the form

x1, ..., xn ` nil
∅
−−→

id
> x1, ..., xn ` nil
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4.3.2 Transitions of graphs

Productions (idle or not) are synchronized via the inference rules in Table 4.3. Graph
semantics is based on productions to specify edge replacement, while inference rules
essentially synchronize productions and confer dynamic behaviour to graphs.

A transition is a logical judgment

Γ1 ` G1
Λ
−−→

π
> Γ2 ` G2 (4.4)

where Λ, π, Γ2 and G2 obeys the same conditions imposed on productions. Es-
sentially, transitions can be seen as productions having general graphs on their left
hand side. Hence transitions describe the dynamic evolutions of graphs.

Transition (4.4) states that Γ1 ` G1 can take part to rewritings that match con-
straints Λ and determine fusion substitution π. Once such conditions are satisfied,
Γ1 ` G1 rewrites as Γ2 ` G2.

Definition 4.3.3 (Graph transitions) Let 〈Γ0 ` G0,P〉 be a graph rewriting sys-
tem. The set of transitions T (P) is the smallest set that contains P, any idle pro-
duction and that is closed under the four inference rules in Table 4.3.

A derivation is obtained by starting from the initial graph and by executing a se-
quence of transitions, each obtained by synchronizing productions. The synchro-
nization of rewriting rules requires matching of the actions and unification of the
third components of the constraints Λ. After productions are applied, the unification
function is used to obtain the final graph by merging the corresponding nodes.

In Table 4.3 we use notation [v1,...,vn/u1,...,un
] (abbreviated as [~v/~u]) to denote

substitutions that are applied both to graphs and sets of constraints. If ρ = [~v/~u] is
a substitution then ρG is the graph obtained by substituting all free occurrences of
ui with vi in G for each i = 1, ..., n, while ρΛ = {(x, a, ρ~y) : (x, a, ~y) ∈ Λ} where ρ~y
is the sequence ρ(y1), . . . , ρ(yh) if ~y = y1, . . . , yh.

Finally, given a function f : A → B and y ∈ A, f−y : A \ y → B is defined as
f−y(x) = f(x), for all x ∈ A \ y.

The most important rules in Table 4.3 are (merge1) and (merge2). They reg-
ulates how nodes can be fused. Rule (merge1) fuses two nodes provided that no
constraint is required on one of them, whereas rule (merge2) handles with nodes
upon which complementary actions are required. Rule (res) describes how graph
transitions can be performed under node restriction. Finally, rule (par) states how
transitions on disconnected graphs can be combined together.

Let us comment more on all the rules.
Rule (merge1) fuses nodes x and y provided that no constraint is imposed on

y, i.e. Λ(y) ↑. Premise x 'π y ⇒ π(y) 6= y imposes that, in case y is fused with a
node x such that x 'π y (namely x and y are in the same equivalence class) then y
must not be the representative element. However, if x 6'π y fusion [x/y] is possible;
indeed, condition x 'π y ⇒ π(y) 6= y trivially holds.
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(merge1)

Γ, y ` G
Λ
−−→

π
> Γ′ ` G′

Λ(y) ↑ x 'π y ⇒ y 6= π(y)

ρ = [π(x)/π(y)]

Γ ` [x/y]G
ρΛ

−−−−→
(π; ρ)−y

> n(ρΛ) ∪ (π; ρ)−y(Γ) ` ρG′

(merge2)

Γ, y ` G
Λ ∪ {(x, a, ~v), (y, a, ~w)}
−−−−−−−−−−−−−−→

π
> Γ′ ` G′

x 'π y ⇒ y 6= π(y) ρ = mgu{[[
x/y]~w/[x/y ]~v], [

π(x)/π(y)]}

Γ′′ = n(ρΛ) ∪ (π; ρ)−y(Γ) U = ρ(Γ′) \ Γ′′

Γ ` [x/y]G
(ρΛ ∪ (x, τ, 〈〉))
−−−−−−−−−→

(π; ρ)−y

> Γ′′ ` ν U.ρG′

(res)

Γ, y ` G
Λ
−−→

π
> Γ′ ` G′

Λ(y) ↑ ∨Λ(y) = (τ, 〈〉) x 'π y ⇒ y 6= π(y)

U = Γ′ \ (n(Λ) ∪ π−y(Γ))

Γ ` ν y.G
Λ \ (y, τ, 〈〉)
−−−−−−−→

π−y
> n(Λ) ∪ π−y(Γ) ` ν U.G′

(par)

Γ1 ` G1
Λ
−−→

π
> Γ2 ` G2 Γ′

1 ` G
′
1

Λ′

−−→
π′
> Γ′

2 ` G
′
2

(Γ1 ∪ Γ2) ∩ (Γ′
1 ∪ Γ′

2) = ∅

Γ1 ∪ Γ′
1 ` G1 | G′

1
Λ ∪ Λ′

−−−−→
π ∪ π′

> Γ2 ∪ Γ′
2 ` G2 | G′

2

Table 4.3: Inference rules for graph synchronization
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A transition from Γ, y ` G may be re-formulated to obtain the transition where
y and x are coalesced, provided that fusion of their representative elements, ρ, is
reflected on Λ, on π and on continuation Γ′ ` G′. Indeed, if y is fused with x,
also the other nodes equivalent to them are fused; the fusion substitution in the
conclusion of (merge1) is π; ρ (restricted to Γ), all occurrences of π(y) are replaced
with π(x) in n(Λ) and the final graph is ρG′. It is obtained by merging π(y) and
π(x) in G′.

Rule (merge2) synchronizes complementary actions. The rule permits merging
x and y in a transition where they offer complementary non-silent actions. As for
(merge1), x cannot replace the representative element of its equivalence class. Most
general unifier ρ takes into account possible equalities due to the transitive closure
of substitutions [~v/~u] after [x/y] has been applied. ρ fuses the corresponding nodes
of the constraints and propagates previous fusions π. The resulting constraints
ρΛ ∪ {(x, τ, 〈〉)} does not change constraints offered on nodes different from x and
y (up to the necessary fusion ρ). Fusion substitution (π; ρ)−y acts on Γ by applying
ρ. Finally, nodes U are the restricted nodes of ρG′ and are those nodes that neither
are in (π; ρ)−y(Γ) nor are generated by ρΛ. This corresponds to the close rule of
π-calculus.

Observation 4.3.2 We remark that node x mentioned in rules (merge1) and
(merge2) is a node in Γ appearing in the rules. This immediately follows for the
condition x 'π y ⇒ y 6= π(y).

Rule (res) deals with node restriction. Representative elements cannot be re-
stricted if other nodes are in their equivalence class. Furthermore, only nodes can
be restricted where either a synchronization action takes place or no constraint is
imposed. If those conditions hold, the (possible) silent action on y is hidden and
nodes not in Γ′ \ (n(Λ) ∪ π−y(Γ)) are restricted.

Rule (par) simply combines together disconnected judgments. Function π ∪ π′

applied to a node x is π(x) or π′(x) depending on x ∈ Γ1 or x ∈ Γ′
1. Condition

(Γ1 ∪ Γ2) ∩ (Γ′
1 ∪ Γ′

2) = ∅; guarantees that π ∪ π′ is well defined because it implies
Γ1 ∩ Γ′

1 = ∅, moreover such condition states that

• graphs Γ1 ` G1 and Γ2 ` G2 are disjoint;

• names generated by the transition of Γi ` Gi (for i ∈ {1, 2}) do not occur
neither as names of the other graph nor as names generated by its transition.

Rules in Table 4.3 guarantee that idle transitions can be derived for any well-
formed graph, as stated by the following theorem:

Theorem 4.3.1 For any well-formed graph Γ ` G, the (idle) transition

Γ ` G
∅
−−→

id
> Γ ` G

can be derived from rules in Table 4.3.
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Proof. The proof is given by induction on the structure of G. If G = nil then the
thesis follows by the assumption that idle productions are always available.
If G = L(y1, ..., yn) where L is an edge in Lu→v such that n = u + v and yi’s are
nodes in Γ. Then, by hypothesis,

x1, ..., xn ` L(x1, ..., xn)
∅
−→

id
> x1, ..., xn ` L(x1, ..., xn)

is an available identity production, hence, by applying rule (merge1), we can fuse
nodes xi’s in order to restrict to a judgment that contains only nodes yj’s.
Let us now assume that G = G1 | G2, then, by inductive hypothesis, the following
transitions can be derived

Γ ` G1
∅
−→

id
> Γ ` G1

Γ ` G2
∅
−→

id
> Γ ` G2.

Nodes in Γ appearing in the last transition can be uniformly α-renamed, hence can
derive the following transition:

σΓ ` σG2
∅
−→
id′
> σΓ ` σG2

where σ is an injective substitution such that Γ ∩ σΓ = ∅ and id′ is the identity
function on σΓ. We can now apply the (par) rule and obtain the transition

Γ ∪ σΓ ` G1 | σG2
∅

−−−−→
id ∪ id′

> Γ ∪ σΓ ` G1 | σG2.

Finally, we can repeatedly apply rule (merge1) to fuse nodes σΓ on the correspond-
ing nodes in Γ, according to σ−1.

The last case is G = ν x.G′. By inductive hypothesis, Γ, x ` G′ ∅
−→
id′
> Γ, x ` G′

(where id′ is the identity on Γ, x) is a derivable transition and we can apply rule
(res) to obtain the thesis. �

Despite of their small number, inference rules given in Table 4.3 seem quite in-
volved (at least at a first glance). However we point out that designing a system
using hypergraphs can take great advantage if one has in mind the intuitive descrip-
tion of hyperedge replacement given in Section 4.1. Indeed, in this case, the design
reduces to the following step:

• representing the system as a number of components opportunely connected;

• for each component, the designer draws a hyperedge so that its external nodes
are explicited (as in the reported example);
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• then, on the external nodes, the designer writes the actions that will constraint
the hyperedge rewriting;

• finally, the graph that will be substituted with the hyperedge is specified tak-
ing care that the external nodes of the graph satisfy the conditions of Defini-
tion 4.3.1.

4.4 Multiple Synchronizations

In [76] a different set of inference rules for graphs semantics has been presented. The
main difference between the semantics proposed in [76] and rules in Table 4.3 lies in
rules for merging nodes. In the former proposal any (finite) number of components
can synchronize in a “single shot” provided complementary actions take place on
different nodes. This section briefly report the semantics presented in [76] and
discusses its peculiarities with respect to the new semantic rules in Section 4.3.

Definition 4.4.1 (Inference rules) Let 〈Γ ` G0,P〉 be a hypergraph rewriting

system and let Γ ` G1
Λ,π
−→ φ ` G2 be a transition where ∆ = n(Λ) − Γ and φ =

π(Γ)∪∆; The set T ′(P) of transitions is obtained from the productions P using the
inference rules in Table 4.4 where the side conditions of the rules are:

ψ1
def
⇐⇒





∆ ∩ σ(Γ) = ∅ and ∀x ∈ ∆.σ(x) = x
σ(x) = σ(y) ∧ Λ(x) ↓ ∧Λ(y) ↓ ∧x 6= y ⇒

(∀z 6∈ {x, y}.σ(z) = σ(x)⇒ Λ(z) ↑)
∧ Λ(x) = (a,~v) ∧ Λ(y) = (a, ~w) ∧ a 6= τ

ρ = mgu({σ(~v) = σ(~w)|σ(x) = σ(y) ∧ Λ(x) = (a,~v) ∧ Λ(y) = (a, ~w)}
∪{π(x) = π(y)|σ(x) = σ(y)})

Λ′(z) =

{
(τ, 〈〉), if σ(x) = σ(y) = z ∧ x 6= y ∧ Λ(x) ↓ ∧ Λ(y) ↓
ρ(σ(Λ))(z), otherwise

π′(σ(x)) = σ(ρ(π(x)))
~u = ρ(σ(φ))− φ′

ψ2
def
⇐⇒





(π(x) = π(y) ∧ x 6= y)⇒ π(x) 6= x
Λ(x) ↑ or Λ(x) = (τ, 〈〉),
Λ′ = Λ− (x, τ, 〈〉)
~z = φ− φ′

Rules (par′) and (res′) behaves exactly as the corresponding (par) and (res)
rules of Table 4.3.

Rule (merge) is the rule for synchronization. The rule states that in a transition
it is possible to merge any two nodes x and y that offer complementary non-silent
actions (conditions on σ). The mapping ρ is the most general unifier that fuse the
corresponding names of the actions and propagates the previous fusions (determined
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(par′)
Γ ` G1

Λ,π
−→ φ ` G2 Γ′ ` G′

1

Λ′,π′

−→ φ′ ` G′
2

Γ,Γ′ ` G1 | G′
1

Λ∪Λ′,π∪π′

−−−−−→ φ, φ′ ` G2 | G′
2

where (Γ ∪ φ) ∩ (Γ′ ∪ φ′) = ∅

(merge)
Γ ` G1

Λ,π
−→ φ ` G2

σΓ ` σG1
Λ′,π′

−→ φ′ ` ν ~u.ρ(σ(G2))
where ψ1 holds

(res′)
Γ, x ` G1

Λ,π
−→ φ ` G2

Γ ` ν x.G1
Λ′,π|Γ
−−→ φ′ ` ν ~z.G2

where ψ2 holds

Table 4.4: Inference rules for graph synchronization

by π). The label Λ′ takes into account all possible synchronizations and leaves
unchanged the actions offered on the other nodes up to the necessary fusions (ρ and
σ). The new fusion substitution π′ acts on σ(Γ) by applying to it the mgu ρ. Finally,
the names in φ after the fusion which are not present in φ′ = π′(Γ)∪ (n(Λ′)− σ(Γ))
are restricted; this corresponds to the close rule of the π-calculus.

Intuitively, rules (merge1) and (merge2) in Table 4.3 are both encompassed by
rule (merge) which can contemporary deal with idle nodes or with nodes where
complementary actions take place. Moreover, it should be evident that the multiple
synchronizations that can be derived with rule (merge) are also derivable by succes-
sive applications of (merge1) and (merge2). Hence the “expressive” power of the
two transition systems is equivalent.

Even if much more complex than the semantic rules in Table 4.3, rules in Ta-
ble 4.4 have some technical benefits. First, it is possible to describe concurrent
behaviour of separate parts of a system “in one shot”. Second, the proofs derived
from this transition system require less steps than the inference rules of 4.3, hence
with those rules it is also possible to prove some later results (theorems in Sec-
tions 5.4.1, 6.3.6 and in Section 6.3.6).
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Chapter 5

A Hypergraphs-based semantics
for Ambients

Abstract

The Ambient calculus is one of the best studied models addressing the
needs of global computing, and it has acquired the rôle of touchstone for the
most recent proposals. However the interactive, abstract semantics of ambi-
ents is still not fully explored. In fact, as it is the case of most foundational
calculi for global computing, reduction semantics for ambients has been found
to be simpler than the corresponding labelled transition system (LTS) seman-
tics. However, reduction semantics has the main disadvantage with respect
to LTS semantics that it makes harder to define, and reason about, abstract
compositional behavior.

We show how it is possible to translate the fragment of the Ambient calcu-
lus introduced in Section 3.2 in our graph synchronization framework main-
taining the semantics of processes. The translation also underlines how Am-
bient primitives require to synchronize more components at once (processes
and ambients) in order to model the desired behaviour.
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Figure 5.1: Representing the translation function

5.1 A Graphical Ambient Calculus

This section introduce a translation function that maps terms of the Ambient cal-
culus into the graphical calculus presented in Chapter 4.

Definition 5.1.1 (From Ambient to graphs)

[[ 0 ]]x = x ` nil
[[ n[P ] ]]x = x ` ν y.(G | n(y, x)), if y 6= x ∧ [[ P ]]y = y ` G
[[ M.P ]]x = x ` LM.P (x)
[[ P1|P2 ]]x = x ` G1 | G2, if [[ Pi ]]x = x ` Gi,where i = 1, 2

[[ recX.P ]]x = [[ P [rec X. P/X ] ]]x

Definition 5.1.1 introduces the mapping function [[ P ]]x that returns a graph whose
only free node x corresponds to the root of the ambient process P .

In the above translation, sequential processes M.P are directly represented by
edges labelled by LM.P . We say that LM.P (x) is an incoming edge in x. While this
requires an infinite number of edge labels, it is easy to see that only a finite number
of them (and of the corresponding activity rules defined below) is needed to derive
all computations of any particular ambient.

The graph associated to the 0 process is an isolated node. The graph of n[P ]
with free node x is obtained by constructing G, the graph of P , on node y, attaching
it to the graph n(y, x) and restricting y. Conventionally, we say that n(x, y) is an
outgoing edge from x and an incoming edge in y. Note that the ambient name n
is interpreted as an edge from y to x labelled n. Ambient names N and sequential
processes are the only edge labels. The parallel composition P1 | P2 is obtained by
making the graph of P1 and P2 to share their root node x. Figure 5.1 graphically
represents the translation function in the case described so far; arrowed tentacles
remind the incoming edges in x. Finally, recursive processes are unfolded first1.

1Note that the [[ ]]x is well defined because recursion variables are guarded by capabilities.
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Definition 5.1.1 enjoys many properties that can be useful later. We collect some
lemmas that are used to prove the main results of this section.

Lemma 5.1.1 For any ambient process P , fn([[ P ]]x) = {x}.

Proof. Note that x appear as interface node in all rule of Definition 5.1.1, hence
x ∈ fn([[ P ]]x). By construction, we use always new nodes for translating sub-terms
of P and any node different from x is restricted. We can therefore conclude that
fn([[ P ]]x) = {x}. �

Lemma 5.1.2 [[ ]] preserves structural congruence, namely, for any ambient pro-
cesses P and Q such that P ≡ Q, [[ P ]]x and [[ Q ]]x are structural equivalent graphs.

Proof. The proof easily descends by induction on the structure of P and Q. We
detail only the most difficult case. If P ≡ Q1 | Q2 for some Q1 and Q2, then

• either Q2 = 0 and P ≡ Q1

• or there are P1 and P2 ( 6= 0) such that P = P1 | P2 and Pi ≡ Qi, i = 1, 2.

(the symmetric cases are analogous and can be threated similarly).
In the former case, by definition, [[ Q1 | Q2 ]]x = [[ Q1 ]]x ⊗ x ` nil = x ` G | nil. By
structural congruence of hypergraphs and inductive hypothesis, we conclude that
x ` G | nil = x ` G = [[ P ]]x.
In the latter case, [[ Pi ]]x ≡ [[ Qi ]]x, i = 1, 2 by inductive hypothesis and, by
definition of ⊗ and structural congruence of hypergraphs, we obtain the thesis. �

The given translation is injective but not surjective. However, the graphs [[ P ]]x
in the image of the translation function can be characterized in terms of ambient
graphs.

Definition 5.1.2 (Ambient graphs) Given a graph Γ ` G, a node x in G is a
root node whether no edge in G is an outgoing edge from x.

An ambient graph is a graph labelled on LE = {LM.P |M.P ∈ Proc} ∪N which

1. is acyclic;

2. every node has at most one outgoing edge labelled in N ;

3. there is only one free node and it is the root node.

Proposition 5.1.1 If P is an ambient process, then [[ P ]]x is an ambient graph.
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Proof. The proof is given by structural induction on P . The base cases are [[ 0 ]]x
and [[ M.P ]]x that, by construction, are ambient graph.

Let us consider the ambient process, n[P ] case and assume that [[ n[P ] ]]x = x `
(ν y).(G | n(y, x)), where [[ P ]]y = y ` G under the assumption y 6= x. Since
y 6= x and, by inductive hypothesis, y is the unique root node in y ` G, then x is
the unique root node in [[ n[P ] ]]x. Furthermore, y has one outgoing edge, namely
n(y, x), in [[ n[P ] ]]x. Finally, [[ n[P ] ]]x is acyclic because, by inductive hypothesis,
[[ P ]]y is acyclic and if, by absurdum, we assume that G | n(y, x) ≡ (ν X)(L1(~x1) |
... | Lk(~xk)) | G′ for some nodes X, some edges Li’s and a term G′ and L1(~x1) | ... |
Lk(~xk) is a cycle, then

• either n(y, x) does not appear in the cycle,

• or there is a Li(~xi) that is equal to n(y, x).

In the former case, we obtain a contradiction because the cycle would also be a cycle
in [[ P ]]y. In the latter case, since x is a root node, only the last edge of the path
can be n(y, x), whereas all the other edges are edges of G. Therefore, by inductive
hypothesis, L1(~x1) | ... | Lk−1(~xk−1) is not a cycle, hence L1 should be an outgoing
edge from x which contradicts the hypothesis that x 6∈ n(G).

The remaining cases are similarly proved. �

Theorem 5.1.1 [[ ]] is a bijection on ambient graphs (up to structural equiva-
lence).

Proof. Lemma 5.1.2 and Proposition 5.1.1 imply that [[ ]] is an injection from the
equivalence classes induced by structural congruence on the set of ambient processes
to the equivalence classes induced on hypergraphs by their structural congruence
relation.

In order to prove that it also is surjective on ambient graphs, we can simply
consider that the general shape of an ambient graph is

•

n1

44iiiiiiiiiiiiiiiiiiiiiiii · · · nh

>>}}}}}}}}
LM1.P1

ccFFFFFFFFF

· · · LMk.Pk

kkWWWWWWWWWWWWWWWWWWWWWWWWWWW

◦ · · · ◦
���������
G1

DDDDDDDDDD

zzzzzzzzzz Gh

AAAAAAAAA

that corresponds to the ambient process n1[P1] | ... | nh[Ph] | LM1.P1 | ... | LMk .Pk

where, for i = 1, ..., h, Pi is the ambient process that corresponds to ambient graph
Gi. �
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5.2 Productions for Ambient

We now define the productions of our version of the Ambient calculus. There are
two kinds of productions: activity productions, relative to sequential processes, and
coordination productions that edges (corresponding to ambients) perform for or-
chestrating the activity of ambient processes. Intuitively, activity productions cor-
respond to ambient capability, while coordination productions are those productions
that ambient edges must fire in order to permit activity productions to produce the
desired effect.

Definition 5.2.1 (Activity productions) The activity productions have the fol-
lowing form.

x ` LM.P (x)
{(x, M, 〈〉)}
−−−−−−−→> [[ P ]]x (5.1)

where [[ P ]]x = x ` G.
A graphical representation of transition (5.1) is

LM.P
// • +3M

x
G

where, in general, when (x, µ, 〈y〉) ∈ Γ, node x in the right member is labelled by
x, µ.

Activity productions determine the actions that sequential processes are able to
perform. In our approach, sequential processes become edge labels: when an action
is performed, an edge labelled by LM.P is rewritten as the graph corresponding to
P .

The complementary actions to synchronize the activity productions must be
offered by ambients; more precisely, ambients must signal their existence emitting
the complementary actions on their attaching nodes and, in this manner, performing
the correct synchronized steps.

Definition 5.2.2 (Coordination productions) Coordination productions are
detailed below. For every production, we give both the sequent and its graphical
representation. In the latter, the left-hand-side and the right-hand-side of a produc-
tion are drawn in the style of Definition 5.1.1.
Open coordination production

(open)

x, y ` a(x, y)
{(y, open a, 〈〉)}
−−−−−−−−−−→

[y/x]
> y ` nil

•
x

a // •
y

open a

[y/x] +3 •
y
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Input coordination productions

(input1)

x, y ` b(x, y)
{(x, in a, 〈〉), (y, input a, 〈z〉)}
−−−−−−−−−−−−−−−−−→> x, y, z ` b(x, z)

•
y

•
x

in a
b // •

y

input a,z

+3 •
x

b
&&MMMMM

•
z

(input2)

x, y ` a(x, y)
{(y, input a, 〈x〉)}
−−−−−−−−−−−→> x, y ` a(x, y)

•
x

a // •
y

input a,x

+3 •
x

a // •
y

Output coordination productions

(output1)

x, y ` b(x, y)
{(x, out a, 〈〉), (y, output a, 〈z〉)}
−−−−−−−−−−−−−−−−−−−→> x, y, z ` b(x, z)

•
y

•
x

out a
b // •

y

output a,z

+3 •
x

b
&&MMMMM

•
z

(output2)

x, y ` a(x, y)
{(x, output a, 〈y〉)}
−−−−−−−−−−−→> x, y ` a(x, y)

•
x

output a,y
a // •

y
+3 •

x
a // •

y

Coordination productions define the complementary actions that ambients must per-
form in order to synchronize themselves with edges representing sequential processes
(that declare the activity productions).

The (open) production states that if the ambient a has a parallel process that
wants to open it, then the edge corresponding to a disappears and x is fused with
y. Observe how this mechanism permits any edge connected at x “to move” on y;
moreover, this is completely transparent to edges connected at y.

Remark 5.2.1 We point out that fusion substitutions constitute the distinguished
feature of our graphical calculus with respect to [97]. They play an important rôle for
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•
x1

•
x1

b

??�����
a

__?????
a

__?????

◦ ◦
{(x1,τ,〈〉)} // ◦

Lin a.P

??����
LQ

__????

b

??�����

◦

LP

??����
LQ

__????

Figure 5.2: Graph transition

faithfully representing the semantics of the open capability of Ambient. Indeed, the
synchronized hyperedge replacement mechanism proposed in [97] cannot represent
the open capability in a simple way because two existing nodes cannot be coalesced.

Coordinating in actions requires two productions:

• Production (input1) asserts that, if a process inside b wants to drive b in an
ambient a, then the destination of b will become the new node z.

• On the other hand, production (input2) controls the entrance of an external
process in a: this production simply passes the source x of a to the entering
process.

Analogously to the input productions, (output1) and (output2) take care of the
output action. We remark that (output1) acts quite similarly to (input1).

5.3 An Extended Example

As an example we show the correspondence between an Ambient calculus reduction
and the corresponding graph transition. Let us consider the ambient reduction

b[in a.P | Q] | a[0]→ a[b[P | Q]]

where P and Q are sequential processes.
Following Definition 5.1.1 and hypergraph semantics (see Definition 4.3.3,

page 76) we should obtain the transition of Figure 5.2 where the left-hand-side
of the transition represents the ambient process [[ b[in a.P | Q] | a[0] ]]x1, whereas
the right-hand-side is the graph corresponding to [[ a[b[P | Q]] ]]x1.

We apply the inference rules of Table 4.3 in order to construct a proof for tran-
sition in Figure 5.2.
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•
x1

input a, z1 •
x2
input a, z

b

??������
a

__??????

•y1in a • z

• y2in a • y3

Lin a.P

??�����
LQ

__?????

Figure 5.3: Graph decomposition

First (step 1) we decompose the graph in its elementary edges and determine
the productions that correspond to the elementary components of the transition.

x1, y1 ` b(y1, x1)

{
(y1, in a, 〈〉),
(x1, input a, 〈z1〉)

}

−−−−−−−−−−−−−−→
id

> x1, y1, z1 ` b(y1, z1) (5.2)

x2, z ` a(z, x2)
{(x2, input a, 〈z1〉)}
−−−−−−−−−−−−→

id
> x2, z ` a(z, x2) (5.3)

y2 ` Lin a.P (y2)
{(y2, in a, 〈〉)}
−−−−−−−−−→

id
> y2 ` LP (y2) (5.4)

y3 ` LQ(y3)
∅
−→

id
> y3 ` LQ(y3) (5.5)

Transitions (5.2) and (5.3) are instances of the coordination productions (input1)
and (input2), respectively; transition (5.4) is the activity production relative to
in a.P and transition (5.5) is the identity transition that leaves LQ idle.

The graphical representation is given in Figure 5.3. By applying the (par) rule
to the productions (5.2), (5.3), (5.4) and (5.5) we obtain the graph below:

•
x1

input a, z1 •
x2

input a, z •
x1

•
z1

•
x2

b

??�����
a

__?????
b

??�����
a

__?????

•y1in a • z





(y1, in a, 〈〉)
(y2, in a, 〈〉)

(x1, input a, 〈z1〉)
(x2, input a, 〈z〉)





// •y1 • z

• y2in a • y3 •y2 • y3

Lin a.P

??����
LQ

__????

LP

??����
LQ

__????
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in a
• z

{
(x1, input a, 〈z1〉)
(x2, input a, 〈z〉)

}

// •y1 • z

Lin a.P
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LQ

__?????
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??�����
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Figure 5.4: A part of the proof

In terms of sequents we have the transition

Γ ` G1





(x1, input a, 〈z1〉),
(x2, input a, 〈z1〉)
(y1, in a, 〈〉)
(y2, in a, 〈〉)





−−−−−−−−−−−−−−−→
id

> Γ, z1 ` G2 (5.6)

where
G1 = b(y1, x1) | a(z, x2) | Lin a.P (y2) | LQ(y3)
G2 = b(y1, z1) | a(z, x2) | LP (y2) | LQ(y3)
Γ = {x1, x2, y1, y2, y3, z}.

The application of the merge rules (step 2) provides the fusion of the nodes
in order to obtain a graph of the same shape of the ambient process but without
restricted nodes. In Λ there are two pairs of complementary actions over x1, x2 and
y1, y2. Let us first consider action on y1 and y2, we can apply rule (merge2) with
the substitution σ = [y2/y1 ] fuses y2 onto y1. Substitution σ determines ρ = σ and
U = {z1}. We, therefore, obtain the transition

Γ \ y2 ` σG1
Λ1−−−→
id

> {x1, x2, y1, y3, z, z1} ` b(y1, z1) | a(z, x2) | LP (y1) | LQ(y3) (5.7)

where Λ1 = {(x1, input a, 〈z1〉), (x2, input a, 〈z〉), (y1, τ, 〈〉)}. Production 5.7 allows
us to apply (merge1) and to fuse y1 and y3 which yields:

Γ \ {y2, y3} ` σ[y1/y3 ]G1
Λ1−−−→
id

> {x1, x2, y1, z, z1} ` b(y1, z1) | a(z, x2) | LP (y1) | LQ(y1).

Note that ρ = σ and, since y 6∈ n(Λ), ρΛ = Λ. The graphical representation of
the so far computed proof is given in Figure 5.4. By observing that Λ′ has two
complementary actions, we can again apply (merge2) with the fusion σ′ = [x1/x2].
Differently from 5.7, ρ = [x1,z/x2,z1] that is due to the fusion of name z1, exported in
the input a action with z. The resulting sequent is

x1, y1, z `
b(y1, x1) | a(x1, z) |
Lin a.P (y1) | LQ(y1)

{
(x1, τ, 〈〉),
(y1, τ, 〈〉)

}

−−−−−−−−−−−→
[z/z1 ]

> x1, y1, z `
b(y1, z) | a(x1, z) |
LP (y1) | LQ(y1)
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that is graphically represented as

•
x1

•
x1

b

??�����
a

__?????
a

__?????

•y1 • z

{
(x1, τ, 〈〉),
(y1, τ, 〈〉)

}

// • z

Lin a.P

??����
LQ

__????

b

??�����

•y1

LP

??����
LQ

__????

We remark that the above transition requires a synchronization involving three
edges and two nodes: the edges relative to in a.P and b that synchronize on node y1,
and the edges relative to ambients b and a that synchronize on node x1. This makes
clear that the in capability of ambients requires to synchronize three components
(the out capability is analogous).

Finally, two applications of the (res) rule (step 3) are needed in order to restrict
nodes z and y1. This concludes the proof of the transition.

5.4 Semantics Correspondence

The example presented in the previous section applies a general technique that
can be exploited to show how reductions of Ambient terms can be mimicked by
applying graph transition rules of Table 4.3 to productions for Ambient presented
in Section 5.2.

The first result states that each Ambient reduction has a corresponding graph
transition:

Theorem 5.4.1 For all ambient process P ∈ Proc, if P → Q then

[[ P ]]x
Λ
−−→

id
> [[ Q ]]x and either Λ = ∅ or Λ = {(x, τ, 〈〉)}.

Proof. We proceed by induction on the length of the proof of P → Q.
The base cases are the axioms of Table 3.7. Let us first consider the axion for open
prefix that we state below:

open n.P1 | n[P2]→ P1 | P2. (5.8)

The graph corresponding to the left-hand-side of reduction (5.8) is

x ` Lopen n.P1(x) | ν y.(G | n(y, x)) (5.9)
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where G is such that [[ P2 ]]y = y ` G. We proceed, as in Section 5.3, by (i)
decomposing graph (5.9) into its constituent part, (ii) by synchronizing them and,
(iii) by properly restricting nodes.

First, we remark that we can derive transition y ` G
∅
−−→
[y/y ]

> y ` G (by Theo-

rem 4.3.1). Let us consider the arc n(y′, x′), where x 6= x′ and y 6= x′; by definition,

we have the production y′, x′ ` n(y′, x′)
{(x′, open n, 〈〉)}
−−−−−−−−−−→

[x
′

/y′ ]

> x′ ` nil. We can apply rules

(par) and (merge1) to attach graph (5.9) on node and arc n(y′, x′) by fusing y′ and
y.

x′, y′, y ` G | n(y′, x′)
{(x′, open n, 〈〉)}
−−−−−−−−−−−→

[y/y′ ]
> x′, y ` G | n(y, x′) (5.10)

Notice that the application of (merge1) is possible because we have an idle tran-
sition for y ` G, hence, y′ can be substituted for y in G. The right-hand-side of
transition (5.10) corresponds to applying the fusion substitution [y/y′ ] determined
by rule (merge1).

Let us consider the activity production for open that, by definition is:

x ` Lopen n.P1(x)
{(x, open n, 〈〉)}
−−−−−−−−−−−→

[x/x]
> [[ P1 ]]x,

we can again apply the (par) rule to it and to transition (5.10), obtaining the
transition below:

x, x′, y′, y ` G | n(y′, x′) | Lopen n.P1(x)

{
(x, open n, 〈〉),
(x′, open n, 〈〉)

}

−−−−−−−−−−−−−−→
[y/y′ ]

> x, x′, y ` G | n(y, x′) | G′,

(5.11)
where G′ is such that [[ P1 ]]x = x ` G′. Then we apply rule (merge2) for synchro-

nizing the complementary actions in (5.11) which yields the transition:

x, x′, y′, y ` G | n(y′, x) | Lopen n.P1(x)
{(x, τ, 〈〉)}
−−−−−−−−→

[y/y′ ][x/y ]
> x ` [x/y]G | G

′

Notice that step (iii) (i.e. restricting nodes) is not required, because the only
candidate y′ has been substituted for x in the final graph.

We omit the proof for the remaining axioms because they are dealt similarly to
the open reductions. In particular, Section 5.3 shows how to handle reductions of
in actions.

Now we consider the inductive step. If the Ambient reduction is obtained with
a proof whose length is greater that one, then the last rule applied is one of

P → Q

P | R→ Q | R

P → Q

n[P ]→ n[Q]
.
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By inductive hypothesis, we have that [[ P ]]x
Λ
−−→

id
> [[ Q ]]x, where Λ is either empty

or is the singleton {(s, τ, 〈〉)}. Then, by Theorem 4.3.1, we have that we can derive
an idle transition for [[ R ]]x′ (x 6= x′), hence we can use rules (par) and (merge1)
to put the graphs in parallel and fuse nodes x′ and x obtaining the thesis.
If the last rule applied is the rule for a reduction under an ambient n, we proceed
as before. However, after having connected the graph for [[ P ]]y to the ambient
edge n(y, x), we must restrict y. The application of (res) rule causes the (eventual)
silent action in Λ to be removed. �

In general, a graph obtained by translating an ambient process can perform
transitions where the target graphs do not correspond to any Ambient term. The
reason is that graph semantics requires more steps for mimicking ambient reduc-
tion. However, if we restrict our attention to Ambient graphs and basic transitions,
defined below, we can state Theorem 5.4.2 which, in some sense, is the inverse of
Theorem 5.4.1.

Definition 5.4.1 (Basic transition) A transition Γ ` G
Λ
−−→

π
> Γ′ ` G′ is basic if,

and only if,

• π is the identity function on Γ;

• there is a proof of Γ ` G
Λ
−−→

π
> Γ′ ` G′ which uses exactly one instance of either

(open) or (input1) or (output1);

• Λ is either the singleton {(x, τ, 〈〉)} or it is empty.

Theorem 5.4.2 Let P be a term in Proc. If [[ P ]]x
Λ
−−→

π
> Γ ` G is a basic transition,

then either [[ P ]]x = Γ ` G or there is a process Q ∈ Proc such that Γ ` G = [[ Q ]]x
(up to structural equivalence) and P → Q.

Proof. First we observe that, by definition, idle productions are basic, hence if

[[ P ]]x
Λ
−−→

π
> Γ ` G is an idle production, then Γ ` G = [[ P ]]x hence the proof is

trivially proved. Triviality of the previous argument authorizes us to no longer
consider idle productions in the rest of the proof.

Hereafter, the proof proceeds by induction on the structure of P . The basic case
is P ≡M.P . The only transitions that can be derived from [[ P ]]x are activity of co-
ordination productions (that are not basic) or idle productions, hence the statement
of the theorem trivially holds.

Let P be the ambient term n[Q]; by definition [[ P ]]x = ν y.(G|n(y, x)), where
[[ Q ]]y = y ` G and y 6= x. Hence, we can discard all the proofs where coordination
or activity productions of n(y, x) are exploited because they imposes constraints



5.4. SEMANTICS CORRESPONDENCE 95

on x that cannot be removed neither with rule (res) nor with synchronization on
x. The only possibility for deriving a basic transition is from transitions of the
inner graph y ` G. Reasoning as before, we can avoid considering productions that
synchronize G and n(y, x) because, by inspecting productions of n(y, x) this would
impose constraints on x. The only possibility is that y ` G has a basic transition,

say y ` G
Λ
−−→

π
> y ` G′. Since [[ Q ]]y = y ` G, by inductive hypothesis we have that

Q −→ Q′ and [[ Q′ ]]y = y ` G′. Moreover, Ambient semantics allows us to derive the
transition n[Q] −→ n[Q′] (see Section 3.2.2, page 49). The above discussion should
easily convince that the only (kind of) proof that keeps edge n(y, x) idle and “lifts”
the basic transition of G to [[ P ]]x is

...

y ` G
Λ
−−→

π
> y ` G′ x, z ` n(z, x)

∅
−−−−→
[x,z/x,z ]

> x, z ` n(z, x)

(par)
x, y, z ` G|n(z, x)

Λ
−−−−−−→
[x,y,z/x,y,z]

> x, y, z ` G′|n(z, x)

(merge1)
x, y ` G|n(y, x)

Λ
−−−−→
[x,y/x,y]

> x, y ` G′|n(y, x)

(res)

x ` ν y.(G|n(y, x))
Λ′

−−→
[x/x]

> x ` ν y.(G′|n(y, x))

(5.12)

Hence, by definition [[ n[Q] ]]x = x ` ν y.(G′|n(y, x)) which concludes the proof in
this case.

Let us assume that P ≡ P1|P2; by definition [[ P ]]x = x ` G1|G2 where x ` Gi =
[[ Pi ]]x (i = 1, 2). The basic transitions that can be inferred for [[ P ]]x are either the
basic transitions of P1 (or of P2) or the transition obtained by synchronizing P1 and
P2. The former case has a proof completely analogous to the proof of the previous
case. We consider now the latter case. If we have a basic transition whose proof
contains an instance of (open) production that synchronize P1 and P2 then one of
P1, P2 is an ambient process and the other is a process prefixed by action opena. Let
us assume P1 = a[Q1] and P2 = open a.Q2. Hence, by Ambient semantics, we have
that P1|P2 −→ Q1|Q2 that corresponds to the synchronization of the corresponding
graphs that provides the basic transition. The other case are dealt similarly.

The last case is when P is a recursive call; the proof easily follows by the fact
that the translation of P is the unfolding of the recursive call and the inductive
hypothesis. �
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5.5 Remote actions

In order to respect the standard semantics of Ambient calculus, productions for in a
prefix require moving ambients to have a sibling ambient called a. This “neighbor-
hood” condition reflects the reduction rule of the ambient calculus. However, we
can relax such requirement and consider the possibility of having “remote” in a in
the sense that the moving ambient can enter an ambient a that is a sub-ambient of
one of its sibling ambients.

The idea is to add a production (input3 ) that may forward input signals to its
inner ambients

(input3 )

•
z

•
z

•
x

input a, z
b // •

y

input a, z
+3 •

x
b // •

y

x, y ` b(x, y)
{(x, input a, 〈z〉), (y, input a, 〈z1〉)}
−−−−−−−−−−−−−−−−−−−−−−→> x, y, z ` b(x, y).

Production (input3 ) says that if edge b(x, y) receives a request on y for entering
an ambient a, then it propagates the signal to its inner processes (together with the
attaching node provided by the pilot process that issued the in signal). If the signal
will reach an edge a( , ) and such edge will execute with production input2 then
the remote in transition will finish by opportunely connecting edge a( , ) and the
migrating graph (as for the non-remote in actions).

In order to give an intuition of how the remote in works, consider the following
graph:

•
x1

coo •
z

aoo •
u

b

??�����

•y1

Lin a.P

??����
LQ

__????

Using production input3 we may obtain the following graph:

•
x1

coo •
z

aoo •
u

b

OO

•y1

LP

??����
LQ

__????

Finally, we remark that coordination and activity productions for out actions
are very similar. Therefore, similarly to remote in , remote out actions can be states
as well.



Chapter 6

Application Level QoS
Abstract

Modern applications aim at exploiting WAN for purposes that can be con-
sidered “ambitious” if compared to the initial motivation of their deployment.
For instance, multimedia applications are becoming very popular over the
Internet. Programmers would enjoy new paradigm for specifying the “min-
imal level” of bandwidth, reliability, security, etc. that the communication
infrastructure should guarantee in order to have “reasonable” execution envi-
ronment. A formal framework for stating and reasoning on these applications
is desirable as well.

This chapter presents Qlaim that introduces some mechanisms for spec-
ifying and reasoning with Quality of Services (QoS) attribute in WAN ap-
plications. Qlaim is translated in the graphical calculus of Chapter 4; the
translation models routing with path reservation.
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6.1 Specifying Application Level Quality of Ser-

vices

Wide-Area Network (WAN) applications have become one of the most important
class of applications in distributed computing. Currently, Internet and World Wide
Web are the primary environments for designing, developing and distributing appli-
cations. Network services have now evolved into self-contained components which
inter-operate easily with each other by supporting WEB-based access protocols [102].
In addition, network services may adapt themselves to match the particular capa-
bilities of a variety of devices ranging from traditional PCs, to Personal Digital
Assistants and Mobile Phones having intermittent connectivity to the network.

In this new scenario both final users and WAN application designers put special
emphasis on Quality of Service (QoS) issues. Here, QoS is a measure of properties of
applications such as security, performance, bandwidth, transaction support, reliabil-
ity, working cost, etc. In general, QoS attributes are special parameters of network
services. For final users, the perceived QoS of their computations is not only given
by the performance of WEB servers but also by the availability of certain resources
and by the flow of network traffic. Awareness of these information is crucial for
choosing the best network services that match user’s requirements. For instance,
final users can react to phenomena like network congestion by binding their net-
work devices to different sites where the requested services are available. Similarly,
QoS awareness is exploited by WAN application designers to control resource usages
and resource accesses in order to ensure and maintain certain security levels and to
provide users with differentiated QoS’s.

Distributed middlewares and programming languages permit applications to con-
trol network connectivity and resource accesses. A paradigmatic example is provided
by the Java programming language through the socket and the security API’s.
However, existing middlewares and API do not allow a direct control over QoS at-
tributes. Moreover, most research on QoS is system oriented in the sense that it has
its focus on properties of the lower layers of the Internet protocol stack.

We believe that QoS awareness at application level, i.e. application-oriented QoS,
is a key requirement for most of WAN applications and is expected to become the
added-value capability of the emerging evolutionary WAN applications.

At a foundational level, several process calculi have been developed to gain
a more precise understanding of mobility and security. In particular, some
approaches addressed the problem of resources access control for mobile pro-
cesses [59, 93, 95, 30, 42]. These works led to the introduction of suitable type
systems where types specify and fully characterize access control policies. However,
a foundational model for QoS awareness is still missing. Some preliminary results in
this direction can be found in [35]. Notably, Cardelli and Davies introduce a calculus
which incorporates a notion of communication rate (bandwidth) and describe some
programming constructs based on this calculus.
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Our research goal is to contribute at providing a formal understanding of
application-oriented QoS, as a step toward the development of proof techniques and
tools for the automated verification and certification of properties of WAN applica-
tions. We introduce a declarative approach to the specification of QoS attributes
at application level. Here, declarative means that QoS attributes are related to the
abstractions application programmers deal with. Hence, QoS attributes are used to
select and configure the underlying system-oriented QoS mechanisms.

6.2 Klaim and QoS

We have abstracted the basic features of the problem by extending Klaim with
primitives for specifying network connections together with QoS attributes over
them. The main characteristics of Klaim are code mobility and network awareness,
namely, the fact that programmers can explicitly refer localities such that they can
control resource and computation distribution. We consider a variant of Klaim [19]
that provides mechanisms to program dynamic changes of network connectivity.
Hence, peer groups take the form of graphs with dynamically evolving edges.

Albeit localities are first class citizens in Klaim, they are used at a very high
level of abstraction. For instance, a process allocated on a site s can access the tuple
space at s′ by simply naming s′ in a remote action. In a more realistic setting, this
is not always the case: s and s′ are connected by a path of (eventually) intermediate
sites and an edge of this path can be (momentarily) out of order or can be as
congested as being considered not viable.

In order to overcome this modeling issues, Klaim has been extended with fea-
tures that allow explicit declaration of links connecting sites of a net; interaction
between two sites need that a path of those links connects the sites [19]. One of
our contribution is that we further extend the calculus presented in [19] with the
definition of a calculus for application-oriented QoS. To this purpose, Klaim net-
working constructs [19] are extended with attributes which are used to specify the
QoS properties of network links. This QoS attributes can be thought of as being
simply a value specifying the abstract cost of using a given link.

Example 6.2.1 An instance of abstract cost can be a pair 〈c, δ〉 that specifies the
set δ of access rights (in the sense of [59]) of using the link. More generally, an
abstract cost can be a vector whose components represent different aspects of net-
work connectivity such as bandwidth, working cost, latency, length, reliability, and
security.

Links are parameterized with respect to a set of values, ranged over by κ. Such
values are used to specify the features of a network link. We also assume existence of
a binary operation ⊕ that permits composing cost values. Of course, the definition
of the operation ⊕ depends on the form chosen for κ.
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Nets: N ::= ... As for Klaim

| s ::I OP Single site
Coordinators: P ::= 0 Empty process

| out(t) Tuple
| γ.P Action prefixing
| P1 | P2 Parallel composition

| A〈˜̀, ẽ〉 Coordinator Invocation

Coordinator operations: γ ::= ... Klaim action (without new)
| new(u,P) Site creation
| login(`, κ) Connection request
| accept(u, κ) Connection acceptance
| logout(`, κ) Dis-connection (by client)
| disc(()`, κ) Dis-connection (by server)

Table 6.1: Qlaim Syntax

Example 6.2.2 If we consider κ = 〈c, δ〉 as done in Example 6.2.1, then we could
define:

〈c1, δ1〉 ⊕ 〈c2, δ2〉 = 〈c1 + c2, δ1 ∩ δ2〉

We will refer to this extension of Klaim as Qlaim. Next sections presents
syntax and semantics of Qlaim.

6.2.1 Qlaim syntax

The syntax of Qlaim dialect is a slight variation of the syntax of Klaim introduced
in 3.3.1. The calculus introduces the concept of coordinator processes, ranged over
by P, that can be thought of as a network operating system residing on the sites
of the net. Conversely, Klaim processes can be thought of as the user programs
that may invoke system calls in the site. We will call standard processes the Klaim

processes that do not contain new actions: Indeed, we will allow only coordinator
processes to create new sites. Standard processes will still be ranged over by P .

Coordinators are special processes that cannot migrate (indeed, they cannot be
used as an arguments of eval). They are installed at a site either when the site is
initially configured or when the site is dynamically created by performing new(u,P).
As usual, we assume that each coordinator identifier A has an associated defining
equation A(ũ, x̃)

def
= P.

Table 6.1 lists productions for Qlaim. As for Klaim, a net is the parallel
composition of sites. However, differently from Qlaim, a site is equipped with two
new components: I is the set of links entering in s, and O is the set of links exiting
from s. Elements from I and O are pairs of the form 〈s, κ〉, where s is a site and
κ is a cost. For I to be well formed, we require that if 〈s1, κ1〉 and 〈s2, κ2〉 belong
to I, then it must either be s1 6= s2 or κ1 6= κ2. For a net N to be well-formed we
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require that for any pair of its sites s1 ::I1 O1P1 and s2 ::I2 O2P2, if 〈s2, κ〉 ∈ O1 (for
any κ) then 〈s1, κ〉 ∈ I2.

Given s ::I OP, if 〈s′, κ〉 ∈ I (〈s′, κ〉 ∈ O respectively) then κ specifies the
features of the the link connecting s′ to s (s to s′, respectively). We also say that s
is a gateway for sites that occur in I, while sites that occur in O are gateways for s.

Observation 6.2.1 In general, a site can have more than one gateway that have
different costs. Qlaim permits more connection between two sites too because sets
I and O can contain pairs 〈s, κ〉 or 〈s, κ′〉.

Gateways may be thought of as being the nodes of a path connecting two sites,
therefore, if s2 is a gateway for s1 and s3 is a gateway for s2, then s3 is a gateway for
s1 too. Gateways are essential for processes to be able to perform remote operations
because a remote operation can be performed only if there exists a path of gateways
from the site where it runs to the target site of the operation. Any Qlaim site plays
a twofold rôle: i) It is a computational environment hosting processes and tuple
spaces and ii) a site act as gateway for other sites of the net. Moreover, sites can
act both as clients (belonging to a specific subnet) and as servers (taking in charge
of, possibly private, subnets).

Coordinator processes can perform five new action in addition to the stan-
dard process Klaim operations. These new actions are new(u,P), login(`, κ),
accept(u, κ), logout(`, κ) and disc(()`, κ); all of them are oriented to model dy-
namic changes of the network topology (creation of new sites, creation and removal
of links). Notice that all these operations are not indexed with a locality, since
they always act locally at the site where they are executed. Note that coordination
processes can also be the parallel composition of many processes.

6.2.2 Qlaim semantics

The operational semantics of the language is defined by a standard labelled transition
system. The semantics is given in terms of a transition relation, �

κ
−→, that describes

possible net evolutions and the relative abstract cost κ (when κ is missing, the
operation is local). Relation �

κ
−→ relies on

• a labelled transition
a
−−→
s, κ
>, that describes both process intentions to perform

specific operations and the availability of resources (tuples and sites) in the
net. Site s indicates the (last) gateway that made the operation possible, κ
represents the cost of the operation and label a represents either a tuple, or a
site, or the intended operation. Table 6.2 below collects the inference rules for
the transition

a
−−→
s, κ
>,

• a labelled relation
a
−−→>, that accounts for the intention of coordinators to

perform one coordination operation. Label a is of the form a(u1, arg, u2),
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where a denotes the operation, u1 is the site performing it, u2 is the target site
and arg is the argument of a. For instance, r(s1, T, s2) represents read(T )@s2

performed from s1. Rules defining
a
−−→> are given in Table 6.3.

We now briefly comment on the rules in Tables 6.2, 6.3 and 6.4.

Axioms (Tuple), (Site), (Eval), (In) and (Read) use the execution site s of
the process as first gateway with cost > that is the null cost. More formally, we
assume that κ⊕> = κ = >⊕ κ.

Rules (Tuple) and (Site) respectively signal the presence of tuple t or site
s ::IO P in the net. Rules (Eval) says that process eval(P )@s′.P running at s is
willing to spawn process P for execution at s′. Notice that P is a standard process.
Similarly, (In) and (Read) says that input read prefixes of processes located at s
are willing to access the tuple space located at s′ (for removing and reading template
T , respectively). Rule (Env) implements the mechanism we have sketched before:
When performing a remote operation a that uses s1 as (last) gateway, a gateway
s2 for s1 can be used provided that s2 can act as gateway for s1. Notice that only
transitions with labels of the form a(−,−,−) can use a site different from the one
performing the operation as a gateway. Last tree rules of Table 6.2 are analogous to
the rules for Klaim in Table 3.11 and in Table 3.12. In Table 6.2 we have omitted
symmetric rules of (PrComp) (NetComp) and (Env).

Table 6.3 specifies the transition rules for coordinator prefixes listed in Table 6.1.
Axiom (Login) says that login(s2, κ) logs the executing site s1 in s2 whose features
are specified by κ. The effect of the transition is to add the pair 〈s, κ〉 to the out-
going gateways set O of s.
Axiom (Logout) says that logout(s2, κ) disconnects the gateway κ connecting s1

and s2; as a consequence, 〈s2,−〉 is removed from the O-component of site s1.
Action accept is the complementary action of login and rule (Accept) says that,
for a login(s1, κ

′) executed at s2 to succeed, at s1 there must be a coordinator of
the form accept(u, κ).P′. The premise κ |= κ′ gives an early semantics flavour to
the rule: Intuitively, it means that accept authorizes the establishment of a link
with features given by κ′ that do not exceed the specified cost κ. As a consequence
of this synchronization, 〈s1, κ〉 is added to the I-component of sites s2.
Rule (Disconnect) is similar to (Logout), but in this case the disconnection is
required by the site acting as gateway and involve the I-component of site s.
Rule (Newloc) says that new(u,P) aims at creating a new site, s2, in the net
and binds it to u. Process P is the coordinator of the newly created site. Site s2

can be considered as a “private” site that can be accessed by other sites only if s1

communicates the value of variable u, which is the only way to access the fresh site.
Predicate s2 6∈ s1 ::IO P | P′ means that: s2 6= s1, 〈s2, κ〉 6∈ I ∪O for any κ or l, and
s2 does not syntactically occurs in P and P′ (predicate s 6∈ N1 ‖ N2 has a similar
meaning). Notice that a new prefix does not automatically logs the new site in the
generating one. This can be done by installing a coordinator in the new site that
performs a login.



6.2. KLAIM AND QOS 103

s ::IO out(t)
t@s
−−−→

s,>
> s ::IO 0 (Tuple)

s ::IO P
s ::IO

P
−−−−−→

s,>
> 0 (Site)

s ::IO eval(P )@s′.P
e(s, P, s′)
−−−−−−→

s,>
> s ::IO P (Eval)

s ::IO in(T )@s′.P
i(s, T, s′)
−−−−−−→

s,>
> s ::IO P (In)

s ::IO read(T )@s′.P
r(s, T, s′)
−−−−−−→

s,>
> s ::IO P (Read)

N1
a(s,−, s′)
−−−−−−→

s1, κ
> N ′

1 N2
s2 ::I,〈s1,κ1〉O P

−−−−−−−−−−→
s2,>

> N ′
2

N1 ‖ N2
a(s,−, s′)
−−−−−−→

s2, κ ⊗ κ1

> N ′
1 ‖ N

′
2 ‖ s2 ::I,〈s1,κ1〉O P

(Env)

s ::IO
P1

a
−−→
s, κ
> s ::IO

P
′
1

bn(a) ∩ fn(P2) = ∅
s ::IO

P1|P2
a
−−→
s, κ
> s ::IO

P
′
1|P2

(PrComp)

s ::IO
P[

˜̀,ṽ/ũ,x̃]
a
−−→
s, κ
> N

s ::IO A〈˜̀, ṽ〉 a
−−→
s, κ
> N

A(ũ, x̃)
def
= P (PrDef)

N1
a
−−→
s, κ
> N ′

1

bn(a) ∩ fn(N2) = ∅
N1 ‖ N2

a
−−→
s, κ
> N ′

1 ‖ N2

(NetComp)

Table 6.2: Process Semantics
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s1 ::IO login(s2, κ).P
lin(s1, κ, s2)
−−−−−−−−→> s1 ::IO,〈s2,κ〉 P (Login)

s1 ::IO,〈s2,κ〉 logout(s2, κ).P
lout(s1, κ, s2)
−−−−−−−−−→> s1 ::IO P (Logout)

κ |= κ′

s1 ::IO accept(u, κ).P
acc(s1, κ′, s2)
−−−−−−−−−→> s1 ::I,〈s2,κ′〉O

P[s2/u]
(Accept)

s1 ::I,〈s2,κ〉O disc(()s2, κ).P
dis(s1, κ, s2)
−−−−−−−−−→> s1 ::IO P (Disconnect)

s2 6∈ s1 ::IO
P|P′

s1 ::IO new(u,P).P′ n(s1, P, s2)
−−−−−−−−→> s1 ::IO

P
′[s2/u]

(Newloc)

s1 ::IO
P1

a
−−→> s1 ::I

′O′

P
′
1 a 6= n(s1,P, s2)

s1 ::IO
P1|P2

a
−−→> s1 ::I

′O′

P
′
1|P2

(Comp1)

N1
a
−−→> N ′

1 a 6= n(s1,P, s2)

N1 ‖ N2
a
−−→> N ′

1 ‖ N2

(Comp2)

s1 ::IO
P1

n(s1, P, s2)
−−−−−−−−→> s1 ::IO

P
′
1 s2 6∈ P2

s1 ::IO
P1|P2

n(s1, P, s2)
−−−−−−−−→> s1 ::IO

P
′
1|P2

(CompNew1)

N1
n(s1, P, s2)
−−−−−−−−→> N ′

1 s2 6∈ N1 ‖ N2

N1 ‖ N2
n(s1, P, s2)
−−−−−−−−→> N ′

1 ‖ N2

(CompNew2)

Table 6.3: Coordinator Semantics
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The rest of the rules in Table 6.3 account for process composition and net composi-
tion, and differentiate the case when the set of sites in the net does not change from
the case when the set is increased (due to the creation of a new site). In particular,
rules (CompNew1) and (CompNew2), ensure that the site s2 of the new site is
actually fresh. Rules (Comp1), (Comp2), (CompNew1) and (CompNew2) have
symmetric counterparts that have been omitted.

In Table 6.4 rule for network evolution are given.
Rule (NC) synchronizes login and accept actions on sites s1 and s2, respectively.
Note that s1 and s2 agree on the cost κ that is assigned to the common link.
When a coordinator process issues a logout action from site s1 toward a remote site
s2, (NDC) removes the item corresponding to the link from the I-component of s2.
Remember that (Logout) symmetrically updates the O-component of s1.
(NDS) is similar and updates the I-component of s2 when a disc( )is performed at
s1.
Rule (NNew) is a simple lifting of rule (Newloc) to the network level. As stated
above, the new site s2 is added to the net. Initially, it has no gateways and only
coordinator process P is running at s2.
Rule (NEv) says that the eval operation can take place only if the target site is
present. The condition κ |= e imposes cost κ enables the operation eval.

Observation 6.2.2 The definition of κ |= a depends on the form chosen for values
κ. For instance, if κ = 〈c, δ〉, where δ is a set of access rights one for each kind
of enabled operation, then we could define 〈c, δ〉 |= a if, and only if, a ∈ δ. Notice
that, coordination operations are always local, have no assigned cost and are always
enabled.

Finally, rules (NIn) and (NRead) behaves in a similar way. An input (read) action
from s1 at s2 requires that a tuple t matching template T is present at s2; notice
that κ must encompass action i (r). In the continuation net, formal variables of
T are replaced with the corresponding valued of t. We remark that for the input
prefix the continuation is N2[

t/T ] that, according to rule (tuple) cancels tuple t
from the tuple space of s2; while the continuation net for the (NRead) is N ′

1[
t/T ]

that corresponds to the net where t is not removed from s2.

The labelled transition system semantics has the main drawback that it does not
control and does not properly permit reasoning about QoS requirements. In partic-
ular, given a net N the operational semantics determines all the possible evolutions
for all possible costs. In other words, it does not provide any formal mechanisms to
pick up automatically the evolution having the minimal cost: the evolution which
ensures the optimal QoS. In next section, we map Qlaim on the graphical calculus
presented in 4.2; the mapping ensures that remote actions will always be “routed”
on the minimal cost path.
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N1
lin(s1, κ, s2)
−−−−−−−−→> N ′

1 N2
acc(s2, κ, s1)
−−−−−−−−−→> N ′

2

N1 ‖ N2 �−→ N ′
1 ‖ N

′
2

(NC)

N1
lout(s1, κ, s2)
−−−−−−−−−→> N ′

1 N2
s2 ::I,〈s1,κ〉O

P

−−−−−−−−−→
s2,>

> N ′
2

N1 ‖ N2 �−→ N ′
1 ‖ N

′
2 ‖ s2 ::IO

P

(NDC)

N1
dis(s1, κ, s2)
−−−−−−−−−→> N ′

1 N2
s2 ::IO,〈s1,κ〉

P

−−−−−−−−−→
s2,>

> N ′
2

N1 ‖ N2 �−→ N ′
1 ‖ N

′
2 ‖ s2 ::IO

P

(NDS)

N1
n(s1, P, s2)
−−−−−−−−→> N2

N1 �−→ N2 ‖ s2 ::∅∅ P

(NNew)

N1
e(s1, P, s2)
−−−−−−−→

s2, κ
> N ′

1 N ′
1

s2 ::IO
P

−−−−−−→
s2,>

> N2 κ |= e

N1 �
κ
−→ N2 ‖ s2 ::IO P |P

(NEv)

N1
t@s2−−−−→
s2, κ

> N ′
1 N ′

1

i(s1, T, s2)
−−−−−−−→

s2,>
> N2 match(T, t) κ |= i

N1 �
κ
−→ N2[

t/T ]

(NIn)

N1
t@s2−−−−→
s2, κ

> N ′
1 N ′

1

r(s1, T, s2)
−−−−−−−→

s2,>
> N2 match(T, t) κ |= r

N1 �
κ
−→ N ′

1[
t/T ]

(NRead)

Table 6.4: Net Semantics
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6.3 A Hypergraphs semantics for Qlaim

In this section, by exploiting the graphical calculus, we define an alternative seman-
tics for Qlaim which takes care of QoS attributes. We first present a translation
scheme from Qlaim nets and processes to the graphical calculus, then we present
the productions that each hyperedge uses in the translation. In the rest of the chap-
ter, we shall use the following notations. If Γ1 ` G1 and Γ2 ` G2 are two judgments,
then Γ1 ` G1 ⊗ Γ2 ` G2 denotes the judgment Γ1 ∪ Γ2 ` G1 | G2.

6.3.1 Qlaim translation

The mapping function [[ ]] associates a hypergraph to a Qlaim net. We assume that
processes appearing in the net are closed, i.e. all variable appearing in process terms
are under the scope of a binder. It is defined by induction on the syntactical structure
of Qlaim nets. The most important case is the translation of a Qlaim site: Let
s ::I OP be a site where O = {〈s1, κ1〉, ..., 〈sn, κn〉} and I = {〈s′1, κ

′
1〉, ..., 〈s

′
m, κ

′
m〉}

then we let Γ = {s, s1, ..., sn, s
′
1, ..., s

′
m} and let ~x be a vector whose length is n and

whose elements are pairwise distinct. Hereafter, we will write ~x in place of x1, ..., xn.

[[ s ::I OP ]] = Γ ` (ν ~x, p, r)([[ P ]]p | ∆n(~x, r) |
n∏

i=1

Gκi
si

(xi, si) | Ss(p, r, s)) (6.1)

The hypergraph associated to s ::I OP contains an edge Ss(p, r, s) representing
site s. The remaining nodes, p and r, are used for synchronizing Ss with local
processes (that are connected to p) and the router edge of s (that is connected to
r). The hypergraph representing process P allocated at s is connected to Ss on
the node p, while router edge of s, ∆n, is connected to Ss through node r. The
hypergraph in (6.1) also contains a node xi for each outgoing gateway in O. Those
nodes are part of the interface of edge ∆n and are used to connect gateway edges
Gκi

si
(xi, si). A graphical representation is given in Figure 6.1. In some sense, site s is

represented by edge Ss(p, r, s) that interfaces incoming gateways, process executed
at s and gateways departing from s. The dotted tentacles in Figure 6.1 aim at
remarking that the hyperedges G

κj
s ’s, corresponding to gateways entering in s, are

not connected to nodes s′j , but to a restricted node where routing edge of s′j is
connected.

Parallel composition of nets and empty net are trivially translated according to
the following equations.

[[ N1 ‖ N2 ]] = [[ N1 ]] ⊗ [[ N2 ]]

[[ 0 ]] = ∅ ` nil

Net N1 ‖ N2 is mapped to a hypergraph obtained by juxtaposing the hypergraphs
of the constituent nets, N1 and N2; whereas, the empty net is mapped to the empty
hypergraph, as formally defined below.
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Figure 6.1: Graphs for Qlaim sites

The mapping for processes is described by the equations below:

[[ 0 ]]p = nil

[[ out(t) ]]p = Lout(t)(p)

[[ γ.P ]]p = Lγ.P(p), if γ 6= login(s, κ)

[[ login(s, κ).P ]]p = λlogin(s,κ).P(s, p)

[[ P1 | P2 ]]p = [[ P1 ]]p | [[ P2 ]]p

[[ A〈˜̀, ṽ〉 ]]p = [[ P[
˜̀,ṽ/ũ,x̃] ]]p, if A(ũ, x̃)

def
= P.

The hypergraph of a process P has an outgoing tentacle toward its execution site.
The hypergraph relative to the empty process simply is the empty graph; tuple
processes and non-login action prefixing are mapped to edges attached to p and
labelled with the process. A particular attention is necessary for login prefix because
it needs to be connected to nodes p and s through an edge that will make login
action to synchronize with an eventual corresponding accept action performed at
s. The parallel processes are mapped to the union of the hypergraphs of their
parallel components; finally, process invocations are translated with the unfolding
of the definition where formal parameters are substituted with the actual ones. The
translation for normal processes is analogous and, therefore, omitted.
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6.3.2 Productions (no path reservation)

As anticipated above, hypergraphs allows path reservation. However, we prefer to
introduce first productions which does not consider path reservation, but are more
strictly related to Qlaim semantics and, later on, we show how a path can be
reserved and traversed.

As done for the translation of Ambient presented in Section 5.1, we distinguish
between activity and coordination productions.

Coordination productions for Qlaim are more sophisticated than coordination
production for Ambient. Essentially, it is necessary to coordinate sites, gateways,
processes and router edges in order to detect the best path connecting two nodes.
Moreover, Qlaim also specifies a sophisticated mechanism for data exchanging. In-
deed, after the discover of a path toward the tuple space that must be accessed,
it is necessary to “find” the matching tuple. For this reasons, we separate the
presentation of activity and coordination productions in different sections. Sec-
tion 6.3.3 describes the activity productions necessary for executing Qlaim actions;
Section 6.3.4, Section 6.3.5 and Section 6.3.6 respectively report coordination pro-
ductions for Qlaim specific actions, for router edges and for gateway edges.

6.3.3 Qlaim activity productions

Activity productions for Qlaim regard the actions for accessing tuple spaces or for
spawning remote processes.

All actions that refer a (possibly) remote site require an initial common phase:
The search of a path of gateways to the destination node. Let a be one of the action
in(T ), read(T ) or eval(Q):

p ` La@s.P(p)
{(p, aa s, 〈〉)}
−−−−−−−−−−→> p ` La@s.P(p), (6.2)

where aa =





in, if a = in(T )
rd, if a = read(T )
ev, if a = eval(Q)

Production (6.2) states that an edge corresponding to (possibly) remote actions
emits on its interface node p a signal which corresponds to the action a and moves
in a state (La@s.P) where the cost of a path to the remote node s is waited. When
an effective cost κ 6=∞ is obtained, the action is effectively “executed”:

p ` La@s.P(p)
{(p, s κ, 〈z〉)}
−−−−−−−−−−→> p, z ` H (6.3)

where H is a graph that depends on a. If a = eval(Q) then H = [[ P ]]p | [[ Q ]]z,
namely the graph that corresponds to the continuation of the eval action continues
its execution at p, while the graph corresponding to Q is attached to the remote
node z which corresponds to the “p-node” of the remote site s.
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The cases a = in(T ) or a = read(T ) are more complex, indeed H is the edge

L̂a@s.P(p, z) and new productions must be given to deal with tuple exchanging. The

edge L̂in(T )@s.P(p, z) synchronizes with an output process (running at z). Once a
tuple t that matches T is collected, it is “forwarded” to the process on p waiting for
it

p, z ` L̂in(T )@s.P(p, z)
{(z, in lT , 〈ηt〉)}
−−−−−−−−−−−−→> p, z, ηt ` [[ P[t/T ] ]]p.

Action lT depends on template T and is defined as follows:

T v s !x !u F, T ′

lT v s v ∈ Val s ∈ S lF , lT ′
.

This corresponds to Qlaim tuple matching thanks to the definition of lT (in the
cases !x and !u). For read(T ) prefix, we have similar productions: It is sufficient to
replace in with read, in lT with rd lT and in s with rd s in the above productions.

The edge for an output process waits on its node for a synchronization action of
an input or read action. It is necessary to consider site names that appear inside
output tuples because they correspond to nodes in the graph that could be possibly
extruded. Given a tuple t, we let ηt be the set of site names occurring as fields of t:

p ` Lout(t)(p)
{(p, rd t, 〈ηt〉)}
−−−−−−−−−−−→> p ` Lout(t)(p), (6.4)

p ` Lout(t)(p)
{(p, in t, 〈ηt〉)}
−−−−−−−−−−−→> p ` nil. (6.5)

Production (6.4) synchronizes with read actions, indeed the continuation of the production
still contain the output process. Production (6.5) deals with input actions. Note that the
continuation does not anymore contain the output process.

In the production (6.3) relative to edge La@s.P, if no path of gateways exists between
(the site relative to) p and s then the execution gets stuck because no other transition can
be derived.

An edge corresponding to newloc(u, P′).P performs a silent action and becomes a
graph obtained by putting side by side the graph of a new site with P′ as coordinator and
the graph of the continuation P.

p ` Lnewloc(u,P′).P(p)
{(p, τ, 〈〉)}
−−−−−−−→> p ` (ν s).([[ P[s/u] ]]p | [[ P′ ]]s),

where s 6∈ {p} ∪ fn(P, P′)1.

A different “scheme” is adopted for productions of coordinator process actions that
are used for managing the network topology and, as stated before, are all local actions. In
general, this productions synchronize with their site edge and demand to it the effective
topology change. Once the request has been satisfied, an “acknowlegde” message makes
the continuation process of the action to be activated.

1Note that, initially, no gateway connection is present between s and p.
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Productions for login/accept actions set a gateway edge. The following productions
state that the login edge first asks for the creation of a new gateway to s (label ng) with
cost κ and then it waits for the gateway-connected signal (label gc) from its site edge

p, s ` λlogin(s,κ).P(p, s)
{(p, ng κ, 〈s〉)}
−−−−−−−−−−−→> p, s, x ` λ′

login(s,κ).P(x, p, s) (6.6)

p, s, x ` λ′
login(s,κ).P(x, p, s)

{(p, gc, 〈〉)}
−−−−−−−−−→> x, p, s ` [[ P ]]p. (6.7)

Notice that λlogin(s,κ).P synchronizes on node p only. In other words, it interact only with
its site edge.

Production for accept acts similarly to the production for login: The site node is
asked to accept login connections coming from s (provided that the cost is κ):

p ` Laccept(s,κ).P(p)
{(p, s acc κ, 〈〉)}
−−−−−−−−−−−→> p ` L′

accept(s,κ).P(p)

p ` L′
accept(s,κ).P(p)

(p, gc 〈〉)
−−−−−−→> p ` [[ P ]]p.

Then, as for login, once the gateway has been connected, it receives from its site edge
the continuation signal (label gc).

Let a be either logout(s, κ) or disc(()s, κ); the productions below signal to their site
edges the request for removing the gateway with cost κ that connects the local site to s
and wait for the continuation signal gr:

p ` La.P(p)
{(p, s det κ, 〈〉)}
−−−−−−−−−−−→> p ` L′

a.P(p)

p ` L′
a.P(p).

{(p, gr, 〈〉)}
−−−−−−−−→> p ` [[ P ]]p.

6.3.4 Coordinating Qlaim actions

This section details the productions necessary for making site edges to coordinate re-
quests of actions from their local processes. Hereafter we let a be an element of the set
{in, rd, ev}.

We start with the simplest case: If a process wants to access the local tuple space,
or spawn a process on the local site, then there is no need for starting a routing search.
In this case, the site edge can immediately reply to the process with a path that has the
minimal cost. The following two productions formalize what informally stated:

p, r, s ` Ss(p, r, s)
{(p, a s, 〈〉)}
−−−−−−−−−→> p, r, s ` Ss(p, r, s) (6.8)

p, r, s ` Ss(p, r, s)
{(p, s >, 〈p〉)}
−−−−−−−−−−→> p, r, s ` Ss(p, r, s). (6.9)

When (production (6.8)) the site edge recognizes that a local process wants to locally
perform an action it moves in a state where (production (6.9)) it replies with the trivial
cost-less path.
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Observation 6.3.1 This mechanism presupposes that processes can always access their
local tuple spaces and spawn processes on their local execution site. Of course, this is
arbitrary and other choices can be adopted. For instance, we can give productions that
allows processes to access the local site only if some access control policy is satisfied.

When a process must perform a remote action, the site edge intermediates between
the process and router edges. Let us consider the following productions:

p, r, s ` Ss(p, r, s)
{(p, a s′, 〈〉), (r, s a s′, 〈〉)}
−−−−−−−−−−−−−−−−−−→> p, r, s ` S

sas′
(p, r, s)

p, r, s ` S
sas′

(p, r, s)
{(r, s′ κ, 〈z〉), (p, s′ κ, 〈z〉)}
−−−−−−−−−−−−−−−−−→> p, r, s, z ` Ss(p, r, s);

the first production states that the request for a remote site s′ 6= s is forwarded to the
router edge. Then the site edge waits for the answer of the router edge (on node r) and
forward it to the waiting process. However it must be considered the possibility of cycles
in the topology of the net. Therefore the intermediate state of the site edge S

sas′
replies

with an infinite cost to all requests for a path to s′ for action a executed at s which are
detected at node s. The following productions act as described:

p, r, s ` S
sas′

(p, r, s)
{(s, s a s′, 〈〉)}
−−−−−−−−−−→> p, r, s ` Ssas′(p, r, s)

p, r, s ` Ssas′(p, r, s)
{(s, s′ ∞, 〈〉)}
−−−−−−−−−→> p, r, s ` S

sas′
(p, r, s).

Some care is necessary for handling the case when no finite-cost path is found. The
problem is that, the site edge must not be blocked but, as prescribed by the Qlaim

semantics, the process that issued the request gets stuck:

p, r, s ` S
sas′

(p, r, s)
{(r, s′ ∞, 〈〉)}
−−−−−−−−−−→> p, r, s ` Ss(p, r, s).

In other words, detection of infinite-cost path to a node makes the site edge to return in
its initial state, while the process asking for the gateway path keeps waiting.

Finally, the last coordination production relative to site edges are those productions
regarding action of coordination processes. Let us first consider the productions that
synchronize with login edges. The establishment of a gateway takes place in two steps.
The first step is devoted to synchronize the ng κ request of the login edge and the second
synchronize the remote site edge, the (local) router edge and the waiting login edge (see
productions (6.6) and (6.7), page 111):

p, r, s ` Ss(p, r, s)
{(p, ng κ, 〈x〉))}
−−−−−−−−−−−→> p, r, s, x ` Ŝs(p, r, s, y)

p, r, s ` Ŝs(p, r, s, y)
{(y, s lin κ, 〈x〉), (r, ng, 〈x〉), (p, gc, 〈〉)}
−−−−−−−−−−−−−−−−−−−−−−−−−−→> p, r, s, x ` Ss(p, r, s)

Notice that, in the second production, the site edge synchronizes contemporary with all
the edges of its interfaces.
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Symmetrically, when a site receives both a message from one of its processes for ac-
cepting a gateway from a remote site s′ having cost κ and a message on s from s′ asking
for creating a gateway, then it simply has to signal to the accept edge that the gateway
has been created:

p, r, s ` Ss(p, r, s)
{(p, s′ acc κ, 〈〉), (s, s′ lin κ, 〈〉)}
−−−−−−−−−−−−−−−−−−−−−→> p, r, s ` S

′
s(p, r, s)

p, r, s ` S
′
s(p, r, s)

{(p, ng, 〈〉)}
−−−−−−−−−→> p, r, s ` Ss(p, r, s)

If a site edge receives a logout signal from one of its local processes, it forwards the
message to the router edge in order to make the corresponding gateway to be detached.

p, r, s ` Ss(p, r, s)
{(p, s′ det κ, 〈〉), (r, s′ det κ, 〈〉)}
−−−−−−−−−−−−−−−−−−−−−−→> p, r, s ` Ss(p, r, s)

Once the router edge has disconnected the gateway, a “gateway-removed” (gr) signal will
be sent (on node r) to the site edge that would provide to forward it to the waiting disc(
)edge.

p, r, s ` Ss(p, r, s)
{(r, gr, 〈〉), (p, gr, 〈〉)}
−−−−−−−−−−−−−−−→> p, r, s ` Ss(p, r, s)

6.3.5 Routing productions

A Router edge ∆ is connected to each node representing a Qlaim site (through edge S).
A gateway 〈s′, κ〉, from s to s′, is connected to the routing edge of s and reaches s′. A
router edge ∆n(~x, r) has an outgoing tentacle entering a node r and n tentacles where
the gateways departing from s are connected to. Intuitively, router edges have the rôle
of determining the optimal path of remote operations with respect to the QoS attributes
specified by Qlaim networking constructs. Searching the optimal path is a distributed
operation and each router edge receives from its neighbors the current information about
the optimal paths. A router edge ∆n(~x, r) receives the result of the search of the optimal
path with respect to the QoS attributes at x1,..., xn. Then, it selects one tentacle among
those that return the “minimal” cost and propagates the result to r.

Basically, the productions of the router edge provide a declarative specification of the
standard distance vector algorithm which computes the optimal route inside a network.
Indeed, the productions specify the constraints and the selection of the productions to
compute the optimal path requires the solution of a distributed constraint solving algo-
rithm. We refer to [136] for a detailed description of the relationships between graph
rewriting systems and constraint solving algorithms.

We now present the productions which detail the behaviour of router edges. The first
production forwards to gateway edges the requests received from the site:

r, ~x ` ∆n(~x, r)
{(r, s a s′, 〈〉), (x1, s a s′, 〈〉), ..., (xn, s a s′, 〈〉)}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→> r, ~x ` ∆sas′

n (~x, r).
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This production states that ∆n(~x, r) receives on r a signal for a connection from s to
s′ with respect to an action a. The router edge forwards the signal along its tentacles
x1, ..., xn and evolves in the state ∆sas′

n that waits for results of the activated searches:

r, ~x ` ∆sas′
n (~x, r)





(x1, s′ κ1, 〈u1〉),
...,

(xn, s′ κn, 〈un〉),

(r, s′ κh, 〈uh〉)





−−−−−−−−−−−−−−−−→> r, ~x, ~u ` ∆n(~x, r), (6.10)

where κh = min{κ1, ..., κn} and ~u = u1, ..., un. ∆sas′
n receives the results along its

incoming tentacles, and computes the optimal cost (κh). Then, it forwards node uh to r
and restarts from the initial state ∆n(~x, r).

The router edge can receive a ”new-gateway” request (ng) from its site edge. In this
case it creates a private node x that is fused with the node offered by the complementary
production,

r, ~x ` ∆n(~x, r)
{(r, ng, 〈y〉)}
−−−−−−−−−→> r, ~x, y ` ∆n+1(~x, y, r).

Node y is used as the node where a tentacle of ∆n and the gateway are connected.

If a site edge receives a detach signal from one of its local processes, it forwards the
message to the router edge that, further forwards the message to its gateways:

~x, r ` ∆n(~x, r)
{(r, s det κ, 〈〉), (x1, s det κ, 〈〉), ..., (xn, s det κ, 〈〉)}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→> ~x, r ` ∆′

n(~x, r)

The router edge must wait for the gateway to s with cost κ to reply its disconnection
from s so that the completion of the detaching operation can be back forwarded to the
process that triggered it. This behaviour is specified by the following production:

~x, r ` ∆′
n(~x, r)

{(x1, nodet, 〈〉), ..., (xi, gr , 〈〉), ..., (xn, nodet, 〈〉), (r, gr, 〈〉)}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→> ~z, r ` ∆n−1(~z, r)

(where ~z = x1, ..., xi−1, xi+1, ..., xn).

6.3.6 Gateway productions

Whenever a gateway Gκ
s (x, s) receives a message for searching a path to a node s′ (s′ 6= s)

for action a, then it forwards the signal, provided that κ |= a:

x, s ` Gκ
s (x, s)

{(x, qas′, 〈〉), (s, qas′, 〈〉)}
−−−−−−−−−−−−−−−−−−→> x, s ` Ĝs′,κ

s (x, s).

Edge Ĝs′,κ
s (x, s) waits on s for the cost κ′ of the path from s to s′ and sends back to the

router edge the new value of the optimal path.

x, s ` Ĝs′,κ
s (x, s)

{(s, s′ κ′, 〈u〉), (x, s′ κ′ ⊕ κ, 〈u〉)}
−−−−−−−−−−−−−−−−−−−−−−→> x, s, u ` Gκ

s (x, s) (6.11)
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Otherwise, if κ 6|= a, then the infinite cost is backward propagated.

x, s ` Gκ
s (x, s)

{(x, qas′, 〈〉)}
−−−−−−−−−−→> x, s ` Ĝs′,∞

s (x, s)

x, s ` Ĝs′,∞
s (x, s)

{(x, s′ ∞, 〈〉)}
−−−−−−−−−−→> x, s ` Gκ

s (x, s).

Given a hypergraph Γ ` G, we say that nodes r and s of G are gateway-adjacent if
the graph below is a subgraph of Γ ` G.

◦

• oor
∆ ◦ Gκ

s
// •
s

◦

A gateway path in G is a sequence of gateway-adjacent nodes; we say that (free) nodes of
a gateway path are gateway-connected . The cost of a gateway path is the sum of the costs
associated to each gateway edge appearing in the path. We can now state an important
result on selecting the minimal cost path between two gateway-connected nodes.

Theorem 6.3.1 Let Γ ` G be a hypergraph and r, s ∈ Γ. Consider the transition

Γ ` G
Λ ∪ {(r, s κ, 〈u〉)}
−−−−−−−−−−−−→> Γ′ ` G′, (6.12)

then following statements hold:

1. if transition (6.12) can be derived then r and s are gateway-connected by a path
costing κ;

2. if
◦ ◦

• oor
∆n1 ◦ Gκ1

s1
// •
s1 · · · • oorh−1 ∆nh

◦ Gκh
sh

// •
s

◦ ◦

is a gateway-path between r and s in G, then there is a transition like (6.12) such
that κ ≤ Σh

i=1κi.

Proof. Statement 1 of the theorem is evident if we consider the interplay between the
productions of routing and gateway edges. Indeed, routing egdes have productions that
signal cost messages s κ only if the receive them on one of their tentacles which are
connected to gateway edges. Moreover, according to production (6.11), each gateway edge
in the path backwardly forwards the sum of its cost and the minimal cost received along
its outgoing tentacle. Having observed this, if we proceeds by induction on the structure
of the proof of transition (6.12) we obtain the thesis.

The second part of the theorem is also evident. Reasoning by absurd, if there is a
gateway path having cost strictly less than κ, then production (6.10) would have filtered
this cost when the synchronizations on its incoming tentacles would have took place.
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Hence these synchronizations would have discharged the path of cost κ, which is contrary
to our hypothesis. �

Theorem 6.3.1 means that the path search triggered by remote actions detects a
gateway-path if it exists in the graph (first part of the theorem), moreover the search
always selects the minimal cost path connecting two gateway-nodes (second part of the
theorem).

Finally, we must consider the productions for disconnecting gateways. When gateway
edges receive the logout signal from their router edge, they simply disappears:
small

x, s ` Gκ
s (x, s)

{(x, s det κ, 〈〉)}
−−−−−−−−−−−→> x, s ` Dκ

s (x, s)

x, s ` Dκ
s (x, s)

{(x, gr, 〈〉)}
−−−−−−−−−→> s ` nil

Notice that, the right-hand-side of the last production, the (private) node x disap-
pear. On the other hand, if the gateway is not the gateway selected by the logout
signal, the gateway edge remains attached to the router edge:

x, s ` Gκ
s (x, s)

{(x, s′ det κ′, 〈〉)}
−−−−−−−−−−−−→> x, s ` Nκ

s (x, s)

x, s ` Nκ
s (x, s)

{(x, nodet 〈〉)}
−−−−−−−−−−→> x, s ` Gκ

s (x, s).

where s 6= s′ or κ 6= κ′.

6.4 Productions for path reservation

This section aims at modifying the productions presented so far in order to per-
mit path reservation and “routing” along reserved path of information necessary for
Qlaim computations that require remote accesses. We will show how path reserva-
tion is essentially obtained by enriching the behaviour of routing and gateway edges
with new productions and with slight variations of productions for Qlaim actions
introduced in Section 6.3.3.

Let us again consider production (6.10) that we report here:

r, ~x ` ∆sas′
n (~x, r)

{(x1, s′ κ1, 〈u1〉), ..., (xn, s′ κn, 〈un〉), (r, s′ κh, 〈uh〉)}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→> r, ~x, ~u ` ∆n(~x, r).

where κh = min{κ1, ..., κn} and ~u = u1, ..., un. As stated above, this production
forwards (through the site edge) the minimal cost computed to the process edge
that want to perform a remote action. In order to reserve paths it is necessary
communicate to the gateway edges whether they are reserved or not. Therefore, we
replace the previous production with

r, ~x ` ∆sas′
n (~x, r)

{(x1, s′ κ1, 〈u1〉), ..., (xn, s′ κn, 〈un〉), (r, s′ κh, 〈uh〉)}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→> r, ~x, ~u ` ∆̂h

n(~x, r).



6.4. PRODUCTIONS FOR PATH RESERVATION 117

The edge ∆̂h
n represents an intermediate state of routing edges that must inform its

gateway edges whether they are reserved or not:

r, ~x, ~u ` ∆̂h
n(~x, r)

Λ
−−→> r, ~x, ~u ` ∆n(~x, r),

where Λ = {(xi, nores, 〈〉) : i = 1, ..., n ∧ i 6= h} ∪ (xh, res, 〈〉); this produc-

tion makes ∆̂h
n to communicate to the h-th gateway that it is reserved and to the

remaining edges that they have not been selected. Of course gateways must inter-
act with router edges in order to accomplish previous productions. In particular,
production (6.11) (see page 114) must be changed with

x, s ` Ĝs′,κ
s (x, s)

{(s, s′ κ′, 〈u〉), (x, s′ κ′ ⊕ κ, 〈u〉)}
−−−−−−−−−−−−−−−−−−−−−−→> x, s, u ` Prκ

s (x, s, u).

The difference with respect to production (6.11) is that, once the gateway has
backward propagated the cost, it moves to a state Prκ

s where the nores/res signal is
waited. Edge Prκ

s (x, s, u) has an incoming tentacle from x, two outgoing tentacles
to s and u (where u represents the next hop node). Notice that such node has been
communicated during cost propagation.

If a noact signal is received then Prκ
s becomes the gateway to s as stated in the

following production:

x, s, u ` Prκ
s (x, s, u)

{(x, noact , 〈〉)}
−−−−−−−−−−−→> x, s, u ` Gκ

s (x, s).

Otherwise, a packet will be attached to s and Prκ
s will take care of its destination.

If the destination is s, the packet will terminate its travel:

x, s, u ` Prκ
s (x, s, u)

{(x, dest s, 〈〉)}
−−−−−−−−−−−→> x, s, u ` Prκ

s (x, s, u)

x, s, u ` Prκ
s (x, s, u)

{(x, stop, 〈u〉)}
−−−−−−−−−−−→> x, s, u ` Gκ

s (x, s).

Once Prκ
s receives a signal from a packet that wants to reach s it replies with a

stop message where the last hop node is communicated. The intention is that u is
the p-node of the site edge of s.

A jump signal is emitted, to let the packet reach node s′ different from s:

x, s, u ` Prκ
s (x, s, u)

{(x, dest s′, 〈〉)}
−−−−−−−−−−−→> x, s, u ` P̂ r

κ

s (x, s, u)

x, s, u ` P̂ rκ
s (x, s, u)

{(x, jump, 〈u〉)}
−−−−−−−−−−−→> x, s, u ` Gκ

s (x, s).

The final changes regard Qlaim activity productions that has been introduced
in Section 6.3.3. More precisely, let us consider production (6.3) reported below:

p ` La@s.P(p)
{(p, s κ, 〈z〉)}
−−−−−−−−−−→> p, z ` H,
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graph H must be substituted with a graph that models a packet containing the
graph that must be routed at the remote site. As before, H depends on the ac-
tion a; in the case of a being eval(Q), H is the graph [[ P ]]p | ν u.([[ Q ]]u |
Pks(u, z)), whereas, if a is an input (in(T )) or a read prefix (read(T )), then H

is ν u.(L̂a@s.P(p, u) | Pks(u, z)).
The packet edge Pks has an incoming and an outgoing tentacle. The incoming

tentacle insists on a private node u where the graph that must reach s is attached
to; while the outgoing tentacle is initially connected to the first node of the route
and successively it will correspond to the remaining nodes of the path, until the last
node will be reached. On the final node the packet edge will be “disclosed” and
its content, namely the graph connected to the incoming node, will be attached to
the destination node. The packet edge Pks(u, z) interacts with gateway edges; it
communicates its destination and waits for a stop or a jump signal.

u, z ` Pks(u, z)
{(z, dest s, 〈〉)}
−−−−−−−−−−−→> u, z ` Pks(u, z).

Next production below deals with the reception of a jump signal. In this case the
packet will continue its execution on the next-hop node z′:

u, z ` Pks(u, z)
{(z, jump, 〈z′〉)}
−−−−−−−−−−−→> u, z, z′ ` Pks(u, z′).

If a stop signal is received (production (6.13)) Pks “dissolves” and fuses u on the
received node p:

u, z ` Pks(u, z)
{(z, stop, 〈p〉)}
−−−−−−−−−−→

[p/u]
> p, z ` nil. (6.13)

Notice that in the right-hand-side graph of production (6.13) the hypergraph at-
tached to u is moved on p, the remote node where its execution continues.

Observation 6.4.1 In order to keep the presentation as smooth as possible, in this
section we have assumed that site edges takes care of not starting path searches when
a request for the local site is issued (see productions (6.8) and (6.9) in Section 6.3.4).
For the sake of precision, we must also deal with the case that packet Pks remains on
node p of its site edge. There are two possibilities for overcoming this problem; the
first possibility is to extend productions of site edges that, after synchronization of
the production (6.9) also send a ( , stop, 〈p〉) signal to the packet edge. The second
possibility is to enrich graphs of Qlaim nets by adding to each p-node of site edges
a further edge that “continuously” emits the ( , stop, 〈p〉) signal for local packages.
The second solution should be preferred to the first one for at least two reasons:

• It is not necessary to modify site edge productions, and

• it also simplifies productions of gateway edges because they should not worry
about sending the stop signal.
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Productions presented in this section and Theorem 6.3.1 (in the previous section)
ensure that, whenever a remote operation is performed, semantics of hypergraph
always select the optimal path with respect to the QoS attributes specified by the
Qlaim networking constructs.

This result depends on the outcome of a distributed constraint satisfaction prob-
lem, the rule matching problem [136]. For the result to hold, QoS attributes must
form an ordered semi-ring [20], where the additive and multiplicative operations
allow us to compare and compose QoS parameters.
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Chapter 7

Hypergraphs and Software Design

Abstract

Traditional software engineering technologies emphasize an interaction
model which is rather different from the interaction model of truly distributed
applications. For instance, users of traditional distributed applications can in-
voke a service regardless of whether the service is local, remote or under the
control of a different network authority. On the other hand, network aware-
ness is crucial in WAN applications.

UML provides a widely accepted graphical notation to describe both struc-
tural and behavioral aspects of systems. This chapter describes a variation of
graph transformation semantics which directly supports network awareness.
Hence, what is missing in the UML specification can be actually found at the
semantic level. We describe how hypergraphs can be used for specifying and
refine software components constituting WAN applications.
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7.1 Designing WAN Applications

Traditional software engineering technologies (e.g. client-server architecture) em-
phasize an interaction model which is rather different from the interaction model of
truly distributed applications. For instance, users of traditional distributed applica-
tions can invoke a service regardless of whether the service is local, remote or under
the control of a different network authority. Instead, in the context of Wide Area
Network applications the awareness of network information is crucial for choosing
the best services that match user’s requirements. Indeed, network awareness can
be exploited to provide as much information about the network facilities as possible
to designers, aiming at specifying and implementing robust modules. On the other
hand, in the next few years evolutionary middlewares based on SOAP-XML-UDDI-
WSDL will probably become the standard in software industry. It is interesting to
note, however, that some innovative applications (e.g. peer-to-peer) are developed
largely ”ad hoc”, exploiting the traditional client-server interaction model.

The Unified Modeling Language (UML) [21, 141] has been widely accepted
throughout the software industries and has become the de facto standard for specify-
ing the development of software systems. In fact, UML provides a graphical notation
to describe both structural and behavioral aspects of systems. In particular, class
and state diagrams are the fundamental units which allow the designer to specify
the behaviour of object-based systems. However, class and state diagrams provide
the abstraction to understand method invocation independently from the location
of the object. However, as pointed out in [105], method invocation in a truly dis-
tributed application is inherently different from method invocation in a traditional
distributed application. This observation implies that eventually distributed issues
must be taken into account. A specification technique which ignores such a differ-
ence will not support at the right level of abstraction software design pointing out
the possible architectural choices in the system under development.

Previous work on the formalization of UML has produced a semantic framework
based on graph transformations (see [67, 88, 111] and the references therein). The
evolution of a UML specification may be understood as a graph transformation.
This chapter describes a variation of graph transformation semantics which directly
supports network awareness. Hence, what is missing in the UML specification can
be actually found at the semantic level.

Hence, independently from the underlying technology, we argue that requirement
engineering technologies must support the shift from the client-server interaction
model to other interaction models which better accommodate the constraints posed
by the new applications. The present chapter intends to address this issue. We
describe how hypergraphs can be used for specifying and refine software components
constituting WAN applications.

In other words, graphs and graph synchronization foster a declarative approach
by identifying the points where satisfaction of certain properties has a strong impact
on behaviours. The key issue of the approach is that components see the network
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environment as a set of constraints. Then, the declarative specification of service
requests to the network yields various kinds of constraints for the graphical calculus.
Thus the actual behaviour is the result of a distributed constraint solving algorithm
[136, 177].

We delineate a formal methodology that builds over graph synchronization to
equip UML with semantical mechanisms to deal with the model ling of Wide Area
Network applications.

7.2 Designing Software Using Hypergraph

In this section we show how synchronized edge rewriting can be exploited in the
various phases of software development. In particular, we will consider UML [141]
specifications and their graph transformation semantics as given in [111]. We first
outline the main ideas of the methodology introduced in [111].

The drive-through example A drive-through can be visited by an ordered set
of clients. Each client has a running number which indicates his/her turn. A client
may submit an order to the drive-through that later will be served. The service
order is established by the running number assigned at visit time.

Class, object and state diagrams are fundamental for UML specifications. Here
we briefly illustrate how class and state diagrams can model the drive-trough exam-
ple. For further details, the reader is referred to [21, 159, 141]

A UML class diagram describing the main relations among the component (i.e.
the classes) of the system may be depicted as in Figure 7.1. The class diagram
is Figure 7.1 represents the static structure of the system. Essentially, it provides
information on the classes and relationships where the latter are divided into asso-
ciations, generalizations, and dependencies. Special kinds of associations are com-
positions and aggregations. A class consists of a name, a set of attributes and a
set of operations possibly with parameters. An association end is a language el-
ement of class diagrams which relates associations with classes and contains some
information such as the rôle a class plays in the corresponding association or its
multiplicity. A class diagram is a graph where the nodes are classes, and the edges
are associations, generalizations, or dependencies. The drive-through class diagram
models a client-server system containing a class DriveThrough and a class Client. A
drive-through can be visited by an ordered set of clients (client queue). Every client
of a drive-through has a running number which indicates the place the client has
in the client queue of the DriveThrough. Furthermore, there is a class Order which
represents possible orders a client can give to a drive-through.

Other features of systems are expressed in UML by means of object diagrams that
may be thought of as diagrams describing the state of the system at a given moment.
Figure 7.2 displays an object diagram of a possible evolution of the system described
in Figure 7.1; a drive-through and three clients have been instantiated. Two of the
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...
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Visit

runningnumber: Int

DriveThrough

getorder(c:Client)

serve(c:Client)

drivethrough

visit

client

Client

pay()
eat()
enter(o:Order)

client submit

order

order

Order

tododrivethrough

Figure 7.1: DriveThrough class diagram

clients visit the drive-through and one of them has issued an order. The operations

Ada:ClientBob:ClientCher:Client

McD:DriveThrough

Shake:Order

todo

order

client

visitvisit

drivethroughdrivethrough

client

client

order

submit

12

drivethrough

Figure 7.2: DriveThrough object diagram

listed in the class diagram may affect the relations among the objects in a given state
of the system’s evolution. This is captured by transformation rules related to class
diagrams. These rules transforms object diagrams in object diagrams. In general,
a set of graph transformations is associated to each specified operation. Figure 7.3
illustrates the rule of the serve operation for drive-through objects. The serve rule
expresses that the link between the instance of an order and the instance of the
drive-through that processes, it is removed when the serve action is executed.

Dynamic behaviour of the system’s components is described in terms of state
diagrams. State diagrams are associated to classes and describe the state changes of
their objects. They are finite state automata whose transitions are labelled with an
event, a guard and an action. Labels are written as e[g]/o′.e′, where e is the event
that triggers the transition, g is a logic formula specified in OCL [141] and represents
a pre-condition to the firing of the transition. Finally, o′.e′ is the invocation of the
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drivethrough
todo

order

order

submit

client

visit

drivethrough

client

:Order

:DriveThrough

:Client

order

submit

client

visit

drivethrough

client

:Order

:DriveThrough

:Client

Figure 7.3: Serve operation

method e′ of object o′.
Figure 7.4 describes the state diagrams of classes DriveThrough and Client. The

HasPaid

enter(o)/drivethrough.getorder(self)
ClientLife HasOrdered

eat pay/drivethrough.serve(self)

ReceivedOrderDriveThroughLife

getorder(c)[c=client−>at(1)]/c.pay

serve(c)[c=client−>at(1)]/c.eat

Figure 7.4: UML state diagram

Client diagram details the activity of a client as a cyclic sequence of entering an
order/asking for the order to be executed, paying/waiting for being served and
eating. When a drive-through must process an order, it checks that the order has
been issued by the client on the top of the stack. In this case, the client is asked
to pay for it and eventually the client is served and can start eating provided that
payment has been performed.

Given a state diagram, it is possible to associate a graph transformation to
each transition of the diagram. For this purpose, we assume that event stacks are

associated to objects. Let us consider a transition t = s
e[g]/o′.e′// s′ of a state diagram

of class C. We may interpret t as the evolution of each object o in C whose first
event in its event stack is e and the guard [g] is evaluated to true; transition t
also dispatches the event e′ to the event stack of object o′. This interpretation may
naturally be formalized with the graph transformation in Figure 7.5 while Figure 7.6
is an instance of the schema detailed above and describes the rule corresponding to
the serve transition of the drive-through state diagram.

Roughly, the object transformations represent the global evolution of the system
caused by the activity of its components, while transitions of state diagrams repre-
sent the local state changes. The graph transformation rules corresponding to those
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Figure 7.5: Graph Transformation of a Transition

serve(c) x

:DriveThroughReceivedOrder

x

c:Client

y y

:DriveThrough

[c=client−>at(1)]
c:Client

eat

DriveThroughLife

Figure 7.6: Transition rule for serve

different facets of system evolution must be mixed together in order to obtain the
so called integrated rules. In the case of the serve rules, we have Figure 7.7.

Notice that the rule above do not specify some aspects that should be detailed
in a complete specification. For instance, the integrated rule of Figure 7.7 does not
describe how the eat event is pushed on the event stack of the client. In some sense,
the interactions between the client and the drive-through remain to the abstract level
of method invocation, without considering lower level aspects such as distribution
or communications among objects.

7.3 Formal specification with edge replacement

In this section we describe how it is possible to associate in a uniform way produc-
tions of our calculus to the graph transformation rules given previously. We aim at
showing the use of edge synchronization to formalize some issues that in the above
specification have not been considered.

We consider three different forms of edges; events, controls and objects. They
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Figure 7.7: Integrated rule for serve
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We assume that an edge label e does exist for each event e, and that a control edge
exists for each state in a state diagram. Similarly, an object edge exists for each
class in the UML specification. Edge e has two nodes such that a stack may be
formed by merging node u of an edge labelled by e with a node v of another event
edge. However, v nodes may also be fused with v of object edges. A control edge
has two nodes. Node xe is used to acquire the actual event from the object edge,
while node xg is used for checking guard satisfaction. These nodes are fused with the
corresponding nodes of an object edge. An object edge has nodes for synchronizing
with its control and event edges but also nodes y1, ..., yn for connections with other
objects according to the UML class diagram of the system.

Event edges must be popped when they synchronize with objects, and they must
be pushed on the existing stack when they are created. Thus event edges have two
productions; the first synchronizes with objects sending to them the event name.
After the transition, the edge disappears and reconnects the rest of the stack with
the v node of the corresponding object by fusing u and v. The second reacts to a
“push” message:

•
u

e // •
v

e 〈〉

u=v +3 •
u = v

•
u

e // •
v

push 〈u′〉
+3 •

u
e // •

u′

•
v

Note that the event that receives a push synchronization shifts back and fuses the
v′ node with the v node of the relative object edge. We remark that the previous
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productions are obtained by considering the intended semantics of event stacks in
the UML specification.

On the other hand, productions for control and object edges may be derived
from the UML class, object and state diagrams in a uniform way.

Let us consider the rules for serve in Figure 7.3 and 7.6. The following produc-
tions describe the evolution of each component of the system in terms of hyper-
graphs.
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xe
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The first production states that an object edge DT that receives an event ’serve(c)’
on the node corresponding to the event stack, evaluates the guard ’client→at(1)’
and forwards the signal together with the evaluated guard to its control edge. It
also sends the new event ’eat’ on the node o′ connected to the client; this is obtained
by passing to the client object the nodes of the ’eat’ event. As stated before, guards
are expressed as OCL formulas; however, we do not model how they can be mapped
into graphs and how they can be evaluated using edge replacement. The second
production is the complementary rule of the previous production: when the client
object receives the ’eat’ event, it pushes the event and its stack. The last production
states that the control edge ’ReceivedOrder’ changes its label to ’DriveThroughLife’
when the ’DriveThrough’ object signals the ’serve(c)’ event and the verification of
the corresponding guard ’client→at(1)’.

The productions introduced above guarantee that it is possible to obtain a tran-
sition which is equivalent to the integrated graph transformation in Figure 7.7.

In order to make the stack of events properly work, it is necessary to have an
edge that manages the empty stack and allows an object edge to synchronize on
push action only.

void // •
push 〈u′, v′〉

v
+3 void // •

u′
•
v
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The edge behaves as an event edge that receives a push signal and, after the tran-
sition, it is connected to the node u′ that is the last node of the stack of events.

The synchronization rules ensure that the following transition can be derived
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Note also that the proof technique used to obtain it is as described for Ambient
calculus in Chapter 5.
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Part II

Security





Abstract

One of the most difficult issue to face when application must be executed in WAN’s
is security . In general, security aspects must be considered at any level, e.g. at the
very low level of communication infrastructure as well as at the application level.
At each level security assumes different meanings. For instance, at the application
level it is typically intended as access control for protecting resources from undesired
misuses.

At the level of communication infrastructure it is necessary to bear in mind that
remote interactions take place along “public channels”, namely, it is assumed, ac-
cording to the Dolev-Yao model, that everyone can access the public communication
media and interfere in any communication.

This part of the thesis introduces a framework for studying and analyzing crypto-
graphic protocols. The framework is composed of a π-calculus-like process calculus
and a logic. Our process calculus is well suited for specifying participants of proto-
col sessions. The logic is very simple and permits to specify security properties in
terms of relationships among variables of the process terms. We show how multi-
sessions can be simply managed in the framework both for specifying computations
where many instances of the participants can be activated and for verifying security
properties expressed in our logic.
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Chapter 8

Security: an Overview

Abstract

This chapter collects and resumes some basic notion of cryptography, pro-
tocol specification and related security properties.

The chapter does not contain any original result but simply an overview
of security issues in order to fix some terminology and notation. For both
of them, we have tried to adopt standard and widely accepted conventions,
therefore, the reader acquainted with such topics can safely skip the chapter.
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8.1 Basic Notions of Cryptography

This section is devoted to review some elementary notions on cryptography. For a
complete presentation we refer to [167, 123].

It is important to state which are the assumption adopted because correctness of
a system with respect to security properties requires robustness at various abstrac-
tion level of the system. For instance, we will consider the underlying cryptographic
system as “perfect”, in the sense that the attacker cannot rely on flaws of encryp-
tion/decryption algorithms or on the representation of keys.

An intelligible message m, is referred to as plaintext (or datagram). By ’intelli-
gible’ it is usually intended that the representation of the information denoted by m
is public domain knowledge. Viceversa, an unintelligible form of m is said ciphertext
(or cryptogram).

The process of assigning a ciphertext to a plaintext is called encryption; usually,
encryption is parameterized with respect to an encryption key . Given a cipher-
text, the operation that reconstructs the plaintext form is called decryption; as for
encryption, decryption usually has a decryption key as parameter. It is common
notation to write {m}k for the ciphertext obtained by encrypting m under k, while
k−1 denotes the corresponding decryption key.

Cryptography has been a requirement from ancient times and many crypto-
graphic algorithm have been proposed during centuries. Most of them relied on
secrecy of encryption and decryption keys (that usually were equal) and secrecy of
encryption and decryption functions because the aim of those algorithms was to
exchange informations between two intended partner which had the possibility of
agreeing on secret keys and encryption/decryption mechanisms.

Modern day cryptography has to face the problem of making many users to
communicate information each other in a reliable way over an untrusted medium
and, therefore, it relies only on key secrecy. Indeed, modern cryptography follows
the Kerckhoffs’ principle enunciated by Auguste Kerckhoffs von Nieuwenhof [106]
that expressly requires that encryption and decryption algorithms are part of the
public knowledge.

We assume that cryptograms may be generated with symmetric-key or
asymmetric-key systems. A 4-tuple (N,K, −1 : K → K,M) is a crypto-system
if,

• N is the set of plain text;

• K is the set of possible keys;

• −1, given an encryption key, returns the corresponding decryption key and
viceversa. We assume that ( −1)−1 is the identity function and that no further
restrictions are imposed on −1.

• M is the set of messages; it is obtained by closing N under encryption and
pairing functions.
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Hereafter, {m}k denotes the cryptogram obtained by encrypting message m with
key k, while m,n denotes the pair made of messages m and n. As usual, we assume
that keys have no structure, i.e. they are simply names.

Symmetric Key Cryptography These crypto-systems, also known under the
name of private key crypto-systems, are characterized by the fact that encryption
and decryption keys are equal (namely, −1 is the identity function). Two principals
say A and B, can encrypt/decrypt data if they share a key k. It is usually assumed
that k is known only by A and B and other principals may acquire k only if A or
B explicitly send it.

Note that a symmetric crypto-system works in both directions in the commu-
nication between A and B. Furthermore, encryption and decryption processes are
very efficient. The principal drawbacks of symmetric key cryptography are:

• A and B are connected by a network and may be at a very long distance.
Establishing the shared key k would require either that A meets B or that a
secure key exchange protocol is adopted;

• if we consider n principals, the number of shared key that must be constructed
is n(n−1)

2
. Furthermore, at each communication the receiver does not know who

is the actual sender and must check, in the worst case, a number of key that
is quadratic in the number of principals;

• all keys must be kept secret; when a key is leaked, the involved principals must
build a new key.

The most famous symmetric key algorithm is the Data Encryption Standard
(DES) [137].

Asymmetric Key Cryptography These crypto-systems, also known as public
key crypto-systems, are characterized by the fact that encryption and decryption
keys are different. Public key cryptography has been introduced by Diffie and Hell-
man [63, 64] and the most famous public key crypto-system is RSA [156]. These
crypto-systems are based on public and private key pairs. Each principal A has
a private key A− and a different public key A+. It is usually assumed that, for
each principal A, its public key A+ is publicly available and may be used by any
other principal to encrypt messages intended for A. Such cryptograms may be de-
crypted only using the private key A− that is known only by A. Using a public key
crypto-system only the intended recipient can read the messages encrypted with
his/her public key, anyone can encrypt using the public key of a principal and there
is no need of secure channel to communicate the public key; any principal generates
his/her own public-private pair key and publish the public key. This algorithm of
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key generation allows two principals to generate the same pair of keys. Anyway, for
the perfect encryption hypothesis, we assume that this event is not possible1.

The main drawbacks are:

• private keys must be maintained secret;

• when A asks the public key for a principal B to a key-server, it must be sure
that the key has been originated from B;

• it must not be possible to deduce the secret key from the public one;

• encryption and decryption of messages is computationally expensive.

Public key crypto-system may be also used for implementing digital signature sys-
tems. Indeed, A can use A− to encrypt messages. Such messages can be decrypted
using A+ by any other principal that, in this way, it is sure that the messages has
been originated by A. A symmetric key is denoted by k while a pair of public/private
key for a principal A are denoted by A+ and A−, respectively. Finally, we let λ to
range over K and denote with λ− its corresponding inverse key. More precisely,
λ− = λ if λ is a symmetric key, while λ− = A− if λ = A+ and λ− = A+ if λ = A−.
We can now define the syntax of messages :

For the reasons reported, both public and private crypto-systems are used. In
fact, a public key protocol may be used to exchange a session key and then, the
session key may be used an encryption/decryption key of a private key protocol
that protect interactions of two principal from intruders.

We end this section by saying that many other kinds of cryptographic systems
may be found in literature; for instance, one-way hash function, key agreement ,
etc. Here we have only detailed public and private key crypto-systems simply to
give an account of what are the aims of cryptography and to fix some notational
conventions.

8.2 Protocol specification

A security protocol may be naively thought of as a finite sequence of messages be-
tween two or more participants. There is a great variety of specifications mechanisms
of protocols and their properties. Some protocols are informally specified mixing
natural language and ad hoc notation (for instance, SSL [84], SSH [176], IKE [92]
are specified in this style). Other specification mechanisms are more formal and
adopt precise mathematical statements sometimes expressed in formal calculi. In
the remaining part of this section, we will essentially review the notions introduced
in [1].

1The probability of generating the same pair is comparable to the probability of guessing a
secret key.
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Protocol specifications are usually presented by a list of message exchanges. The
syntax of such communications is the following:

(n) A→ B : m.

The intended meaning of this notation should be:

the protocol designer specified that the n-th step consists of the principal
A sending message m and of m being received by B.

A protocol specifies various rôles: it is a diffused convention that A and B
are used to represent two “normal” principals of the protocol, in particular, A is
the initiator and B is the responder , i.e. the sender and the receiver of the first
message, respectively; S is reserved to denote a third-part (usually) trusted server
while I denotes the intruder. In some case, IA or I(A) specifies that the intruder I
is acting in the protocol “imitating” A.

A sequence of message exchanges is not a complete specification. For example,

• It is not specified that only B must receive message m (usually this is desirable
in security protocols).

• A specification should define, for each principal, the set of initially known data
and how this set evolves during the protocol execution. Furthermore, it should
be specified which are the freshly generated data.

• Tests on messages in a security protocol are important. If during a check a
principal can or cannot get aware of the type of messages is important because,
type flaws are possible if the shape of the message cannot be recognized or if
a principal implicitly assumes that the messages (s)he is reading from the
network have a given form.

• The specification of the number of messages, may induce an order in the
communications of the protocol that is not intended by the specifier. This is
the situation when simple protocols are considered, but protocols that allow
multiple messages being sent simultaneously also exist.

• The assumption that a protocol may have multiple simultaneous runs and that
principals may play different rôles in different runs is normal folklore.

It is quite evident that the robustness of a system relies on the security of various
levels of its architecture (the cryptographic level, the protocol level, the application
level considered with respect to security policies) and their relationships. At cryp-
tographic level, it is usual to assume the so-called “perfect encryption hypothesis”
stating that a cryptogram can be decrypted only using its decryption key and that
a key cannot be guessed, no matter how much information is possessed. Even if
such hypothesis is not completely realistic because it does not takes into account
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the so called cryptoanalysis attacks2, it is possible to have keys that cannot be de-
duced in polynomial time by “realistic” intruders, i.e. intruders that have a given
computational capacity.

Example 8.2.1 As an example of protocol we give the informal specification of the
Needham-Shroeder public key protocol. For simplicity we omit the initial steps of the
protocol. The protocol authentication phase is specified as follows:

(1) A → B : {na,A}B+

(2) B → A : {na, nb}A+

(3) A → B : {nb}B+ .

Message (1) prescribes that A generates a name na that is supposed to be a newly
generated name that is intended to be used only for a session of the protocol and
cannot be “guessed” by any other participant of the protocol: Such names are referred
as nonces. Principal A encrypts nonce na together with its own name under the
public key of B and sends the cryptogram to B. In message (2), B replies with the
couple of nonces na, nb encrypted with the public key of A, where nb is a new nonce
generated by B. Finally, A confirms of being the ”right” partner by sending back to
B the nonce nb encrypted with the public key of B.

8.3 Security properties

Many security properties can be stated for a given protocol. For instance, beside the
traditional secrecy , authentication and integrity properties, e-commerce protocols try
to achieve fairness, non-repudiation, anonymity , deniability , etc. Formalization of
these properties is difficult: many different definitions have been given for each one
of them. We mainly focus on secrecy, authentication and integrity that probably are
the most fundamental properties that must be granted by a protocol. Intuitively, a
protocol guarantees secrecy over a set of data if it is not possible that an intruder
will get such data (during an execution of the protocol). A protocol guarantees
authentication of a user B to a user A if, after running the protocol, A may safely
assume that B was involved in the protocol run. Secrecy and authentication are
related. Indeed, before sending secrets to anyone, a user should be sure that (s)he is
“speaking” to the intended partner. Vice versa, authentication is normally achieved
through exchange of some data that the protocol ensure to be created by the intended
partner and nobody else. Integrity aims at guaranteeing that, once a datum has been
provided, it cannot be altered by any intruder.

Security properties are not uniformly stated and defined. Generally, the kind of
a property and its adequacy depends on applications. For instance, in an electronic

2A cryptoanalytic attacks are performed by collecting a great number of cryptograms and then
analyzing them for deducing cryptographic keys.
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commerce application properties like fairness or non-repudiation are requested to-
gether with secrecy, integrity and authentication; on the other hand, a mandatory
feature of a voting system is, for example, anonymity . It is evident that a protocol
can guarantee some properties but not other ones; indeed, some properties are even
“incompatible” (for instance, authentication with respect to anonymity).

If secret information must be communicated in an untrusted environment, the
protocol must ensure at least that possible eavesdroppers cannot understand them
(secrecy), that the partner is really the intended one and that the message are really
forged by the “right” subject (message authenticity). In a certain sense, secrecy,
authentication and integrity are the “elementary” properties that a protocol aims at
guaranteeing. Indeed, in a distributed environment the partners of a communication
establish a connection over public and untrusted network and before allowing access
to sensible resources or services, they must be granted of the partner identity, that
resources are authentic and data are not altered during communication.

In the following sections, we will not give rigorous definitions of the security
properties that we considered because we have not introduced any formal protocol
specification language yet and, therefore, we are not able to formally define con-
cepts like “the run of a protocol”, “the end of a protocol run” or what exactly are
“multiple protocol sessions”. For the purpose of this section, however, an intuitive
comprehension of these concepts suffices.

Let
(1) A1 → B1 : m1.
...

...
...

(n) An → Bn : mn

be a protocol specification. It represents the declarative part of the protocol and it
is the starting point for defining other concepts like:

• a run, or a session, of a protocol may be thought of as the execution of an
implementation of the protocol specification;

• a run completes when An sends the message mn. We remark that this does not
mean that Bn receives mn! Anyway, this is an intuitively “correct” termination
condition if we think that network communications are asynchronous;

• many sessions of a protocol may be concurrently executed and a principal may
be involved in more than one session with different partners and assuming
different rôles;

• we assume that it is possible to linearly order different runs of a protocol; given
two runs, this allows us to decide which is the first that has been activated.

Secrecy This property is an important feature of security protocols: Secrecy3

must be guaranteed on sensible data like secrete keys, principal identities, or nonces.

3Other terms for denoting secrecy are ’privacy’ and ’confidentiality’.
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Many security properties are based on sharing of secrets. For instance, a principal
authenticates itself to a server by providing a secret (a nonce or a password).

Informally, secrecy may be expressed as

a protocol provides secrecy on one of its parameters, say x, if an intruder
can not obtain informations by analyzing the messages assigned to x
during the execution of the protocol.

Generally, cryptography is not enough to guarantee secrecy, in fact most precautions
are required. For instance, if a one-bit message b must be communicated between
two principals [1] cryptography is not enough. If b is encrypted with a key k and
sent more times on public channels, an intruder could deduce its value by comparing
the cryptograms.

There are at least two possible way to specify secrecy of a protocol. The first
says that a protocol guarantees secrecy on one of its parameters x if it does not
leak any information about x, or, equivalently, if the value of x does not interfere
with the behaviour of the protocol that the environment can observe. If we use
a process calculus to implement protocols, such property may be rephrased saying
that a process (i.e. a protocol) P (x) guarantees secrecy on x if, for all possible
value m, m′, P (m) is equivalent4 to P (m′). The second criterion defines secrecy as
a behavioural property and can be traced back to the work of Dolev and Yao [65].
According to that definition, a process preserves the secrecy of a piece of data m
if it never sends m or anything that would allow the computation of m in clear on
public channels.

We remark, as done in [171], that the given intuitions of secrecy are very different
each other. The former concerns a free variable x, while the latter is related to a
closed process and a term with no free variables. Furthermore, the first definition
rules out implicit information flows, while the second takes them into account.

In some sense, secrecy deals with information flow . Indeed, generally speaking,
secrecy properties try to limit the “deductions” of intruders on data exchanged in
a protocol; therefore, secrecy may be viewed as the ability of a protocol to restrict
flows of information from “normal” principals to intruders. Roughly speaking, se-
crecy aims at guaranteeing that if a subject acquires some informations then it is
authorized to obtain them.

Authentication The formalization of this concept seems very difficult to be
stated. The intuitive notion of authentication may be expressed as

a participant should become sure of the identity of its partners or of the
principals that forge messages that (s)he receives.

In this sense, if a protocol aims at providing some form of authentication to a
principal A of a principal B then, after having run the protocol (apparently) with
B, A can deduce something on the state of B. For example,

4The equivalence relation may be a testing equivalence [60].
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- A could deduce that B has recently been alive,

- B can deduce that he had recently run the protocol with A,

- A could think that B believes that he was running the protocol with A,

- both A and B can assume that they run the same session of the protocol A
as the initiator and B as a responder.

All the previous conditions correspond to different authentication properties and
should be formally defined in the design of a protocol. For an extended discussion
on this topic we refer the reader to [115]. However, protocols specifications rarely
provide a rigorous definition of the meant authentication property. This is problem-
atic because a user may believe that a protocol satisfies a stronger condition than
the one intended by the designer.

Example 8.3.1 The Needham-Schroeder protocol, introduced in Example 8.2.1, has
been designed to achieve reciprocal authentication of A and B by exchanging nonces
na and nb. Hence, when B receives the last message, it assumes that A has been
its partner in a protocol session where nonce nb was generated in response to the
first message {na,A}B+ that B had interpreted as “A created the nonce na to gain
authentication from me”.

The Needham-Schroeder protocol was supposed to guarantee the authentication
property of Example 8.3.1 for many years. Under the perfect encryption assumption,
A and B can make many deduction on the reciprocal intentions. For instance, A can
assume that only B can decrypt cryptogram {na,A}B+ because only B owns the
private key B−. Similarly, when B receives back its nonce nb, he can infer that only
A could know nb because the only way for a principal different from B to know it
is to decrypt {na, nb}A+ and this can be done only by A. However, it is well known
that Needham-Schroeder protocol is flawed.

We remark that authentication can also involve “recentness”. The deductions
that a principal A can do on the state of another principal B not always are relative
to a current or recent state of B and may even regard other protocol sessions.
“Recentness” is not easy to formalize in many protocol specifications because they
do not provide any mechanism to specify the passage of time.

Integrity This property deals with the detection and correction of “modification”
(i.e. insertion, deletion, replay, etc.) of transmitted data including both intentional
or malicious manipulations [89]. The intuitive notion of integrity may be expressed
as

a participant should be sure that data (s)he gets during the execution of
a protocol has not altered in a “non-prescribed” manner.
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In this sense, integrity is the dual of secrecy (which deals with information that may
be “read” by participants of the protocol) because integrity concerns the capabilities
of altering the information exchanged using a protocol.

In a distributed setting where attackers have the power of “destroying” messages
sent along public channels, integrity may not be completely achieved because some
messages may be captured and discarded by an attacker. Anyway, such kind of
attacks are similar to a network fault and usually are not “dangerous”; the only
thing that an attacker gains with this kind of attacks is that the run of a protocol
is interrupted and a new attempt is done by normal principals.

Cryptography is a necessary prerequisite for integrity but it is not enough. Sub-
stitution of messages encrypted by key previously sent on public channels or replay
attacks must be considered. In order to detect this kind of attacks, some precautions
must be taken; for example, using timestamps or nonces may allow to reveal if a
message is a new message or not.

From the considerations reported, integrity appears as an indispensable property
that is used also to ensure other security properties, but difficult to capture and
analyze using formal methods.



Chapter 9

A Formal Framework for Security

Abstract

The sections contained in this chapter briefly outline the well known Dolev-
Yao model of intruder for cryptographic protocols. We follow a quite standard
approach that models intruder’s capabilities in terms of a relation on that says
if a message can be derived from a give “knowledge”. As a minor contribu-
tion, we show decidability of on in the case of asymmetric keys. As far as we
know, a natural deduction style proof have been given in [48] in the case of
symmetric keys. This proof does not scale to asymmetric key cryptography
because encryption and decryption operations cannot be seen as correspon-
dent introduction and elimination.

We also introduce and discuss cIP a process calculus that can be thought
of as an extension of π-calculus to cryptography. Its adequacy and differences
to other similar proposal are also discussed.

Finally, we define a simple logic for expressing security protocols in terms
of relationships among the variable of the cIP processes.
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9.1 Intruder model

A formal framework for protocol analysis must declare which assumptions are made
on the intruder. Indeed, different models permits one to model different classes of
attacks. For instance, if intruders can be passive or active makes difference. In
the first case, an intruder can only listen messages sent by regular principals, but
cannot sent anything. On the other hand, active intruders also can forge messages
and send them to other participants. Intuitively, it is clear that active intruders are
more “powerful” than passive ones and can also “simulate” them. Indeed, they can
intercept a message and forward to regular receivers.

We remark that modeling a form of intrusion is intimately related to detailing a
system at some level of abstraction. For instance, if we are interested in analyzing
protocols that can be attacked by intruders able in guessing keys, we must describe
how keys are represented, establish a random distribution over the space of keys and
so on. On the other hand, if we are not interested in such kind of attacks, we can
simply represent keys as atomic names.

A well-known and commonly adopted model is the Dolev-Yao model [65]. This
model describes an active intruder that can

• receive and store any transmitted message;

• hinder a message;

• decompose message into parts;

• forge messages using known data.

In this model, the only limitation for intruders is imposed by the perfect encryption
assumption: Intruders cannot guess keys that they do not explicitly own. This
assumption has consequences on the activity an intruder can do, e.g. decomposing
messages, forging messages and so on. For instance, a cryptogram can be disclosed
by an intruder only if he has the decryption key and, dually, an intruder can forge
a cryptogram only if it is a known datum or the encryption key is owned.

It is diffused costume to assume that intruders also can have data not expressly
generated by regular principals. This amount to assume that intruders can “remem-
ber” data exchanged in previous run of the protocols.

Observe that the Dolev-Yao model characterizes an intruder it terms of the
knowledge he has of the data exchanged by principals. In particular, an intruder
can record all exchanged messages and use them later to fake principals or to extract
data that must be kept secret.

Since an intruder á la Dolev-Yao can intercept any communication, without
loss of generality, we can consider the execution environment as the “adversary”.
Moreover, the environment can record all sent messages and manipulate them when
a principal is waiting for some data (see Figure 9.1).
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Intruder
Knowledge

P1 Pn

Figure 9.1: A graphical representation of the Dolev-Yao intruder

9.2 Formalizing the Intruder Model

Following the Dolev-Yao model [66], principal communications can be intercepted by
any other principal in the environment and in particular by malicious ones. Hence,
intruders are characterized by the knowledge they acquire. Intruders can also be
equipped with a non-empty initial knowledge representing what they learned in
previous protocols runs. This permits us to study the robustness of a protocol with
respect to the power of different intruders, e.g. from the one which has no previous
knowledge about the protocol, to those which know part of or all the secret keys of
the principals.

Let No be the set of nonces and let Np be the set of principal names; Np is ranged
over by A, B, S; we assume that No∩Np = ∅ and denote their union with N . Let K
be a set of keys; we assume that K contains both symmetric and asymmetric keys
and that K ∩N = ∅.

Definition 9.2.1 (Messages) A message is a term derived as follows:

M ::= N | K | M,M | {M}M .

We let m, n, ... to range over M , while λ ranges over K.

A message may be a name (i.e. a nonce or a principal name), a key (symmetric or
not), the pairing of two messages or the encryption of a message.

Notation 9.2.1 Tuples of messages are generated by the production M,M that,
differently from the usual notations, are not delimited with brackets. Essentially, we
want to consider messages like m1, m2, m3 as triples which can be matched only by
patterns that are triples, whereas, we shall write (m1, m2), m3 for indicating a pair
whose first component is the tuple m1, m2 (and similarly for m1, (m2, m3)). Notice
that in this manner we resolve the ambiguity of matching a pattern p1, p2 that cannot
match m1, m2, m3.

As usual, we assume that only atomic keys, namely elements of K, can be used to
encrypt messages. Therefore, Definition 9.2.1 is an over-specification of the set of
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messages (because of the last production). However, it is necessary because “wrong”
messages can be generated during principal communications (see Section 9.4).

Definition 9.2.2 formalizes the capabilities that the Dolev-Yao model ascribes
to intruders (as pointed out in Section 9.1). Indeed, κ may be thought of as the
intruder’s knowledge and each inference rule describes the possible manipulation
that the intruder may perform on data contained in κ.

Definition 9.2.2 (Intruder capabilities) Given κ ⊆M and m ∈M , we say that
m can be derived from κ, and write κ on m, if κ on m is obtained with a finite proof
by the following inference rules:

m ∈ κ
(∈)

κ on m

κ on m κ on n
(, )

κ on m,n

κ on m κ on λ
({})

κ on {m}λ

κ on m,n
(+1)

κ on m

κ on m,n
(+2)

κ on n

κ on {m}λ κ on λ−

(}{)
κ on m

Let us remark that rules (∈), (, ) and ({}) permits the intruder to forge messages
from messages in its knowledge κ. For instance, rule ({}) states that the intruder
can encrypt any message m deducible from κ with any key λ, provided that also
λ is deducible from κ. Rules (+1), (+2) and (}{) give the “dual” capabilities.
Indeed, they allow the intruder to decompose a message into its constituent. Note
how rule (}{) states that a cryptogram can be decrypted only if κ contains enough
information to deduce the corresponding decryption key. This is coherent with the
perfect encryption hypothesis which prescribes that keys cannot be guessed.

Example 9.2.1 We show how a message can be deduced from a set of messages
using rules in Definition 9.2.2. Let κ be the set {k, {{a}A−}k, A+}. We prove that
κ on {a}A+.

k, {{a}A−}k ∈ κ
(∈)

κ on k, {{a}A−}k
(+2)

κ on {{a}A−}k

k, {{a}A−}k ∈ κ
(∈)

κ on k, {{a}A−}k
(+1)

κ on k
(}{)

κ on {a}A−

A+ ∈ κ
(∈)

κ on A+

(}{)
κ on a

A+ ∈ κ
(∈)

κ on A+

({})
κ on {a}A+

Example 9.2.1 shows how message deduction can be conducted. We remark that the
structure of the proof is quite general. Indeed, hypothesis of the proof all have the
formm ∈ κ, while the conclusion κ on {a}A+ , is the message we want to deduce. This
suggests us that κ contains the “hypothesis” of our deduction system and the proof
ends with the thesis. Definition 9.2.3 and Lemma 9.2.1 formalize this observation
and will be useful for later results.
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Notation 9.2.2 In the following we indicate with T1···Ti

r
a tree whose root is r and

the sons of r are the subtrees T1,...,Ti.

Definition 9.2.3 (Proof tree) Let m be a message. A proof tree for m is a tree,
whose nodes are messages and such that:

1. a node m is a proof tree for m;

2. if Ti are proof trees for mi (i = 1, 2) the T1 T2

m1,m2
is a proof tree for m1, m2;

3. if T1 is a proof tree for m and T2 is a proof tree λ then T1 T2

{m}λ
is a proof tree

for {m}λ;

4. if T is a proof tree for m1, m2 then T
mi

are proof tree for mi, i = 1, 2;

5. if T1 is a proof tree for {m}λ and T2 is a proof tree λ− then T1 T2

m
is a proof

tree for m.

Lemma 9.2.1 For each κ ∈ ℘(M) and each m ∈ M , κ on m ⇐⇒ ∃T :
T proof tree for m such that the root of T is m and each leaf of T is a message in
κ.

Proof.

(⇒) By definition a finite proof of κ on m exists. We reason by induction on the
length of such proof. If the proof has length 1, then the only possible proof
is the application of rule (∈) of Definition 9.2.2. Then m trivially is a proof
tree for m (m ∈ κ for the premise of the (∈) rule). If the proof for κ on m
has length h + 1 then the last applied rule should be one of (∈), (, ), ({}),
(+1), (+2), (}{). For each rule, the premises have proofs with length lesser
than h + 1 that, by inductive hypothesis, correspond to proof trees with the
properties described in the statement. Then we can apply one of the rules in
Definition 9.2.3 to obtain the searched proof tree for m.

(⇐) This direction is proved by induction on the structure of T and by case analysis
on the root of T . If T = m then, by hypothesis, m ∈ κ and the rule (∈) can
be applied to prove κ on m. if T = T1 T2

m1,m2
is a proof tree for m1, m2, then, by

definition, Ti is proof tree for mi and, by induction hypothesis, κ on mi and κ
contains the leave of T1 and T2, then T is a proof tree for m whose leave are
all in κ. Other cases are analogous.

�



150 9. A FORMAL FRAMEWORK FOR SECURITY

9.3 Decidability of on

In [48] it has been proved that on is a decidable relation as far as symmetric crypto-
graphic systems are considered. The proof relies on the fact that, for symmetric key
cryptography, rules in Definition 9.2.2 behave as natural deduction rules for logical
inference. This proof does not scale to asymmetric key cryptography. The problem
is that cryptogram introduction rule ({}) does have a symmetric elimination rule
only as far as symmetric keys are dealt, where condition κ on λ− is equivalent to
κ on λ, hence, ({}) is the introduction rule for cryptograms and (}{) is the corre-
sponding elimination rule. Indeed, the case for asymmetric keys is different because
the decryption key must be deduced and it is different for the encryption key. We
show that on is decidable also when asymmetric-keys cryptography is considered.

The idea of the proof is that the derivation of a message m from a set κ can be
divided in two parts: first, all sub-terms deducible from κ are computed (by applying,
in all possible way, message destructors, namely, decryption and decoupling); finally,
by applying message constructors (encryption and pairing), we try to derive m.

Definition 9.3.1 (Message decomposition) We say that κ can be simplified if
one of the inference rules below can be applied

m,n ∈ κ

κ
m,n
⇁ κ \m,n ∪m ∪ n

{m}λ ∈ κ λ− ∈ κ

κ
{m}λ
⇁ κ \ {m}λ ∪m

Definition 9.3.1 describes a labelled transition system whose states are set of mes-
sages and whose labels are messages. As usual, we write κ

m1...mh⇁ κh+1 if κ1,...,κh+1

exist such that κ
m1⇁ κ1

m2⇁ ...
mh−1
⇁ κh

mh⇁ κh+1. By convention, when h = 0,
κ

m1...mh⇁ κh+1 is equivalent to κ = κ1.

Example 9.3.1 Let us consider the set κ = {k, {{a}A−}k, A+} of Example 9.2.1.
By applying the rules of Definition 9.3.1 we have the following transitions:

κ
k,{{a}

A−}k

⇁ {k, {{a}A−}k, A
+}

{{a}
A−}k

⇁ {k, {a}A−, A+}
{a}

A−
⇁ {k, a, A+}

Note that the union of the final set and the label of all transitions is the set of all
sub-messages that can be deduced by κ.

Definition 9.3.1 describes two rules that simplifies a set of messages by removing
those messages that can be reconstructed with a “simpler” set of messages. Here,
“simpler” may be formally defined. Let us consider the following definition.

Definition 9.3.2 (Message size) Given a message m ∈ M , the size of m, #m,
is defined by induction on the structure of m as follows:

#m =





1, if m ∈ N ∪K
1 + #m1 + #m2, if m = m1, m2

1 + #n, if m = {n}λ.
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Given κ ∈ ℘fin(M), the size of κ, #κ, is defined as #κ =
∑

m∈κ

#m. We let #∅ = 0.

As usual, the complexity of a message is proportional to the number of produc-
tions necessary to derive it from the productions for M (see Definition 9.2.1). The
following lemma states that ⇁ reduces the complexity of a finite set of messages.

Lemma 9.3.1 Given κ ∈ ℘fin(M) and m̄ ∈M , if κ
m̄
⇁ κ′, then #κ′ < #κ.

Proof. There are two possible cases:

m̄ = m,n By definition of ⇁ we have

#κ′ =
∑

m′∈κ\m̄

#m′ + #m+ #n =
∑

m′∈κ

#m′ −#m̄+ #m+ #n (9.1)

Finally, from equality (9.1) and #m̄ = 1 + #m + #n we can conclude that
#κ′ = #κ− 1 < #κ.

m̄ = {n}λ By mimicking the previous case, we have:

#κ′ =
∑

m′∈κ\m̄

#m′ + #n =
∑

m′∈κ

#m′ −#m̄+ #n (9.2)

and, as before, we conclude #κ′ = #κ− 1 < #κ.

This concludes the proof. �

Lemma 9.3.1 states that ⇁ transforms a set of messages with another set
having a strictly lower size.

Another useful observation is that the application of
m
⇁ to a set does not removes

messages different from m:

Lemma 9.3.2 Given κ ∈ ℘(M). let m̄ ∈ κ and κ
m
⇁ κ′ be such that m̄ 6= m, then

m̄ ∈ κ′.

Proof. If κ
m
⇁ κ′ then κ′ = κ \m ∪ V , where V depends on m. Hence, the only

message removed from κ is m 6= m̄. �

Corollary 9.3.2.1 Given a set κ ∈ ℘(M) such that κ
m
⇁ κ′ for a given message m.

Then for any m̄ ∈ κ such that #m̄ = 1, m̄ ∈ κ′.

Proof. For each transition κ
m
⇁ κ′, #m > 1, hence m̄ 6= m. �

Previous corollary implies that ⇁ never removes keys or names.
Interestingly, ⇁ is confluent on finite set of messages, as stated below:
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Proposition 9.3.1 (Confluence of ⇁) For any κ ∈ ℘fin(M), if κ
m1⇁ κ1 and κ

m2⇁
κ2, then exist κ, m1, ..., mh and m′

1, ..., m
′
h′ such that

κ1
m1...mh⇁ κ ∧ κ2

m′
1...m′

h′
⇁ κ

Proof. Let κ
mi⇁ κ\mi∪Vi, i = 1, 2 (where Vi depends on mi) be two distinct tran-

sitions from κ. Lemma 9.3.2 implies that the following transitions can be deduced
from κ:

κ \m1 ∪ V1
m2 / κ1 = (κ \m1 ∪ V1) \m2 ∪ V2

κ

m1
6mmmmmmmm

m2 (QQQQQQQQ

κ \m2 ∪ V2
m1 / κ2 = (κ \m2 ∪ V2) \m1 ∪ V1.

(9.3)

The proof proceeds by case analysis on m1 and m2.
m1 = p1, q1, m2 = p2, q2 In this case, Vi = {pi, qi} for i = 1, 2.
We distinguish the case where one of p1 or q1 is equal to m2 from the case where
both are different from m2. Under the assumption that p1 = p2, q2, we can conclude
two facts:

κ1 = (κ \m1 ∪ q1) \m2 ∪ p2 ∪ q2

which follows from (9.3), and

κ2
m2⇁ κ′2 = ((κ \m2 ∪ p2 ∪ q2) \m1 ∪ q1) \m2 ∪ p2 ∪ q2

= (κ \m2 ∪ p2 ∪ q2 ∪ q1) \ {m1, m2} ∪ p2 ∪ q2 (9.4)

= (κ \m2 ∪ q1) \ {m1, m2} ∪ p2 ∪ q2 (9.5)

= (κ \m2 ∪ q1) \m1 ∪ p2 ∪ q2 (9.6)

Previous equalities are derived by observing that both p2 and q2 are different fromm1

because their size is strictly less than #m1 (equality (9.4)) and by set theoretical
arguments (equalities (9.5) and (9.6)). Last equality implies that κ′2 = κ1. If
q1 = p2, q2 the proof is analogous.
If p1, q1 6= p2, q2, then we can assume that both p2 and q2 differ from m1 (otherwise,
we proceed analogously to the previous case). In this case the following equalities
hold:

κ1 = κ \ {m1, m2} ∪ {p1, q1, p2, p2} ∧ κ2 = κ \ {m2, m1} ∪ {p2, q2, p1, p1}.

m1 = {n1}λ1, m2 = {n2}λ2 In this case Vi = {ni}, where i = 1, 2.

Let us assume that n1 = {n2}λ2 . Then we have κ1 = (κ \ {m1, m2}) ∪ n2 and

κ2
m2⇁ κ′2 = (((κ \m2) ∪ n2) \m1) \m2 ∪ n2. (9.7)

In (9.7), κ2
m2⇁ κ′2 because of Corollary 9.3.2.1, then κ1 = κ′2. If m2 = m1 we proceed

in an analogous manner, while if n1 6= m2 and n2 6= m1 we simply have

κ1 = κ \m1 \m2 ∪ n1 ∪ n2 ∧ κ2 = κ \m2 \m1 ∪ n2 ∪ n1
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that trivially implies κ1 = κ2.

m1 = p, q, m2 = {n}λ In this case V1 = {p, q} and V2 = {n}. If n = p, q, then

p 6= m2 ∧ q 6= m2 because #m2 is strictly greater than #p and than #q. Hence,

κ2
m1⇁ κ′2 = (κ \m1 \m2 ∪ n ∪ p ∪ q) \m1 ∪ p ∪ q = κ \m2 \m1 ∪ p ∪ q.

On the other hand κ1 = (κ \m1 \m2 ∪ p ∪ q) \m1 ∪ p ∪ q, which, by set theoretic
reasoning, implies that κ1 = κ \m2 \m1 ∪ p ∪ q that completes the proof.
Finally, if n 6= p, q then κ2 = κ \ {m1, m2} ∪ {p, q, n}. The proof proceeds by case
analysis on p.

p = {n}λ: We have κ2
m2⇁ (κ\m1 \m2∪p∪ q∪n)\m2∪n = κ\m1 \m2∪ q∪n. The

proof ends by observing that κ1 = (κ\m1∪p∪q)\m2∪n = κ\m1 \m2∪q∪n.

p 6= {n}λ: In this case we can assume that q 6= m2, otherwise we can proceed as
in the previous case. The proof trivially follows from (9.3) by observing that,
under those assumptions, set difference and set union commute.

�

Confluence of ⇁ is important because it allows to “minimize” the complexity of
finite sets.

Proposition 9.3.2 Given a finite set of messages κ, a unique set κ ∈ ℘fin(M) exists

such that κ
m1...mh⇁ κ for some m1, .., mh ∈M and κ 6

m
⇁ for any m ∈M .

Proof. We first prove existence of κ by induction on #κ.

#κ = 0 This case is possible only when κ = ∅; then no rule of Definition 9.3.1 can

be applied to κ, therefore, κ = ∅.

#κ = h + 1 If no rule can be applied, κ = κ; otherwise κ
m
⇁ κ′ and, by

Lemma 9.3.1, #κ′ < #κ. Then, by inductive hypothesis, κ′
m1...mu⇁ κ and

no rule can be applied to κ. This shows that κ
m m1...mu⇁ κ.

Uniqueness is proved by absurdum.

If

κ1
m2 / ... mh / κh

κ

m1
9ssssss

m′
1

$IIIIII

κ′1
m′

2 / ...
m′

h′ / κ′h′

then

κ1

�

m2 / ... mh /

�

κh

�
κ

m1
:tttttt

m′
1

#GGGGGG κ1

9sssssss

$IIIIIII · · ·

8rrrrrr

%JJ
JJ

JJ
J κ

κ′1

O

m′
2 / ...

m′
h′ /

O

κ′h′

O (by iterative

application of the confluence). This contradicts the hypothesis that no rule can be
applied to κh and to κ′h′ . �

Propositions 9.3.2 and 9.3.1 guarantees that the following function is well
defined.
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Definition 9.3.3 (Decomposition function) Let ∂ : ℘fin(M) → ℘fin(M) be de-
fined as

∂(κ) =

{
∅, if κ = ∅,

κ ∪m1 ∪ ... ∪mh, if κ
m1...mh⇁ κ ∧ ∀m ∈M.κ 6

m
⇁ .

Proposition 9.3.3 Function ∂ is well-defined and computable.

Proof. By inspecting the proof of Proposition 9.3.1, we can observe that the ap-
plication of a rule preserves applications of other rules. Moreover, Proposition 9.3.2
guarantees uniqueness of κ.

Computability of ∂ derives from Lemma 9.3.1. Indeed, by applying rules in
Definition 9.3.1 we will reach a set where no more rules are applicable because the
size of reached sets is strictly decreasing and cannot be negative. Therefore, we can
write an iterative procedure that reaches such set and collects all the labels during
the rule applications. This, by Church-Turing thesis, completes the proof. �

Basically, function ∂ returns the set of all “sub-messages” that may be obtained
by decomposing messages in κ according to Definition 9.2.2. Computability of ∂
is important because we will extensively use it in the semantics definition of the
process calculus cIP introduced in Section 9.4.

Proposition 9.3.4 ∀m ∈M. m ∈ ∂(κ)⇒ κ on m.

Proof. We proceed by induction on #κ.

#κ = 0: We have that κ = ∅ and, the property trivially holds.

#κ = h+ 1: If no rule in Definition 9.3.1 can be applied to κ then ∂(κ) = κ, hence
m ∈ κ

κ on m
is a finite proof for κ on m. If κ

m̄
⇁ κ1, for a message m̄ ∈ κ, we can

assume that ∂(κ) = ∂(κ1) ∪ m̄.
If m = m̄ then, by hypothesis, m ∈ κ and, as before, a proof for κ on m exists.
Otherwise, m 6= m̄ and m ∈ ∂(κ1) then Lemma 9.3.1 and Lemma 9.3.2 permit
us to apply the inductive hypothesis and obtain κ1 on m. By Lemma 9.2.1 a
proof tree for m, T whose leave are on κ1 exists. Observing that, by definition,
κ1 = κ \m ∪ V where V depends on m, then we can attach to each leave m′

of T in V \ κ a proof tree with root m′ and sons proof the trees with leave in
κ built according to the transition rule

m
⇁. The obtained tree is a proof tree

for m with leave in κ and, by Lemma 9.2.1, we obtain the thesis.

This completes the proof. �

In order to consider all possible derivation κ on m, we must also take into account
message construction.



9.3. DECIDABILITY OF on 155

Definition 9.3.4 (Message construction) Let κ be a subset of M . We say that
κ constructs m, and write κBm, if, and only if, there is a proof of k on m built out
using only rules (∈), (, ) and ({})

Function ∂ returns all the submessages of a given finite subset of messages. Com-
puting ∂(κ) corresponds to decompose, as much as possible, elements of κ. Those
submessages are the “bricks” upon which the intruder can forge new messages.

Theorem 9.3.1 ∀κ ∈ ℘fin(M).∀m ∈M. κ on m ⇐⇒ ∂(κ) Bm

Proof. (⇐) The proof is given by induction on the length of the proof of ∂(κ)Bm.
If m can be derived with rule (∈), then m ∈ ∂(κ) and the thesis holds by Proposi-
tion 9.3.4 .
Assume that ∂(κ) Bm with a proof,

∏
, having length h > 1 and that the theorem

holds for all messages m′ such that the proof of ∂(κ) Bm′ has length less than h. If
m = {n}λ then the last rule applied in

∏
is ({}), namely:

∂(κ) B n ∂(κ) B λ

∂(κ) B {n}λ

and, by inductive hypothesis, κ on n and κ on λ therefore, by applying ({}), we
obtain κ on m.
A similar reasoning can be done when the last rule applied in

∏
is (, ).

(⇒) If κ on m then there exists a finite proof
∏

of it using rules in Defini-
tion 9.2.2. We proceed by induction on the length of

∏
. If

∏
has length one only

if the (∈) rule is applied, namely, only if m ∈ κ. Then m ∈ ∂(κ) and rule (∈) can
be applied to ∂(κ) yielding the thesis. If

∏
has length strictly greater than 1 then

one of the following cases hold:

• m = n, n′ and the last rule in
∏

is (, ). Then κ on n and κ on n′ with proofs
shorter than

∏
then, by inductive hypothesis, ∂(κ) B n and ∂(κ) B n′ and, by

rule (, ), ∂(κ) Bm.

• m = {n}λ and the last rule in
∏

is ({}) the proof is analogous to the previous
case.

• If last rule in
∏

is (+1) then there is a message n such that κ on m,n with
a proof shorter than

∏
. If m,n ∈ κ then both m and n are in ∂(κ) and, by

applying rule (∈), we obtain the thesis. Otherwise, κ on m and κ on n with
proofs shorter than

∏
therefore, the thesis holds by inductive hypothesis.

In case (+2) is the last rule in
∏

, we proceed similarly to the case (+1).

• If the last rule in
∏

is (}{) then there are a cryptogram {m}λ and a key λ−

such that κ on {m}λ and κ on λ− with proofs shorter that
∏

. If {m}λ 6∈ κ then
there is a proof of κ on m shorter than

∏
and the inductive hypothesis gives
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the thesis. Let us assume that {m}λ ∈ κ. If λ− ∈ κ then also λ− ∈ ∂(κ) holds
(Corollary 9.3.2.1) and, by definition of ∂, m ∈ ∂(κ) because the cryptogram
can be decomposed If λ− 6∈ κ then κ on λ− with a proof shorter than

∏
.

Because there is no rule in Definition 9.2.2 for “constructing” keys, only one
of (+1), (+2) and (}{) can be the last rule in the proof for generating λ−. In
other words λ− is a sub-message of a message in κ that can be decomposed,
namely λ− is in ∂(κ). Therefore, m ∈ ∂(κ) because the cryptogram can be
disclosed. Hence, the (∈) rule can be applied to ∂(κ) and this completes the
proof.

�

Finally, decidability of on easily follows from computability of ∂ and decidability
of B, since Proposition 9.3.5 below holds.

Proposition 9.3.5 If κ ∈ ℘fin(M) then ∂(κ) Bm is decidable.

Proof. Only message of increasing size can be derived with rules (, ) and ({}).
The number of messages having size less than or equal to m is finite, hence there
is an effective procedure that can generate them all and check for equality with m. �

9.4 A Process Calculus for Security

This section introduces a calculus to describe security protocols. The calculus is a
name-passing process calculus in the style of the π-calculus [130] with cryptographic
primitives and mechanisms for sharing of keys and multiple sessions.

As already claimed, several generalization of the π-calculus have been proposed
for studying many aspects of global computing (see Section 3.1). Some of them
also consider cryptographic protocols. For instance, [2] extended π-calculus with
cryptographic primitives thus providing a calculus for security protocols. Another
extension in the same line is given in [22]

The calculus of Interaction Patterns (IP) of [29] extends π-calculus with mech-
anisms to describe coordination of interacting components inside open systems, i.e.
systems whose structure is only partially specified. Interacting components are
represented as instances of some predefined templates that may dynamically join a
context of running components. Such idea is well suited to describe the intended ex-
ecution model of cryptographic protocols where each “regular” principal behaves as
prescribed by a template and many instances of the same template may be added to
the execution context. However, the possibility of intruders that do not necessarily
act in any prefixed way must be taken into account.

We introduce a calculus of cryptographic interaction patterns (cIP for short).
The cIP calculus extends IP calculus in the same style of spi-calculus extension
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to π-calculus. In fact, cryptographic primitives are added in order to deal with
symmetric and asymmetric key protocols.

9.4.1 cIP syntax

We give the syntax and the preliminary definitions of the cIP calculus.

Definition 9.4.1 (Behavioural expressions) Behavioural expressions are de-
rived from the followings productions:

E,F ::= 0 | α.E | E || E | E + E
α, β ::= in(d) | out(d)

where d is derived from the production for messages extended with productions for
variables M ::= x | ?x | [M ].

Let X be the set of variables. A binding occurrence of a variable x, is an occur-
rence of ?x in an input action in(d).

We assume that, for any variable x,

• actions out(d) do not contain any occurrence of ?x or [M ] (in d);

• actions in(d) have at most one occurrence of ?x (in d).

A datum d is a message containing variables or syntactic tests, namely, the comple-
mentary output action that matches in([m]) is out(m). Hereafter, we let m to range
over (ground) messages and let d to range over data.

Let us consider a datum of the form d1, d2. We say that variable occurrences of
d1 precede occurrences of variables in d2. Moreover, given a behavioural expression
of the form in(d1, d2).E, we say that the occurrences of variables in d2 and in E are
in the scope of a binding occurrences in d1.

It is worth to remark that names and variables are syntactically distinguished.
Names should be thought of as being constant terms whereas variables are place-
holders and are amenable to be substituted with terms or opportunely renamed. In
this respect, the following definition introduces free and bound variables.

Definition 9.4.2 (Bound and free variables) An occurrence of a variable x is
bound in E if it is in the scope of an input action in(d) containing a binding occur-
rence of x. We denote with bn(E) the set of variables having bound occurrences in
E. Occurrences of a variable x in E that are not bound are said free occurrences and
fn(E) denotes the set of variables having free occurrences in E. A closed behavioural
expression is an expression E such that fn(E) = ∅.

We consider equivalent behavioural expressions that differ only for bound vari-
ables. Indeed, as usual, we can always rename bound variables. Renaming of
bound variables also permits us to assume that, given a behavioural expression
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E, bn(E) ∩ fn(E) = ∅. Moreover, we can assume that for any behavioural expres-
sion of the form E1 || E2 or E1 + E2, bn(E1) ∩ bn(E2) = ∅. Hereafter, we consider
only behavioural expressions that satisfy the syntactic constraints above.

We can now formally define a principal, namely a participant of a protocol.

Definition 9.4.3 (Principal) A principal is a triple written as A
4
= (X̃)[E] where

- A ∈ Np,

- X̃ is a tuple of variables (pairwise distinct), called open variables and

- E is a behavioural expression such that fn(E) ⊆ X̃.

We denote with ov(A) the set of open variable X̃ of principal A, while set bn(A) =
bn(E) ∪ X̃ is the set of bound variable of A.

We remark that principal names Np are not used in behavioural expressions, in
recursive call; they simply are names for finite patterns of communications and
will also permit us to predicate on the identity of protocol participants. As for
behavioural expressions, we assume that principal expressions are equivalent up to
renaming of their bound variables. Notice that, by definition, fn(A) = ∅ for each
principal A.

Example 9.4.1 Principals for Needham-Schroeder protocol are expressed in cIP as
follows:

A
4
= (y)[out({na,A}y+). in({na, ?u}A−). out({u}y+)]

B
4
= ()[in({?x, ?z}B−). out({x, nb}z+). in({nb}B−)]

(9.8)

where y is the open variable denoting the responder.
Definition of A corresponds to the specification of the initiator given in Exam-

ple 8.2.1; namely, A uses nonce na for authenticate itself to the responder repre-
sented by the open variable y. A first sends the pair na,A, encrypted under the
public key of the responder y+, then waits for a cryptogram obtained by encrypting
with the public key of A the nonce na and another nonce received in the variable u.

Actions of principals 9.8 that are in the same column synchronise once open
variable y of A is instantiated with B.

Notice that the cryptogram in the in action of A uses A−. As will be explained
later, this corresponds to require that the matching cryptogram is encrypted under
A+; in other words, the in action uses A− to decrypt the received cryptogram. Simi-
larly, B formalises the responder of Example 8.2.1 that performs the complementary
actions of A.

Principals interact by joining a context populated by other partners. Many
instances of the same principal may non-deterministically access the execution envi-
ronment. This amounts to say that more sessions of the protocol can be contempo-
rary running. Moreover, new principal instances can dynamically join an execution
environment.
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Definition 9.4.4 (Principal instances) Given a principal A
4
= (X̃)[E] and a

natural number i, an instance of A is the indexed principal Ai
4
= (X̃i)[Ei], which

is obtained by indexing all variables and local names of A.

Principal instances run in a context :

Definition 9.4.5 (Contexts) A context C is a (possibly empty) set of principal
instances. We let bn(C)and ov(C) respectively be the union of bound and open
variables of principal instances in C.

A context can be dynamically extended introducing new instances of principals.
This is modeled by means of a join operation, that takes care of connecting open
variables of principal instances.

Definition 9.4.6 (Join) Let An
4
= (X̃n)[En] (n > 0) be a principal instance and

let C be a context of cardinality n − 1. Function γ : ov(C) ∪ X̃n ◦−→ (Np ∪K) is a
partial mapping such that, for all x ∈ dom(γ), either γ(x) ∈ K, if x is a variable
for a symmetric key, or γ(x) ∈ Np. The join operation is defined as:

join(An, γ, C) = (X̃n − dom(γ))[Enγ] ∪
⋃

(Ỹ )[F ]∈C

(Ỹ − dom(γ))[Fγ]

The join operation defines how a principal instance can enter a (running) context by
connecting open variables for asymmetric keys to principal names and open variables
for symmetric keys to keys K so that they are appropriately shared. Connected
variables are no longer open. A cIP context is an environment where computation
takes place and new processes may be dynamically added.

9.4.2 cIP semantics

The semantics of our calculus is given by means of two transition systems, → and
7→ respectively. Labelled transition system→, defined up to structural congruence1,
models the “stand alone” behaviour of principals. Reduction relation 7→models both
communications taking place inside contexts and possible evolutions of a context due
to the joining of a new principal instances.

Definition 9.4.7 (Behavioural expression semantics) Let E be a behavioural
expression. Labelled transition system → is defined by induction on the structure of
E by means of the following inference rules:

α.E
α
−→ E

(pre) E
α
−→ E ′

E + F
α
−→ E ′

(+)

E
α
−→ E ′

E || F
α
−→ E ′ || F

(||) bn(α) ∩ fn(F ) = ∅

1Structural congruence, ≡, is obtained by extending α-conversion with || and + as monoidal
operators, whose neutral element is 0.
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The rules above are quite similar to the corresponding rules of π-calculus (Sec-
tion 3.1).

Definition 9.4.8 (Valid substitutions) Given m ∈M and a behavioural expres-
sion E, a substitution σ is valid for m in E if, and only if, σ maps all variable that
occur in E as encryption keys into K.

Definition 9.4.8 states that variables denoting keys are substituted with keys. Here-
after, we assume that all substitutions are valid.

Observation 9.4.1 The assumption on valid substitution can be adopted if we as-
sume that the underlying cryptographic system provide enough information in data
exchanged in communications in order to check whether a message has or not an ex-
pected form. This hypothesis can be relaxed at the cost of adding a major complexity
in definitions and proofs of the results. Here, we prefer to maintain the presentation
as simple as possible.

Before entering into the details of the contexts semantics, we define the pattern
matching mechanism. Message matching is required because an input action in(d)
can be fired only if the message acquired matches the pattern described by d.

Definition 9.4.9 (Matching) Let m and n be two messages. We say that m and
n match (m ∼ n) if, and only if,

• if m,n ∈ N ∪K then m = n;

• if m = [m′], then n is syntactically equal to m;

• if m = p, q then n = p′, q′ and p ∼ p′ and q ∼ q′;

• if m = {m′}λ and n = {n′}λ− then m′ ∼ n′.

A datum d matches a message m if, and only if, there exists a substitution σ over
the variables occurring in d such that dσ ∼ m.

The first two clauses of Definition 9.4.9 are trivial. The third clause deals with
cryptograms. The intuition is that two m = {m′}λ and n = {n′}λ− cryptograms
match if m′ and n′ do match and the key of m is the inverse of the key of n. In the
case of symmetric keys this simply reduces to require that the encryption keys are
equal. For instance, {na}k matches itself. As intuitively described in Example 9.4.1,
in the case of asymmetric keys Definition 9.4.9 states that m matches n when the
key of m is the public (private) key of a principal and the key of n is the private
(public) key of the same principal. For instance, {A}B− matches {A}B+ .

Definition 9.4.9 becomes more clear if we consider that, in cIP, encryption and
decryption mechanisms are embodied into the in and out actions. For instance, the
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Ei
in(d)
−→ E ′

i ∂(κ) Bm : ∃σ ground s.t. dσ ∼ m
(in)

〈(X̃i)[Ei] ∪ C, χ, κ〉 7→ 〈(X̃i)[E
′
iσ] ∪ C, χσ, κ〉

Ei
out(m)
−−→ E ′

i
(out)

〈(X̃i)[Ei] ∪ C, χ, κ〉 7→ 〈(X̃i)[E
′
i] ∪ C, χ, κ ∪m〉

C′ = join(Ai, γ, C) A
4
= (X̃)[E] i new

(join)
〈C, χ, κ〉 7→ 〈C′, χγ, κ ∪ {Ai}〉

Table 9.1: Context reduction semantics

in action of principal A in Example 9.4.1 waits for a datum encrypted with the
public key of A, hence, the decryption key used is A−, the private key of A.

Binding occurrences in data used inside input actions can be thought of as pat-
terns that must match data of output actions. If the matching holds then the
synchronization can take place and the binding variables are substituted with cor-
responding values in output data.

Semantics of contexts aims at formalizing the behaviour of the Dolev-Yao in-
truder. The intruder keeps track of principal activities, namely, the messages which
have been exchanged among principals. However, contexts also maintain informa-
tion about connections of open variables of principal instances. This is necessary for
verification purposes as will be clearer later. Relation 7→ (defined below) expresses
reductions of configurations 〈C, χ, κ〉 where C is a context, χ is a variable binding
that keeps track of the associations of the variables due to communications and join
executions, and κ contains the instance names that joined the context and the data
sent along the public channel, i.e. κ represents the intruder knowledge.

Definition 9.4.10 (Context reduction) The context reduction relation is the
smallest binary relation between contexts induced by the inference rules in Table 9.1.

If a context contains a principal instance waiting for a message and the knowledge
of the environment can generate a message that matches d via a ground substitution
σ, then the system may evolve by applying σ to the continuation of the principal
instance and storing bindings determined by σ (rule (in)).
Rule (out) simply states that a message sent by a principal instance is recorded in
κ. Notice that, the hypothesis of using only closed principals guarantees that only
ground data, i.e. messages, are sent by principals.
Rule (join) adds a new instance of a principal to the context. Notice that a “bad”
connector γ may yield a “wrong” context where keys are not shared in the intended
way. Moreover, note that the intruder gets aware of the entering of new instances: Ai

is added to κ. Rule (join) provides a mechanism to express the dynamic composition
of components to a running open context.
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Observation 9.4.2 Without loss of generality, we assume that the intruder knows
all the public keys of regular principals. Under this assumption the rule (join)
becomes

C′ = join(Ai, γ, C) A
4
= (X̃)[E] i new

〈C, χ, κ〉 7→ 〈C′, χγ, κ ∪ {Ai, A
+
i }〉

.

However, to have a more compact representation of κ we implicitly assume that A+
i

is in κ whenever κ contains Ai, avoiding to explicitly write A+
i .

9.4.3 Discussion

One of the most important characteristic of cIP calculus is the smooth distinction
between the “static” aspects of protocols and their dynamic behaviour that also
suffers the distinction between instances of some rôle. This will be exploited in
Section 9.5 where a logic for reasoning about and verifying properties on protocols
will be introduced. If we focus our attention on the informal description of secu-
rity issues outlined in Section 3.5 then we can say that cIP matches many of the
requirements usually stated on security protocols. Indeed, a natural correspondence
exists between informal specifications and cIP formalizations. In order to illustrate
this relation, let us reconsider the Needham-Schroeder protocol. We recall that the
informal specification together with its correspondent formalization:

(1) A→ B : {na,A}B+

(2) B → A : {na, nb}A+

(3) A→ B : {nb}B+ .

A
4
= (y)[out({na,A}y+).in({na, ?u}A−).out({u}y+)]

B
4
= ()[in({?x, ?z}B−).out({x, nb}z+).in({nb}B−)].

Each principal corresponds to a rôle in the protocol and its behaviour at each step
depends on whether the principal is sending or receiving a message. In general,
names appearing in a message are considered local to the first principal who sent
them. Indeed, the receiver “reads” such names in its own local variables. For in-
stance, principal B acts as responder and reads nonce na originated by A in its
variable x bound by its first input action. Then, the second action replies the pair
x, nb to A where x contains the nonce na and nb is a nonce generated by B. In
general, the protocol designer must specify open variables of principal. Even though
it seems that there is no algorithmic way to define principals from their informal
specifications, we can try to give some rule of thumbs:

• initiator usually need an open variable that responder should join;

• if the identity of the partner is acquired in a communication, probably no open
variable is required from that partner;

• an open variable might be necessary when a principal must interact with a
server.
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It is easy to observe, that the above listed rules fit well with the specification of the
initiator and responder of the Needham-Schroeder protocol.

We end this section by briefly summarizing the main differences between cIP and
π-calculus.

Implicit Restriction. All names occurring in a behavioural expression must be
considered as restricted and, as usual, two behavioural expressions are equiv-
alent if one is obtained by alpha-renaming the private names of the other.

Name Usage. cIP models cryptographic keys and principal identities as names,
differently from π-calculus where names are abstractions for communication
channels. Communication between cIP principals is anonymous, namely prin-
cipals do not refer any channel name and synchronizations take place along a
unique public channel where everyone may send or receive. Name extrusion
still remains an important feature of our calculus because principals exchange
keys in order to establish a “secure channel” for communicating their secrets
along a public channel.

Matching Communications. The cIP calculus exploits matching in its commu-
nication primitives: When two processes synchronize, the term appearing in
the input process must match the sent message. Hence, synchronization en-
capsulates encryption and decryption mechanisms via matching.

Absence of Iteration or Recursion. The cIP calculus has been designed to
specify finite deterministic protocols. Hence, replication and recursion have
not been considered as basic primitives of the calculus. Indeed the calculus
can handle a wide class of cryptographic protocols. Moreover, new instances
of principal may be non-deterministically added to a context. Semantically,
the join mechanisms corresponds to replication.

Variables and Names. Usually, π-calculus do not make any distinction between
variables and names. Following [2], we separate the two concepts for two
reasons. The first is that not only names (i.e. keys) may be communicated
but also complex terms such as tuples or cryptograms. Second, we will assume
that each principal instance that takes part in a computation uses private
variables that may be instantiated to names shared with other participants.

9.5 Formalizing Security Properties

This section presents a logical language to specify security properties of protocols.
The logic allows one to express properties concerning values that variables are sup-
posed to assume, messages that must or must not belong to the intruder knowledge
and relations among the values shared by different principal instances. In this logic,
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integrity corresponds to the possibility of fixing some value, generalizing the ap-
proach introduced in [2]. Secrecy is handled by exploiting intruder knowledge and
the values it may or may not contain. Many authors reduce authentication to
causality relations over the structure of the events observed in the state space of the
computation.

The design of our logic is guided by the features of the cIP calculus; in partic-
ular, cIP offers the possibility of uniformly extending a context with new instances
of principals of the protocol. What here is meant by “uniformly” is the fact that
variables occurring in principal expressions are not renamed when a new instance
joins the context but they are simply labelled with a unique index. This linguis-
tic mechanism allows us to determine which are the instances that originated the
names used through the execution of the protocol as well as to distinguish between
different participants that play the same rôle. Informally, security properties express
relations between instances and their variables; therefore, we design a logic which
can explicitly talk about them. In the previous discussion it emerges that rôles
can be viewed as “templates” or “types” that specify both particular behaviours
of principals and uniformly describe variables that occur in instances obtained by
instantiating rôles.

Definition 9.5.1 (PL – Syntax) A formula of the logic PL (protocol logic) is
defined as follows:

φ, ψ ::= δ ∈ K | α = β | x@α = δ (9.9)

| ∀α : A.φ | ¬φ | φ ∧ ψ

δ ::= d | α | x@α | I

where d is datum that does not contain any binding occurrence. Formulae of produc-
tions 9.9 are called positive atoms while their negations are called negative atoms.

Operators ¬, ∧ and ∨ are the usual boolean operators. Derived relations 6= and 6∈,
logical connectors → and ∨, or existential quantifier ∃ are defined as usual and will
be used as syntactic sugar. The symbol K is used to represent the knowledge that
the intruder acquires during a protocol computation.

Notation 9.5.1 We use δ ∈ K in Definition 9.5.1 for expressing that δ is known
to the intruder. We believe that, despite of its ambiguity (∈ is only a syntactic
symbol), this notation does not create any confusion, still preserving an intuitive
understanding for such kind of formulae.

PL syntax introduces a new class of variables which are the instance variables
α, β, etc., that are subject to equality check and quantification. Instance variables
range over (indexed) instances of rôles and are “typed” by principal names. For
instance, proposition ∀α : A.φ reads as “for all instances of A, φ holds”. Instances
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univocally determine participants to a protocol session and, assuming (as we did)
that principals are defined such that all binding occurrences differ each other2, ex-
pression x@α selects the content of variable x of instance α.

Remark 9.5.1 Only instance variables are considered as variable symbols in the
logic. Namely, x’s in Definition 9.5.1 should be thought of as symbols for constants.
Hence, ∀α : A.x@α ∈ K is a closed formula, while ∀α : A.α = β is open because β is
not in the scope of a quantifier.

Among the possible value that can be expressed in the formulae there is the
special constant I that denotes the intruder’s identity. This permits expressing
propositions where the identity of the partner is not necessarily a protocol rôle. For
instance, we can require that each initiator of the Needham-Schroeder public key
protocol interact with a B, unless the initiator starts communicating with I. The
following example should clarify this point.

Example 9.5.1 A property that the protocol should satisfy is the secrecy of the
nonces na and nb. It is evident that the latter is secret unless it is produced by the
intruder. Therefore, the formula

∀α : A.u@α ∈ K→ y@α = I

holds if A starts interacting with the intruder.

Example 9.5.2 The intended use of the Needham-Schroeder protocol (see Exam-
ple 8.3.1, page 143) is the weak agreement property that has been pointed out in [115]
and can be informally summarized as:

If B completes a protocol session and thinks he has been talked to A then
A started the protocol session thinking to have been talked to B.

We may formalize this statement with a PL-formula φNS:

φNS ≡ ∀β : B.(nb@β ∈ K→ z@β = I) ∨ ∃α : A.(z@β = α→ y@α = β)

which reads: For each Bi, instance of B, either the intruder obtains nbi because he
starts talking to Bi or there exists Aj, instance of A, such that, if the partner of Bi

had communicated with Aj then Aj had communicated with Bi (in the same protocol
session).

Before proceeding in defining models for PL-propositions, we must define how
values are substituted for binding variables in expressions δ.

2This is not a restrictive hypothesis because we can always α-rename binding occurrences with
new names.
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Definition 9.5.2 (Binding variable substitutions) An expression δ is ground
if it does not contains instance variables. Let χ be a mapping defined on indexed
variables occurring in a ground expression δ, we define the application of substitution
χ to δ by induction on the structure of δ:

δχ =





dχ, if δ = d
Ai, if δ = Ai

xiχ, if δ = x@Ai.

Definition of δχ states that the substitution χ is applied to non-instance variables
of that occur in δ. We remark that such symbols are considered as symbols for
constants in PL, indeed there are two levels of substitutions:

• a first level will be considered in Definition 9.5.3 and instantiates instance
variables when quantifiers are eliminated from the formula;

• the second level of substitutions is required to determine the values of local
variables of principals as defined in Definition 9.5.2.

Formulae are verified with respect to a given (terminating) state of the com-
putation of a context, and to the instances that actually have participated in the
computation. We adopt the notation κ |=χ φ to indicate that the set κ, under the
variable assignment specified by χ, is a model of the formula φ. We define models
for closed PL-formulae.

Definition 9.5.3 (Models of PL) Let χ be a ground substitution from variables
X. A model for a PL closed formula φ is a pair 〈κ, χ〉 such that κ |=χ φ can be
proved by the following rules:

i = j
(=1)

κ |=χ Ai = Aj

xiχ = δχ
(=2)

κ |=χ x@Ai = δ

∂(κ) B δχ
(∈)

κ |=χ δ ∈ K

κ |=χ φ κ |=χ ψ
(∧)

κ |=χ φ ∧ ψ

κ 6|=χ φ
(¬)

κ |=χ ¬φ

κ |=χ φ[Aj/α] for all Aj ∈ ∂(κ)
(∀).

κ |=χ ∀α : A.φ

Rule (=1) says that 〈κ, χ〉 is a model of equality Ai = Aj whether the instances
are exactly the same instance. Rule (=2) says that 〈κ, χ〉 is a model of x@Ai = δ
whether the value associate by χ to the x variable of instance Ai, i.e. xiχ equals the
valued δχ. Rule (∈) establishes that κ |=χ δ ∈ K when δχ can be constructed from
the decomposition set of κ. Rules (∧) and (¬) are trivial. In ∀α : A.φ the universal
quantifier ranges over the finite set of instances of rôle A. Quantifiers are resolved
by relating variables to actual instances. In order to prove that 〈κ, χ〉 is a model for
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a formula ∀α : A.φ, it is necessary to show that 〈κ, χ〉 is a model for any formula
obtained by substituting Aj for α in φ, where Aj is any instance of A deducible from
κ.

Definition 9.5.3 is based on a close world assumption: κ is a model for a formula
φ with respect to χ if and only if there exists a proof for κ |=χ φ. This justifies the
symbol 6|= in rule (¬), which reads as “κ is a model for ¬φ with respect to χ if κ
is not a model for φ” with respect to χ, i.e. if does not exist a proof for κ |=χ φ.
Relations B and = are decidable. It follows that |= and, hence, 6|= are decidable too.

Notice that if χ and χ′ differ only on variables not appearing in φ, then κ |=χ

φ ⇔ κ |=χ′ φ. Hence, we can only consider finite assignments over the variables of
φ.
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Chapter 10

Toward Algorithmic Verification

Abstract

In this chapter, we provide a symbolic semantics for cIP. Symbolic seman-
tics is more suitable for automatic verification since it allows one to generate
a transition system which is finite (up to the number of possible join transi-
tions). Hence the symbolic transition systems can be used to model check PL
formulas expressing (security) properties cIP principals.

This chapter is organized as follows: First, we discuss which are the sym-
bolic messages that can appear in a communication and how they are con-
strained by the evolution of the computation. Then, we define how a symbolic
intruder can be algorithmically constructed. We show how security properties
can be verified with respect to symbolic traces. Finally, we prove a correspon-
dence theorem between symbolic semantics and the “concrete” semantics of
Section 9.4.
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10.1 Symbolic Intruder

By interacting with other principals, the intruder can either extend its knowledge by
receiving a message or it can send a message deducible from its current knowledge. In
the latter case, the intruder sends a message m that is required to match a datum d
of an input action of a principal, via a ground substitution. Thanks to the matching
mechanism, d constrains the choices for m, reducing the set of the possible messages
the intruder can deduce from its knowledge to send them to regular principals.
Unfortunately, if d contains binding occurrences of variables, the intruder could in
principle send an infinite number of messages even if κ is finite. For instance, from
κ = {k}, the intruder can generate {k}k, {{k}k}k, ... all matching {?x}k.

Notice how the phenomenon detailed above is similar to the infinite branching
induced by the input actions in the early semantics of π-calculus discussed in Obser-
vation 3.1.1 (page 44). This motivates symbolic analysis: No message is chosen, but
rather a finite representation of κ is sent. This is a sort of lazy evaluation, even if no
choice is done, all possibilities are preserved by associating the current knowledge κ
to bound variables of input actions.

Definition 10.1.1 (Symbolic messages) The set of symbolic messages M is gen-
erated by the following productions:

M ::= N | K | M,M | {M}M | x(κ) | x̂(κ),

where κ ∈ ℘fin(M) and x ∈ X. Basically, the above grammar extends (concrete) mes-
sages with the productions for symbolic variables. Observe that, by Definition 9.2.1,
M ⊆M , hence we still let m to range over M .

Symbolic marked variables x̂(κ) are introduced to limit the set of values that can
be assigned to x̂(κ). Suppose that two actions in(x(κ)) and out(x(κ)) synchronize
and that κ = {no,A,A+}. While the (concrete) choice of A+ for x is correct,
since A+ ∼ A+ (see Definition 9.4.9, page 9.4.9), the message {no}A+ should not
be considered as one of the possible matching messages (even though it can be
derived from κ) because {no}A+ 6∼ {no}A+ (but rather {no}A+ ∼ {no}A−). This is
resolved by marking x(κ) so that substitution will disregard “undesired” values (see
Definition 10.1.3).

Derivation from a set of symbolic messages is defined similarly to Definition 9.3.4.

Definition 10.1.2 (Symbolic message construction) A symbolic message m ∈
M can be constructed from set κ ⊆M , if κDm can be proved by the following rules:

m ∈ κ

κDm

κDm κD n

κDm,n

κDm κD λ

κD {m}λ

κDm for all m ∈ κ′

κD x(κ′)

κDm for all m ∈ κ′

κD x̂(κ′)
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The last two rules allow the intruder to generate symbolic variables x(κ′) and x̂(κ′)
from κ and to recognize when the set of messages derivable from κ′ is contained in
the set of messages derivable from κ.

Example 10.1.1 Let us consider the sets κ′ = {{no1}k} and κ = {no1, k}. Clearly,
the set of messages derivable from κ′ is included in the set of messages derivable from
κ, but the inverse inclusion does not hold because k 6∈ κ′.

To guarantee that all values represented by a symbolic message can be commu-
nicated in a concrete trace, it is necessary to keep symbolic variables consistent with
their use in the protocol, so that, for example, a symbolic variables used as a key
must be instantiated only to keys. In particular, since different choices for a key
may lead to different concrete evolutions, we require that symbolic values do not
occur as keys. We assume, therefore, that messages contains enough information for
self-describing their “type”.

Validity of the formulae expressing security properties will be checked in terminal
states according to the notion of symbolic model introduced later. If a formula
depends on a symbolic variable, e.g. x(κ), the formula itself will help in deducing
the correct message derivable from κ, if any, that can be associated to x(κ) and
which makes the formula true. It will be proved that no information is lost in this
process: A terminal state of a symbolic evolution that satisfies φ exists if and only
if a terminal (concrete) state satisfying φ exists.

Definition 10.1.3 (Symbolic substitution) Let X be the set of symbolic vari-
ables (marked or not); a partial function σ : X ∪X → M is a symbolic substitution
if,

• for each x(κ) ∈ X, κD (x(κ))σ and

• for each x̂(κ) ∈ X, any sub-term of (x̂(κ))σ is not a cryptogram constructed
with asymmetric keys, and κD (x̂(κ))σ.

Actions out(d) and in(d′) can synchronize only if there exists a suitable (sym-
bolic) substitution such that dσ, d′σ ∈M match. Symbolic communications resume
all the communications that can be obtained by instantiating a symbolic variable
with one of the messages (derivable from the set κ). To enforce this property, some
care is necessary in defining when two symbolic messages match, so that all sym-
bolic traces correspond exactly to possible corresponding concrete traces. Moreover,
the evolution of a trace can further constrain a symbolic variable according to its
usage. Let us consider in(?x).in({?y}x) and assume that the action in(?x) binds
?x to x({no, k}), where no is a nonce and k a key. The action in({?y}x) constrains
x({no, k}) to k, the only value that can be derived from κ and that is a key. Evo-
lutions of a context proceed according to new notion of symbolic matching .
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Definition 10.1.4 (Symbolic matching) Given m,n ∈ M we say that m and n
symbolically match (and write m ' n) if, and only if, one of the following alterna-
tives applies:

1. m = n = x̂(κ)

2. m = p, q ∧ n = p′, q′ ∧ p ' p′ ∧ q ' q′

3. m = {m′}λ ∧ n = {n′}λ− ∧ m′ ' n′

4. m = n ∧ m,n ∈ N ∪K

Case (1) deals with matching symbolic variable x̂(κ) with itself and it requires
the particular restriction to x(κ) previously discussed. Case (2) states that two
pairs match if their respective components symbolically match. Case (3) deals with
symbolic cryptograms. Due to our choice of embedding decryption mechanisms
into communication, a cryptogram with key λ can match only a cryptogram that
exhibits a complementary key λ−, and whose messages match one another. Case (4)
states that symbolic matching reduces syntactic equality when names or keys are
considered.

Two different symbolic variables x(κ) and y(κ′) match provided that they rep-
resent the same choices of concrete messages. In other words, they should have
been equated to the same symbolic variable by an appropriate substitution σ, i.e.
x(κ)σ ' y(κ′)σ. Matching of a symbolic variable x(κ) and a message m depends
on the existence of an appropriate substitution such that x(κ)σ ' mσ. These cases
are not dealt with in Definition 10.1.4 because the symbolic semantics of cIP (Def-
inition 10.1.6) both messages and data of complementary input/output actions are
subject to substitutions that avoid these case to appear.

Symbolic semantics requires some care when messages are sent by principals. A
principal may send a message containing symbolic variables (acquired in previous
input actions). For instance, assume that in(?x).out({no}x).E is the behavioural ex-
pression of a principal, then, if the input action produces the substitution [x({k})/x],
the continuation of the principal is out({no}x({k})). Although substitution [k/x({k})]
is a “valid” assignment for x({k}), symbolic substitutions exist that do not corre-
spond to any concrete trace: Indeed [k,k/x({k})] would add {no}k,k to the intruder
knowledge.

Definition 10.1.5 (Valid symbolic substitution) Given a symbolic message m
and a behavioural expression E, a symbolic substitution σ is valid for m in E if, and
only if, all symbolic variable x(κ) that occur in E or in m as encryption key are
mapped by σ in K ∩ κ.

Observation 10.1.1 Notice that given m ∈M , for each x(κ) occurring in m, there
is only a finite number of possibilities for mapping x(κ) into a key belonging to κ
because κ is finite.
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Ei
out(m)
−−→ E ′

i
(out)

〈(X̃i)[Ei] ∪ C, χ, κ〉
i m ///o/o/o 〈{(X̃i)[E

′
i]} ∪ C, χ, κ ∪m)〉

Ei
in(d)
−→ E ′

i ∂(κ) Dm σ valid symb. substit. for m in Ei s.t. mσ ' dσ
(in)

〈(X̃i)[Ei] ∪ C, χ, κ〉
o mσ ///o/o/o 〈{(X̃i)[E

′
iσ]} ∪ Cσ, χσ, κσ〉

C′ = join(Ai, γ, C) Ai
4
= (X̃i)[Ei] i new

(join)

〈C, χ, κ〉
j Ai γ ///o/o/o 〈C′, χγ, κ ∪Ai〉

Table 10.1: Context symbolic semantics

Given x(κ) ∈ X, by Observation 10.1.1, we can define the finite set B(x(κ)) con-
taining all possible bindings [λ/x(κ)], where λ is a key in κ. Similarly, for m ∈ M ,
we can define B(m) as

B(m) = {σ1...σn : n(m) ∩X = {x1(κ1), .., xn(κn)} ∧ σi ∈ B(xi(κi)), i = 1, ..., n},

namely, B(m) contains the substitutions of symbolic variables in m obtained by
combining the substitutions of symbolic variables in m with the keys contained in
the sets associated to the variables.

We can now introduce the symbolic semantics. States of the transition system
(ranged over by Σ) are triples 〈C, χ, κ〉 where C is a context containing principals
that may exchange symbolic messages; χ : X ∪X → M is a symbolic substitution
and κ ∈ ℘fin(M) is the (finite) set of messages that the intruder knows. Despite the
overloaded notation with respect to Definition 9.4.10, we remark that also symbolic
messages must be considered in contexts, in bindings and in the intruder knowledge.

Definition 10.1.6 (Symbolic context semantics) The symbolic context se-
mantics relation is the smallest relation induced by the inference rules in Table 10.1.

Rule (out) says that each message sent by a principal is added to the intruder
knowledge κ.

Notice that in rule (in) the chosen message m is derived from κ and must symbol-
ically match d via a substitution σ that constraints some variables. The message m
is rendered by substituting all symbolic variables used as key in Ei, xi(κ

′), with a key
derivable from κ′. The choice of σ, makes the (in) rule a source of non-determinism.
Observation 10.1.1 ensures that B( ) is always a finite set, hence the possible evolu-
tions remain a finite number. Essentially, σ represents constraints on the symbolic
variable of its domain. These constraints are propagated to each principals of the
context. Moreover, they are recorded in the bindings χσ and update the knowledge.

We will define a function that takes κ and m′ and gives back a message together
with a substitution that satisfies the premise of (in). This ensures that messages
the intruder sends can pass the matching phase of the communications.
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Observation 10.1.2 Inference rules in Table 10.1 preserves a useful property of
symbolic messages in κ, namely, a sort of “monotonicity” of the set of messages
associated to symbolic variables. We say that κ covers κ′ if

∀m′ ∈ κ′ : κDm′.

If x(κ′) is a symbolic variable and κ covers κ′, then we say that κ covers x(κ′) and,
similarly, κ covers m if either κ covers all the symbolic variable occurring in m or
κ D m whenever m ∈ M . Notice that, if κ covers any message in κ, then also the
target state has a knowledge that covers its symbolic variables. Indeed, by inspecting
rules of the symbolic semantics, either a message is generated from κ or a message
m is added to κ.

Since we will consider traces that start from states having concrete knowledge, here-
after we assume that any symbolic knowledge enjoys the cover property of Obser-
vation 10.1.2.

We remark that (in) gives rise to a finite number of possible transitions: The
number of substitutions and messages that satisfy its premise is finite thanks to
the symbolic framework. Namely, when binding occurrences of variables must be
matched, substitutions map them in corresponding symbolic variables.

Finally, in rule (join) when a new principal joins a context, it is instantiated to
a regular principal and, therefore, it still does not contain any symbolic message.

Remark 10.1.1 Given any context, both the reduction and the labelled transition
semantics generate infinite number of (possibly) terminating traces. Indeed, any con-
text may be non-deterministically extended with new principals added by join tran-
sitions. This problem is typically addressed by explicitly considering a final number
of principal instances [132, 101, 22]. We will show how our approach implicitly
handles (parametric) finite multi-sessions. Indeed, multi-session attacks constitute
an important class of attacks. For instance [125] provided a protocol that fails to
satisfy a security property only if multi-session attacks are considered.

Observation 10.1.3 The search space induced by the LTS can be suitably reduced by
employing a priority policy on rule application. More precisely, consider an intruder
that, in each state grabs all the messages that a regular principal sends. When no
more messages can be collected, the intruder non-deterministically either chooses
a message to send to waiting principals or let a new principal enter the running
context. This correspond to give maximum priority to (out) and the same lower
priority to (in) and (join).

However, such a priority policy does not spoil the completeness of the analysis.
Intuitively, an intruder that “anticipates” its output operations has less knowledge
for generating its messages, hence he cannot be more “powerful” than an intruder
that collects all principals’ outputs before sending messages.
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µ(d, κ) =





{(x, [x(κ)/x])}, d =?x

{(d, ε)}, d ∈ N ∪K ∧ ∂(κ) D d

{(x(κ′), [x̂(κ′)/x(κ′)])}, d = x(κ′) ∧ ∂(κ) D x(κ′)





(e′, f ′, σeσf ) : (e′, σe) ∈ µ(e, κ) ∧
(f ′, σf ) ∈ µ(fσe, κσe) ∧
σeσf 6= ⊥}



 , d = e, f

{
({e′}λ, σe) : (κ D λ ∧ (e′, σe) ∈ µ(e, κ)) ∨

({e′}λ ∈ κ ∧ σe ∈ ν(e′, e) 6= ⊥)

}
, d = {e}λ−

∅, otherwise

Table 10.2: Definition of µ

10.2 Output Messages

The choice of a message m derivable from the current knowledge κ which can match
an input datum d, is driven by d itself. This is done by means of a function µ, which
given d and κ yields a set of pairs (m, σ) where m is a message and σ a substitution
such that κDm and mσ ' dσ.

Definition 10.2.1 (Intruder output messages) The partial function µ : (M ×
℘fin(M)) ◦−→ ℘(M × [(X ∪X)→M ]) is defined in Table 10.2.

The case of d being a binding variable ?x is the basic case for the symbolic analysis,
and it simply consists of assigning the current value of κ to the symbolic variable.

• If d is an atomic non-symbolic message that can be deduced from (actually,
belongs to) κ then µ returns d together with the empty substitution.

• If d is a symbolic variable x(κ′), then it must have been previously generated
by the intruder, and then κD x(κ′), by applying the last rule in the definition
of D. It is however necessary, according to Definition 10.1.4, to restrict x(κ′)
to x̂(κ′).

• If d is the pair e, f then µ is firstly applied to e′, and κ yielding a set of possible
results. For each solution (e′, σe) in µ(e, κ), the substitution σe is propagated
to f and κ, thus yielding the argument of µ which determines the possible pairs
(f ′, σf ). The combinations of these results together with the composition of
their substitutions are returned.

Note that the order in which e, f are visited is dictated by the binding mech-
anism adopted for cIP (see Definition 9.4.2).
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ν(m,d) =





{[m/x]}, d =?x

{ε}, d = m ∈ N ∪K

{σeσf : σe ∈ ν(e, e′) ∧ σf ∈ ν(fσe, f
′σe)}, m = e, f ∧ d = e′, f ′

ν(e, e′) m = {e}λ ∧ d = {e′}λ−

{[x̂(κ),x̂(κ)/x(κ),y(κ′)]}, m = x(κ) ∧ d = y(κ′) ∧ κ̄ = κ u κ′ 6= ∅

{([m
′
/yi(κ′)])σ : (m′, σ) ∈ µ(m,κ′)} m ∈M \X ∧ d = y(κ′)

{([n/x(κ′)])σ : (n, σ) ∈ µ(κ′, d)} m = x(κ′) ∧ d ∈M \X

∅, otherwise

Table 10.3: Definition of ν

• If d = {e}λ− is a cryptogram and the intruder owns the decryption key λ
(i.e. λ ∈ κ), the problem reverts to producing the proper messages that must
be encrypted. On the other hand, it must also be considered the case that
κ contains cryptograms {e′}λ properly encrypted with λ. In this case, e′ it
must be checked whether an appropriate σ, that makes {e′}λ and d = {e}λ−

to match, exists or not. This is done by the auxiliary function ν, defined in
Definition 10.2.2.

When none of the previous cases applies, the function µ returns the empty set of
substitutions. The function ν, given a symbolic message m and a datum d, returns,
if any, a set of possible substitutions σ such that mσ ' dσ.

Function µ and ν are mutually recursive. The function µ calls the function ν to
verify if {e}λ and {e′}λ− can match under an appropriate substitution. The function
ν calls µ to verify whether a symbolic variable (contained in {e}λ) may generate a
message matching another given message (which occurs in {e′}λ−).

Definition 10.2.2 (Checking substitutions) Given two sets of messages κ′ and
κ′′, we let κ′uκ′′ be the set {m ∈ κ′∪κ′′ : κ′ Dm∧κ′′ Dm}. If m ∈M is a message
and d ∈ M is a datum, then partial function ν : (M ×M) ◦−→ [(X ∪X)→ M ] is
defined in Table 10.3.

Most of the other cases are straightforward, hence we report the non trivial ones.
The case where d (orm) is a symbolic variable y(κ′) (x(κ′)) needs some explanations.
If m is a symbolic message not in X and d = y(κ′), it is necessary to check if κ′ can
generate a message that matches m. This is obviously done by µ(κ′, m) (similarly
for the case m = x(κ′) and d ∈ M \X). Note that at each recursive call of µ and ν,
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the complexity of the argument decreases. If both m and d are (possibly different)
symbolic variables, then they can symbolically match provided that they represent
a common subset of messages that both of them can derive. The set k represents the
maximal set of messages that can be derived both from κ and κ′, so that none of the
possible concrete choices is lost. Due to dynamic evolution of κ, the intersection of
the derivable messages is not a function of the intersection of the sets. Consider, for
example, κ = {{no1}k} and κ′ = {no1, k}: The intersection is empty, but both sets
can derive {no1}k. The definition of κ encompasses this case. Symbolic variables
should hence be mapped into the same symbolic marked variable.

Proposition 10.2.1 If κ ⊆M is finite µ(d, κ) is finite, for any datum d.

Proof. The proof trivially follows by induction on the structure of d, if we consider
that

a. recursive calls in Table 10.2 are done on terms having a decreasing complexity

b. the base cases always yield finite sets.

�

Example 10.2.1 Let κ be of the form {k, {no1}B−
2
, no1, {j3({A

+
3 , {A

+
3 }k})}C+

4
}.

We now show how an appropriate message m, matching input datum d, may be
derived from κ.

1. d = z5({{no1}k, {no1}B−
2
}), is a symbolic variable containing the two messages:

{no1}k and {no1}B−
2
. The first one can be derived in one step, while the second

one directly belongs to κ, hence, by applying the last rule for D, κ D z5(κ
′).

Hence, µ(n, κ) = (n, z5(κ
′) 7→ ẑ5(κ

′)).

2. d = {w2({k, A
+
3 })}C−

4
, is a cryptogram containing a symbolic variable. The

knowledge κ contains the cryptogram {j3({A
+
3 , {A

+
3 }k})}C+

4
. Then µ(d, κ) re-

verts to ν(j3({A
+
3 , {A

+
3 }k}), w2({k, A

+
3 })).

This is the case of two symbolic variables. Their “intersection” is the set
κ = {A+

3 , {A
+
3 }k} which does not contains k, since {A+

3 , {A
+
3 }k} 6 Dk. It

follows that the two symbolic variables are mapped to ŵ2(κ):

ν(j3({A
+
3 , {A

+
3 }k}), w2({k, A

+
3 })) = [ŵ2(κ),ŵ2(κ)/w2( ),j3( )].

Then µ(n, κ) = ({j3({A
+
3 , {A

+
3 }k})}C+

4
, [ŵ2(κ),ŵ2(κ)/w2( ),j3( )]. And again κDm

and mσ ' dσ.

Note that each choice for m respects the property that any possible symbolic
variable leads to a correct concrete communication.
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Lemma 10.2.1 Let κ ∈ ℘(M) and let σ be symbolic substitution such that κ covers
any message in dom(σ) ∪ cod(σ), then, if κσ Dm then ∂(κ) Dm.

Proof. By hypotheses any x(κ′) is replaced in κ with a message m′ that can be
generated by κ. Indeed, it must be the case that κ′ Dm′, hence, κDm′ because κ
covers κ′. This implies that κσ cannot built m using sub-messages that cannot be
built by κ. �

Observation 10.2.1 Lemma 10.2.1 implies that if (m, σ) ∈ µ(d, κ), then substitu-
tion cannot be “enlarged”. Namely there is no substitution σ′ such that mσ′ ' dσ′

and the knowledge of any symbolic variable of σ′ covers the knowledge associated to
it through σ. In some sense, µ determines “the most general” unifying substitution
among m and d.

Lemma 10.2.2 Let κ ∈ ℘(M) and let d be a datum such that κ covers d then, for
all (m, σ) ∈ µ(d, κ), κ covers m and κ covers any message in dom(σ) ∪ cod(σ) .

Proof. By inspecting Table 10.2 and Table 10.3 it is easy to see that all symbolic
variables introduced in the result of µ are obtained by κ or by a set κ′ already
occurring in d. By hypothesis, κ′ and d are covered by κ. �

It is necessary to guarantee that µ takes into account all the possible message-
substitutions that can be derived from κ. The point is that the symbolic semantics
that must consider all the possible evolutions that can concretely be performed in
the non-symbolic semantics.

Proposition 10.2.2 Let d be a datum and κ ∈ ℘(M) cover d. If (m, σ) ∈ µ(d, κ)
then dσ ' mσ and ∂(κ) Dm.

Proof. The proof proceeds by induction on the structure of d.
By definition of substitution and D, the proposition holds in the first three cases

(the base cases).
Let d be the pair e, f . Recall that binding variables have at most one occurrence

and bind all the remaining occurrences We first compute µ(e, κ) and then apply the
substitutions to f and κ to compute µ(fσe, κσe). If µ(e, κ) = ∅ then it is not possible
to derive a matching message for d. Hence, let us assume that (e′, σe) ∈ µ(e, κ). By
inductive hypothesis, e′σe ' eσe and ∂(κ) D e′ and, similarly, f ′σf ' fσeσf and
∂(κ)σe D f ′. We can apply Lemmas 10.2.1 and 10.2.2 (because ∂(κσ) = ∂(κ)σ if κ
covers σ). κD e′, f ′ and we have

dσeσf ' (eσeσf ), (fσeσf ) ' ((e′σe)σf), ((f
′σe)σf ) ' e′, f ′(σeσf ), (10.1)

where symbolic matchings (10.1) hold by the usual substitution properties (in par-
ticular, t(σσ′) = (tσ)σ′).
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Let d be the cryptogram {e}λ−1; we split the generation of a message and the
corresponding matching substitution in two cases. Indeed, if the decryption key
can be deduced from κ, then we simply return the matching substitution for the
content of the cryptogram. By induction this proves the proposition. Now, we
must consider cryptograms whose encryption key is λ and determine whether their
content can be matched via a substitution with e by invoking ν. Basically, function
ν works as µ but without trying to manipulate its second argument, hence, by
induction, for any σe ∈ ν(e, e′), eσe ' e′σe and we obtain the thesis. �

Proposition 10.2.3 Given an input datum d, a message m and a set κ ∈ ℘fin(M).
If ∂(κ) D m and mσ ' dσ for a symbolic substitution of the variables in d, σ,
covered by κ, then there is (m, σ) ∈ µ(d, κ) such that for any mapping [m

′
/x(κ′)] in σ,

a substitution ρ exists that replaces symbolic variables in m′ with larger associated
knowledge. Moreover, [m

′ρ/x(κ′)] is a substitution in σ (and analogously for mappings
σ : x 7→ m′).

Proof. We proceed by induction on the structure of d. If d =?x then
(x, [x(κ)/x]) ∈ µ(d, κ) by definition and, by hypothesis, dσ = m′ and ∂(κ) D m′.
Clearly, κ covers m′. If d ∈ N ∪ K then dσ = d for any substitution, hence, by
hypothesis, mσ = d. If m ' d then we have that ∂(κ) D d and, by definition,
(d, ε) ∈ µ(d, κ) otherwise, m is a variable such that σ : m 7→ d and ∂(κ)D d because
κ covers σ. When d = x(κ′), (x(κ′), [x̂(κ′)/x(κ′)]) ∈ µ(d, κ) because κ covers σ whose
domain contains (x(κ′).
The other cases follows by inductive hypothesis. �

Proposition 10.2.3 states that µ takes into account any pair (m, σ) that can
be used in the hypothesis of the inference rule (in) in Table 10.1. Intuitively, this
means that messages matching a datum d either have a structure similar to d or,
at some level they are replaced by symbolic variables. Since µ always introduces
symbolic variables that cover any other variable that can be generated by κ, we
can use such messages for considering all the possible symbolic (in) transitions.
This corresponds to saying that, given κ, µ computes the “most general unifying”
substitution between m and d. This result is also important for relating symbolic
and concrete traces as will be shown in next section.

As a final remark the above construction is quite similar to the well-known
unification algorithm of [118]. This also suggests that the complexity for computing
µ and ν is comparable to the classical unification algorithm.

10.3 Intruder construction

We show how terminating symbolic traces provide all the information necessary for
constructing an intruder that interacts with the principals of a protocol and tries to
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cheat them.
Protocol analysis can be conducted in three phases:

1. a cIP bunch of principals is derived from the informal specification;

2. a security property is specified by means of a PL formula φ;

3. a model for ¬φ is searched for.

Step 1 is a human activity even if cIP features are tailored for driving this phase.
Similarly, step 2 is a phase that requires human intervention because also the prop-
erties are usually informally stated. However, PL logic allows one to reason about
variables and rôles described by the principals in a way that is natural enough for
the formalization. Step 3, instead, is completely algorithmic. Essentially, starting
from a context that satisfies the initial conditions of the protocol and, by applying
the inference rules of the context semantics, one constructs traces which end in a
state where the intruder knowledge and the set of bindings are a model for ¬φ.

We consider only traces starting from initial states and ending in final states.

Definition 10.3.1 (Initial and final states) A state 〈C, χ, κ〉 is

• initial if, and only if, C = ∅, χ is the empty substitution and κ ∈ ℘fin(M);

• final if, and only if, C contains only principals of the form ()[0], χ is a symbolic
substitution and κ ∈ ℘fin(M).

An initial state represents a context that still does not contain any participant. The
intruder may be equipped with a finite (non-symbolic) knowledge. Usually, this
knowledge contains (private) names, public keys or other information learned by
the intruder in previous interaction with some principal. A final state represents the
“goal” of the intruder which is to drive all the participants that took part to the
protocol in a terminal state where the security property is violated.

Definition 10.3.2 (Symbolic traces) A symbolic trace is a sequence

T = Σ0.α1. . . . .αn.Σn

where Σ0 is an initial state and Σi−1
αi ///o/o/o Σi (1 ≤ i ≤ n). T is terminating if Σn

is a final state.

Example 10.3.1 Let us again consider the principals of the Needham-Schroeder
protocol:

A
4
= (y)[out({na,A}y+).in({na, ?u}A−).out({u}y+)]

B
4
= ()[in({?x, ?z}B−).out({x, nb}z+).in({nb}B−)]
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We let TNS be the trace below (prefix actions triggering transitions are evidentiated
in boldface characters)

〈∅, ε, ∅〉

j A1 ε

�� �O
�O
�O

〈{(y1)[out({na1,A1}y+
1

).in({na1, ?u1}A−
1
).out({u1}y+

1
)]}, ε, {A1}〉

o {na1,A1}
y
+
1

���O
�O
�O

〈{(y1)[in({na1, ?u1}A−
1
).out({u1}y+

1
)]}, ε, {A1 , {na1, A1}y+

1
}〉

j B2 [B2/y1 ]
���O
�O
�O

〈

{
()[in({na1, ?u1}A−

1
).out({u1}B+

2
)],

()[in({?x2, ?z2}B−
2

).out({x2, nb2}z+
2
).in({nb2}B−

2
)]

}
, [B2/y1 ], {A1, B2, {na1, A1}B+

2
}〉

i {x2(κ),A+
1 }

B
+
2���O

�O
�O

〈

{
()[in({na1, ?u1}A−

1
).out({u1}B+

2
)],

()[out({x2(κ), nb2}A+
1
).in({nb2}B−

2
)]

}
, [B2,x2(κ),A1/y1,x2,z2], κ〉

where κ = {A1, B2, {na1, A1}y+
1
}.

Premises of the rule (in) requires that the chosen substitution must be a valid sym-
bolic substitution, therefore, while x2 is mapped to the symbolic variable x2(κ), z2
must be mapped to a key in κ and, in this case A+

1 is chosen.

Given a protocol and a security property φ, a symbolic intruder is a symbolic trace
that, once “concretization” has taken place (i.e. all its symbolic variable are sub-
stituted with suitable concrete messages in M), gives rise to a trace of the concrete
semantics (according to Definition 9.4.10) such that bindings and knowledge of the
last state in the trace are model for ¬φ.

Definition 10.3.3 (Concretizing substitution) Given a symbolic substitution
χ, a concretizing substitution for χ is a substitution ρ : X → M such that, for
any symbolic variable x(κ) that occurs in a message of cod(χ), no symbolic variable
occurs in messages of κρ and κρB x(κ)ρ.

A concretizing substitution replaces all symbolic variables x(κ) with concrete data
that can be derived from κ. If T is a symbolic trace whose last state has bindings
χ and ρ is a concretizing substitution of χ, then we say that ρ is a concretizing
substitution for T .

Given a state Σ = 〈C, χ, κ〉 and a substitution ρ, we write Σρ to denote the
application of ρ to Σ, namely the state 〈Cρ, χ; ρ, κρ〉. Similarly, given a trace T , Tρ
is the trace obtained by applying ρ to each state and each label in T .
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Example 10.3.2 A concretizing substitution for trace TNS of Example 10.3.1 is
a substitution that maps x2(κ) to a value deducible from κ. For instance, we can

concretize TNS by applying the substitution [A1,B+
2 /x2(κ)] and obtain the following

trace

〈∅, ε, ∅〉

j A1 γ

���O
�O
�O

〈{(y1)[out({na1, A1}y+
1
).in({na1, ?u1}A−

1
).out({u1}y+

1
)]}, ε, {A1}〉

o {na1,A1}
y
+
1

���O
�O
�O

〈{(y1)[in({na1, ?u1}A−
1
).out({u1}y+

1
)]}, ε, {A1 , {na1, A1}y+

1
}〉

j B2 [B2/y1 ]
���O
�O
�O

〈

{
()[in({na1, ?u1}A−

1
).out({u1}B+

2
)],

()[in({?x2, ?z2}B−
2

).out({x2, nb2}z+
2
).in({nb2}B−

2
)]

}
, [B2/y1 ], {A1, {na1, A1}y+

1
}〉

i {A1,B+
2 ,A1,B+

2 }
B

+
2�� �O

�O
�O

〈

{
()[in({na1, ?u1}A−

1
).out({u1}B+

2
)],

()[out({A1, B
+
2 , nb2}A+

1
).in({nb2}B−

2
)]

}
, [B2,A1,B+

2 ,A1/y1,x2,z2], κ〉

where κ is the same of Example 10.3.1.

Symbolic semantics is coherent with respect to the concrete semantics. Indeed,
any symbolic trace can be concretized to a non-symbolic trace as stated by the
following theorem.

Theorem 10.3.1 If T is a symbolic trace, for all ρ concretizing substitutions for
T , the states of Tρ form a trace deducible from the transition system in Defini-
tion 9.4.10.

Proof. Let T = Σ0.α1. . . . .αn.Σn = 〈C, χ, κ〉 be a symbolic trace. The proof easily
follows by induction on the length of T , n. If n = 0 there is nothing to prove because
Σ0 is a concrete state, by definition. Let assume that the theorem holds for any trace
on length n and let us consider the trace Tαn+1Σn+1 = 〈C′, χ′, κ′〉. By construction,
χ′ either is obtained by extending χ with substitutions of new symbolic variable or by
refining variable already in cod(χ). Hence, if we consider a concretizing substitution
for χ′, we can observe that it also is a concretizing substitution for χ, therefore (the
state of) Tρ is a trace in the concrete semantics of cIP by inductive hypothesis. We
proceed by case analysis on αn+1
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• αn+1 = j Ai γ : then Σn+1 = 〈join(Ai, γ, C), χγ, κγ〉. Hence,

Σn+1ρ = 〈join(Ai, γ, Cρ), χργ, κργ〉

since γ does not introduce symbolic variables and, therefore, γρ = ργ. Clearly,
Σnρ 7→ Σn+1ρ can be obtained by applying the (join) rule.

• αn+1 = o mσ : in this case there must be a principal in C that performs an

in(d) action and σ is valid substitution. Without loss of generality (for Propo-
sition 10.2.2 and the results in Section 10.1) we can assume that there is a sub-
stitution σ′ such that (m, σ′) ∈ µ(d, κ) and σ is obtained by σ′ by concretizing
some symbolic variable to keys (to obtain a valid symbolic substitution). This
implies that mσρ is deducible from κρ and matches dρ. Finally, Cρ contains
the concretization of the principal performing the in(d) action, therefore, we
can apply rule (in) and obtain the thesis.

• αn+1 = i m : is dealt similarly to the previous case.

�

Theorem 10.3.2 If T = 〈∅, ε, κ0〉 7→ . . . 〈Cn, χn, κn〉 is a concrete trace then there
are

1. a symbolic trace T reaching a state 〈C′, χ′, κ′〉

2. and a concretizing substitution ρ for χ′

such that, for any i = 1, ..., n the i-th state in T is the concretization via ρ of the
i-th state of T .

Proof. The proof follows the same pattern of the proof of Theorem 10.3.1.
The cases of rules (join) and (out) are straightforward.
The interesting cases are the transitions obtained by applying rule (in). By

Proposition 10.2.3 (and Observation 10.2.1) we can prove the thesis by absurdum.
Let assume that it is not possible to mimic a concrete input action. This means
that function µ returns the empty set. This contradicts the fact that in the concrete
semantics we could derive a message from the intruder knowledge matching
the input datum. By inductive hypothesis, such knowledge can be obtained by
concretizing the corresponding symbolic one. Hence such concretization would also
generate the message chosen in the transition and, by Proposition 10.2.3, this is
not possible. �

By constructing symbolic traces, it is possible to collect symbolic bindings and
intruder’s knowledge that the protocol execution can determine. Each terminating
trace represents a potential model for the formula to be verified.
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Definition 10.3.4 (Symbolic intruder) Let T = Σ0α1 . . . αnΣn be a symbolic
trace and let φ be a PL-formula. Trace T is a symbolic intruder for φ if, assuming
Σn = 〈C, χ, κ〉, a concretizing substitution ρ exists such that κρ |=χρ φ.

10.4 Symbolic models

We already pointed out that symbolic analysis makes finite the number of possible
messages that can be exchanged since the number of principal instances is fixed and
finite. Hence the space of the reachable states is finite, too.

We provide a notion of symbolic model κ |≡χ φ for a knowledge κ that may
contain symbolic messages, a symbolic substitution χ and a closed PL formula φ.
Given a formula φ we show how it can guide in concretizing χ by appropriately
restricting symbolic variables and preserving satisfiability of φ. The impossibility of
concretizing χ in this way implies that φ is not satisfiable.

Definition 10.4.1 (Symbolic models) Let χ : X ∪X →M be a symbolic substi-
tution and let κ ∈ ℘fin(M). The pair 〈κ, χ〉 is a symbolic model for a closed formula
φ (written κ |≡χ φ) if, and only if, a concretizing substitution ρ for χ exists and
κρ |=χρ φ holds.

We are interested in defining models of formulae expressing security properties of
protocols sessions. Indeed, we aim at showing how to use formulae themselves to
further constrain symbolic values introduced during protocol execution. Informally,
given a formula φ, once a symbolic substitution and a finite set of symbolic messages
κ have been obtained by the execution of the protocol, we can proceed as follows:

1. The formula is transformed in an equivalent formula where

• the quantifiers have been eliminated;

• the ¬ operator is pushed as far as possible inside the formula;

• finally, the result is transformed in a disjunction of conjuncts.

2. Disjuncts are searched to determine a symbolic substitution that further con-
straints variables in the conjuncts.

The procedure sketched above can also yield the undefined substitution or a con-
tradictory set of inequalities (e.g. x(κ1) 6= x(κ2)). In such case the initial κ and χ
cannot be a symbolic model for the formula φ.

Step 1 is immediate. Indeed, universal and existential quantifiers can be replaced
by a finite conjunction and disjunction respectively by instantiating the session vari-
ables with the principal names appearing in the intruder knowledge. The remaining
transformations are ensured by the De Morgan laws.
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Definition 10.4.2 (Normal form formulae) A PL formula φ is in normal form
if

φ =
∨

i∈1,...,u

(ψi,1 ∧ ... ∧ ψi,ji
)

ψi,j’s are negative or positive atoms.

Proposition 10.4.1 For any PL formula φ, κ ∈ ℘fin(M) and substitution χ, a
normal form ψ exists and it is such that κ |=χ φ ⇐⇒ κ |=χ ψ.

Proof. The proof easily follows by induction on the structure of φ and the
definition of models of PL formulae. �

Proposition 1 suggests that model checking PL formulae can be reduced to to
model check formulae that are in normal form. A further simplification is to consider
only conjuncts atoms because it suffices to find a model for one of the disjunction
to obtain a model for the whole formula in normal form.

The next section tackles the problem of deciding whether a set of symbolic mes-
sages and a symbolic substitution can be refined for satisfying a conjunction of
atoms.

10.4.1 Constraining atoms

Given a symbolic knowledge, a symbolic substitution, and a formula φ that is a
conjunction of atoms we show how positive atoms can be exploited for determining
a substitution (if any) that “refines” the symbolic variables occurring in the substi-
tution. Negative atoms are used to establish the inequalities that must be granted
in the models of φ. Once the symbolic substitution has been refined from positive
atoms we can “apply” it to negative atoms and determine whether they are satisfied
or not.

Informally, the constraints from positive atoms are computed by mimicking the
unification algorithm of logic programming [118]: A conjunction of positive atoms is
considered as a set from which an atom is non-deterministically selected and removed
in order to compute a substitution that must be propagated to the remaining atoms
until the set is not empty. The resulting substitution, when concretized, is granted
to satisfy all the atoms.

Let us consider a formula φ that is a conjunction of positive atoms. We determine
(if possible) a substitution that constraints the symbolic variables of the atoms of
φ by preserving satisfiability. Hereafter, we consider φ to be a set of atoms instead
of as a conjunct of atoms. This is a more suitable representation for describing the
algorithm that computes the refinement substitution from φ.

Definition 10.4.3 (Constraining equalities) Given κ ∈ ℘fin(M) and a symbolic
substitution χ, the refinement substitution Ψ is defined in Table 10.4 where m−1 is
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Ψκ,χ(φ) =





Ψκσ,χσ(φ′),
φ = φ′ ∪ {δ1 = δ2} ∧ δhχ = x(h)(κ(h)), (h = 1, 2) ∧

κ̄ = κ(1) u κ(2) 6= ∅ ∧ i ≤ j ∧ σ = [xi(κ̄),xi(κ̄)/xi(κ′),yj(κ′′)]

Ψκσ,χσ(φ′),

φ = φ′ ∪ {δ1 = δ2} ∧ δ1χ = x(κ′) ∧ δ2χ ∈M \X ∧
x does not occur in δ2χ ∧

σ in µ((δχ)−1, κ′) ∧ σ = σ′[δχσ′
/x(κ′)]

Ψκ,χ(φ′), φ = φ′ ∪ {δ = δ} ∧ δ ∈ N ∪K

Ψκσ,χσ(φ′), φ = φ′ ∪ {δ ∈ K} ∧ σ′ in µ((δχ)−1, κ) ∧ σ = σ′[δχσ′
/x(κ′)]

χ, φ = ∅

⊥, otherwise

Table 10.4: Constraint refinement function

the message obtained from replacing all encryption keys λ in message m with its
inverse key λ−1.

Given a set of atoms φ, Ψκ,χ choses an atom from φ and determines a substitution
that, if different from ⊥, is propagated on κ and χ in the recursive invocations of
Ψ. If the returned substitution is ⊥ then Ψκ,χ returns ⊥ too. Table 10.4 defines
Ψκ,χ(φ) by induction on the set φ. It basically checks, for each atom, whether
symbolic variables can be replaced by messages to either unify right-hand- and left-
hand-side of equalities, or determine the values that make a message belong to the
intruder knowledge.

Let us comment on the clauses of Table 10.4. If δ1 = δ2 is an equality of φ, then
three cases are possible when we apply χ to the equality:

1. two symbolic variables are equated, e.g. x(1)(κ(1)) = x(2)(κ(2)),

2. a variable and a message are equated, e.g. x(κ′) = m, where m = δ2χ ∈M ,

3. the equation is a tautology of the form n = n.

The above cases corresponds to the first three cases of Table 10.4. Case 1 says that
Ψκ,χ(φ) first checks if κ̄ empty or not. In the former case ⊥ is returned, otherwise
substitution σ determined as in Table 10.4 is propagated to κ and χ and Ψ handles
the remaining equalities. Condition i ≤ j is imposed only to determine a canonical
substitution σ. Case 2 is similar because it Ψ checks if κ′ can generate the message
and propagates the substitution σ. Case 3 is trivial, the tautology is simply removed
from the set of conjunctions. When φ is empty Ψκ,χ terminates returning χ. All the
other possibilities correspond to the case where an atom cannot be satisfied, hence
Ψ returns ⊥.

Once a substitution has been refined exploiting positive atoms of a conjunction
of atoms, we can use negative atoms of the conjunction for testing whether the
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refined model is a model for the whole conjunction. Indeed, if one of the atoms is
not satisfied by the model it cannot satisfy the whole formula. When all negative
atoms are satisfied we have found a model that can be concretized to obtain a non-
symbolic model of the initial conjunction. Moreover, this test is simpler than the
refinement mechanism of positive atoms because we must only consider three cases:

• x1(κ) 6= m;

• xi(κ1) 6= yj(κ2);

• m 6∈ K.

By observing that a non-empty set of messages can generate infinite messages, we
can immediately derive that the first case is always true, and the second is true
when xi and yj are different variables, while xi(κ1) 6= xi(κ2) is a contradiction. The
last case means that κ 6 Dm must be checked.

10.5 Concluding Remarks

The number of verification techniques that have been proposed for the formal
analysis of systems is quite large and it makes not possible to list all of them
here. We cite a small subset of these approaches that are somehow related
to our proposal. Process calculi have been intensively used in protocol analy-
sis [79, 80, 115, 117, 163, 164, 160, 2, 22, 23]. Other approaches rely on inductive
theorem proving [147], and on logic programming [122]. All these approaches made
simplifying hypothesis on the behaviour of the intruder to bound the state space in
order to apply standard finite state verification techniques

In particular our approach is very close to [22] where a symbolic semantics have
been successfully specified for the spi calculus [2]. In [22, 23] it is shown how the
symbolic approach sensibly reduces state space exploration with respect the non-
symbolic model checkers. Our framework generates a bigger state space compared
to [23, 22] because we avoid generating symbolic traces which have no concrete
counterpart, while [23, 22], after having generated a symbolic trace, must filter
concretions that are really possible in the concrete semantics. Despite of state space
dimension, our framework is more efficient because we perform model checking of
security properties only in the final states of the traces.

The direct handling of multiple sessions is the distinguished feature of our ap-
proach with respect to the other process calculi for security. The relevance of multi-
session attacks has been emphasizes in [129]. Some results [116] had proved that,
in particular cases, it is possible to impose sufficient conditions that allow one to
limit the analysis to “small system”, i.e. contexts where few sessions are present.
However, those results are not general and only hold for secrecy properties.
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Another approach are strand spaces [69, 68], where a participant of a protocol is
modeled as a finite strand of nodes representing input or output actions; each input
node may receive its value from a single output node. A principal cannot have non-
deterministic behaviour. A similar idea has been followed in [44]. An interesting
connection with cIP and stands can be outlined if we restrict the syntax of the
language avoiding + and | operators of behavioral expressions. Indeed, this would
allows one to write only “single line” protocols, namely protocols where principals
can only be sequential processes as much like the strand space approach. Another
similarities is the pattern matching mechanism in communications. We conjecture
that there is an isomorphism between the computations of cIP processes and the
related strand spaces. This will be studied in future works.

Several logical formalisms have been proposed to specify properties of security
protocols. Here, we mention the BAN logic [31], the correspondence relations of
Dolev and Yao [66]. In the BAN logic a protocol P is idealized to formally state
the intended meaning of message exchanged by principals. However, this is a non
trivial task and requires some expertise. The idealized protocol is annotated with
assertions that recall pre- and post-conditions of the Hoare Logic. Clearly, proofs
specify what is true initially and after the “execution” of an idealized step. Finally,
the annotated initialization is automatically checked. The Dolev and Yao correspon-
dence relations have been adopted in [133, 101, 22]. A correspondence, written as
α←↩ β, asserts that, for all traces, each occurrence of an action α must be preceded
by an occurrence of an action β. By exploiting the correspondence relations it is
possible to state authentication properties and, with some machinery, also secrecy
properties. However, a main drawback is that properties are related to the number
of sessions under analysis.



Part III

Co-Algebraic Minimization of
Automata





Abstract

This part of the dissertation describes Mihda, an environment for the semantic min-
imization of automata. The idea of semantic minimization is to collapse states of
automata that are equivalent. The environment can be parameterized with respect
to different classes of automata and equivalent relations between states.

We will consider the design choices and the implementation of the environment
with a particular emphasis to History Dependent Automata which are an opera-
tional model for history dependent calculi. Mihda can be exploited for minimizing
π-calculus agents considering bisimulation as the equivalence. Currently we have
implemented bisimulation checking for the early strong bisimulation. However, few
modules can be defined and included for employing Mihda for different semantics,
e.g. late or weak semantics.

Even though we will focus on History Dependent automata, we emphasize that
Mihda has been designed with the aim of being a general environment for modular
minimization. In particular, we also have defined a module for specifying ordinary
automata and have exploited Mihda for their semantic minimization using the usual
notion of bisimilarity. We remark that Mihda can also be parameterized with respect
to different notion of equivalences.

Finally, we show how Mihda can be integrated with existing verification environ-
ments via a web interface that allows one to easily write simple programs that use
a web interface to the verification facilities as a normal library.
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Chapter 11

Co-algebraic Verification of Mobile
Process

Abstract

This chapter recaps elementary notions from category theory and co-
algebras that will make more clear the presentation of our results. In partic-
ular, we point out how co-algebras can be suitably exploited for representing
automata and for defining a semantic minimization algorithm. The chapter
ends with a comparison between the co-algebraic approach and the classical
approach to minimization.
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11.1 Preliminaries

It is quite common to consider concurrent and distributed systems as reactive,
namely as systems which are plugged and executed into an environment that can
interact with them by means of some stimuli to which systems react. In this con-
text the behaviour of a system can be represented as the ability of the system of
reacting to a given class of stimuli. Hence, a natural question is: when two systems
have equivalent behaviours? The ability to answer this question is quite important.
For instance, it implies that a system S can be unplugged and substituted with a
system S ′, provided that S ′ is equivalent to S, namely, provided that the rest of
the environment cannot distinguish the behaviour of S ′ from the behaviour of S.
Another reason is related to “efficiency”. We can replace S with a “smaller” sys-
tem S ′, provided that they are equivalent. Among the wide number of theories for
representing systems and their behaviours that have been proposed, π-calculus and
bisimulation equivalences probably are the most famous and applied.

A very natural and elegant way of describing transitions systems is provided
by coalgebras, that are the dual concept of algebra. Duality between algebras and
coalgebra can be precisely stated in a categorical setting. This section aims at
formally reviewing elementary notions of coalgebras. Indeed, we recap only minimal
notions necessary for presenting the coalgebraic version of HD-automata. The reader
can skip this section if (s)he is already acquainted with the notions of category,
functor and co-algebra and with the elementary (polynomial) functors over Set.
The interested reader is referred to [103, 3] for a deeper study of coalgebras.

We first introduce the concept of category .

Definition 11.1.1 (Category) A category C is class of objects OC (ranged over
by a, b ,...) together with a class of arrows AC (ranged over by by f , g ,...) such
that the following properties hold:

• Each arrow f has a domain dom(f) (also called source and a codomain cod(f)
(also called target) which are objects. We write f : a→ b when f is an arrow
whose domain is a and whose codomain is b.

• Given two arrows f and g such that cod(f) = dom(g), the composition of f
and g, written f ; g, is an arrow with domain dom(f) and codomain cod(g).

• composition is associative, namely, whenever f , g and h can be composed,
f ; (g; h) = (f ; g); h.

• For any object a there is an identity arrow ida : a → a. All identity arrows
enjoy the following properties:

iddom(f); f = f = f ; idcod(f).
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Essentially, a category is a collection of objects having a given structure and a
collection of transformations of objects that preserve the structure of objects. We
avoid the details of the general theory of category and we limit our presentation to
the restricted setting of sets and functions among them.

Observation 11.1.1 The category of sets, denoted by Set, is the category having
sets as objects and (total) function on sets as arrows. Domain and codomain are
the domain and codomain of a function, composition of arrows is the usual function
composition, while identities are the identity function. It is a simple exercise to show
that Set is an instance of Definition 11.1.1.

The most important concept from category theory that we need is functoriality .
Informally, an operation on sets is “functorial” when it can be lifted to functions
preserving function composition and identities. Functoriality is a familiar concept
in many fields of computer science.

Example 11.1.1 Let L : A→ A∗ be the function that associates to a set A, the set
of the finite lists over A, given a function f : A→ B, we can define L(f) : L(A)→
L(B) as the function such that

L(f) : [e1, ..., en] 7→ [f(e1), ..., f(en)].

Notice that L(f) is the usual map operation on lists exploited in functional program-
ming. It is easy to prove that L is functorial, indeed, L(f ; g) = L(f);L(g) (if f and
g can be composed) and that L(idA) = idL(A).

The following definition formalizes this concept:

Definition 11.1.2 (Functor over Set) An (endo-)functor F over Set maps sets
to sets and functions to functions such that

• for each function f : A→ B, F(f) : F(A)→ F(A);

• for each set A, F(idA) = idF(A);

• for all composable functions f : A→ B and g : B → C, F(f ; g) = F(f);F(g).

Figure 11.1 gives a graphical representation of how a functor acts on objects and
arrows. In particular, the figure shows how relations among objects and arrows of
the starting category are maintained in the target category.

Observation 11.1.2 The general definition of functor is given for any two cate-
gories C and C′. Figure 11.1 remains the same also in the general case apart that
Set is substituted by C on the left and with C′ on the right of F .

By simply applying Definition 11.1.2 it is possible to show that the identity
mapping of sets and functions, or the mapping that associates a constant set L to
any set A are functors overs Set. Other examples of functor over sets can be given.
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Set
F +3 Set
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idA
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f ;g
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F(A)

F(idA) =
idF(A)vv

F(f)
��

F(f ; g) =
F(f);F(g)

��

B

g

��

// F(B)

F(g)
��

C // F(C)

Figure 11.1: Functor over Set

Example 11.1.2 This example defines two of most useful functors over Set,
namely product and co-product (or disjoint union).

Let A × B the cartesian product of sets A and B. It is possible to define two
functions π : A × B → A and π′ : A × B → B that behaves as the projection
function, i.e.

π : (a, b) 7→ a π′ : (a, b) 7→ b.

Given two functions f : Z → A and g : Z → B, there exists a unique pair function
〈f, g〉 : Z → A× B such that the following equalities hold:

〈f, g〉; π = f 〈f, g〉; π′ = g.

It is worth to give a graphical representation of the above relations between π, π′,
f , g and 〈f, g〉. More precisely, such relations express that the following diagram
“commutes”

Z

〈f,g〉
��

f

{{ww
ww

ww
ww

ww g

##GG
GG

GG
GG

GG

A A×B
πoo

π′
// B

Commutativity of the diagram means that any two paths starting from the same
vertex and ending in the same vertex are equal if interpreted as composition of
the arrows composing the paths. Moreover, observe that 〈π, π′〉 = idA×B and that
h; 〈f, g〉 = 〈h; f, h; g〉 for any function h such that cod(h) = Z.
We can lift the cartesian product to functions. Indeed, if f : A → B and
f ′ : A′ → B′, we can define f × f ′ : A× A′ → B × B′ as the function 〈π; f, π′; f ′〉,
namely, the function that maps (a, a′) into (f(a), f ′(a′)). It is easy to verify that the
product is functorial, in other words,the following equalities hold:

idA × idA′ = idA×A′ (f ; g)× (f ′; g′) = (f × f ′); (g × g′).
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Let A+B denotes the disjoint union of sets A and B:

A+B
def
= {0} × A ∪ {1} × B.

In some sense, disjoint union is the dual of product, from which its synonym co-
product derives: Instead of projections, we can define co-projections κ : A→ A+B
and κ′ : B → A+B which are defined by

κ : a 7→ (0, a) κ′ : b 7→ (1, b).

Informally, κ and κ′ inject elements of A and B (respectively) into A+B, while, on
the contrary, projections π and π′ “extract” elements of A and B (resp.) from A×B.
Moreover, analogously to what is done for products, given functions f : A→ Z and
g : B → Z, we can built the “co-product function [f, g] : A + B → Z as the unique
function such that κ; [f, g] = f and κ′; [f, g] = g. It is possible to define [f, g] by
case:

[f, g](x) =

{
f(a), if x = (0, a)
g(b), if x = (1, b)

Finally, we lift the co-product to functions by defining f + g = [f ; κ, g; κ′]. Observe
+ on functions preserves identities and compositions, i.e. it is a functor.

Another functor that will be very important in defining co-algebras is the powerset
functor .

Example 11.1.3 Let us consider the operation A 7→ ℘(A), i.e. the function that
associates to a set the set of all its subsets and, for a function f : A → B, let us
consider

℘(f) : ℘(A)→ ℘(B) ℘(f) : U 7→ {f(u) | u ∈ U}.

Then, by definition,

• ℘(idA)(U) = {idA(u) | u ∈ U}, for any U ⊆ A hence, ℘(idA)(U) = U ;

• ℘(f ; g)(U) = {g(f(u)) | u ∈ U}, for any U ⊆ dom(f), hence, by definition,
℘(f ; g)(U) = ℘(g)(℘(f)(U)), for all U ⊆ dom(f) which amounts to ℘(f ; g) =
℘(f);℘(g).

This proves that the powerset operation is functorial.

We conclude this section by claiming that the above functors are part of the so called
polynomial functors that are those functors that can be obtained by combining sums,
products, powerset, constant and exponentiation functors. Indeed, it is possible to
prove that any combination of this functors is a functor (in fact categories and
functors among them form a category) [175, 5].
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11.2 Algebras and coalgebras

Before introducing coalgebras, we show how it is possible to rephrase the more
familiar concept of Σ-algebra into a categorical framework. This approach also
permits us to state the duality of algebras and coalgebras.

Given a signature Σ that, for the sake of simplicity we consider one sorted. We
can easily define a Σ-algebra, namely a structure over a given set A that associates
functions to any symbol in Σ. The only constraint being the fact that such functions
must preserve arity of operations1.

Example 11.2.1 If Σ = 〈nat, z :→ nat, s : nat× nat→ nat〉, then a Σ-algebra is
the algebra of natural numbers: Namely, nat is interpreted as the set of natural
numbers ω, the element 0 interprets constant z and sum function interprets s.

Referring to Example 11.2.1, signature Σ “resembles” the functor

N (X) = 1 +X ×X,

where 1 is a singleton set. A N -algebra is a pair (A, α) where A is a set and
α : N (A)→ A is a function that given a set A either returns the element in 1 or a
“new” element built out of two elements in A.

More generally, if Σ = {σ1, ..., σs} is a signature such that each operation σi has
arity ni, we can associate a functor

FΣ(U) = Un1 + ...+ Uns

(where U0 is a singleton set containing an element of U) such that a Σ-algebra with
carrier A, can be represented by a function FΣ(A)→ A.

We have now all the ingredients for defining coalgebras and point out their duality
with respect to algebras. We restrict our definition to coalgebras over endo-functors
of Set.

Definition 11.2.1 (F-coalgebra) Let F be an endo-functor on the category Set.
A F -coalgebra consists of a pair (A, α) such that α : A→ F(A).

This definition makes clear also the duality between F -algebras and F -coalgebras.
Indeed they are functions whose domain and codomain are “reversed”, namely, are
arrows between the same objects but with opposite directions. Different directions
can be interpreted as “construction” and “observation”. An F -algebra with carrier
set A is a function F(A)→ A and says how to “construct” elements of A by applying
operations detailed by F . On the other hand, a F -coalgebra is a function A→ F(A)
which, given an element of A, returns informations on the element. For instance let
us consider T (X) = L×X, where L is a fixed set, then the coalgebra α : Q→ L×Q
can be though of as an automaton such that, for each state q ∈ Q, if α(q) = (l, q′)
then q′ is the successor state of q reached with a transition labelled l.

1In the general case of multisorted signatures, also sorting must be preserved.
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11.3 Transition Systems as Coalgebras

This section gives the preliminary definitions and notations on automata. We
present a formal framework that, starting from ordinary automata, introduces
the coalgebraic version of automata theory and the coalgebraic definition of
HD-automata.

In the following we will use terms ’automaton’ and ’transition system’ inter-
changeably.

Definition 11.3.1 (Automata) An automaton A is a triple (S, L,→) where S is
the set of states, L the set of actions or labels and →⊆ S × L× S is the transition

relation. Usually, one writes s
`
−→ d to indicate (s, `, d) ∈−→; s is the source state

and d is the destination or target state. Transition s
`
−→ d is also called ’arrow’.

Observation 11.3.1 In classical automata theory, an initial state s̄ ∈ S is specified
for automata. For the moment, we ignore initial states that will be specified when
necessary.

Depending on the transition relation, we can distinguish various classes of automata.
For instance, deterministic automata are those automata having a transition relation

which is functional, i.e. s
`
−→ d and s

`
−→ d′ if, and only if, d = d′. Deterministic

automata have one possible successor state for each state s and each label `. Non-
deterministic automata are automata which admit more than one possible successor
for a state and a label.

We aim at developing a coalgebraic description of the minimization procedure,
hence, we rephrase coalgebras in terms of structures that are more concrete than
functors. Indeed, we provide a (concrete) representation of the terminal coalgebra (of
an endofunctor over Set) in terms of sets and quadruples which will yield the minimal
transition system. In particular, we define bundles as the concrete structures that are
associated by the co-algebraic functor to states that will be (concretely) represented
as objects of Set. In this way it is possible to express the functional aspect of
the functor (at each step of the minimization algorithm) by means of particular
structures that will be introduced in the following.

We report here definitions and notations taken from [73] that are hereafter used:

• Q : Set denotes a set and q : Q denotes an element in the set Q;

• Fun is the collection of functions among sets (the arrows of category Set). The
function space over sets will have the following structure:

Fun = {H | H = 〈S : Set , D : Set , h : S −→ D〉}.

By convention we use SH ,DH and hH to respectively denote domain, codomain
and mapping of an element of Fun.
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A finite-state transition system can be coalgebraically described by employing
two ingredients: A set Q, that represents the state space, together with a function
K : Q −→ ℘fin(L×Q) that represents the “behaviour” of the transition system: K(q)

is the set of pairs (`, q′) such that q
`
−→ q′.

Definition 11.3.2 (Bundles) Let L be the set of labels (ranged over by `), then a
bundle β over L is a structure 〈D : Set, Step : ℘fin(L×D)〉. We call the first com-
ponent of a bundle β the support of β. Given a fixed set of labels L, by convention,
BL denotes the collection of bundles and β : BL means that β is a bundle over L.

Intuitively, the notion of bundle has to be understood as giving the data structure
representing all the state transitions out of a given state. It details which states are
reachable by performing certain actions.

Once a set of labels L has been fixed, we can consider the polynomial endofunctor
A(X) = ℘fin(L×X) in Set. Functor A operates on both sets and functions, and
characterizes a whole category of labelled transition systems, i.e. of coalgebras. The
following clauses define A.

• A(Q) = {β : BL | Dβ = Q}, for each Q : Set;

• For each H : Fun, A(H) is defined as follows:

– SA(H) = A(SH) and DA(H) = A(DH);

– hA(H)(β : A(SH)) = 〈DH , {〈`, hH(q)〉 | 〈`, q〉 : Stepβ}〉.

A labelled transition system over a set of labels L is a coalgebra for functor A,
namely it is a function K such that DK = A(SK). Note that the convention on
functions permits us not to mention the carrier of a coalgebra K it is implicitly
given by SK .

We can rephrase the concepts of coalgebras homomorphism and finality for tran-
sition systems:

Definition 11.3.3 (Homomorphism and finality of transition systems)
Let K and F be two transition systems. A function H is a homomorphism of
transition system if

SH = SK , DH = SF , H ;F = K;A(H).

Which can be represented by the following commuting diagram:

SK
hH //

K
��

SF

F
��

A(SK)
A(hH)

// A(SF )

A transition system F is final if, for any other transition system K, there is a unique
homomorphism from K to F .
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As usual, homomorphisms correspond to the idea of functions which commutes
with the coalgebraic operations while finality encompass the idea of minimality.
Indeed, final transition systems are those transition systems that are image of all
other transition systems in a certain class through functions which preserves their
“behaviour”. General results (e.g. [4]) ensure the existence of the final coalgebra
for a large class of functors. These results apply to the functors defining transition
systems. In particular, it is interesting to see the result of the iteration along the
terminal sequence [175] of functor A.

Let K be a transition system, and let H0, H1, . . . , Hi+1, . . . be the sequence of

functions computed by Hi+1 = ̂K;A(Hi), where H0 is the unique function from SK

to the one-element set {∗} given by SH0 = SK ; DH0 = {∗}; and hH0(q : SH0) = ∗.
In [73], the following result is stated:

Theorem 11.3.1 Let K be a finite-state transition system. Then,

• The iteration along the terminal sequence converges in a finite number of steps,
i.e. DHi+1

≡ DHi
,

• The isomorphism mapping F : DHi
−→ DHi+1

yields the minimal realization of
transition system K.
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Chapter 12

Verification of History Dependent
Automata

Abstract

Modeling systems with mobile processes is quite reasonable under many
point of view. Process calculi have been usefully exploited both for theoretical
investigation and for studying “concrete” aspects of mobile systems. Unfortu-
nately, even if many proposed theoretical frameworks are quite adequate for
considering most issues related to distributed and concurrent systems, they
do not fit well with respect to verification purposes. HD-automata extends
classical automata and have been proposed for explicitly modeling phenomena
related to history dependent formalism at the operational level.

This chapter reviews the co-algebraic specification of HD-automata and a
minimization algorithm based on the co-algebraic definition of HD-automata
proposed in [135, 73].

Contents

12.1 History Dependent Automata . . . . . . . . . . . . . . . . 204

12.2 HD-automata for π-agents . . . . . . . . . . . . . . . . . . 206

12.2.1 Bundles over π-calculus actions . . . . . . . . . . . . . . . 208

12.2.2 Normalizing bundles . . . . . . . . . . . . . . . . . . . . . 210

12.2.3 The minimization algorithm . . . . . . . . . . . . . . . . . 211



204 12. VERIFICATION OF HISTORY DEPENDENT AUTOMATA

12.1 History Dependent Automata

Verification of systems that can be adequately modeled as mobile processes is dif-
ficult because many “source of infinity” can be introduced. For instance, let us
consider transition systems obtained from π-agents, we have that transitions can
generate new names. Indeed, let us consider the (OPEN) rule of π-calculus:

p
xy
−→ q

if x 6= y.

(ν y)p
x(y)
−→ q

(12.1)

Such rule basically establishes that a state ((ν y)p) can create a new name and
can export it over a channel x. Notice that the state of the transition system
corresponding to ((ν y)p) represents a point of the computation where y “does
not exists”, while the target state of the bound output transition is a point of
the computation where y “becomes available”. Rule (12.1) introduces an infinite
branching in the automata corresponding to agents that perform bound output
transitions.

As already noticed in Section 3.1.2, the rule for input transition of the early
semantics of the π-calculus also introduces infinite branching because it is necessary
to consider a transition for any name that instantiates the input parameter.

Let us remark that it is of course reasonable (and desirable) to model π-calculus
semantics with rules as (12.1) or by means of the early semantics because such
rules account for scope extrusion of names that is one of the major peculiarities of
π-calculus and permits to model and reason on many aspects of mobile systems.
On the other hand, since those kind of semantics had been introduced without
considering verification issues, such rules are problematic when verification purposes
are under consideration.

A different phenomenon that produces infinite automata is due to name extru-
sion. A possible “implementation” of name extrusion is to reserve an infinite se-
quence of names from which a new name can be taken when a transition extrudes a
fresh name. This approach has been proposed and analyzed in [153, 74]. A drawback
of this approach is that an infinite number of states is generated in the case of agents
with infinite behaviour. Indeed, let us consider the agent A(x) = (ν y)x̄y.A(y).
Agent A(x) generates a new name y, emit it along x and continues as A(y). This
behavior is “encoded” in the approach of [153, 74] as

A(x)
x̄(x0)
−−→ A(x0)

x̄0(x1)
−−→ A(x1)

x̄1(x2)
−−→ A(x2)...

Hence, to obtain finite state automata also for agents with infinite behaviour, we
need a mechanism to model “resource deallocation”. Let us again consider agent
A; after each bound output x̄i(xi+1) transition, the name xi will never be used in
future transitions, hence we could re-use it provided that a mechanism for re-stating
its freshness is given.
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Figure 12.1: A HD-automaton transition

In order to model this kind of evolution in a framework suitable for verifying
systems it is necessary to enrich the structure of states and transitions of ordinary
transition systems.

History Dependent automata (HD-automata in brief) have been proposed in [151,
134, 135, 73] as a new operational model for history dependent calculi, namely those
calculi whose semantics is defined in terms of a labelled transition system such that
the labels may carry information generated in the past transitions of the system
and this “historical” information can influence the future behaviour of the system.
Probably the simplest history dependent calculus is CCS with value passing [104],
another example is the CCS with locality [25]; finally, as we have seen π-calculus
LTS semantics all have labels that can contain names generated in past transitions1.

HD-automata aim at giving a finite representation of otherwise infinite label
transition systems. Similarly to ordinary automata, HD-automata are made out
of states and labelled transitions. Their peculiarity resides in the fact that states
and transitions are equipped with names which are no longer dealt as syntactic
components of labels, but become an explicit part of the operational model. This
permits to model name creation/deallocation or name extrusion that are typical
linguistic mechanisms of name passing calculi.

An important aspect of HD-automata to emphasize is that names of a state
have local meaning . For instance, if A(x, y, z) denotes an agent having three free
names x, y and z, then agent A(y, x, z) is different from A(x, y, z), however, they
can be represented by means of a single state q in a HD-automaton simply by
considering a “swapping” operation on the names (corresponding to) x and y of
q. More generally, states that differs only for renaming of their local names are
identified in the operational model.

Local meaning of names requires a mechanism for describing how names cor-
respond each other along transitions. Graphically, we can represent such corre-
spondences using “wires” that connect names of label, source and target states of
transitions. For instance, Figure 12.1 depicts a transition from source state s to
destination state d. The transition exposes two names: Name 2 of s and a fresh
name 0. State s has three names, 1, 2 and 3 while d has two names 4 and 5 which
correspond to name 1 of s and to the new name 0, respectively. Notice that names
3 is discharged along such transition.

1Also formalism that are not related to process calculi can be considered as history dependent;
for instance, Petri nets [90] are a paradigmatic history dependent formalisms.
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As described in Figure 12.1, HD-automata relies on the fact that names are local.
This allows for a compact representation of agent behaviour by collapsing states that
differ only for renaming of local names encompasses the main characteristics of name-
passing calculi, namely, creation/deallocation of names. Indeed, name creation is
simply handled by associating in the target state a name not in the source state.

A computation performed on a HD-automaton associates a “history” to names of
the states appearing in the computation, in the sense that it is possible to reconstruct
the associations which lead to the state containing the name. Clearly, if a state is
reached in two different computations, different histories could be assigned to its
names.

Various families of HD-automata have been introduced. Roughly speaking each
class of HD-automata corresponds to a class of history dependent calculi or different
behavioural semantics. The reader is referred to [151] for details. In the next sections
we will present a coalgebraic definition of HD-automata for π-calculus for the early
semantics. The coalgebraic presentation of HD-automata for π-agents has been
introduced in [135]. In order to make this part of the dissertation self-contained, we
report (with slight variations on the notation) the presentation appeared in [73] of
the minimization algorithm for HD-automata.

12.2 HD-automata for π-agents

This section borrows the minimal notations and definitions introduced in [73] that
will be used in Chapter 13.

Names appear explicitly in the states of an HD-automaton: The idea is that the
names associated to a state play a rôle in the state evolution. Let N be an infinite
countable set of names ranged over by v and let N ? be the set N ∪∗, where ∗ 6∈ N is
a distinguished name and will be used for modeling name creation. We also assume
that < is a total order on N ? (for instance, it can be the lexicographic order on N
and ∀v ∈ N : ∗ < v). Given a state q of a HD-automaton, a set {v1, . . . , v|q|} ⊆ N
of local names and a permutation group Gq are associated with q. Elements of
Gq are those permutations of names of q that leave unchanged the behaviour of q.
Moreover, the identity of names is local to the state: States which differ only for
the order of their names are identified. Due to the usage of local names, whenever
a transition is performed a name correspondence between the name of the source
state and the names of the target state is explicitly required.

Table 12.1 is a synoptic collection of definitions from [73] (with few notational
changes); it reports the definitions of named sets, named functions, and composition
of named functions. In Table 12.1 and in the following, the general product

∏
is

employed (as usual in type theory) to type functions f such that the type of f(q) is
dependent on q.

A named set represents a set of states equipped with a mechanism to give local
meaning to names occurring in each state. In particular, function | | yields the
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Named set A named set A is a structure

A = 〈Q : Set, | |: Q −→ ω,≤: ℘(Q×Q), G :
∏

q∈Q

℘({v1..v|q|}
bij
−→ {v1..v|q|})〉

where ∀q : QA, GA(q) is a permutation group and ≤A is a total ordering.

Named function A named function H is a structure

H = 〈S : NSet, D : NSet, h : QS −→ QD,Σ : QS −→ ℘({h(q)}D
inj
−→ {q}S ∪ ∗)〉

where ∀q : QSH
, ∀σ : ΣH(q),

1. GDH
(hH(q)); σ = ΣH(q) and

2. σ;GSH
(q) ⊆ ΣH(q).

Composition of named functions Named functions can be composed in the
obvious way. Let H and K be named functions. Then H ;K is defined only if
DH = SK , and

SH;K = SH , DH;K = DK , hH;K : QSH
−→ QDK

= hH ; hK ,

ΣH;K(q : QSH
) = ΣK(hH(q)); ΣH(q)

Let H be a named function, Ĥ denotes the surjective component of H :

• SĤ = SH and QD
Ĥ

= {q′ : QDH
| ∃q : QSH

.hH(q) = q′},

• |q|D
Ĥ

= |q|DH
, GD

Ĥ
(q) = GDH

(q), hĤ(q) = hH(q) and ΣĤ(q) = ΣH(q)

Table 12.1: Definitions
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number of local names of states. Moreover, the permutation group GA(q) allows
one to describe directly the renamings that do not affect the behaviour of q, i.e.,
symmetries on the local names of q. Finally, we assume that states are totally
ordered. By convention we write {q : QA}A to indicate the set {v1, ..., v|q|A} and we
use NSet to denote the universe of named sets.

As in the case of standard transition systems, name functions are used to de-
termine the possible transitions of a given state. Intuitively, definition of named
function in Table 12.1 says that, for each state q in SH , hH(q) yields the behaviour
of q, i.e. the transitions departing from q. Since states are equipped with local
names, a name correspondence (the mapping Hh) is needed to describe how names
in the destination state are mapped into names of the source state, therefore we
must equip H with a set ΣH(q) of injective functions. For a discussion on the rôle
of symmetries with respect named function we refer the reader to [73].

12.2.1 Bundles over π-calculus actions

We want to represent the transition system for the early semantics of π-calculus [130].
The notion of bundle must be enriched.

First we have to fix the set of labels of transitions. Labels of transitions must
distinguish among the different meanings of names occurring in π-calculus actions,
namely synchronization, bound/free output and bound/free input. The set of π-
calculus labels Lπ is the set {TAU,BOUT,OUT,BIN, IN}. We specify two differ-
ent labels for input actions: Label BIN is used when the input transition acquires
a new name, namely a name that was not previously known to the agent, while IN
corresponds to an input transition that acquires an already known name.

Since names are local to states, it is necessary to specify how label names are
related to names of states. For instance, no name is associated to synchronization
labels, whereas one name, is associated to bound output labels. Let | | be the weight
map associating to each π-label the set of indexes of distinct names the label refers
to. The weight map is defined as follows:

|TAU | = ∅ |BOUT | = |BIN | = {1} |OUT | = |IN | = {1, 2}

Table 12.2 collects definitions of bundles and names of bundles from [73].
A bundle on π-labels is defined as in Table 12.2. As above, the intuition is

that the Step component of a bundle describes the set of successor states for a given
source state. More precisely, if 〈`, π, σ, q〉 ∈ qd D, then q is the destination state;
` is the label of the transition; π associates to the label the names observed in the
transition; and σ states how names in the destination state are related with the
names in the source state. According to the definition of σ in Table 12.2, a name
in a destination state of a quadruple is mapped on the distinguished name ∗ only
on transitions where a new name is created (i.e. transitions labelled with BOUT or
BIN).
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Bundles A bundle β consists of the structure

β = 〈 D : NSet, Step : ℘(qd D) 〉

where qdD is the set of quadruples of the form 〈`, π, σ, q〉 given by

qdD = {〈` : Lπ, π : |`|
inj
−→ {v1..}, σ :

∏

`∈Lπ

{q}D
inj
−→ Q`, q : QD〉}.

and

Q` =

{
N ? if ` ∈ {BOUT,BIN}
N if ` 6∈ {BOUT,BIN}

under the constraint that GDβ
(q);Sq = Sq, where Sq = {〈`, π, σ, q〉 ∈ Stepβ} and

ρ; 〈`, π, σ, q〉 = 〈`, π, ρ; σ, q〉.

Bundle names Let β be a bundle. Function {| |} : B → N , mapping each bundle
to the set of its names, is defined by

{|β |} =
⋃

〈`,π,σ,q〉∈Stepβ

rng(π) ∪ rng(σ) \ {∗}

where rng yields the range of functions. We only consider bundles β such that {|β |}
is finite and we let bβc to indicate the number of names which occur in the bundle
β (i.e. bβc = |{|β |}|).

Table 12.2: Definitions
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In order to exploit named functions for representing HD-automata it is necessary
to equip the set of bundles B with a named set structure. In other words we must
define a total order on bundles, a function that maps a bundle to its number of
names and a group of permutations over those names. Table 12.2 reports the
definition of names of a bundle which are the names (different from ∗) that appear
either in the labels or in the range of σ’s of the quadruples of the bundle.

The minimization algorithm necessitates of a mechanism for determining the
representative element of a given class of equivalent states. Intuitively, two states
are equivalent when they have the “same” bundles, hence, the choice of a canonical
state turns in the choice of a canonical bundle. We can assume that a total order
on states and labels exist. Hence, quadruples are totally ordered, e.g. assuming the
lexicographic order of labels, states and names. The order over quadruples yields
an ordering v over bundles. This ordering relation will be used to define canonical
representatives of bundles. The ordering on quadruples can be non ambiguously
defined only assuming an ordering on the support of bundles.

Finally, the group of a bundle can be defined once we define how a permutation

is applied to a bundle. Given a bundle β and a permutation θ : {| β |}
bij
−→ {| β |},

bundle β; θ is defined as Dβ;θ = Dβ, stepβ;θ = {〈`, π; θ, σ; θ, q〉 | 〈`, π, σ, q〉 : β}; the
group of β (Gr β) is defined as Gr β = {ρ|β; ρ? = β}.

12.2.2 Normalizing bundles

Normalization is the most important operation on bundles. It is necessary because
(i) we must establish a canaonical way of chosing the step component of a bundle
among a number of different equivalent ways; (ii) more importantly, redundant
input transitions must be removed. Indeed, redundant transitions occur when an
HD-automaton is built from a π-calculus agent. During this phase, it is not possible
to decide which free input transitions are required, and which transitions are covered
by the bound input transition2. The solution to this problem consists of adding a
superset of the required free input transitions when the HD-automaton is built, and
to exploit a reduction function to remove the ones that are unnecessary.

The normalization function norm(β) is defined as follows:

• Dnorm(β) = Dβ

• Stepnorm(β) = minv

(
Stepβ \ {〈IN, xy, σ, q〉 | y 6∈ anβ}

)
,

where the auxiliary definitions (taken from [73]) are reported in Table 12.3.
The order relation v is used to define the canonical representatives of bundles

and relies on the order of quadruples. In the following, we use perm(β) to denote
the canonical permutation that associates Stepnorm(β) and Stepβ \ {〈IN, xy, σ, q〉 |
y 6∈ anβ}.

2In the general case, to decide whether a free input transition is required it is as difficult as to
decide the bisimilarity of two π-calculus agents.
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red Reduction function red(β) on bundles is defined as follows:

• Dred(β) = Dβ ,

• Stepred(β) = Stepβ \ {〈IN, xy, σ, q〉 | 〈BIN, x, σ′, q〉 : Stepβ ∧ σ′ = σ; {y → ∗}}.

where σ; {y → ∗} is the function equal to σ on any name different from y and that
assigns ∗ to y.

Active names The set of active names of a bundle β is anβ = {|red(β) |}.

Minimal step minv is the function that, when applied to Stepβ , returns the step of
the minimal bundle (with respect to order v) among those obtained by permuting
names of β in all possible ways.

Table 12.3: Auxiliary definitions for norm

A canonical way of extracting Gr β, the group of permutations bundle β, is given
by defining Gr β = {ρ | Stepβ; (ρ[∗/∗]) = Stepβ}.

12.2.3 The minimization algorithm

HD-automata for π-agents are particular transition systems over named sets defined
as follows:

• the elements of the stateQA are π-agents p(v1, ..., vn) ordered lexicographically:
p1 ≤A p2 iff p1 ≤lex p2

• |p(v1, ..., vn)|A = n,

• GAq = {id : {q}A −→ {q}A}, where id denotes the identity function,

• h : QA −→ {β | Dβ = A} is such that 〈`, π, σ, q′〉 ∈ Steph(q) represent the
π-calculus transitions from agent q.

The bundle Steph(q) contains only a subset of representative transitions (represented

as q
`,π,σ
−→ q′) from q as discussed in [73].

A transition system over Lπ is a HD-automaton and can be co-algebraically
specified as a named function K such that DK = T (SK). The action of functor T
over named sets is given by:

• QT (A) = {β : Bundle | Dβ = A, β normalized},
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• |β|T (A) = bβc,

• GT (A)(β) = Gr β,

• β1 ≤T (A) β2 iff Stepβ1 v Stepβ2,

while the action of functor T over named functions is given by:

• ST (H) = T (SH), DT (H) = T (DH),

• hT (H)(β : QT (SH)) : QT (DH) = norm(β′),

• ΣT (H)(β : QT (SH)) = Gr(norm(β′)); (perm(β′))−1; inj : {|norm(β′) |} −→ {β}T (SH)

where β′ = 〈DH , {〈`, π, σ′;σ, hH(q)〉 | 〈`, π, σ, q〉 : Stepβ, σ′ : ΣH(q)}〉.

A detailed discussion on the definition of functor T can be found in [73]. Function
K is defined as

• SK = A,

• hK(q) = norm(h(q)),

• ΣK(q) = Gr(hK(q)); (perm(h(q)))−1; inj : {|h(q) |} −→ {q}A

The minimal HD-automata is built by an iterative procedure on K whose initial
approximation is

• SH0 = SK , DH0 = unit where Qunit = {∗}, |∗|unit = 0 (and hence {∗} = φ),
Gunit ∗ = φ, and ∗ ≤unit ∗,

• hH0(q : QsH0
) = ∗,

• ΣH0q = {φ}

and the iterative step is given by

Hi+1 = K̂;T (Hi).

Quoting [73]:

Theorem 12.2.1 Let K be a finite state HD-automaton. Then

• The iteration along the terminal sequence converges in a finite num-
ber of steps: n exists such that DHi+1

≡ DHi
,

• The isomorphism mapping F : DHi
−→ DHi+1

yields the minimal
realization of the transition system K up to strong early bisimilarity.
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The following functional expression (in an extended λ-calculus) makes
the iteration step of the normalization algorithm explicit.

hHi+1 = (λq.norm 〈A, {〈`, π, σ, q′〉 | q
`,π,σ
−−→ q′}〉);

λβ.norm 〈DHi
, {〈`, π, σ′;σ, hHi

(q)〉 | 〈`, π, σ, q〉 : Stepβ, σ′ : ΣHi
(q)}〉

hHi+1(q) = norm 〈DHi
, {〈`, π, σ′;σ, hHi

(q′)〉 | q
`,π,σ
−−→ q′, σ′ : ΣHi

(q′)}〉.

Notice that the normalization on the transition system is absorbed by
the normalization on the resulting bundle.
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Chapter 13

Mihda: A Verification Environment

Abstract

This chapter presents Mihda, a verification environment centered around
the minimization algorithm presented in Section 12.2. Mihda is written in
ocaml [45] and the most relevant implementation choices are discussed also
with respect to the ocaml features. We discuss the architectural aspects of the
environment in Section 13.1, while the principal data structures are detailed
in Section 13.2. Section 13.3.1 contains the main result of the chapter which is
the correctness of the implementation of the minimization algorithm described
in 12.2. In all these sections the emphasis is on tight connection between
the formal co-algebraic specification of the framework and the ocaml imple-
mentation which nicely represents the interplay between theory and practice.
Indeed, Mihda can be seen as the experimental validation of the theoretical
framework proposed in [135, 73], ocaml features interestingly permit to prove
correctness with respect to the theoretical framework and the experimental
environment also suggests new issues for theoretical investigation.

Mihda can be downloaded from http://jordie.di.unipi.it:8080/mihda,
where also an interactive interface (detailed in Chapter 14) is available.
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Figure 13.1: Mihda Architecture

13.1 Architectural Aspects of Mihda

The main features of ocaml exploited in our realization are polymorphism and en-
capsulation. Polymorphism is one of the intrinsic peculiarity of ML-language family,
while encapsulation may be obtained in ocaml in two different ways; the first way is
by using the object oriented features of the language, the second way is provided by
modular programming features. More precisely, the module system separates the
definition of interface specification, called signatures (i.e. definition of abstract data
types) from their realizations, called structures. A structure may be parameterized
using functors. An ocaml functor constructs new modules by mapping modules of a
given signature on structures of other signatures.

Observation 13.1.1 Object oriented programming simply adds to polymorphism
and encapsulation (features already present in functional programming) hierarchical
relations among abstract data types. However, in our case, those relations does not
play any rôle and, therefore, have not been exploited.

Language ocaml has been chosen also for other reasons. As detailed in Section 12.2,
the algorithm has been specified in a “type-theoretic” style and the underlying type
system makes use of parametric polymorphism. The type system of ocaml offers all
the necessary features for handling those kind of type. As a further benefit, Mihda
remains tightly close to its specification as we will prove later.

Figure 13.1 reports (part of) the modules of Mihda and represents the relation-
ships and dependencies among those modules. Nodes of the graph represent both
Mihda modules and their principal types, e.g. State is the module for states and
contains a declaration State t of its main type that declares the type of the states of
the automata. Two modules in Figure 13.1 are connected when the upper module
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declares a type to be the same as the lower module. For instance, the arc connect-
ing Bundle and Transitions states that in module Bundle a type is declared such that
State t must be declare in State.

Mihda allows the user to specify automata type and, after having implemented
some functionalities on such data structures, a general minimization algorithm is
applied and the minimal realization of the automaton is returned. This choice gives
the opportunity of applying the same algorithm to different kind of automata that
can be defined, provided that they are specified in a manner that respects the con-
straints imposed by functors. Those constraints expresses equalities that types must
satisfy as said before. Notice that this mechanism also aids in implementing different
semantic minimization. Let us consider a scenario where, modules of Mihda have
been specified for a given class of automata. Later, we decide that the equivalence
relation that must be considered should be changed. Conceptually, the algorithm
and type declarations for states and automata remain unchanged. Indeed, it would
be reasonable to modify only the module Domination (and perhaps Transitions1) that
is the Mihda module where the (type of) semantic relation is declared. Mihda archi-
tecture allows programmer in the scenario depicted above to write new code only
for the module Domination.

An easy exercise that we have done is to exploit the architecture of Mihda to adapt
minimization of HD-automata to minimization of ordinary automata (we refer the
interested reader to the web page of the Mihda project for detailed comments).

13.2 Main data structures

We discuss here the main data structures used in Mihda together with their most
important properties. Moreover, their relations with the “theoretical” objects they
implement is pointed out.

In the following sections we will use typewriter symbols to denote names for
ocaml functions and variables. A list l is written as [e1; ...; eh] while li denotes its
i-th element (i.e. ei). Finally, we write e ∈ l to indicate that e is an item of list l.

As a general remark, we point out that finite sets will be generally represented
as lists. We say that a list x corresponds to a finite set X if, and only if, for each
element e in X there exists e ∈ x such that e corresponds to e. Later, we will define
various correspondence relations over elements which depend on the type they live
in. Note that, for each element e ∈ X, many instances of e can occur in x. However,
we will often apply the function Utils.unique which removes multiple occurrences
of items in a list.

In the following we will exploit two auxiliary functions, list rem and list diff,
that are reported below together with their main properties. We also state and prove
some properties that will be used in the proof of the correctness of Mihda.

1In general, transition types depend on the semantic relation because the new relation might
require information that must be added on the labels.
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list rem el list returns the list obtained from list by removing all the occur-
rences of items equal to el. Its definition is

let rec list rem el = function
| [] → []
| e::es →

if (compare e el) == 0
then list rem el es

else e :: (list rem el es)

Each element occurring in the list is not removed if different from el. Indeed, the
following lemma holds:

Lemma 13.2.1 ∀a.∀b.∀ls 6= b ∧ a ∈ ls⇒ a ∈ (Utils.list rem b ls)

Proof. We proceed by induction on the length of ls. If ls = [] then the implication
trivially holds because the antecedent is false. If ls = e :: es then, by definition,

if (compare e b) == 0
then list rem b es

else e :: (list rem b es)

If e = b, then the result of the function is list rem b es and also a ∈ es because
a 6= b and a ∈ ls. Therefore, by applying the inductive hypothesis, we have the
thesis. In e 6= b, then the result of list rem b ls is e :: (list rem b es) then
the thesis holds because, either a = e or else a ∈ es and, by inductive hypothesis
a ∈ (list rem b es) which gives the proof. �

list diff l m returns the list obtained by subtracting m from l and is defined as

let rec list diff l = function
| [] → l

| e::es → list diff (list rem e l) es

Function list diff enjoys the following property:

Lemma 13.2.2 Let l and m be two lists. Then ∀el ∈ m.el 6∈ (list diff l m).

Proof. We reason by induction on the length of m. If m = [] then the
proposition trivially holds. Let m be e::es, then the result of the func-
tion is list diff (list rem e l) es. If el = e then, by Lemma 13.2.1,
el 6∈ (list rem el l) and the thesis follows by the fact that the recursive call never
adds anything to the result (avoiding the possibility of re-introducing el). On the
other hand, if el 6= e then el ∈ es, and the inductive hypothesis concludes the
proof. �
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13.2.1 HD-automata states, labels and transitions

A generic automaton (see Definition 11.3.1) is made of four ingredients: States,
initial state, labels and arrows. As far as finite state automata are concerned, it is
possible to represent automata by enumerating states and transitions.

Observation 13.2.1 We assume that 1, .., n are the names of a state having n
names. This assumption does not imply any loss of generality because names are
local to states. We reserve 0 for denoting name ∗, the symbol used for denoting
name creation in transitions (see page 206). A symmetry over n names may be
simply expressed by means of a list of distinct integers, each belonging to segment
1, ..., n; for instance if ρ is the permutation

(
1 ... n
i1 ... in

)

then the list [i1; ...; in] is a representation in terms of list of integers of ρ. For
instance, [2; 1; 3] represents a permutation of 3 elements: Namely, the permutation
that exchanges 1 and 2, and leaves 3 unchanged.

In this case we say that [i1; ...; in] corresponds to ρ.

We adopt this conventions on names and permutations also for representing other
functions on names. In particular, if qd = 〈`, π, σ, q〉 is a quadruple, π is represented
by means of a list of integers pi whose length is | ` | and whose i-th position contains
π(i) (for i = 1, ..., | ` |). Finally, σ is a list of integers sigma whose length is m, the
number of names of q and whose i-th element is σ(i) (for i = 1, ..., m). We say that
pi (sigma) corresponds to π (σ).

As discussed in Section 12.1, HD-automata are an extension of ordinary au-
tomata in the sense that states and labels have a richer structure carrying informa-
tion on names. A state may be concretely represented as a triple

type State t =
| State of id : string ∗ names : int list ∗ group: (int list) list

Where id is the name of the state; names are the local names of the state and are
represented as a list of integers; the third component of a state is its group which
is the set of those permutations that leave the state unchanged. By the previous
observation, we can represent it as a list of list of integers.

Definition 13.2.1 (States correspondence) An element
State(q, names, group) corresponds to a state q of a named set A = 〈Q, | |,≤, G〉
if, and only if,

• q ∈ Q

• | q |= List.length names
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• group corresponds to Group in terms of correspondence between lists and sets
(i.e. reciprocal element-wise correspondence, as described in Section 13.2).

We remark that, since, we concretely represent names as integers we exploit the
integer order to induce an order to states; therefore, we do not explicitly mention it in
Definition 13.2.1. Notice also that the first component of bundles is not represented.
This is possible because a main design choice is that we always deals with bundles

that are obtained by applying the iterative construction Hi+1 = K̂;T (Hi). Therefore,
the first component of these bundles always is SK , the set of states of the initial
automaton.

Arrows are represented as triples with a source state, a label and a destination
state.

type labeltype = string ∗ int list ∗ int list

type Arrow t = Arrow of

source : State t ∗ label : labeltype ∗ destination : State t

Type of arrows relies on type for labels which are triples whose first components are
the name of the action (for π-agents, a string among TAU,BOUT,OUT,BIN, IN);
the second component of a label is the list of names exposed in the transition; finally,
the last component of a label is a function mapping names in the destination to
names of the source state. A simpler alternative definition could have been obtained
by embedding the labeltype in Arrow. Although more adherent to the definition of
bundle, this solution is less general than the one adopted, because different transition
systems have different labels.

Now we can give the structure which represents automata:

type Automaton t =
start : State t ∗
states : State t list ∗
arrows : Arrow t list

The first component is the initial state of the transition system, then the list of
states and arrows are given.

Bundles rely on quadruples over named sets. Basically, a quadruple describes
state transitions. Transitions are labelled and, our implementation represents part
of information carried by quadruples into labels:

type quadtype = Qd of Arrow.labeltype ∗ State t

type Bundle t = quadtype list

Type quadtype and Observation 13.2.1 allows us to state a precise connection
between quadruples and objects that populate quadtype.
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Definition 13.2.2 (Quadruple correspondence) Given a quadruple qd =
〈`, π, σ, q〉, we say that Qd((lab, pi, sigma), q) corresponds to qd, if, and only
if,

• lab is a string with value `,

• pi corresponds to π,

• sigma corresponds to σ,

• q corresponds to q.

Definition 13.2.3 (Automata correspondence) Let K =
〈Q, T (Q), k : Q→ T (Q), S〉 be a named function representing an automaton
for a π-agent. We say that (q, qs, as, S) corresponds to K iff, qs corresponds to Q;
for each qd ∈ k(q) there exists a ∈ as such that, if a = (s, (lab, pi, sigma), t), then
Qd((lab, pi, sigma), t) corresponds to qd, and, for each σ ∈ S(q) there is s ∈ S

such that S corresponds to S.

Previous definition allows us to easily compute k(q) for each state q. Indeed, let us
consider the function Automaton.bundle defined as

let bundle hda q =
Bundle.from arrow list (List.filter

(fun x → 0 = State.compare (Arrow.source x) s) (arrows hda))

Proposition 13.2.1 If hda and s are an HD-automata and a state which respec-
tively correspond to k and s, then bundle hda s corresponds to k(s).

Proof. All arrows in hda are first filtered in order to select those of them whose
source state is s, then function Bundle.from arrow list transforms each of them
in the quadruple obtained by discharging the source from the arrow. �

Our representation of bundles, symmetries and function of names allows a simple
representation of operation on bundles in terms of list manipulation. For instance,
let us consider the function

{|β |} =
⋃

〈`,π,σ,q〉∈Stepβ

rng(π) ∪ rng(σ) \ {∗}

which yield the names of a bundle β and is implemented by function bundle names,
reported below.

let names = function Qd((lab,pi,sigma),target) → (pi @ sigma)

let bundle names bundle =
Utils.unique (Utils.list rem 0 (List.flatten (List.map names bundle)))
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Function bundle names applies names to each quadruple in the list bundle corre-
sponding to β (List.map names bundle). This returns a list whose items are the
names appearing in the quadruples of bundle that are obtained by merging the lists
pi and sigma. Finally, all those lists of names are merged together (List.flatten),
if present, 0 is removed (Utils.list rem) and multiple occurrences are collapsed
into a single occurrence (Utils.unique). It is easy to see that the following propo-
sition hold:

Proposition 13.2.2 If bundle corresponds to a bundle β then a ∈ {| β |} if, and
only if, a occurs in bundle names bundle.

Proof. By definition, a ∈ {| β |} if, and only if, there exists a quadruple qd =
〈`, pi, σ, q〉 in Stepβ such that a ∈ rng(π)∪rng(σ)\∗. Let Qd((lab, pi, sigma), q) be
a quadruple in bundle which corresponds to β. Then, by definition pi = [π(1); ...; π(|
` |)] and sigma = [σ(1); ...; σ(m)], where m = card(rng(σ)) then a ∈ pi@sigma. By
observing that pi@sigma ∈ (List.map names bundle). Then, since the flattening
operation on lists corresponds to set union, we have that

a ∈ Utils.unique (Utils.list rem 0 (List.flatten (List.map names bundle))).

Finally, by hypothesis, a 6= ∗ and, therefore, by Lemma 13.2.1. �

As stated in Section 12.2.1, normalization is the most important operation on
bundles. It needs red function to be computed. Function red is implemented as
follows:

let red bundle =
let dominated =

List.filter
(fun qd → None <> (Domination.dominated qd bundle))
bundle in

list diff bundle dominated

Proposition 13.2.3 If bundle corresponds to a bundle β then red bundle corre-
sponds to red(β).

Proof. First, let us observe that dominated is the list of quadruples which
corresponds to the set of input quadruples that are redundant. Indeed, bundle is
filtered according to the function Domination.dominated, that returns None only
if qd is not redundant. Finally, by Lemma 13.2.2, Utils.list diff removes from
those transitions from bundle. �

let normalize red bundle =
let w bundle = red bundle in

let an = bundle names w bundle in

rename (list diff bundle (List.filter (remove in an) bundle))
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Proposition 13.2.4 If bundle corresponds to a bundle β then
normalize red bundle corresponds to norm(β).

Proof. First, active names an are computed in order to filter bundle obtaining all
redundant transition covered by some bound input transition. By Proposition 13.2.2
and Lemma 13.2.1 we can conclude that an corresponds to {|β |}. Lemma 13.2.2 and
the fact that list filtering corresponds to test of set membership, ensure that from
bundle all redundant transitions are removed. Indeed, remove in is defined as

let remove in an =
function Qd((lab,pi,sigma),target) as qd →

(lab = ”in”) && (not (List.mem (obj qd) an))

which computes exactly the redundancy condition. The last function applied to the
so computed bundle is rename which shifts the local active names of a state with
their position in the list of active names. Note that this is a safe operation because
only the active names of a state are important and their meaning is local to the
state, moreover, such renaming amount to compute the permutation of names that
returns the normalized bundle as defined in Section 12.2.1. �

13.2.2 Block

The most important data structures are blocks . They represent action of the functor
on states of the automata and contain all those information for computing the
iteration steps of the algorithm expressed in a set theoretic framework. Blocks
represent both (finite) named functions and partitions of an automaton (at each
iteration of the algorithm). Hence, at the last iteration a block corresponds to a
state of the minimal automaton. A block has the following structure:

type Block t =
Block of

id : string ∗
states : State t list ∗
norm : Bundle t ∗
names : int list ∗
group : int list list ∗
Σ : (State t → (int ∗ int) list list) ∗
Θ−1 : (State t → (int ∗ int) list)

Field id is the name of the block and is used to identify the block in order to
construct the minimal automaton at the end of the algorithm. Field states contains
the states which are considered equivalent with respect the equivalence relation
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θ
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q

x

Figure 13.2: Graphical representation of a block

used in the algorithm2: In this case the early bisimulation relation. Remaining
fields respectively represent

• the normalized bundle with respect to the block considered as state (norm),

• names is the list of names of the bundle in norm,

• group is its group,

• the functions relative to the bundle (Σ ), last field, Θ−1 , is the function that,
given a state q, maps the names appearing in norm into the name of q. Basi-
cally, Θ−1 (q) is the function which establishes a correspondence between the
bundle of q and the bundle of the corresponding representative element in the
equivalence class of the minimal automaton.

We draw (some components of) a block as in Figure 13.2: The upper elements are
the states in the block, while the element x is the “representative state”, namely it is
a graphical representation of the block as a state. For each state q a function θq maps
names of x into the names of q. Function θq describes “how” the block approximates
the state q at a given iteration. The circled arrow on x aims at recording that a
block also has symmetries on its names. Bundle norm of block x is computed by
exploiting the ordering relations over names, labels and states.

A graphical representation of an iteration step of Mihda is given in Figure 13.3.
The idea is that each block in the list of current blocks is first splitted, as far
as possible, into a number of buckets , i.e. quasi-blocks defined later. Then each
bucket is transformed in a new block, namely, the lacking components are uniformly
computed at the end of the splitting phase.

The main operation on a block is the operation which splits a block into buckets.
A list of blocks is returned as result of each iteration. Such blocks represent the states
of the current approximation of the minimal automaton. A bucket has the same

2We recall that Mihda is parametrized with respect to the equivalence relation.
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Figure 13.3: Graphical representation of an iteration step

fields of a block apart from the name, symmetries and the functions mapping names
of destination states into names of source states. Basically, the split operation checks
if two states in a block are equivalent or not. States which are no longer equivalent
to the representative element of the block are removed and inserted into a bucket.

Given a bundle bl, a predicate over states pred and a block block, function
Block.split returns a bucket and a block. The bucket collects the states of block
which violate pred, while the returned block contains the remaining states.

let Block.split bl pred block =
let eqv chk = List.map (fun q → q, (pred q)) (states block) in

let (eq states, non eq states) =
List.partition (fun (q,th) → th != None) eqv chk in

let new states = (fst (List.split eq states)) in

let old states = (fst (List.split non eq states)) in

let new inv thetas = fun q →
try

invert ((function Some x→x) (List.assoc q eqv chk))
with Not found → failwith ”new inv thetas: exception” in

(Bucket(new states, bl, (Bundle.active names bl), new inv thetas),
(create

(id block)
old states
(norm block)
(names block)
(group block)
(sigmas block)
(inv thetas block)))

It is worth to detail much more on the parameter pred. It is a function that, given
a state q, returns an optional value that, roughly speaking, yields “the proof” for
equivalence of q with respect to the other states of the bucket. More precisely,
pred returns None if the equivalence does not hold, otherwise, a function θ mapping
names of q into names of bl such that each arrow in the bundle of q appears in bl
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(and viceversa). Function θ is the function Θ−1 associates to q when the bucket is
turned into a block.

Note that, the new block has the same component of the old one because at the
end of the splitting phase, all the states of the initial block will be assigned to a
bucket without considering the information contained in those fields.

Definition below states the correspondence between a list of blocks and a coal-
gebra.

Definition 13.2.4 (Block correspondence) Let K = 〈Q, T (Q), h : Q→ T (Q)〉
be a transition system over named sets and π-actions. A list of blocks blocks cor-
responds to K when given q, q′ ∈ Q and their ocaml representation q and q’, then
h(q) = h(q′) if, and only if

• there exists bl ∈ blocks such that q and q’ are in bl

and

• bl.norm corresponds to Steph(q)

13.3 The main cycle

Let us recall the iterative step introduced at the end of Section 12.2.3:

hHi+1
(q) = norm 〈DHi

, {〈`, π, σ′; σ, hHi
(q′)〉 | q

`,π,σ
−→ q′, σ′ : ΣHi

(q′)}〉. (13.1)

For each state q of the automaton, hHi+1
(q) determines the normalized bundle as-

sociated with to q. Following equation (13.1), we can compute hHi+1
over a finite

state automaton in the following steps:

a. determine the bundle of q in the automaton;

b. for each quadruple 〈`, π, σ, q′〉 in this bundle, apply hHi
to q′, the target state

of the quadruple (yielding the bundle associated in the previous step to q′);

c. left-compose this σ′ ∈ Σ(q′) with σ;

d. normalize the resulting bundle.

This intuitive idea must be refined because Mihda represents hHi
as a list of blocks.

In this representation, hHi
(q) corresponds to field norm, namely the bundle of the

block containing q, the state corresponding to q. A graphical representation of those
steps in terms of blocks is depicted in Figure 13.4.

Step (a) is computed by the facility Automaton.bundle that filters all arrows of
the automaton whose source corresponds to q. Figure 13.4(a) shows that a state q

is taken from a block and its bundle is computed.
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Step (b) is obtained by applying Block.next to the bundle of q. Block.next

substitutes all target states of the quadruples with the corresponding current block
and computes the new mappings as described in Figure 13.4(b).
Step (c) seems not correctly adhere to the corresponding step of equation 13.1, but
if we consider that θ functions are computed at each step by composing σ’s we can
see that they exactly play the rôle of σ’s.
Finally, step (d) is represented in Figure 13.4(d) and is obtained via the function
Bundle.normalize. Observe that redundant transitions must be removed and other
components of the new block must be computed as defined by Θ−1 .

In order to give an intuitive understanding of the split operation, we describe
how states are separated. Let us assume an automaton and an equivalence relations
over states (e.g. early bisimilarity) have been fixed. Let pred be a function such
that, given a bundle bundle and a state q, returns None if the normalized bundle of
q in the automaton is not equivalent to bundle according to the equivalence relation
between states pred. Then we can divide the states of a given block with respect
to bundle and pred into two different lists of states. More precisely, this operation
relies on the Block.split function and returns a pair whose first component is a
bucket and whose second component is a block. The bucket contains those states
whose normalized bundle is not equivalent to bundle, while the block component
contains the remaining states.

The main part of Mihda consists of the cycle that computes the partitions of each
iteration. Each block is splitted by iterating the application of function split.

let split blocks block =
try

let minimal =
(Bundle.minimize red

(Block.next
(h n blocks)
(state of blocks)
(Automaton.bundle aut (List.hd (Block.states block))))) in

Some (Block.split
minimal
(fun q →

let normal =
(Bundle.normalize

red
(Block.next (h n blocks)

(state of blocks)
(Automaton.bundle aut q))) in

Bisimulation.bisimilar minimal normal)
block)

with Failure e → None
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Let block be a block in the list blocks, function split computes minimal by mini-
mizing the reduced bundle of the first state of block, and returns the optional value
Some(bk, block′) if Block.split applied to minimal, to the bisimilarity relation
and to block returns (bk, block′); otherwise None is returned.

Observation 13.3.1 The choice of the state for computing minimal is not impor-
tant: Without loss of generality, in fact, given two equivalent states q and q’, it is
possible to map names of q into names of q’ preserving their associated normalized
bundle if, and only if, a similar map from names of q’ into names of q exists.

Moreover, we also point out that, minimization of a bundle with n names cor-
responds to normalize the bundle and replace each name with a name in 1, ..., n
preserving the convention that names of a state are an initial segment of natural
numbers.

Once minimal has been computed, split invokes Block.split with parameters
minimal, block; the second argument of Block.split is a function that computes
the (current) normalized bundle of each state in block and checks whether or not
it is bisimilar to minimal.

This computation is performed by function Bisimulation.bisimilar. If bisim-
ilarity holds through θq then Some θq is returned, otherwise None is returned.

We are now ready to comment on the main cycle of Mihda.

let blocks = ref [ (Block.from states states) ] in

let stop = ref false in

while not ( !stop ) do

begin

let oldblocks = !blocks in

let buckets = split iter (split oldblocks) oldblocks in

begin

blocks := (List.map (Block.close block (h n oldblocks)) buckets);
stop :=

(List.length !blocks) = (List.length oldblocks) &&
(List.for all2

(fun x y → (Block.compare x y) == 0)
!blocks
oldblocks)

end

end

done ;
!blocks

Let k = (start, states, arrows) be a HD-automaton which corresponds to the
coalgebra K. Initially, blocks is the list whose only item is a block containing all
the states of k.
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Observation 13.3.2 By definition, initially, k corresponds to H0, indeed, function
Blocks.from states puts all the states in the same block and assign the empty list
to the field norm of such block.

At each iteration, the list of blocks is splitted, as much as possible by split iter

that returns the list of buckets. Then, by means of Block.close block, all buck-
ets are turned into blocks which are assigned to blocks. Finally, the termination
condition stop is evaluated. Note that Theorem 12.2.1 states that Di+1 must be
isomorphic to Di. This condition is equivalent to say that a bijection can be es-
tablished between oldblocks (that corresponds to Di) and blocks (corresponding
to Di+1). Moreover, since order of states, names and bundles is always maintained
along iterations, both lists of blocks are ordered. Hence, the condition reduces to
test whether blocks and oldblocks have the same length and that blocks at cor-
responding positions are equal. More formally, the following theorem holds:

Theorem 13.3.1 For each iteration i, at the end of the main cycle of Mihda,
blocks corresponds to hHi

.

Proof. The proof is given by induction on the iteration step. The base of induction
is trivial.

Let assume that, at the end of the i-th iteration, the theorem holds and, by
contradiction, that, at the end of the (i+1)-th iteration blocks does not correspond
to hHi+1

. Then, by Definition 13.2.4, there are two states q and q′ such that either

1. q and q’ lies in different blocks

or else

2. both q and q’ are in the same block bl but bl.norm does not corresponds to
StephKi

(q).

Let us first consider Case (1). By hypothesis, hKi+1
(q) = hKi+1

(q′) then
hKi

(q) = hKi
(q′) because it is not possible that states distinguished in a given

iteration later become bisimilar. By inductive hypothesis, blocks at i-th iteration
corresponds to hKi

, hence q and q’ are in the same block at the i-th iteration.
States q and q’ can be separated at the (i + 1)-th iteration, if, by construction,
split assigns them to different buckets. This can happen only if there exists a
state whose minimized bundle computed in minimal can be put in correspondence
by Bisimulation.bisimilar with the normalized bundle of q but not with the
normalized bundle of q’. Since minimize simply renames bundles preserving
the order of names, then, at the (i + 1)-th iteration, the normalized bundle of
q corresponds to hKi+1

(q) = hKi+1
(q′) but the normalized bundle of q’ does not

correspond to hKi+1
(q′). This contradicts Proposition 13.2.4 that ensures that

normalize correctly implements function norm.
Following the final part of the proof of Case (1), we can simply observe that
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Case (2) is not possible by construction. Indeed, the field Block.norm is built
out from the normalized bundle of its states that, by Proposition 13.2.4, it must
correspond to normalized bundles of the corresponding states of the automaton. �

Theorems 13.3.1 and 12.2.1 also ensure that the termination condition is correctly
computed because, by Theorem 12.2.1, a fix-point is reached and, at the terminal
iteration blocks corresponds to the fix-point (Theorem 13.3.1). The successive
iterations will not change any block therefore, the length of blocks and each block
in it will not change. As stated above, blocks and its elements are maintained
ordered along each iteration and therefore, checking whether blocks change or not
can be executed, as expressed by the assignment to stop in the main cycle, checking
if blocksi equals oldblocksi for any block blocksi ∈ blocks.

13.4 Concluding Remarks

The choice of implementing Mihda in ocaml has been driven by the functional and
type-theoretic flavour of the co-algebraic specification. Both features fit well with
ocaml programming characteristics. At a first glance, one can think that performance
is undertaken: Surprisingly our benchmarks suggest that Mihda is not inefficient. For
instance, we have considered the specification of the core of the handover protocol
for the GSM Public Land Mobile Network proposed by the European Telecommu-
nication Standards Institute [143]. The HD-automaton obtained by the π-calculus
specification has 506 states and 745 transitions. The minimization of the handover
protocol takes almost 9 seconds on an Athlon 1800+ under Linux RedHat 7.2, while
21 seconds are necessary on a Pentium III 500Mhz under Linux RedHat 7.1. The
resulting HD-automaton consists of 105 states and 197 transitions.

The phase where Mihda spends the most part of computation time is the calcu-
lation of symmetries of names. For the time being Mihda trivially computes symme-
tries by generating the permutations and checking whether or not they change the
behaviour of blocks. In this way the computational cost is factorial in the number
of names. This implementation choice was suggested by the goal of producing a
prototype of Mihda rapidly. However, the number of names remains very low in
real cases. For instance, the specification of the GSM protocol initially consists of
π-agents with 11 names. Instead, the average number of names per state in the
compiled HD-automaton is 2.4: only two states have five names and more that
three hundred states have only two names. We plan to enhance the efficiency of
symmetries computation. Indeed, by considering that symmetries on new names
added to a block does not affect already computed symmetries, we can compute
new symmetries and “multiply” them with the old ones.
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Chapter 14

Verification on the Web

Abstract

This chapter defines a web interface for Mihda. In the following we discuss
how verification environment can be turned into web services and integrated
with simple programming mechanism. As a case study, we show how Mihda

and a different verification environment, HAL, can be used in a unique frame-
work. Despite of its simplicity, the approach also allows to get rid of platform
heterogeneity.

The framework also permits to exploits the facilities of both the envi-
ronments as they were “programming libraries” for constructing verification
applications “on the web”.
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14.1 Verification as a Web-Service

In the last few years distributed applications over the WEB have gained wider
popularity. The main advantages of exploiting the WEB as underlying platform
can be summarized as follows. The WEB provides uniform mechanisms to handle
computing problems which involve a large number of heterogeneous components that
are physically distributed and inter-operate autonomously.

Recently, several software engineering technologies have been introduced to sup-
port a programming paradigm where the WEB is exploited as a service distributor.
Rather than a monolithic application, a WEB server should be intended as a compo-
nent available over the WEB that can possibly be exploited by others (human users
or software applications) to develop new services. Conceptually, WEB services [102]
are stand-alone components that reside over the nodes of the network and are net-
work accessible through a network interface and standard protocols. Applications
over the WEB are developed by combining and integrating WEB services together.
WEB service has no pre-existing knowledge of what interactions with other WEB
services may occur. Moreover, WEB services are highly portable and can easily be
adapted to a variety of infrastructures.

In a WEB service scenario, the development of applications can be characterized
in terms of the following steps:

1. Publishing WEB services;

2. Finding the required WEB services;

3. Binding the WEB services inside the application;

4. Running the application assembled from WEB services.

Indeed, in the next few years evolutionary in-development technologies based on
HTTP/XML plus

1. remote invocation (e.g. XML-RPC SOAP),

2. directory and service binding (e.g. UDDI, trader),

3. language to express service features (e.g. WSDL)

will become the standard functional platform to programming applications over the
WEB.

The vast majority of currently available semantic-based verification environments
have been designed and implemented by sticking to traditional paradigms. Basically,
verification environments are monolithic specialized servers which do not easily sup-
port interoperability and dynamic reconfiguration. We argue that the research ac-
tivity in the field of formal verification can take advantage of the shift from the
traditional development paradigms to other paradigms which better accommodate
and support WEB services. We intend to explore the following issue:
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Can we simplify the design, development and maintenance of semantics-
based verification environments in a modular fashion by exploiting WEB
services?

A preliminary answer to this question is given by presenting the prototype version
of a verification toolkit which directly exploits the WEB as a service distributor.
The toolkit has been conceived to support reasoning about the behaviour of mobile
systems specified as π-calculus processes and it supports the dynamic integration of
several verification techniques.

Finally, the toolkit has been developed by targeting also the goal of extending
an available verification environment (HAL [70, 71]) with new facilities provided as
WEB services. This has given us the opportunity to verify the effective power of
the WEB service approach to deal with the reuse and integration of “old” modules.

14.2 Preliminaries: HAL

HD-automata provide a finite state, finite branching representation of the behaviour
of name passing calculi. The finiteness property given by the HD-automata has been
exploited to automatize the check of behavioral properties. Indeed, a semantic-
based verification environment for the π-calculus, called HD Automata Laboratory
(HAL) [70, 71] has been implemented and experimented. HAL is written in C++
and compiled with the GNU C++ compiler (the GUI is written in Tcl/Tk), and
runs on SUN stations (under SUN-OS).

HAL supports verification of logical formulae expressing properties of the be-
haviour of π-calculus agents. The construction of the HAL model checker facility
has been done in two stages. First a high level logic with modalities indexed by
π-calculus actions has been introduced and then a mapping which translates logical
formulae into a classical modal logic for standard automata has been defined. The
distinguished and innovative feature of the approach is that translation mapping is
driven by the finite state representation of the system (the π-calculus process) to be
verified.

HAL has been used to perform the verification of several case studies as, for
example, the GSM handover protocol [143]. However, a main limitation of the
current implementation of HAL is due to the state explosion problem that arises
when dealing with real systems. A way to overcome this problem is to extend the
environment with a minimization facility which provides the minimal HD-automata
of a given π-calculus processes.

The work reported in [73] tackles the problem of minimizing LTS for name pass-
ing calculi in the abstract setting of coalgebraic theories. The main result of the
paper is to provide a concrete representation of the terminal coalgebra giving the
minimal HD-automaton.
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14.3 Service Coordination

This section describes the issues related to the development of a verification toolkit
which exploits the WEB as a service distributor. Here, we consider only two ser-
vices, namely HAL and Mihda; however the same techniques can be exploited to
integrate in a modular fashion a variety of services. The fundamental techniques
which enables the dynamic integration of services is the separation between the
service facilities (what the service provides) and the mechanisms that coordinate
the way services interact. The main advantage of this approach consists of making
service coordination usable in the context of formal verification.

HAL and Mihda provide several functionalities. The main issue to face with is
the definition of WEB interfaces that make these toolkits accessible and usable on
the Internet. This is done into two steps:

1. the first step defines the WEB coordination interface which, independently
from the implementation technologies, describes the WEB interaction capa-
bilities. In other words, the WEB coordination interface describes what a
service can do and how to invoke it;

2. the second step transforms the program facilities which correspond to publish
the coordination interface on the WEB.

The main programming construct we exploit to program service coordination is
XML-RPC. XML-RPC is a protocol that defines a way to perform remote procedure
calls using HTTP as underlying communication protocol and XML for encoding data.
XML-RPC ensures interoperability among components available over the WEB at the
main cost of parsing and serializing XML documents.

14.3.1 Service Creation

In our running example, the WEB coordination interface of Mihda provides three
interaction capabilities: compile, reduce and Tofc2. The first interaction capa-
bility takes a π-calculus agent as input and yields as output the corresponding
HD-automaton. The capability reduce performs minimization. Finally, the ca-
pability Tofc2 transforms the Mihda representation of HD-automata into the FC2
format used inside HAL. The WEB coordination interface of HAL provides the check
capability to perform model checking, the capability unfold which generates a stan-
dard automaton out of an HD-automaton, and the capability visualize allowing
to graphically operate over HD-automata.

The publication on the WEB of the coordination interfaces has been performed
by exploiting the facilities of Zope that is a web application server; it provides mech-
anisms to ”publish” information on the WEB. However, Zope is much more. Indeed,
Zope provides a comprehensive framework for management of web contents rang-
ing from simple HTML pages to complete components. In particular, through Zope
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Figure 14.1: Mihda WEB Service

mechanisms the calls to the capabilities of the coordination interface are dynam-
ically transformed into calls of the corresponding programs (e.g. via XML-RPC).
Figure 14.1 illustrates the WEB interface of Mihda as provided by the Zope imple-
mentation.

14.3.2 Programming Service Coordination

In our experiment, the service coordination language is python, an interpreted ob-
ject oriented scripting language which is widely used to connect existing components
together. Expressiveness of python gives us the opportunity of programming service
coordination in the same way traditional programming languages makes use of soft-
ware libraries. In particular, services are invoked exactly as “local” libraries and
all the issues related to data marshaling/unmarshalling and remote invocation are
managed by the XML-RPC support.

An example of service coordination is illustrated in Figure 14.2 to verify a prop-
erty of a specification, i.e. to test whether a π-calculus agent A is a model for a
formula F . We can briefly comment on the coordination code of Figure 14.2. First,
XML-RPC connections with the Mihda server and with HAL server are created and
respectively recorded in variables mihda and hal. Then, a service of Mihda is in-
voked. More precisely, the result of executing the service compile is stored in the
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from xmlrpclib import *

import sys

try:

mihda = Server( "http://jordie.di.unipi.it:8080/mihda/hd" )

hal = Server( "http://bladerunner.iei.pi.cnr.it:8080/hal" )

hd = mihda.compile( A )

reduced_hd = mihda.reduce( hd )

reduced_hd_fc2 = mihda.Tofc2( reduced_hd )

aut = hal.unfold( reduced_hd_fc2 )

if hal.check( aut, F ):

print ’ok’

else:

print ’ko’

except Exception, e:

print "*** error ***"

Figure 14.2: Orchestrating HAL and Mihda services
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Figure 14.3: Compiling

variable hd.
Next, hd is minimized, by invoking the service reduce of Mihda; and, by applying

the Mihda service Tofc2, the minimal automaton is transformed into the FC2 format.
Variable reduced_hd_fc2 contains a HD-automaton in a format suitable for being
processes by the HAL service unfold that generate an ordinary automaton from a
HD-automaton represented in FC2 format.

Finally, a message on the standard output is printed. The message depends on
whether π-calculus agent A satisfies formula F or not. This is obtained by invoking
the HAL model checking facility check. Notice that the coordination code can
transparently handle both local and remote exceptions.

Figure 14.3 and Figure 14.4 illustrate the compiling of the π-calculus process
specifying the GSM handover protocol, and the minimization step. Notice that
the service coordination program runs under WindowsXP, thus pointing out the
interoperability nature of the toolkit. Indeed, we recall that Mihda is written in
ocaml and runs over linux machines, HAL is a GNU C++ application executed in
SUN-OS and both are used by executing the code in Figure 14.3

We remark that the only part of the coordination code in Figure 14.2 that in-
cludes network dependencies is

mihda = Server( "http://jordie.di.unipi.it:8080/mihda/hd" )

hal = Server( "http://bladerunner.iei.pi.cnr.it:8080/hal" )

namely, the operation that opens connections with the HAL and Mihda servers.
However, this network dependency can be removed by introducing a further module,
namely the directory of services together with a simple trader facility. A directory
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Figure 14.4: Minimizing

of services is a structure that maps the description of the WEB services represented
by suitable types into the corresponding network addresses. Moreover, the directory
of services performs the binding of services. In other words, the directory of services
can be thought of as being a sort of enriched DNS for WEB services. The directory
has two facilities. The publish facility is invoked to make available WEB service.
The query facility which is used by applications to discover which are the available
services. Hence, the trader can be used to obtain a WEB service of a certain type
and to bind it inside the application.

The directory of services and the trader allow us to avoid specifying the effective
names (and localities) of services into the source code and to dynamically bind
services during the execution only on demand. Moreover, this mechanism makes
transparent the distribution of services: when writing the coordination code the
programmer is not aware of the localities of services. Hence, a service can also
be replicated or re-allocated into a new locality without requiring any change into
service coordination programs.

In our running example, to use a trader it is sufficient to substitute the assign-
ments to mihda and hal variables with the following code:

import Trader

offers = Trader.query( "reducer/mihda" )

mihda = offers[ 0 ] # choose the first

offers = Trader.query( "hal" )
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hal = offers[ 0 ] # choose the first

The invocation of the query procedure of the Trader library yields the list of services
that match the parameter (i.e. the string describing the kind of services we are
interested in).

Directories and traders permits to hide network details in the service coordination
code. A further benefit is given by the possibility of replicating the services and
maintaining a standard access modality to the WEB services under coordination.
For instance, by substituting the assignment to offers in the previous code with

offers = Trader.query( "reducer" )

we obtain a polymorphic coordination code that, at run-time, is able to find, bind
and finally invoke any service registered as “reducer”.

14.4 Lessons Learned

We started our experiment with the goal of understanding whether the WEB service
metaphor could be effectively exploited to develop in a modular fashion semantic-
based verification environments. In this respect, the prototype implementation of
a toolkit supporting verification of mobile processes specified in the π-calculus is a
significative example.

Our approach adopts a service coordination model whose main advantage resides
in reducing the impact of network dependencies and of dynamic addition/removal
of WEB services by the well-identified notions of directory of services and trader.
To the best of our knowledge, this is the first verification toolkit that specifically
addresses the problem of exploiting WEB services.

The service coordination mechanisms presented in this paper, however, have
some disadvantages. In particular, they do not exploit the full expressive power of
SOAP to handle types and signatures. For instance, the so called “version consis-
tency” problem (namely the client program can work with one version of the service
and not with others) can be solved by types and signatures.

SOAP is well integrated inside the .NET framework which provides other pow-
erful mechanisms to deal with types and metadata (i.e. description of types). In
particular, metadata information can be extracted from programs at run time, and
supplied to the emitter to generate the corresponding data structures together with
their operations. Furthermore, the Just-in-time compiler turns them into native
code. We plan to investigate and experiment the .NET framework to design “next
generation” semantic-based verification environments.
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Chapter 15

Conclusion and Future Work

Abstract

This chapter collects final remarks on this dissertation. In previous chap-
ters we have discussed both foundational and experimental techniques that
tackle some aspects related to distributed programming in the WAN setting.

This chapter is divided into three sections, one for each part of the thesis.
Each section reports some final comments on the topics investigated in the
corresponding parts of the dissertation. Hints on possible connections among
these topics are also given.
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15.1 A Declarative WAN Model

A first contribution of Part I is the definition of a declarative programming style
based on hypergraphs. The intuition is that network components can be represented
as hyperedges (edges connected to more than two nodes). Hyperedges exhibit their
requirements by imposing constraints at their synchronization interfaces. A synchro-
nization interface of an hyperedge is the set of nodes connected to the hyperedge.
Nodes can be viewed as control points at which synchronization can take place.
Computation is modeled via synchronized hyperedge replacement. Namely, adjacent
edges are replaced as declared in their productions provided that their constraints
are mutually satisfied.

We believe that our hypergraphical calculus captures some basic aspects of net-
works and distributed systems because it explicitly expresses synchronization points
and also model mobility via a name passing mechanism.

We have applied hypergraphs to describe well-known models of WAN program-
ming, namely Ambient and Klaim. In particular we have studied how Ambient and
Klaim can be encompassed within the hypergraphical calculus.

The second contribution of Part I is the specification of Qlaim, an extension of
Klaim with primitives for specifying network connections and attributes over them.
In Qlaim service agreements can be declared and dealt as first class citizen.

We have proposed two translations that respectively map Ambient and Qlaim

into hypergraphs. Both mappings preserve the intuitive semantics of the calculi and
give use the opportunity of comparing the underlying models. More precisely, pro-
cess calculi that aim at modeling distributed computations at the foundational level
usually represent networks as bunches of somehow connected sites where computa-
tions take place. Ambient and Qlaim are not an exception in this sense, because
ambients and localities are used in Ambient and Qlaim, respectively, for represent-
ing network sites. Both ambients and localities are “passive” with respect to the
computation and may contain information that are exploited by processes which are
the only active entities. The hypergraphs which are images of Ambient or Qlaim

nets are composed of two kind of edges. A first type of edges is strictly related to
active entities in the source calculi. However, coordination productions are also spec-
ified for such edges. In the hypergraphs for Ambient those productions synchronize
with productions of edges representing ambients. Hence, ambients are mapped in
active component of the hypergraphical calculus, namely edges. Even more explic-
itly, edges S and ∆ in the encoding of Qlaim play the rôle of (active) coordinators.
This observation sheds light on the fact that sites have a coordination rôle which is
only implicit in process calculi models.

Another interesting observation is that the coordination mechanisms required for
“implementing” Ambient and Qlaim are based on multi-parties synchronizations.
For instance, in or out capabilities of Ambient require a synchronization between
two ambients and the “pilot” process that fires the capability. A similar phenomenon
arise when route discovery and reservation is set up in Qlaim, because a router edge
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∆ must synchronize with its site edge S and its gateway edges.

Finally, in the line of [97], we exploits the hypergraphical calculus for describing
architectural design in dynamically reconfigurable environments. Indeed, we showed
a methodology for representing and refining UML specifications with the further
benefit that the hypergraph representation accounts for distribution related issues
even though they were not considered into the initial UML specifications.

15.2 Security

Security is a mandatory concern when WAN applications are under investigation.
First it must be said that security is a multiform concept with a deep impact on both
WAN applications and their computations at any level. Moreover, at each level, se-
curity dresses different clothes, going from the access control mechanisms generally
advocated at application level to inter-router authentication and secrecy certification
at IPsec level. Part II focuses on cryptographic protocols and security properties
as authentication, secrecy and integrity. We define the cryptographic I nteraction
Pattern calculus (cIP) and PL, a logic for expressing relationships among variable
of cIP. The cIP calculus is basically a variant of π-calculus with cryptographic mech-
anisms. Principals of security protocols are modeled by means of cIP processes. One
of the main benefits of cIP is that multi-sessions of protocols can be easily handled.
In other words, protocols are expressed in a declarative manner by specifying each
rôle of the protocol as a cIP process. Then cIP semantics automatically instantiates
instances of the rôles and adds them in a running context. The symbolic semantics
of cIP allows us to define a framework where protocols can be model checked with
respect to security properties expressed as PL formulae. An implementation of the
cIP framework is under development. We conjecture that multi-session attacks can
be verified more easily in our framework, because both the specification of principals
and security properties do not change with the number of instantiated rôles: They
are declared once and for all at “declaration time”.

Another interesting direction would be to exploit cIP framework for constraining
coordination mechanisms of open systems. Indeed, hitherto, the join operation
used in cIP to connect running contexts and new instance of principals is a non-
deterministic primitive of the calculus. We can equip processes with formulae (e.g.
PL formulae) that impose requirements on the possible contexts that the processes
will join. Analogously, contexts can be equipped with formulae that constraints
the possible participants (or the way they must be connected), as well. With this
extension the join mechanism becomes a powerful coordination mechanism that
accounts for security issues. Some initial results in this direction have appeared
in [28]. Let us remark the strong connection between this coordination mechanism
and synchronized hyperedge replacement mechanism defined for the hypergraphical
calculus of Part I.
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15.3 Verification Environment

Part III describes Mihda, a verification environment based on automata minimiza-
tion. The environment is parameterized with respect to different classes of automata
and equivalence relations between states.

One of the main results of this part is that, the correctness of the implementation
is derived from the (declarative) co-algebraic specification. Indeed, the proof exploits
the strict correspondence between theoretical concepts and the concrete structures
of the implementation.

Another feature of Mihda resides in its modularity. Indeed, it has been designed
with the aim of being an environment for modular minimization achieved through
the partition refinement algorithm. The main architectural and implementation
choices that feature this modularity have been pointed out. In this framework
Mihda has been experimented for minimizing History Dependent Automata which
result from π-calculus. However, Mihda has also been equipped with modules for
minimizing ordinary automata according to the usual bisimulation relation.

Finally, we show how Mihda can be integrated with existing verification environ-
ments via a web interface that allows one to easily write simple programs that use
a web interface to the verification facilities as a normal library.

A promising line of research lies in the definition of functors and their correspond-
ing concrete structures for other semantics of π-calculus. In particular, we intend to
investigate how the open bisimulation of the calculus can be coalgebraically defined
and implemented in Mihda. This is of great interest for verification purposes because
of the intrinsic symbolic flavour of the open semantics.

Related to this point is the current work we are conducing on the definition of
a calculus based on the Fusion calculus of [146] for specifying a general theoretical
framework that encompasses different variant of π-calculus and their semantics.

It would also be interesting to investigate possible relationships between the
hypegraphical calculus and HD-automata. Indeed, if a suitable representation of
hypergraphs can be given in terms of HD-automata, we could also exploits hyper-
graphs as an intermediate language that can be inserted into Mihda for minimizing
systems specified within different frameworks. A possible way of achieve this result
is by exploiting the encoding graphs into Petri nets introduced in [12, 15, 14] and
the encoding of Petri Nets into HD-automata studied in [151].

Perhaps a more ambitious direction is the integration within a unique framework
of partition refinement and “on the fly” techniques. This issue is probably related
also to modular verification techniques. For instance, we can imagine of cases where
we proceed using on-the-fly techniques and, when conditions for minimizing (part
of) the automata using the partition refinement algorithm hold, we proceed with a
minimization algorithm. This is a non trivial task and would require many theoret-
ical efforts.
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Cui legisse satis non est epigrammata centum
nil illi satis est, Caediciane, mali.
(Marziale, Lib. I, 118)



And then one day you find
Ten years have got behind you

No one told you when to run
You missed the starting gun

And you run, and you run to catch up with the sun, but it’s sinking
Racing around to come up behind you again

The sun is the same in a relative way, but you’re older

Shorter of breath and one day closer to death

Time (Roger Waters)

The Dark Side of the Moon - March 24th 1973


