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Chapter 1

Introduction

Since from the birth of the Internet, it has been necessary to achieve secure communications
among the net end-points. Indeed, users of distributed systems send their private informa-
tion across a public channel, exposing their data to the risk of being stolen, modified or
compromised. Security in distributed systems is not only related to secrecy or integrity of
the data, but also to properties of the interaction between participants to the protocol (also
called principals). For instance, it is necessary to enable two or more users willing to start
a communication, to be able to determine each other identity by means of authentication
mechanisms. Recently, due to the growth of electronic commercial transactions, more com-
plex desired interaction properties are needed. For instance, to ensure that no parties can
get advantages on the others involved in the protocol, fairness in digital contract signing is
required.

Protocol verification is not only a fascinating theoretical problem but it is also a prob-
lem of practical importance: Security protocols allow for secure communications that are an
essential feature of many distributed application. Nowadays electronic commerce and com-
mercial transactions are carried over through the network and more and more enterprises
are introducing their business into the Internet. Moreover, the new and flourishing field of
mobile applications is requesting security protocols to suit their needs. Protocol certification
is therefore a critical task that must ensure the safety of the interaction environments on
which much of the world economy and inter-communication depends.

Security protocols have been developed to provide secure communications. In general,
a protocol is the definition of the format and the order of pieces of information exchanged
among principals such that, at the end of the protocol, a desired property holds. Protocols
rely on cryptography to give principals the capability to transmit encoded information that
can be decoded and accessed by the designated receivers only. Cryptography has provided
numerous algorithms of data encryption suited for different tasks (e.g. symmetric and
asymmetric cryptosystems), which in turn have been used in many different protocols.

Protocols can be attacked by hostile entities, usually called intruders, which manage to
subvert the aims of the protocol, making “honest” principals believe that a certain property
holds when it does not. For instance, an attack is performed on a protocol that guarantees
authentication, if an intruder can behave under someone else identity without making aware
of it other principals. Even well-designed encryption systems do not guarantee the absence
of flaws that are not inherent to the cryptographic algorithms, but to the mechanism of the
protocol itself. If a protocol is not adequately verified against these situations, then security
failures are possible.

The design of cryptographic protocols is hence a complex and difficult task. Indeed, in
order to define a robust and correct protocol one has to find a “winning strategy” against
an hostile intruder that can alter information flowing through the network at will. Such
security flaws can be difficult to discover and generally counter-intuitive. Moreover, protocol
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verification is a hard problem because, even if protocols are “small” objects consisting of few
message exchanges, they give rise to a large number of possible interactions. The attacker
can also interfere with exchanged data in many different way. These observations motivate
a consistent interest for formal and possibly automated verification methodologies.

1.1 Security protocol analysis

In the analysis of a cryptographic protocol, one is interested in discovering errors which are
caused by:

• Flaws or peculiarities of the used cryptosystem,

• bad definition of the interactions between principals.

In this thesis we are interested in the second type of faults that are not necessarily dependent
on the underlying cryptographic mechanisms.

Traditionally, cryptographic protocols have been verified using informal and intuitive
techniques. This approach is not satisfactory because in such analysis many subtleties are
not taken into consideration, preventing security errors to be discovered. For instance, the
public-key authentication protocol of Needham and Schroeder [33] was considered secure
for over a decade but, after a formal verification, a mis-functioning has been exposed [28].
This highlights the fact that, even for simple protocols, an informal analysis may be too
error-prone to be reliable.

Formal analysis of protocols is a complex task and is usually performed in two steps:

• The behaviour of principals is formalised by means of a suitable framework, and

• a formal representation of the security property to check is given.

Modeling protocol semantics is challenging because principals act in a hostile environ-
ment. Indeed, a good model must formalise to some extent the intruder’s capabilities, which
are typically rich enough to make informal verification unfeasible. Moreover, the model must
abstract from the details of the data exchanged (which in real protocols are strings of bits)
without loosing peculiar features that can be exploited for some kind of attacks. Finally,
protocols are meant to run in a distributed and concurrent environment and it is possible
that different executions of the same protocol are running at the same time with principals
playing different roles in different runs. Such situations are difficult to be modeled correctly,
because the number of possible interactions between principals and intruders is very large.

Property formalisation is also hard because it implies the clear understanding of protocol
requirements and goals, which in general are not precisely stated in the protocol specifica-
tion. Moreover, the intuitive idea of the security property usually contains assumptions on
the principal behaviour or intruder capabilities that are not made explicit in the specifica-
tion. Obviously, the lack of such assumptions can make the verification process pointless.
Some security properties may be very complex because they involve conditions on the be-
haviour of a principal with respect to another one and to data exchanged between them,
like authentication (i.e. being able to recognise the real identity of the other principals).
Adding the fact that the properties predicate about a complex distributed system, their
formalisation becomes harder. Indeed, a property specified with respect to the interaction
among a certain number of principals, may be non pertinent when more than two principals
are involved.

Formal methods can simplify the task of security protocol design and verification in
several ways:

• They remove ambiguity in the specification to eliminate common misunderstanding;
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• they clearly identify the properties a protocol has to satisfy and the assumptions on
the environment under which they hold;

• they can provide insights on the potential weaknesses of protocols;

• they provide tools both for specification and verification.

Section 1.2 will overview some of the most known formal verification techniques and will
discuss how they work.

1.2 Formal verification techniques

The general problem of the correctness of a security protocol is undecidable. This result,
presented in [16], stems from three sources of infiniteness:

(i) Principals and intruders can have the computational power of a Turing machine that
can present a non terminating behaviour,

(ii) there can be arbitrary many sessions of the same protocol which can be interleaved in
an arbitrary way,

(iii) the intruder can send to a principal waiting for some data, an infinite number of
different messages.

Despite these limitations, there exist many different techniques to achieve correctness
results under weaker but reasonable assumptions. We can identify three main approaches:
Theorem proving, static analysis, and model checking.

Theorem proving is based on logic and type theories. Generally speaking, the principal
behaviour is formalised as a set of clauses representing statements on principal data and a set
of inference rules to capture message exchange mechanisms. Properties are also formalised as
clauses predicating on the intruder capabilities. The verification process includes a deduction
phase that builds a model with a finite number of rules of inference that grow in a controlled
manner. Verification is reduced to check if the desired properties belongs to the model,
i.e. it can be deduced from the initial assumptions. Theorem proving can discover flaws of
protocols with an unbounded number of principal instances and arbitrary complex data. The
big drawback is that the procedure is in general semi-decidable. Indeed, termination depend
on policies for rule application and protocol characteristics. Hence, if an attack exists, the
verification terminates in a finite time, otherwise it might not halt. Therefore theorem
provers are often semiautomatic and they require human intervention. Moreover, only the
existence of an attack is reported and there is no feedback on how it is performed. However,
there are some classes of interesting protocols for which theorem proving procedure always
terminate (finite models). Theorem provers have been developed for protocol verification by
Paulson [35] and by Blanchet [4].

Static analysis has been traditionally used to verify properties of programs. In general,
static analysis techniques are based on an approximation of the system to be verified, on
which it is easier and faster to check a property that hence is proven true regardless of
the actual data flowing through the system. Recently, in [7, 5], static analysis techniques
have been applied to protocol analysis. Principals are represented as processes of a suit-
able calculus running in a distributed environment. Security properties are embodied into
the principal descriptions by means of annotations. Each annotation is placed in protocol
control points and restricts the type of data that is allowed to flow through them. Static
analysis computes sets of data that can flow through each control point, and property ver-
ification is reduced to check whether they contain data that violates annotations. Other
similar approaches are based on type inference as in [22]. Static analysis techniques are very
efficient and can prove correctness of protocols with unbounded instances. On the contrary,
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false errors can be found, because computed sets of data are indeed super-sets of the data
that actually flows. Moreover, as in theorem proving, no counterexample is given and the
specification of annotations is a task that requires a strong expertise.

Model checking is an automatic technique that have been used for the verification of
finite state machines. It is also well suited for verifying security protocols, and is based
on building a finite model of the environment and checking that a desired property holds
in that model. Traditionally models are transition systems and properties are expressed in
some modal logic. The property to be verified is checked on each generated state until a
state violating the property is found. Due to its finiteness, model checking cannot be used
to verify protocols with unbounded number of instances. Moreover some limitations must
be imposed on messages to keep finite the number of traces.

Usually, in model checking security protocols, principals are represented as concurrent
processes gathered in an hostile environment, that capture the state notion, on which tran-
sition rules are defined. The transition system representing all the possible executions (also
called traces) of the protocol is required to be finite. Properties are expressed by means
of a suitable logic and are checked for satisfability in every state of the system. The com-
putation starts from an initial state and, by applying the transition rules, it generates the
whole state space. Recently in [24], in order to cope with arbitrary complex messages,
symbolic techniques have been introduced to allow the verification of infinite state systems.
The basic idea of symbolic techniques is to avoid the explicit representation of all principal
communication, grouping them together when possible. Indeed, it is possible to represent an
infinite set of transitions, relative to an infinite set of arbitrary complex messages, by means
of a single transition labeled with a characterization of such set. Hence, a symbolic state
represents an infinite set of concrete states that can be obtained by instantiating symbolic
messages in the symbolic state. Since model checking deals with protocol traces, whenever
an attack is found a counterexample can be reported, giving much insight on what has gone
wrong. Another advantage of model checking is that it can be fully automated and requires
not much domain knowledge to be applied successfully. The main drawback is the state
space explosion problem. Indeed, since the number of traces can be very large, due to prin-
cipal action interleaving and number of possible messages, the resulting transition system
becomes very big even for a small number of principal instances. Bounding the instances
of principals, the problem becomes decidable even if NP-Complete [37]. Indeed, the main
challenge in model checking is the development of efficient and smart data structure to han-
dle large state spaces. Recently, some effort has been spent on trying to show under what
circumstances checking the protocol with a finite number of instances, may be sufficient to
prove correctness [29] in the unbound case.

1.3 ASPASyA: A symbolic model checker

In this thesis we present ASPASyA which is an Automatic tool for Security Protocol
Analysis based on a Symbolic model checking Approach. ASPASyA is based on the theo-
retical work presented in [10, 41], that introduces cIP, a formal calculus for the modeling of
cryptographic agent interactions in open systems together with the PL logic for the speci-
fication of security properties and a symbolic semantics for the generation of the symbolic
state space. The aim of our tool is twofold:

(i) To develop a usable and flexible tool that supports a methodology for incremental
analysis based on successive refinements of protocol assumptions, and

(ii) to implement an efficient model checker by adding user-guided pruning mechanism to
the standard algorithm, to reduce the state space size.

Regarding (i), we developed a verification methodology which tries to simplify the precise
formalisation of the informal protocol specification. This can be done by an incremental
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process during which protocol assumptions are refined by the analysis of verification results.
Moreover, it is possible to tune the search, and hence the accuracy of the verification,
by defining the power of the intruders and the kind of connections between principals. The
former is done by specifying the information known by the intruder before the protocol starts
(i.e. previously exchanged messages, stolen secrets, etc.), whereas the latter is realised by
constraining the kind of possible connections between principals, hence pruning the state
space. It is important to note that the ease of use and the high degree of automation are
features provided by ASPASyA. Indeed, the application of the methodology requires the
specification of the protocol and the security property, whereas the verification process is
fully automatic, greatly reducing human interaction. To remark this point we will show in
the following how ASPASyA can report some attacks recently discovered by means of static
analysis techniques (as presented in [6]) in the Beller-Yacobi protocol [3].

cIP principals can join a session of a protocol and connect themselves to other instances
as specified in [10, 41]. We extended this approach by adding a mechanism to constraint
the possible ways principals can connect with each other. As it will be shown , this has a
great impact in terms of efficiency because specifying constraints on the joining of principals
greatly limits the number of states generated by the operational semantics. This mechanism
not only enhances the performance of ASPASyA but also enables the user to perform
search on portions of the entire state space, allowing for an easier analysis of results. Another
important aspect of ASPASyA is its modular architecture. Indeed, it has been developed for
the Profundis1 project, having in mind interoperability with other tools and, most important,
future expansions to add new functionalities.

We performed numerous tests on ASPASyA by applying the verification methodology to
some well-known protocols, which will be illustrated together with performance measurement
in the following.

1.4 Chapters description

This thesis is organised as follows:

• In chapter 2, we present in more details security protocols. We introduce the commonly
used informal specification for the the description of protocols and interesting security
properties. We finally report a widely accepted modelisation of the intruder capabilities
in the hostile environment of the network presented in [19].

• In chapter 3, we sketch the theoretical work in [10, 41], introducing the cIP calculus
and the logic for property specification.

• In chapter 4, we start the presentation of ASPASyA by giving an overview of its
modular architecture and of its basic modules.

• In chapter 5, we continue the description of the more complex modules and func-
tionalities of ASPASyA and we introduce a symbolic verification algorithm. We also
describe the constrained join mechanism and its effects on the verification procedure.

• In chapter 6, we outline the methodology by applying it to some well-known protocols,
illustrating the benefits of our approach.

• In chapter 7, we report a library of protocols with the corresponding translation from
their informal specification in our framework, and the relative verification results.

• In chapter 8, we make a comparison between ASPASyA and other similar tools.

• In chapter 9, we report the user manual containing the description of ASPASyA usage.

1Refer to www.it.uu.se/profundis/ for more information.
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• In chapter 10, we sum up our results and present future lines of development.

• In the appendix we report the source code of ASPASyA with comments for the most
important modules.



Chapter 2

Security Protocols

This section briefly reviews some elementary notions on cryptography, protocol specification,
security properties and the attacker model. Its main purpose is to introduce notation and
terminology. We refer to [38, 30] for a comprehensive introduction to this field.

2.1 Cryptography

Security protocols have been used to protect “sensible” information in a scenario where
two (or more) partners (sometimes called principals) communicate by exchanging messages
through “public channels”. Usually, the word “sensible” means information that should be
kept secret or non-modifiable (e.g. a credit card number, an encryption key, etc.). The aim
of a protocol is to grant that no malicious participants (usually called intruders or attackers)
will ever be able to disclose or modify sensible information. Certification (specification and
verification) of security protocols requires a careful definition of:

• the underlying assumptions adopted in the algorithms used to encrypt/decrypt mes-
sages,

• the hypothesis on the capabilities of malicious participants to interfere with the com-
munications.

Cryptography is used to hide the sensible information contained in messages flowing
through the public channel. An intelligible message m, is referred to as plaintext (or data-
gram). By ’intelligible’ we mean that the representation of the information denoted by m
is public domain knowledge. Viceversa, an unintelligible form of m is said ciphertext (or
cryptogram).

The process of assigning a ciphertext to a plaintext is called encryption; encryption is
parameterised with respect to an encryption key . Given a ciphertext, the operation that
reconstructs the plaintext form is called decryption; as for encryption, decryption has a de-
cryption key as parameter. Hereafter, {m}k denotes the cryptogram obtained by encrypting
message m with key k, while m,n denotes the pair made of messages m and n. Given k,
decryption extracts m from {m}k.

Crypto-systems can be symmetric or asymmetric. The former (also known as private key
crypto-systems) are characterized by the fact that encryption and decryption keys are the
same. Indeed two principals, say A and B, can encrypt/decrypt data if they share a key k. It
is usually assumed that k is known only by A and B and other principals may acquire k only
if A or B explicitly send it. Asymmetric (a.k.a. public key) cryptography is characterized
by the fact that encryption and decryption keys differ each other. Each principal A has a
private key and a public key, respectively denoted by A− and A+. For each principal A,
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its public key A+ is publicly available and may be used by any other principal to encrypt
messages intended for A. Such cryptograms may be decrypted only using the private key
A− that only A owns.

We will refer to symmetric and asymmetric cryptosystems. The robustness of a system
relies on the security of various levels of its architecture and their relationships. For the sake
of protocol certification, at cryptographic level, the standard working assumption is the so-
called perfect encryption hypothesis stating that a cryptogram can be decrypted only using
its decryption key and that secrets cannot be guessed, no matter how much information is
possessed 1.

2.2 Protocol specification

A security protocol may be intuitively thought of as a finite sequence of messages between two
or more participants. There is a great variety of specifications mechanisms of protocols and
their properties. Some protocols are informally specified mixing natural language and ad hoc
notation (for instance, SSL [21], SSH [44], IKE [23] are specified in this style). Protocols are
usually presented as a list of message exchanges (also called narration description) written
as:

(n) A→ B : m.

The intended meaning of this notation is: “at the n-th step A sends message m to B” where
A and B represent two principals of the protocol. Typically A is the initiator, B is the
responder, S is a third-part (usually trusted) server and I denotes the intruder.

Example 2.1 In this style we can give the informal specification of the Wide Mouthed Frog
(WMF) protocol [11]. The intent of WMF protocol is to let A send a fresh 2 session key kab

to B through a trusted server S. Both A and B share two private keys with S (kas and kbs,
respectively). The WMF protocol is:

(1) A → S : A, {T a, B, kab}kas

(2) S → B : {T s, A, kab}kbs .

First, A encrypts for S the identity of B, the session key kab and a fresh time-stamp T a

intended to be used only for a session of the protocol; such names are called nonces. By the
perfect encryption hypothesis, T a and kab cannot be “guessed” by any other participant of
the protocol. Then, S forwards kab and the identity of the initiator to B; freshness of kab is
witnesses by T s, a nonce generated by S. �

A sequence of message exchanges is not a complete specification for security protocols.
For instance, the narration in Example 2.1 do not specifies whether or not only A,B and S
are the only principals that know kab. Informal specification does not represent with enough
details common situations: For instance, referring to [11], a protocol may have multiple
simultaneous runs and a principal may play different roles in different runs. Moreover data
sent across the network are strings of bits and it may be possible that a principal does not
recognize the shape of the received message or implicitly assumes that the received data have
a given form. Indeed, this is a source for protocol type flaws. To cope with this problem
it is usually assumed that “messages are typed”, namely, they contains enough information
for a principal to recognise their shape.

1Such hypothesis is not completely realistic; indeed, under it, cryptoanalysis attacks cannot be captured.
Cryptoanalytic attacks are performed by collecting a great number of cryptograms and then analyzing them
for deducing cryptographic keys. However, realistic keys cannot be deduced in polynomial time by intruders
that have a given computational capacity.

2A key is fresh when is generated by a principal and exchanged in the same execution of the protocol.
Moreover it is assumed that the key has never been used in any previous run of the protocol. Key kab

is called a session key because it will be used to encrypt messages exchanged between A and B after the
execution of the protocol.
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2.3 Security properties

Many security properties can be stated for a given protocol. We mainly focus on integrity,
secrecy and authentication. Intuitively, a protocol guarantees integrity if, once a datum has
been provided, it cannot be altered by any intruder. A protocol guarantees secrecy over a
set of data if it is not possible that an intruder will get such data. A protocol guarantees
authentication of a user A to a user B if, after running the protocol, B may safely assume
that A was involved in the protocol run. Secrecy and authentication are closely related.
Indeed, before sending secrets to B, A should be sure that he is effectively “speaking” to
B. Viceversa, authentication is normally achieved through exchange of some data that the
protocol ensure to be created by the intended partner and nobody else.

If secret information must be communicated in an untrusted environment, the protocol
must ensure at least that possible eavesdroppers cannot understand them (secrecy), that
the partner in the communication is really the intended one (authentication) and that the
messages are really forged by the intended participant (message integrity). Secrecy, authen-
tication and integrity are the “elementary” properties that protocols aim at guaranteeing.

Security properties are not uniformly stated and defined. The kind of a property and
its adequacy depend on applications. For instance, in an electronic commerce application
properties like fairness or non-repudiation are requested together with secrecy, integrity and
authentication. A mandatory feature of a voting system is, for example, anonymity.

Example 2.2 Let us consider again the WMF protocol specification (Example 2.1). A
possible requirement of the protocol is the secrecy of kab, namely, in every session, the value
of kab must be known only by the principals playing the roles of A and B and S. Another
requirement is that the protocol guarantees the authenticity kab, i.e., in every session where
B receives the message from S, he must be ensured that, in the same session, (i) A has
created kab and (ii) that A asked S to forward the key to B. �

2.4 Intruder model

A formal framework for protocol analysis must declare which assumptions are made on the
intruder. The Dolev-Yao model [20] is a widely accepted model. It describes an active
intruder as a “principal” that can

• receive and store any transmitted message;

• hide a message;

• decompose messages into parts;

• forge messages using known data.

The only limitation for intruders imposed by the Dolev-Yao model is the assumption of
the perfect encryption hypothesis. Recently in [36] it has been shown that the Dolev-Yao
intruder, enhanced with the capability of guessing a decryption key with a negligible prob-
ability, is as powerful as the original one. The model also assumes that intruders can have
some private data, namely information which has not been generated by regular principals,
and can “remember” data exchanged in previous runs of the protocols. In particular, an
intruder can record all exchanged messages and use them later to attack the protocol.

Since an intruder á la Dolev-Yao can intercept any communication, it can be formalised
as the execution environment which behaves as the “adversary” of “honest” principals. The
environment collects all the sent messages and manipulate them when a principal is waiting
for some data.
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Intruder
Knowledge

BA

Figure 2.1: A graphical representation of the Dolev-Yao intruder

Let N = No ∪Np be a countable set of names, where No is the set of nonces and Np is
the set of principal names; we assume that No∩Np = ∅. Let K be a set of keys that contains
both symmetric and asymmetric keys and such that K ∩N = ∅. As usual, we assume that
keys are not complex terms, like tuples, but just atomic terms.

A message is a term defined as follows:

M ::= N | K | M,M | {M}K .

A message may be a name (i.e. a nonce or a principal name), a key (symmetric or not), the
pairing of two messages or the encryption of a message We let m, n, ... to range over M ,
while λ ranges over K, λ− denotes the inverse key of λ, namely, λ− = λ if λ is a symmetric
key, while λ− = A− if λ = A+ and λ− = A+ if λ = A−. A message may be a name (i.e.
a nonce or a principal name), a key (symmetric or not), the pairing of two messages or the
encryption of a message.

The Dolev-Yao intruder is characterised by a set of messages κ, called the intruder
knowledge, and the actions that the intruder can perform on the elements of κ. Basically,
an intruder can pair known messages, split pairs and encrypt/decrypt cryptograms if the
corresponding keys can be deduced by κ. We write κ . m to denote that datum m can be
deduced by means of a finite sequence of such actions from messages in κ. The operator .
defines the (infinite) set of messages that an intruder can use for attacking a protocol.

Example 2.3 Consider the knowledge κ = {{A−}k, {m}A+ , k}, we show how k . {m}k
with the following deduction tree:

κ . {A−}k κ . k
(1)

κ . A− κ . {m}A+

(2)
κ . m κ . k

(3)
κ . {m}k

where (1) and (2) are decryption by means of a known key (κ . k, namely k ∈ κ), and (3) is
encryption. �

In [15] decidability of . has been proved for private key cryptography; decidability of . for
public key cryptography has been proved in [10, 41].



Chapter 3

Formal Framework

In order to make this thesis as self-contained as possible, this chapter borrows from [10, 41]
the approach to certification of security protocols that is based on symbolic state space
exploration and model checking. We briefly sketch the formal framework and refer the
reader to [10, 41] for further details.

3.1 The cIP calculus

This section presents the main features of the cryptographic interaction pattern (cIP) calculus
and the protocol logic (PL) introduced in [10, 41] to specify and prove properties of security
protocols. Apart from constituting the theoretical background of ASPASyA, cIP calculus
and PL logic fix some design choices of the symbolic model checking that are necessary for
describing our tool.

The cIP calculus is a name-passing process calculus in the style of the π-calculus [32]

with cryptographic primitives. A cIP process is written as A
4
= (X̃)[E] where A is the

process identity, X̃ are the open variables and E is a sequence of actions. To illustrate the
main features of cIP we consider the WMF protocol.

Example 3.1 Principals of the WMF protocol are described by the following cIP terms:

A
4
= (x, s)[out(A, {T a, x, kab}s)],

S
4
= (u, ak, v, bk)[in(u, {?t, v, ?r}ak).out({T s, u, r}bk)],

B
4
= (z)[in({?y, ?q, ?w}z)].

�

Each process has an identity (e.g. A, S, B) and a sequence of input/output actions; a list of
open variables preceeds the actions. Open variables are a distinguished feature of cIP that
(together with the join operation) provides an explicit mechanisms for sharing names/keys.
Open variables bind the free occurrences of variables in the communication actions, like x
in A. The occurrences of the variables y, q and w in B are bound. Binding occurrences are
marked by ’?’, like ?r in S, which binds the following occurrence of r. A datum d of an
action is a message (as defined in section 2.4) where variables can appear.

In Example 3.1 the open variable x parameterises the identity of the responder, while s
and z are the variables which should be instatiated with keys shared among A and S and
B and S respectively. The server S has four open variables: u and ak are reserved for the
identity and symmetric key of the initiator, whereas v and bk are used for the identity and
the symmetric key of the responder.
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An instance of principal A
4
= (X̃)[E] is a process obtained by indexing all the variables

(open or not) and all the names in E with a natural number i > 0. Instances run in contexts,
i.e. (possibly empty) sets of instances where computation takes place and new instances may
be dynamically added. Many instances of the same principal may (non-deterministically)
join the context modeling the execution of more sessions of the protocol. The join operation
defines how a principal instance can enter a (running) context by connecting open variables
for asymmetric keys to principal names and open variables for symmetric keys to keys K so
that they are appropriately shared. Connected variables are no longer open.

We say that a context C has cardinality n if it contains n instances of principals. We use
ov(C) to indicate the set of open variable of context C.

Definition 3.1 (Join) Let An
4
= (X̃n)[En] be an instance, C be a context of cardinality n−1

and γ be a partial mapping whose domain is ov(C)∪ X̃n. Moreover, for each x ∈ ov(C)∪ X̃n,
γ(x) is either in K or in Np depending whether x is a variable for a symmetric key or for
a principal. The join operation is defined as:

join(An, γ, C) = (X̃n − dom(γ))[Enγ] ∪

[

(Ỹ )[E′]∈C

(Ỹ − dom(γ))[E′
γ].

Example 3.2 Consider the cIP template for the WMF protocol (Example 3.1). When B
joins the context containing A and S, a possible result of the join operation is given by the
following context (for simplicity we ignore indexes):

A
4
= (x)[out(A, {T a, kas, kab}kas)],

S
4
= ()[in(A, {?t, B, ?r}kas).out({T s, A, r}kbs )],

B
4
= ()[in({?y, ?q, ?w}kbs)].

It is obtained using γ =















z, bk 7→ kbs
s, ak 7→ kas
v 7→ B,
u 7→ A

�

The concrete semantics of cIP is defined as a reduction relation on configurations, re-
ported in table 3.1, which formalizes the behaviour of the Dolev-Yao intruder. Indeed,
configurations are triples 〈C, χ, κ〉 where:

• C is a context,

• χ is a set of variable bindings that keeps track of the assignments of the variables due
to communications and join executions

• and κ, the intruder knowledge, contains the names of instances that joined the context,
the data sent along the public channel, and the optional initial knowledge of the
intruder.

Relation −7→ models both communications and the possible evolutions of a context due
to the joining of new instances. Communications embody encryption and decryption mech-
anisms and take place by means of pattern matching, indicated as ∼.

Example 3.3 The ’in’ action of principal B in Example 3.2 waits for a triple encrypted
with kbs, the symmetric key which B shares with S. When such a message arrives the
elements of the triple are assigned to the corresponding variables. Message {T s, A, kab}kbs

is a possible matching message for {?y, ?q, ?w}kbs, since the sent message is encrypted with
the complementary key (namely the same) of the one used to encrypt the input message.
The pattern matching give rise to the substitution γ = {y 7→ T s, q 7→ A,w 7→ kab}. �
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κ . m : ∃γ ground s.t. dγ ∼ m
(in)

〈(X̃i)[in(d).Ei] ∪ C, χ, κ〉 −7→ 〈(X̃i)[Eiγ] ∪ C, χγ, κ〉

—
(out)

〈(X̃i)[out(m).Ei] ∪ C, χ, κ〉 −7→ 〈(X̃i)[E
′

i] ∪ C, χ, κ ∪m〉

C′ = join(Ai, γ, C) A
4
= (X̃)[E] i new

(join)
〈C, χ, κ〉 −7→ 〈C′, χγ, κ ∪ {Ai, A

+
i }〉

Table 3.1: Context reduction semantics

κ . m : ∃γ symbolic s.t. dγ ∼sym m
(insym)

〈(X̃i)[in(d).Ei] ∪ C, χ, κ〉 −7→sym 〈(X̃i)[Eiγ] ∪ Cγ, χγ, κγ〉

Table 3.2: Modified input rule

As we can see from Example 3.3, the matching relation (∼) in the case of symmetric keys
simply reduces to require that the encryption keys are equal. For instance, {B, kab, T a}kas

matches itself. In the case of asymmetric keys there is a match when cryptograms are
encrypted with complementary keys1 (e.g. {A}B− ∼ {A}B+). A datum dmatches a message
m if, and only if, there exists a substitution γ over the variables occurring in d such that dγ
is ground and dγ ∼ m.

Notice that the premise of rule (in) requires the existence of a message m which is
derivable from κ, and of a ground substitution γ, such that m matches the datum d that
a principal is waiting to receive. The set of such messages (and hence substitutions) may
be infinite, leading to a non effective and incomplete verification procedure. Symbolic tech-
niques, introduced recently in [24], provide a powerful mechanism to tackle the problem of
infinite branching. Whenever an infinite set of messages can be generated for a binding
variable x, we use the symbolic variable x(κ). This amounts to say that x can assume any
message m such that κ.m. The value of x(κ) will be possibly set by matching later actions.

The semantic rules are then redefined to include symbolic variables; we report the mod-
ified (in) rule in Table 3.2. In the symbolic (insym) rule, we require γ to be a symbolic sub-
stitution (i.e. a substitution that contains assignments involving symbolic variables) such
that dγ symbolically matches m (∼sym). The number of such substitutions is finite; more-
over, symbolic substitutions are applied to the whole configuration components. Indeed, in
the symbolic semantics, contexts and knowledges may also contain symbolic variables that
must be instantiated with values determined during previous applications of the symbolic
transitions rules. In [10, 41] terminating procedures are introduced to calculate symbolic
substitutions required by the premises of semantics rules, in order to make the verification
process effective.

The symbolic reduction semantics give rise to symbolic traces, where a trace t is a
sequence of configurations Γ1,Γ2, . . . ,Γn such that Γi−7→sym Γi+1 for 0 < i < n. When
principals in the final configuration Γn have fired all their actions, we say that Γn is a
terminal configuration and t is a terminal trace. Security properties are checked on terminal
configurations only; in [10, 41] terminal configurations are models for attacks: This approach
characterize those attacks where he intruder is able to deceive principals without being

1In cIP asymmetric keys are represented as principal names decorated with + for public keys and − for
private keys.
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detected. In [10, 41] it has been shown that the symbolic verification procedure is sound,
namely if an attack is symbolically found, than at least one correspondent concrete trace
exists. Moreover, the verification procedure is also complete (up to the number of principal
instances involved) in the sense that the for every concrete trace t there exist a symbolic
trace ts that “contains” t (i.e. there exists a substitution γ such that tsγ = t).

3.2 PL logic

Security properties are expressed as formulae of the PL logic (Protocol Logic) that allows one
to relate values and variables, and assertions on membership of messages to the intruder’s
knowledge κ.

Definition 3.2 (PL – Syntax) A formula of the logic PL is defined as follows:

φ, ψ ::= δ ∈ K | δ = σ | ∀A.i : φ | ¬φ | φ ∧ ψ

δ, σ ::= d | xi | I

where d is a datum that does not contain any binding occurrence, and I is a distinguished
constant representing the intruder name.

Operators ¬ and ∧ are the usual boolean operators2. The symbol K is used to represent
the knowledge of the intruder. Formula δ ∈ K states the derivability of δ from K, whereas
δ = σ tests for equality of data. Definition 3.2 introduces quantification over instances of
roles. Variables are therefore indexed (e.g. xi) and indexes are “typed” by principal names.
For instance, the proposition ∀A.i : φ is read as “for all instances of A, φ holds”, and i may
occur in φ. Among the possible values that can be expressed in PL formulae there is the
distinguished constant I that denotes the intruder’s identity. This permits us to express
propositions where the identity of the principals is not necessarily a “regular” role.

In PL integrity can be expressed by fixing some values (e.g. xi = δ), secrecy is handled
by values that κ may derive (e.g. d ∈ K), and authentication is expressed as relations among
principals’ variables and communicated messages.

Example 3.4 A property that the WMF protocol should satisfy is the secrecy of the session
key kab, unless it is really intended for I:

∀A.i : xi 6= I→ kabi 6∈ K,

that captures the intuitive secrecy property above. �

Formulae are verified with respect to a given (terminating) context of a computation
which keeps trace of all the principal instances that participated in the session. Notation
κ |=χ φ indicates that κ, under the variable assignment χ, is a model of the formula φ; κ
and φ are relative to a final configuration of a terminal trace. We define models for closed
PL-formulae. Let χ be a ground substitution for variables X . A model for a closed formula
φ is a pair 〈κ, χ〉 such that κ |=χ φ can be proved by the following rules:

i = j
(=1)

κ |=χ Ai = Aj

xiχ = δχ
(=2)

κ |=χ xi = δ

κ . δχ
(∈)

κ |=χ δ ∈ K

κ 6|=χ φ
(¬)

κ |=χ ¬φ

κ |=χ φ κ |=χ ψ
(∧)

κ |=χ φ ∧ ψ
κ |=χ φ[Aj/α] for all Aj : κ . Aj

(∀).
κ |=χ ∀A.α : φ

2Derived relations 6= and 6∈, logical connectors → and ∨, or existential quantifier ∃ are defined as usual
and will be used as syntactic sugar.
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Rule (=1) says that 〈κ, χ〉 is a model of equality Ai = Aj whether the instances are exactly
the same instance. Rule (=2) says that 〈κ, χ〉 is a model of Ai = δ whether the value
associate by χ to variable x of instance Ai, i.e. xiχ equals the value δχ. Rule (∈) establishes
that κ |=χ δ ∈ K whenever δχ can be constructed from the decomposition set of κ. Rules
(¬) and (∧) are straightforward. In ∀Aα : .φ the universal quantifier ranges over the finite
set of instances of role A. Quantifiers are solved by mapping variables indexes to actual
instances. In order to prove that 〈κ, χ〉 is a model for a formula ∀A.α : φ, it is necessary to
show that 〈κ, χ〉 is a model for any formula obtained by substituting Aj for α in φ, where
Aj is any instance of A deducible from κ, that participate in the protocol execution.

Notice that if χ and χ′ differ only on variables not appearing in φ, then κ |=χ φ⇔ κ |=χ′

φ. Hence, we can only consider finite assignments over the variables of φ.

Example 3.5 Let us consider the following authentication property, relative to the WMF
protocol

ψ = ∀B.j : ∃S.l : ∃A.i :
(vl = Bj ∧ ul = Ai ∧ xi = Bj)→
(tl = T a

i ∧ yj = T s
l ∧ wj = kabi ∧ qj = Ai)

The formula states that, whenever B terminates, a server S and an initiator A (that
aimed at interacting with B through S , i.e. xi = Bj) have also took part to the session.
In this case, the nonce received by S is the one generated by A (tl = T a

i ), while B receives
the nonce generated by S (yj = T s

l ). Finally, the session key received by S must be the key
associated to T a by A (wj = kabi).

Assume κ1 = {A,B, S, I, {T a, B, kab}k, {T s, A, kab}k}, as the intruder knowledge and,
referring to Example 3.2,

γ =































z, bk 7→ kbs
s, ak 7→ kas
v 7→ B,
u, q 7→ A,
r, w 7→ kab
t, y 7→ T a

as the set of variable bindings (we ignore indexes for clarity). We show that the final con-
figuration 〈{()[], ()[], ()[]}, κ1, γ〉 does not yield a model of ψ. We rewrite ψ according to the
(∀) rule expanding quantifiers and obtaining

ψ′ = (v = B ∧ u = A ∧ x = B)→ (t = T a ∧ y = T s ∧ w = kab ∧ q = A)

Under mapping γ, we can see that the antecedent of ψ′ holds while the consequent is false
due to the equality y = T s. Indeed, γ(y) = T a 6= T s, hence κ1 6|=γ1

ψ. �
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Chapter 4

ASPASyA: Architecture and

Data Structures

This chapter shows how the symbolic model has been exploited as a basis for the design
and development of an effective and usable verification toolkit called ASPASyA. We will
focus on architectural issues and design aspects to highlight the problems we encountered
while implementing the symbolic model. ASPASyA has a modular architecture, where each
module encapsulates a single aspect of the symbolic model. We will describe the functionality
of all the modules and their most important implementation details.

4.1 Architecture

The architecture of ASPASyA is displayed in Figure 4.1 and it is made of three main
parts. Incoming arrows indicate input data whereas outcoming arrows indicate outputs.
The module configuration-hdl manages cIP configurations (and, therefore, PL models)

Figure 4.1: ASPASyA architecture

and consists of three components:

• context that represents the running principal instances,

• knowledge that manages the set of messages in the configurations, and

• assignments that handles variable substitutions.

The module states-hdl implements the state space generation and contains components:

• step that returns the next configuration given the current one, and
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• join that handles the introduction of new principals in the configuration.

Finally, given a terminal configuration provided by states-hdl, formula-hdl implements
the check of PL formulae. In order to check formulae it might be necessary to solve systems
of symbolic constraints, as clarified in Section 5.5. The components of formula-hdl are:

• logic that transforms a PL formula into an equivalent normalised formula,

• verifier that checks whether the given configuration is a model for the formula,

• csolver that collects constraints on symbolic variables and resolves equality/inequality
of symbolic messages.

In a verification session, the user provides the cIP specification of the protocol (file
prt.pr) equipped with the connection formula (file prt.pj) and the PL formula expressing
the security property (file prt.pl). Connection formulae will be described in details in
Section 5.3.1 and 6.1, but intuitively they are mechanisms to constraint the way principals
can join a configuration, by specifying relations among open variables. An initial knowledge
(file prt.kb) and the maximum number of instances that can join a context can be specified,
as well.

Modules step and join ask to configuration-hdl for the current configuration and,
according to cIP symbolic semantics and to connection formula, a new configuration is
produced and returned back to configuration-hdl. Iterating this process, states-hdl
eventually receives a terminal configuration and forwards the corresponding PL (symbolic)
model to verifier that together with csolver checks for the validity of (the normalisation
of) prt.pl. Modules verifier and csolver return OK when the formula holds, otherwise
they yield the (possible) attack(s).

4.2 Choosing the language

The first choice to face when developing a piece of software is which language to use for the
implementation. In general, there are some aspects related to programming languages to
focus on:

• The expressive power, which is related to the level of the language.

• The efficiency of the object code.

While a low-level language might be suitable to write hardware drivers, it may be less
suitable for high level programming. A language abstracting away from machine-dependent
issues is the language of choice. Moreover model checking is a heavy computational task, so
having efficient and fast compiled code is an important feature of the language.

Usually debugging of a model checker is hard because even small tests generate a space
state too big to be checked by hand; so the presence of powerful debuggers, precise profilers,
code browsers and parser generators is of some moment.

Following this observations, we adopted the declarative language ocaml1 (v3.06) because
not only it fulfills all the features highlighted before, but also offers:

• Mechanisms of modules parameterisation, which greatly enhances developing speed
and code reuse;

• an efficient garbage collector for automatic memory management;

• sum types and a pattern matching mechanism that represent a main feature in declar-
ative programming;

1Refer to http://www.ocaml.org for more information.
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• native and efficient support for useful data structures such as polymorphic types;

• functional and imperative styles that can be mixed to get the best of the two ap-
proaches;

• cross-platform compilation.

Finally, ocaml is quite widespread and the current release comes out from years of develop-
ment at INRIA2. In the following sections we highlight some aspects of ocaml which are a
key mechanisms in ASPASyA implementation.

Data types The language allows the definition of new types applying operators to prim-
itive types3 . For our purposes, the most important operators are cartesian product and
disjoint union. Cartesian product allows the creation of tuples of values while disjoint union
allows the definition of sum types. Indeed, a sum type is the disjoint union of sets of values
where, to distinguish each set, a constructor is given, which not only constructs values of
the new type, but also allows access to them by means of pattern matching.

Example 4.1 Using sum types one can recursively define cIP messages:

type message =

| SKey of string ∗ int
| PKey of string ∗ int
| Crypt of message ∗message
| Var of string ∗ int
. . .

A value of type message can be a symmetric key, identified by the constructor SKey and
parameterised with a cartesian product of a string (the key name) and an index relating
the key with the principal owning it. Moreover a message can be a private key (PKey), a
cryptogram (Crypt), a variable (Var) and so on, using a new constructor for every disjoint
set of data. Values of type message are generated by applying constructors to data values. For
example, SKey(‘k’,1), is the representation of the symmetric key k belonging to principal
1. Moreover, Crypt(Var(‘x’,2), SKey(‘k’,1)) represents {x2}k1

. �

Data structures ocaml has a native support for lists. We use them as building blocks for
defining trees, hash tables and incremental data structures with little programming effort
and achieving high efficiency. Indeed, an ocaml list is implemented as a linked list so that,
when a new element is added, there is no content duplication but a mere pointer redirection.
Therefore using ocaml it is not necessary to code dynamic incremental structures by hand,
because they are already present in the run-time support.

4.3 Representing configurations

The cIP semantics is given in terms of configuration reduction, so we recognised a configura-
tion as the basic building block and implemented it first. A configuration is a triple 〈C, χ, κ〉
where C is a set of principal instances, χ a variable substitution and κ is the representation
of the intruder knowledge about exchanged messages. Principal processes, variable substi-
tutions and intruder knowledge heavily rely upon messages. The definition of messages as a
sum type (Example 4.1) allows us to implement the action matching mechanism of the cIP
semantics in terms of ocaml (efficient) pattern matching.

2INRIA is the French national institute for research in computer science and control. Refer to
http://inria.fr for general information and to http://cristal.inria.fr/ for ocaml specific informa-
tion.

3Integers, floating-point numbers, characters, strings and boolean are predefined in ocaml.



24 CHAPTER 4. ASPASYA: ARCHITECTURE AND DATA STRUCTURES

Principal representation

Principals can be represented as sum types as well:

type process =

| Input of message ∗ process
| Output of message ∗ process
| Parallel of process ∗ process
| Sum of process ∗ process
| Nil

The definition of a process is straightforward and allows for the construction of parallel
composition (Parallel) and non deterministic choice (Sum) of processes.

Not all constructable messages and processes have an associated semantics (e.g. cryp-
tograms with non atomic keys) so we need to provide some methods to check for syntactic
validity of an expression. More precisely we have to check that:

• Principals are closed;

• a variable must appear as bound only once in a process;

• each principal action must contain a valid message.

Some of this points are realised statically in the cIP parser, while others (as the correctness
of messages) must be dynamically checked at run-time.

A context is represented as a list of principal instances.

Variable substitutions

Particular attention is required for representing variable substitutions. A substitution is a
mapping from a set of variables to a set of messages. Substitution application to m changes
the occurrences of variables in m according to the mapping. Substitutions are necessary in
various cases:

• The intruder has to find a variable substitution to match principal actions,

• formula verification give rise to substitutions,

• substitutions have to be composed and are applied to configurations.

The representation of substitutions has been a crucial point in the realisation ofASPASyA.
It has been defined as a functional type4 whose values can be hence applied to messages.
The information about variable assignments is stored in a table; with this representation,
composition of substitutions reduces to merging of tables (exploiting ocaml mechanisms for
incremental structures). Given a message m its structure is analysed by recursive pattern
matching and each time a variable is found, a table look-up is performed. When composing
two substitutions, recent assignments are stored in the top of the table to reduce the list
traversal time.

Intruder knowledge

The knowledge structure has to perform two main tasks:

(i) It represents what the intruder knows about a trace, and

(ii) is used to forge messages that must be sent to principals.

4A functional type is t → t′ and represent functions from t to t′.
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The knowledge of the intruder is naturally represented as a list of messages but to realise
(ii) we need some more work. The intruder has the power to forge new messages from
existing ones, either pairing or unpairing5 them or encrypting cryptograms, or decrypting
cryptograms when the correct key is known. Every message added to κ is decomposed
in atomic messages (i.e. keys, names, cryptograms whose decrypting key is unknown) by
repeated application of the unpairing/decrypting rule as follows:

add(m,κ)
match m with

key k: κ = κ ∪ {k}; for each {l}k ∈ κ do add(l,κ− {l}k)
name n: κ = κ ∪ {n}
pair (s, r): add(s,κ); add(r,κ)
{l}k: if k ∈ κ then add(l,κ) else κ = κ ∪ {m}

This computation is performed once for every added message and it is particularly useful
to check for derivability of a message m. Indeed, in a so structured κ, derivability of m is
reduced to checking membership of atomic components of m in κ. In pseudocode:

is-derivable(m,κ)
match m with

key k:k ∈ κ
name n:n ∈ κ
pair (s, r):is-derivable(s,κ) ∧ is-derivable(r,κ)
{l}k:(k ∈ κ ∧ is-derivable(l,κ)) ∨m ∈ κ

An identification number (kId) is assigned to each instance of the knowledge and pointers
to knowledges are stored in a hash table indexed by kId values. Knowledges can be accessed
in constant time using kId as a search key. The usefulness of the hash table will be explained
in section 5.1.

5This means that if the intruder knows a message m, he can forge an infinite set of messages. Indeed
(m, m, . . .) is forgeable by repeated pairing.
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Chapter 5

ASPASyA: A Symbolic Model

Checking Algorithm

ASPASyA implements the reduction relation −7→ prescribed by the cIP semantics, in two
separated modules: step and join. The construction of the state space begins in the join

module by adding different several instances of principals to the empty configuration. Next,
step is in charge of generating the entire state space for every initial configuration built
by the join module. Due to the definition of −7→, the resulting state space is a tree of
configurations and a trace is a path from a leaf to the root. ASPASyA also implements
a second aspect of the formal framework, namely, protocol properties. They are specified
using PL logic and checked for satisfability against configurations. This is reflected in the
architecture of ASPASyA by the presence of the modules aimed at representing formulae
(logic), handling verification (verifier) and resolting constraint systems (csolver).

The rest of the section describes the implementation of these modules, focusing on the
model checking algorithms and their implementation.

5.1 Reduction steps

We start by considering the step module. Given a configuration 〈C, χ, κ〉, step is in charge
of applying (in) and (out) rules of cIP semantics, to generate a new configuration. We can
highlight three crucial points:

• Find principal actions ready to be fired,

• execute a principal action,

• generate a new configuration.

The first step is straightforward and realised with the analysis of the principal process
structure. Every action to be fired is then processed according to the semantics given in
Table 3.1. For an output action we have to consume the action, modify the context, and
update the intruder knowledge with the sent message.

If we consider an input action in(d), things become more difficult. The intruder can
send a message m provided that a substitution γ such that dγ ∼ m and κ . m exists. For
every matching message we generate a new configuration, updating the context and the
knowledge with the composition of the corresponding γ and χ. Difficulties arise because
the intruder can generate a possibly infinite set of messages in response to a single input
action. As an example consider in(?x), the action of a principal waiting for a datum to
store in x. Every possible message derivable from κ can be sent and, if κ is not empty,
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an infinite braching of possible configuration is introduced. Indeed, an infinite number
of different substitutions (and hence configurations) can be generated. In order to face
with this problem cIP has been equipped with a symbolic semantics. The formal tool for
facing the infinite branching problem is constituted by symbolic variables (cfr. Chapter 3).
The representation of symbolic variables is obtained by extending normal variables (see
Example 4.1) with some parameters:

• An integer representing the identification number of κ;

• a field containing information about type. Indeed, the evolution of the computation
will possibly impose restrictions on the set of values for a symbolic variable x(κ).
Restrictions are useful in trying to reduce the amount of generated substitutions for
an action matching, and they will be described in section 5.2.

Example 5.1 Symbolic variables are represented adding a new constructor to message def-
inition (Example 4.1), namely SVar. Suppose we have the symbolic variable x(κ) belonging
to principal A2 and kId(κ) = 1 whose internal representation is SVar(‘x’,2,1,Gen), where
Gen is the “type” of data represented by x. Refer to Section 5.2 for details. �

Symbolic step

ASPASyA implements a symbolic matching mechanism (introduced in [10, 41]) that, given
a datum d and a knowledge κ , yields a symbolic substitution γ and a message m such
that κ . m and mγ ∼ dγ. The calculation of a substitution γ for a datum d is based on
a procedure defined by structural induction on data. The procedure introduced in [10, 41]
handles many details of message matching. However, we are interested in giving a general
idea of the mechanism, hence we show a simplified version. When the intruder has to derive
a message matching d, some interesting cases arise:

1. d is a binding variable ?x. This case is handled by the substitution x → x(κ) with κ
representing the current knowledge.

2. d is a cryptogram {d′}k and the intruder knows the key needed to decrypt (κ . k−1).
The intruder can generate a message matching d if he is able to match d′.

3. d is a cryptogram {d′}k that the intruder can not decrypt. The intruder cannot
know the structure of d′ directly. It might be the case that one or more “potentially
matching” cryptograms belong to κ, independently of whether or not the key k is in
κ. The symbolic matching procedure scans κ for such cryptograms and, if possible,
returns a matching substitution.

4. d is a cryptogram {d′}x(κold). This case considers cryptograms where the encryption
key is the symbolic variable x(κold) referring to a former intruder knowledge κold, that
contains a finite number of keys. Hence the intruder can assign to x(κold) a value
chosen among a finite number of possible values. The rest of the matching procedure
is handled as in case (2)

Notice that the access to former knowledge is performed efficiently by a look-up in a
hash table of knowledge pointers as specified in Section 4.3.

Example 5.2 As an example consider the principal A
4
= ()[in(?x).in({na}x)] that waits

for a datum and then for a cryptogram containing a nonce, encrypted with x. After that
the intruder matches the first action, applying case (1), A is reduced to [in({na}x(κ))]. The
intruder knows that x(κ) is used as a key, so every generated substitution γ (finite in number)
will contain an assignment such that x(κ) 7→ λ, where λ is one of the keys in κ, as specified
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for (4). Suppose κ = {k, I+, I−, na} then the symbolic matching procedure generates the
three substitutions γ1 = {x(κ) 7→ k}, γ2 = {x(κ) 7→ I+}, γ3 = {x(κ) 7→ I−} such that
{na}x(κ)γ1 ∼ k, {na}x(κ)γ2 ∼ I+ and {na}x(κ)γ3 ∼ I−. �

Symbolic matching is the core of the reduction step procedure which is reported in the
following pseudocode:

single-step(〈C, χ, κ〉)
R = ∅
A =set of processes in C ready to fire an action

for each a ∈ A do

match a with

in(d).P:
Γ = symbolic-match(d,κ)
for each γ ∈ Γ do

R = R ∪ {〈(C − {a}) ∪ Pγ, χγ, κ〉}
out(d).P:
Γ = symbolic-match(d,κ)
for each γ ∈ Γ do

R = R ∪ {〈(C − {a}) ∪ Pγ, χγ, κ ∪ dγ〉}
return R

The return value of single-step is the set of configurations resulting from one step of
symbolic reduction. More precisely, R is a stack of configurations; single-step is invoked
on every element in R to build the state space.

Configurations are heavily used in state space generation because, as we can see from
single-step, every action of the intruder modifies the context. In general the reduction
semantics always modifies the current configuration acting on the context, the variable
substitution χ and the knowledge κ. Exploiting ocaml lists, each of this structures is im-
plemented incrementally, storing only the differences between a configuration and the ones
obtained from it.

5.2 Two optimisations

The iteration of single-step builds the whole state space. Even for small protocols, the
state space generated is large due to the explosion caused by action interleavings. Pruning
strategies are needed to shrink the state space as much as possible.

First, as proved in [10, 41], output of regular principals can be anticipated without
any loss of significant traces. The intruder modeled is hence “eager” since he “learns” as
much as possible from messages sent by regular principals. When all output messages have
been collected, the intruder tries to generate messages for the waiting principals. This
observation allows us to limit the dimension of state space without cutting off traces that
lead to attacks. Intuitively, since the knowledge of the intruder increases monotonically,
observing more data sent by the principals, can only increase the “power” of the intruder.
Therefore, single-step has been modified in the implementation, to generate only those
traces where output actions are fired in advance with respect to the input ones. More
precisely, whenever we have to generate the successors of a configuration we check if it
contains output actions. In such a case, we have only one successor which is the state
obtained by performing all the output actions at once. Otherwise, we have a finite number
of successors for each input action.

The second source of state explosion is the large number of possible substitutions gener-
ated by the intruder to match a single input action. For example, when the intruder knows
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that a symbolic variable x(κ) is used as a key (Example 5.2), it generates a different sub-
stitutions for every key in κ. The situation becomes more dramatic when x(κ) is used as a
name, so a transition for every name in κ is performed. We extended the formal framework
adding “type” information to symbolic variables in order to reduce the branching factor.
For instance, if we know, by structural analysis of messages, that x stands for a message of
type t, we substitute x(κ) with xt(κ), where t ranges on {P, pb, pr, sy} (respectively denoting
‘principal names’, ‘public’, ‘private’, ‘symmetric’).

Example 5.3 Consider the principal A
4
= ()[in(?x).in({na}x)] of Example 5.2. Whenever

the intruder has to forge a message matching with ?x, a symbolic variable x(κ) is sent.
Afterwards, the second action imposes a constraint on x(κ) because the intruder “learns”
that x is intended to be a key, hence we consider only those transitions where a key in κ is
substituted for x. All those transitions are represented by the substitutions x(κ) → xpb(κ),
x(κ) → xpr(κ) and x(κ) → xsy(κ). Figure 5.1 highlights the efficiency of such approach

in({na}  )x(k)in({na}  )x(k)

x −> k x −> I+ x −> I− x −> A+ ... x−>x(sy) x−>x(pb) x−>x(pr)

Figure 5.1: Optimised branching.

on a fragment of state space for the second action of A. The leftmost tree does not use the
optimisation and the branching factor depends on the number of keys in κ. The right tree
has a branching factor dependent on the number of key types. �

5.3 Joining principals

Principal instances are organized into contexts. The only way for a principal to enter
a context is by means of the join operation. The problem of verifying a protocol with an
unbounded number of principals is undecidable so we let the user specify the upper bound m
on the number of principal instances. Moreover we assume that a join operation is performed
before any reduction step, on the empty initial configuration (i.e. the configuration made of
the empty context, the undefined substitution and the initial intruder knowledge1). Given
a protocol with n roles, the number of different initial contexts containing m instances that
can be generated, is

(

m+n−1
n

)

. In cIP semantics the join operation is not trivial due to the

presence of open variables. Every time a principal A
4
= (ṽ)[P ] is going to be added, we have

to:

• Inform the intruder about the presence of A;

• connect A to other principal by assigning values to their open variables.

The intruder adds to its knowledge the name of the joining principal A together with its
public key A+. All the principals join in a single step, so the intruder fills κ with all the

1The initial intruder knowledge always contains the intruder name I and its asymmetric keys I+, I−.
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names at once. The gist of the join operation is the connection of open variables. An open
variable can represent a principal name and hence its public key or a symmetric key shared
with some other principal. The first step is to assign every open variable x representing
a name to a symbolic variable xP (κ) representing all the names in κ. The second step is
to assign a value to the remaining open variables. We have to generate a substitution for
every possible assignment of open variables to key names. If the same value is assigned to
two open variables, they will allow the corresponding principals to share keys. For instance,
(a)[. . .] and (b)[. . .] can share a secret key k, if a 7→ k and b 7→ k. Following this observation
we can see that the substitutions are in one-to-one correspondence with the partitions of
the open variable set.

Example 5.4 Consider a context with three open variables, say a, b and c. There are five
ways of assigning them:

a = b = c ∼ {a, b, c}
a = b, c 6= a ∼ {a, b}, {c}
a = c, b 6= a ∼ {a, c}, {b}
b = c, a 6= b ∼ {b, c}, {a}
a 6= b, b 6= c, c 6= a ∼ {a}, {b}, {c}

In the first case every one share the same key, while in the last case no key is shared. �

Let n be the number of roles of a protocol, m the number of instances of a configuration.
Then, the number of initial configurations grows exponentially with m, so the dimension of
the problem may become intractable even for small m. For every initial context we have
to further connect the open variables, leading to a big number of starting configurations.
However, let us remark that, in realistic protocols, n ≤ 5.

5.3.1 Controlling the state explosion

The join mechanism is the basic building block to connect principals properly within protocol
sessions. In general, the informal specification contains many implicit assumptions that
play a fundamental role in the analysis and verification of the protocol. ASPASyA lets
the user to specify those assumptions by means of a property that has to be satisfied by
every configuration. The join operation is equipped with a mechanism to check invariant
properties on protocol principals: This is simply achieved by means of Connection formulae,
that will be illustrated in Chapter 6. A connection formula is a PL formula that constraints
the join operations.

Example 5.5 Consider the WMF protocol specification reported from Example 3.1.

A
4
= (x, s)[out(A, {T a, x, kab}s)],

S
4
= (u, ak, v, bk)[in(u, {?t, v, ?r}ak).out({T s, u, r}bk)],

B
4
= (z)[in({?y, ?q, ?w}z)].

The following connection formula specifies the property that must hold in every trace:

φ = (∃S.o : true) ∧ ∀S.l :
(∃A.i : (ul = Ai → akl = si) ∧ (vl = Ai → bkl = si))∧
(∃B.j : (ul = Bj → akl = zj) ∧ (vl = Bj → bkl = zj))

Property φ states that at least a server must exist, and whenever an instance of A is connected
to a instance of S as initiator (ul = Ai) or responder (vl = Ai), then they share a key
(akl = si or bkl = si). The same happens for instances of B. �
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After every initial configuration is generated by join, a formula verifier is invoked and
every configuration not satisfying the connection is discarded and no further expanded.

Example 5.6 For instance, referring to Example 5.5 consider the initial configuration Γ
obtained with the substitution:

δ =















s, bk 7→ kbs
z, ak 7→ kas
v 7→ B,
u 7→ A

Connection formula φ does not hold in Γ that will not be further expanded. Indeed, δ rep-
resents a principal connection that does not satisfy the hypothesis on the sharing of keys
because principal A is connected to the server as initiator (u 7→ A) but share a key with S
as responder (s, bk 7→ kbs). �

5.4 Representing formulae

Formulae are represented as a sum type encapsulating messages. As seen in Section 3.2, PL
formulae express relations between messages, namely the equality (=) and the derivability
(.) relations. Moreover PL logic, allows us to quantify over instances of principals. The
ocaml representation of a formula follows:

type formula =

| Equal of message ∗message
| Derive of message
| Forall of index ∗ string ∗ formula
| Exists of index ∗ string ∗ formula
| And of formula ∗ formula
| Or of formula ∗ formula
| Not of formula
| True | False

Type index is overloaded: It represents both a pointer to a symbol table storing indexes
names, and a principal instance number. With this representation, operations on formulae
are simplified. Consider the quantification constructors: They store enough information
to solve every index reference contained in the quantified formula. For instance, the PL
formula ∀A.i : xi = Ai∨ 6 .nai is represented as:

Forall(i,‘A’,Or(Equal(Var(‘x’,i),Name(‘A’,i)),Not(Derive(Nonce(‘na’,i))))).

Before entering the verification process, formulae are normalised. Given a context Cand a
formula φ, the normalisation of φ is a two-step process: The first step consists of expanding
quantifiers with respect to principal instances i C. More precisely the formula ∀A.i : φ is
expanded as:

φ[j1/i] ∧ φ[j2/i] ∧ ...φ[jn/i] with jm ∈ {j|Aj ∈ C}

The second step is the transformation of an expanded formula to a disjunction of conjuncts,
by means of the usual De Morgan laws.

Example 5.7 Let C = {A1, A2, B3} and φ = ∀B.j : ∃A.i : xj = yi ∧ yi 6= Bj . After
quantifiers expansion we get φ = (x3 = y1 ∧ y1 6= B3) ∨ (x3 = y2 ∧ y2 6= B3) where i
and j are substituted with the actual indexes. φ is already normalised, being a disjunct of
conjuncts, and is ready to be verified. �
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5.5 Constraint systems

We exploit a constraint system solver for model checking PL formulae. Models for PL
formulae are configurations that may contain symbolic variables. We remark that checking
for satisfability of a formula may give rise to an infinite number of possible substitutions (as
in symbolic matching, Section 5.1). For instance, consider the formula φ in Example 5.7; φ is
made of positive (x3 = y1 and x3 = y2) and negative (y1 6= B3 and y2 6= B3) atoms. Suppose
that φ is going to be checked on a configuration 〈C, χ, κ〉, where χ = {x3 7→ x3(κ), y1 7→
y1(κ)}. We have to substitute the variables in φ as dictated by χ and then check for
satisfability of each disjunct which depends on satisfability of equalities and inequalities.
Indeed, in order to check for the satisfability of x3(κ) = y1(κ) one should prove that there
exists a message m (κ .m) and a substitution γ such that x3(κ)γ = y1(κ)γ = m. Since the
number of such subsitution is infinite (one for every message derivable from κ), a symbolic
constraint solver is used to deal with such situations.

Positive atoms are dealt with by means of standard unification and give rise to constraints
easily calculated with a procedure similar to symbolic matching. For example x3(κ) = y1(κ)
gives rise to the assignment x3 7→ y1. More complex matching may generate more than one
substitution, but always finite in number thanks to symbolic techniques.

Negative atoms are always true if the knowledge is not empty because the intruder can
always derive two different messages. For example the negative literal y1(κ) 6= B3 of φχ holds
for any substitution that maps y1 on a name different from B3. To finitely represent this
situation the negative assignment {y1 67→ B3} is generated in order to record this constraint.

Let Q be the constraint store. As seen, a constraint is a variable assignment which can
be positive (x 7→ d) or negative (x 67→ d). A constraint store Q is valid whenever:

(i) (x 7→ d) ∈ Q ∧ (x 7→ d′) ∈ Q⇒ d 6= d′

(ii) (x 7→ d) ∈ Q ⇐⇒ (x 67→ d) 6∈ Q

Condition (i) states that a variable must be assigned to at most one value. Condition (ii)
requires that a value for a variable must be chosen without violating any negative constraint
present in Q.

The constraint solver is implemented by checking that (i) and (ii) are satisfied after each
new constraint is added to Q by the verification process.

5.6 Formula satisfaction

Once a formula is normalised, it is transformed in φ =
∨n

i=0 ψi where each ψi is made only of
conjunctions of atoms. Checking for the satisfability of a normalised formula means finding
a substitution γ such that ψiγ is true for some i. If ψi can not be satisfied for any i then
φ is unsatisfable. The verification process relies on symbolic matching functions and the
constraint solver to achieve its goal. In pseudocode:

check(ψ)
let ψ = φ1 ∨ φ2... ∨ φn;

for each φi = ρ1 ∧ ρ2... ∧ ρm do

Q = ∅;
for each ρj do

γj = solve(ρj);
Q = Q ∪ γj;

if correct(Q) return true

return false;
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Here solve returns a set of positive or negative constraints depending on ρj , and correct
checks for the coherence of the constraint store Q. This pseudocode can be easily modified
to return also the substitutions that make ψ true. Moreover, solve may return more than
one γ for a single atom, so the verifier generates non-deterministically all the possible sub-
stitutions (which are symbolic and hence finite). Non determinism is simulated with a stack
of substitutions that allows backtracking when reaching a non satisfable set of constraints.

5.7 Mixing all together

The problem of protocol verification with finite sessions was shown to be NP-complete in [37],
so much effort has been spent in trying to achieve tractability for a reasonable input size (i.e.
protocol complexity and number of instances). Searching for an attack means to generate
the state space and check the property. This is a quite general algorithm which we tuned in
several ways to achieve better performance and flexibility.

As noticed in Section 5.3.1, the information contained in connection formulae may be
exploited to guide the expansion of the state space and restrict the search. Due to the
modular architecture of ASPASyA this is easily accomplished by letting join to interact
with verifier. Every generated initial configuration is passed to the verifier and checked
against the corresponding connection formula. If the test is successful the configuration is
forwarded to step.

Upon reaching a terminal trace, protocol properties need to be checked: When the
security formula is not satisfied and the connection formula holds, an attack trace is found.
Again, this is accomplished by the interaction between step and verifier. The rest of the
section will recap the details of the verification algorithm.

We can highlight four steps of computation also depicted in Figure 5.2:

1. As said, state space can be seen as a tree of configurations. Initially, the root node
contains the configuration made of the empty context, the undefined substitution ⊥
and the initial intruder knowledge κ0.

2. The next step is the construction of the initial contexts; each initial context contains a
number of principal instances m (specified by the user). Then, we normalise each PL
formulae (connection and security properties) according to each initial configuration.

3. At third step, we are able to execute the join operation generating all the possible
connections between open variables. The state space is already quite large, so we
prune it for the first time, checking the satisfability of the invariant property. If a
configuration does not satisfy the invariant, it will never give rise to an attack trace
and can hence be pruned.

4. After the pruning, each trace t is expanded until no more actions can be performed.
If t is a terminal trace (i.e. all principals have performed all their actions) we check
for the satisfability of the security property.

If the security property does not hold in the terminal configuration of some trace , then
we cannot claim that we found an attack trace, because the corresponding substitution
may not satisfy the invariant property. Therefore, we perform a fast check on the invariant
to assess the validity of the attack. Notice that, while step 3 checks whether a feasible
substitution γ might exist or not, here a concrete substitution is applied and checked. It
may be the case that, during trace generation, we refined a value of a symbolic variable that
was assigned during the join operation. We have to be sure that the value assigned along
the trace is the same of the value specified in γ. When an attack trace is found, it is used to
reconstruct the cIP process of the intruder. There could be more than one substitution that
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Figure 5.2: A graphical representation of the verification algorithm

allows the attack for the same trace. Hence, ASPASyA let the user to specify how many
attacks must be reported for the same trace.

We apply the verification algorithm to the WMF protocol in Example 3.1, to clarify each
step. We simulate the algorithm for m = 3 and highlight interesting points.

1. The root configuration is created from the initial knowledge specified by the user.
Suppose κ0 = {I, I+, I−}, hence 〈∅,⊥, κo〉 is the initial configuration.

2. Principals join the initial context giving rise to 10 different contexts. Two of the gener-
ated contexts are C1 = {A1, B2, S3} and C2 = {A1, A2, A3}. The corresponding config-
urations contain knowledges where the names of the participants have been added, re-
spectively κ1 = κ0∪{A1, A

+
1 , B2, B

+
2 , S3, S

+
3 } and κ2 = κ0∪{A1, A

+
1 , A2, A

+
2 , A3, A

+
3 }.

Suppose we have the security property ψ of Example 3.5 and the connection formula
φ of Example 5.5:

ψ = ∀B.j : ∃S.l : ∃A.i :
(vl = Bj ∧ ul = Ai ∧ xi = Bj)→
(tl = T a

i ∧ yj = T s
l ∧ wj = kabi ∧ qj = Ai)

φ = (∃S.o : true) ∧ ∀S.l :
(∃A.i : (ul = Ai → akl = si) ∧ (vl = Ai → bkl = si))∧
(∃B.j : (ul = Bj → akl = zj) ∧ (vl = Bj → bkl = zj))

We normalise2 ψ and φ with respect to each Ci obtaining the corresponding ψi and
φi:

ψ1 = v3 = B2 ∧ u3 = A1 ∧ x1 = B2 →
t3 = T a

1 ∧ y2 = T s
3 ∧ w2 = kab1 ∧ q2 = A1

φ1 = true ∧ (u3 = A1 → ak3 = s1) ∧ (v3 = A1 → bk3 = s1)∧
(u3 = B2 → ak3 = z2) ∧ (v3 = B2 → bk3 = z2).

Differently, the context C2 gives rise to the unsatisfable formula φ2 = false ∧ true
because C2 does not contain any instance of S. Hence the existential and universal
quantification in φ are nomalised to false and true respectively.

2For the sake of readability, formulae are only partially normalised.
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3. For each context, all possible assignments of open variables are generated and the
corresponding configurations constructed. One of the substitutions generated for C1 is

γ1 =















x1 7→ xP
1 (κ1)

u3 7→ uP
3 (κ1)

v3 7→ vP
3 (κ1)

ak3, s1, bk3, z2 7→ k.

Indeed, the first join phase assigns every open variable representing a name (x1, u3, v3)
to a typed symbolic variable, whereas the second phase creates links between remaining
variables assigning them to key names. Formula φ1 is then checked on 〈C1, γ1, κ1〉, and
holds for at least an assignment, namely {x1 7→ A1, u3 7→ A1, v3 7→ B2}. Context C1

passes the invariant check while C2 is discarded because φ2 never holds.

4. Symbolic matching procedure is repeatedly applied to configurations to obtain traces.
Starting from 〈C1, γ1, κ1〉 there is only one principal action that the eager trace gen-
eration procedure can select, namely the output action out(A1, {T a

1 , x
P
1 (κ1), kab1}k)

of A1. The sent message is added to κ1 obtaining κ2 = κ1 ∪ {T a, xP
1 (κ1), kab}k, since

the intruder does not know k and cannot open the cryptogram (refer to Section 4.3).
Context C1 is modified and now contains A1 represented by the nil process whereas
B2 and S3 are not modified. The resulting configuration is 〈C ′, γ1, κ2〉 where

C′ = { A1 : ()[nil],
B2 : ()[in({?y2, ?q2, ?w2}k)],
S3 : ()[in(uP

3 (κ1), {?t3, vP
3 (κ1), ?r3}k).out({T s

3 , u
P
3 (κ!), r3}k)]}.

The successive application of the step procedure gives rise to two different possibilities:
Selecting the input action of B2 or the input action of S3. We consider the former
case where the intruder generates a matching substitution δ1 = {y2 7→ T a

1 , q2 7→
xP

1 (κ1), w2 7→ kab1}; it represents the forwarding to B2 of the cryptogram already
sent by A1. As before, the new configuration 〈C ′′, γ1δ1, κ2〉 is created with an updated
context, the composition of the previously generated substitutions and the unmodified
knowledge κ2. We skip the next two steps, corresponding to the execution of the
actions of the server S3. The terminal configuration is:

τ = 〈{A1 : ()[nil], B2 : ()[nil], S3 : ()[nil]},
γ1; δ1[

T a
1 ,kab1,B2/t3,r3,v3,],

κ2 ∪ {T s
3 , u

P
3 (κ1), kab1}k〉

Formula ψ1 is checked on τ and the concrete substitution δ = {u3 7→ A1, x1, q2 7→
B2, v3 7→ B2} is found such that ψ1δ does not hold. Indeed, in the antecedent of
ψ1δ (v3 = B2 ∧ u3 = A1 ∧ x1 = B2) each atom holds whereas the consequent is
false. Applying δ to the consequent of psi1 we obtain from the atom q2 = A1 the
corresponding atom B2 = A1 that is clearly false. Before claiming an attack, we have
to perform an invariant check to be sure that values assigned to symbolic variables u3,
x1 and v3 do not violate the connection property. Indeed, φ1δ holds on τ since every
implication can be satisfied by δ; γ1. and we can report an attack. Notice that this
attack is caused by the sharing of the same key between A1, B2 and S3. Modifying φ
we can exclude such situations from the search.

5.8 Performance issues

In this section we briefly analyse efficiency of ASPASyA’s algorithm, considering both
memory usage and computation time.
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One of the main problems related to the handling of (very large) transition systems is
memory consumption. These problems have been considered by other authors, see [42, 8, 9].
Notice that since we are interested in checking a formula when we reach a terminal trace, it
is not necessary to maintain in memory all the state space but only the current trace. This
has been accomplished using a (stack implemented) depth-first search strategy that coupled
with the efficient ocaml garbage collector enables us to use a little amount of memory. For
instance, a few space (around 3 Mb) is needed to store a trace in most of the protocol we
have tested in Chapter 7. This also has impact on time efficiency because we gain speed for
the lack of page swapping.

Computation time depends on the size of the state space and by the complexity of
formulae to be verified. We reduced the dimension of the generated state space by several
optimisations reported in Sections 5.2 and 5.3.1. Moreover ASPASyA offer the user the
possibility to search small and interesting portions of the state space by invariant pruning.
For instance, as reported in Chapter 7, the verification of the Needham Schroeder protocol
with four principal instances and with no restrictions on the connections, yields a state
space of 374.905 configurations whereas restricting the search to consider contexts with two
instances for each role, yields a state space of only 18.385 configurations.

Formula satisfaction is also a time consuming task, especially when symbolic variables
are involved. There might be more than one variable assignment for a single symbolic trace
that leads to an attack and reporting them all is very inefficient. ASPASyA can report
the full set of attacks or only the first attack found in a trace, allowing the user to perform
a fast but less accurate search that can be subsequently refined. Refer to Chapter 7 for
quantitative results on performed tests.
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Chapter 6

ASPASyA: A Verification

Methodology

This chapter discusses how ASPASyA can be used to verify security protocols. In this
chapter we how our approach makes the verification process easier. Indeed, the user can
build the whole specification in successive steps and can reduce as much as desired the search
space. Moreover, the formalisation of an informal specification is a difficult and error prone
process, and the presented methodology is useful to discover and avoid many of such errors.

Figure 6.1 represents the main phases of the ASPASyA verification methodology. Veri-
fying a protocol is based on a four-step procedure:

(i) Each role is formalised by a cIP principal,

(ii) the security property is specified by means of a PL formula,

(iii) conditions on connections are specified by means of a PL formula and,

(iv) initial knowledge is provided.
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Figure 6.1: A graphical representation of the verification methodology

The basic idea of step (i) is to provide a cIP process for each principal corresponding
to a role in the protocol. At each step, its behaviour depends on whether the principal is
sending or receiving a message. The protocol analyser must define a cIP template specifying
open variables of principals. Even though it seems that the formalisation of the narrative
informal specification into cIP processes can hardly be done in a fully automatic manner,
we can give some rule of thumbs:



40 CHAPTER 6. ASPASYA: A VERIFICATION METHODOLOGY

• Initiator usually needs an open variable which the responder should join;

• if the identity of the partner is acquired in a communication, then no open variable
should be necessary about that partner (unless checks on the identity are required);

• an open variable might be necessary when a principal must interact with a server, to
share a secret (e.g. a key or a name).

• Each step of the informal specification corresponds to an input action for the receiver
and an output action for the sender. Each time a principal receives a name it is stored
in a binding variable.

In step (ii) the property to be verified is defined in PL. Security properties formalisation
is a complex task and requires experience. PL logic helps by allowing the formalisation of:

• The impossibility for the intruder to know a particular datum d in a run of the protocol,
when checking for secrecy properties,

• the relations between variables of different principals that must hold in every run,
when more complex properties, like authentication, must be verified.

Step (iii) let the analyser specify a connection property, obtaining a double purpose:

• Specify the assumptions on the keys shared between principals, and

• prune the state space allowing for fast search on a reduced set of selected trace.

It is often the case that the result of a search (i.e. an attack trace) reveals that some
assumptions on the protocol are not correctly formalised. By refining the hypothesis on
principal connections, incorrect attacks can be filtered out (refer to Section 6.1.4 for an
example).

Finally, step (iv) specifies the initial knowledge of the intruder to test a protocol under
weaker conditions. It is used mainly for two purposes:

• Let the intruder know some secrets (e.g. compromised keys);

• Let the intruder know something about past interactions between principals (cryp-
tograms exchanged in previous sessions).

The latter is especially useful in finding replay attacks where the intruder exploits messages
appeared in previous session.

Steps (iii) and (iv) can be iterated in order to tune the connection conditions (and the
initial knowledge), according to the results obtained in previous iterations.

6.1 Finding attacks with ASPASyA

We highlight the effectiveness of our methodology by analysing real protocols. We there-
fore introduce two well-known protocols, namely asymmetric Needham-Schroeder [33] and
KSL [25], and use them as running examples.

6.1.1 Needham-Schroeder protocol

The asymmetric Needham-Schroeder protocol is based on public key cryptography and aims
at guaranteeing mutual authentication between two principals, A and B, which communicate
with a trusted third party S (certification authority) for the distribution of public keys. The
narration description is:
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(1) A→ S : (A,B)
(2) S → A : {B+, B}S−

(3) A→ B : {A, na}B+

(4) B → S : (B,A)
(5) S → B : {A+, A}S−

(6) B → A : {na, nb}A+

(7) A→ B : {nb}B+

The trusted server S stores public keys and distributes them upon request, encrypted
with its own private key. Messages (1), (2), (4) and (5) are used for this purpose while
the rest of the protocol reaches the mutual authentication goal. In our analysis we consider
S trusted, namely, we assume that the keys are correctly delivered by S, and therefore we
consider a usual “brief” version of the Needham-Schroeder protocol given by messages (3),
(6) and (7). Principal A sends a cryptogram containing a nonce, na, and its own identity,
encrypted with the public key of B; B replies with a message containing na and a newly
generated nonce nb, authenticating itself with A. Indeed, when A decrypts the message in
(6), can deduce that B is alive and communicating since only B is able to decrypt message
(1) and acquire na. The last message achieves mutual authentication; A sends nb back
to B, letting B conclude that A (the only principal able to decrypt (2)) is running and
communicating. Even if the above informal explanation is quite convincing (and it has
been for long time), the protocol is flawed. A first non trivial flaw is the well known Lowe
attack [27], while a second attack will be described at the end of this section.

6.1.2 Verifying the Needham-Schroeder protocol

The cIP formalisation of the protocol is given below:

A
4
= (y)[out({A, na}y+).in({na, ?u}A−).out({u}y+)]

B
4
= ()[in({?z, ?x}B−).out({x, nb}z+).in({nb}B−)].

Notice that open variable y is intended for the identity of the partner of A.

In order to formalise the authentication property, we have to state that the intruder can
never let B believe that he is communicating with A when it is not. This desirable property
can be formalised by means of the following PL formula:

ψNS = ∀B.j : ∃A.k : zj = Ak → yk = Bj .

which states that, for each instance Bj , if Bj believes that he communicated with an instance
of A, whose name is received in the first input action of B (zj = Ak), then that instance Ak

was actually intended to communicate with Bj (yk = Bj).

For simplicity we perform the search, without imposing any constraint on connections
and assuming the standard initial knowledge. We consider contexts with two principal
instances. ASPASyA returns eleven attacks that violate the security property above: The
first one is the well-known Lowe attack [28], while others have to be analysed carefully.
Most of them are permutations of the same intruder actions. Six of them can be described
as follows:

(1) I → B1 : {I, x1(κ)}B+

1

(2) B1 → I : {x1(κ), nb1}I+

(3) I → B1 : {nb1}B+

1

(4) I → B2 : {I, x2(κ)}B+

2

(5) B2 → I : {x2(κ), nb2}I+

(6) I → B2 : {nb2}B+

2
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where the symbolic variables x1(κ) and x2(κ) can assume any value derivable from κ. This
class of intruders cannot be claimed as a proper attack, indeed the intruder is behaving as
a “honest” instance of A and hence φNS cannot be satisfied by any instance of A which
intended to communicate with I (yk = I). This, and others that one may encounter, not
significant result can be easily filtered out, following the outlined methodology, by further
specifying the security property. The following PL formula rules out the possibility that the
intruder may directly communicate with instances of A and B:

ψ′

NS = ∀A.i : nai ∈ K→ xi = I
∧
∀B.j : (nbj ∈ K→ zj = I) ∨ (∃A.k : zj = Ak → yk = Bj).

The added conditions state that the nonces na generated by instances of A must remain
secret, unless they were intended for I . Moreover the intruder can “legally” obtain nbj if he
initiated the protocol session with Bj as responder (zj = I).

Repeating the search, ASPASyA reports five attacks; four of them are the permutation
of a type flaw attack of which we give the informal description. Since no constraints are
imposed to connections, the context with only two instances of B (B1 and B2) is generated.
A possible trace of this context is:

(1) I → B1 : {I, B2}B+

1

(2) B1 → I : {I, nb1}B+

2

(3) I → B2 : {I, nb1}B+

2

(4) B2 → I : {nb1, nb2}I+

(5) I → B2 : {nb2}B+

2

(6) I → B1 : {nb1}B+

1

where the intruder interleaves two sessions with B1 and B2 and plays as initiator. Step (1)
contains a type flaw, since the intruder exploits its own identity I , as a nonce. Hence, B1

replies to the nonce challenge with message (2), that I forwards to B2 to make him generate
message (4). The intruder can now decrypt message (4), therefore secrecy of nb1 is violated
(nb1 ∈ K) even though z1 6= I. At the end of the session (step (6)), B1 concludes that B2

initiated a protocol session and that B2 intended to communicate with B1, while B2 has
actually initiated the protocol with the intruder.

6.1.3 KSL

KSL has been presented in [25] as an improvement of Kerberos [26] because it does not
rely upon synchronized clocks to guarantee freshness of messages. It is based on private
key cryptography and its goal is repeated mutual authentication between two principals, A
and B, communicating with a trusted third party S. The protocol is divided in two parts:
An initial message exchange to establish a session key between principals, followed by the
repeated authentication part. Repeated authentication is performed by means of an expiring
ticket generated by B for A. Until the ticket is valid (not expired), A can re-authenticate
itself with B without requesting a new session key from S. The informal specification is:

(1) A→ B : na,A
(2) B → S : na,A, nb,B
(3) S → B : {nb,A, kab}kbs , {na,B, kab}kas

(4) B → A : {na,B, kab}kas , {Tb,A, kab}kbb , nc, {na}kab

(5) A→ B : {nc}kab

(6) A→ B : ma, {Tb,A, kab}kbb

(7) B → A : mb, {ma}kab

(8) A→ B : {mb}kab
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Messages (1) to (5) are the key exchange part whereas messages (6) to (8) are the
repeated authentication. Server S shares a symmetric secret key with each principal. A
generates a nonce na, and sends it to B starting the protocol. In message (2) B requests a
new session key from S, which generates kab and sends message (3) using kas (shared only
by A and S) and kbs (shared only by B and S). B decrypts the first cryptogram in message
(3) and checks nonce nb and identity A. If the check is passed, B assume that kab is a fresh
session key. Message (4) is crucial; B forwards {na,B, kab}kas to A. Notice that, at this
point, A and B share the session key. The second cryptogram of (4) is the ticket created
by B to perform repeated authentication. It contains a generalized time-stamp 1, Tb, the
session key, A identity and it is encrypted with a key kbb known only by B. With {na}kab ,
B reassures A of being alive and with nc asks A to do the same. Message (5) concludes the
first part of KSL with A sending back nc crypted with the session key and achieving mutual
authentication.

Principal A knowing kab and the ticket issued by B can re-authenticate itself performing
steps (6) to (8). In message (6) B receives a nonce, ma, and a ticket B has previously
generated. If the ticket is valid, B sends the encryption of ma to A together with a nonce,
mb, used to assure A identity in message (8).

6.1.4 Verifying KSL key exchange part

In this section we apply the verification methodology to the key exchange part of KSL,
emphasizing the use of connection formulae explained in Section 5.3.1

We start by giving the corresponding cIP template for A:

A
4
= (b, sk)[out(na,A).

in({na, b, ?r}sk, ?tkb, ?bn, {na}r).
out({bn}r)].

It is important to emphasize the use of open variables. Variable b is used to store the identity
of the partner of A. Notice that b appears in the second action of A and is used to check
(via pattern matching) the identity of the partner. Variable sk is intended to store the key
shared with S. The other data acquired by means of communications are stored in bound
variables. The rest of KSL specification follows:

S
4
= (a, ak, b, bk)[in(?cna, a, ?cnb, b)).

out({cnb, a, kab}bk, {cna, b, kab}ak)]

B
4
= (sk)[in(?cn, ?u).

out(cn, u, nb,B).
in({nb, u, ?r}sk, ?tka).
out(tka, {nt, u, r}kbb, nc, {cn}r).
in({nc}r)].

It is important to remark that variables are local to a principal. When principal instances
join a session of a protocol are associated with a unique index, so that there is no confusion
between variables with the same name belonging to different principal instances (e.g. sk).
Notice that open variables of S are used to let a principal connect and share a secret with S.
More precisely a stores the identity of the initiator and ak holds the shared key. Variables
b and bk are for the responder. Principal B has an interesting feature: It creates a ticket
encrypted with a key known only to B. In cIP this is accomplished by assigning an explicit

1A generalized time-stamp is made of a current time-stamp of the local clock of B, an indication of
lifetime and an “epoch” identifier to protect B against replay attacks. Refer to [34] for problems related
with time-stamps.
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name to the key (kbb), which is different from values of any open variable, and therefore
cannot be shared.

KSL tries to achieve mutual authentication. Informally, this means that every time A
wants to authenticate himself to B and they are correctly connected with a server S, data
have to be exchanged correctly. Here a “correct” exchange means that a datum sent by a
principal is received by the designated receiver without modifications.

ψKSL = ∀A.j : ∃S.i : ∃B.l : (bj = Bl ∧ bi = Bl ∧ ai = Aj)→
(cnl = naj ∧ ul = Aj ∧ bnj = ncl∧
rj = kabi ∧ rl = kabi ∧ cnai = naj ∧ cnbi = nbl)

Formula ψKSL is built from several literals: bj = Bl states the willingness of Aj to authen-
ticate to Bl, while bi = Bl and ai = Aj (variables of S), refer to the correct connection of
Aj and Bl to Si. Once that these connections are given, literals on the consequent check
correct data exchange:

• cnbi = nbl and cnai = naj specify the exchange of nonces between the principals and
the server;

• bnj = ncl and cnl = naj are used to ensure the correctness of the nonce exchange
between Aj and Bl;

• rj = kabi and rl = kabi state that session keys received by A and B must be the same
and generated by the server, according to index i.

• ul = Aj specifies that Bl concludes Aj is communicating.

KSL assumes that keys are shared between the server and the principals: A connection
formula is needed to state those assumptions. A possible invariant property is that in every
run, a principal must be correctly connected to S. This amounts to say that every time A
(B) is connected as initiator (responder) to S they should share a private key. In PL

φKSL = ∀S.i : ∃A.j : (ai = Aj → skj = aki) ∧ ∃B.l : (bi = Bl → skl = bki)

According to this formula, for every server instance Si, we require a correspondence between
the name of the initiator (responder) and the open variable holding the shared key.

Running ASPASyAwith three instances per context, no attack is reported given ψKSL

and φKSL.

We might want to verify KSL augmenting the intruder power. Indeed, the previous
intruder is limited because he cannot connect to a server as a “normal” principal (φKSL

neglects this possibility). The protocol analyser may add the shared key to the initial
knowledge making it available to the intruder. As for standard principals, sharing of secrets
between the intruder and principal instances is performed by means of the join mechanism
on the intruder open variables. Each intruder open variable is placed in the initial knowledge
and will be used as a placeholder for the secret determined by the join. With this device we
can check KSL, modifying φKSL to encapsulate this assumption:

φ′KSL = ∀S.i : (ai = I→ aki = skI) ∧ (bi = I→ bki = skI)∧
∃A.j : (ai = Aj → skj = aki) ∧ ∃B.l : (bi = Bl → skl = bki)

where skI is the intruder open variable deemed to identify the secret shared with Si. Check-
ing KSL again with ψKSL and φ′KSL yields some attacks. A brief analysis shows that they
have in common an underlying assumption: The server shares the same key with I and A
(or B), namely skI = aki = skj (skI = bki = skl). When this happens, the intruder can
easily open cryptograms generated by A (B), and steal the session key. Real servers are
careful in choosing good keys, so those attacks may be regarded as false. Nevertheless, we
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want to modify φ′KSL to forbid such connections. Again, the verification process can be
tuned in order to rule out this case. This is done by further specifying the formula φKSL:

φ′′KSL = ∀S.i : (aki 6= bki) ∧ (ai = I→ aki = skI) ∧ (bi = I→ bki = skI)∧
∃A.j : (ai = Aj → skj = aki) ∧ ∃B.l : (bi = Bl → skl = bki)

Repeating the search now yields no attacks.

6.1.5 Breaking KSL repeated authentication

In this section we show how a known attack can be found in the repeated authentication
part of KSL and exemplify how the search for particular kinds of attacks can be performed.
Following the outlined methodology we write the cIP template of principal A and B which
represent step (6) to (8) of the informal specification.

A
4
= (b, sk, tk)[

out(nma, {b, A, sk}tk).
in(?mb, {nma}sk).
out({mb}sk)];

B
4
= (sk, tk)[

in(?ma, {B, ?u, sk}tk).
out(nmb, {ma}sk).
in({nmb}sk)];

The assumptions on the repeated authentication part are:

• Principals A and his partner (whose identity is stored in b) share a symmetric session
key.

• A has received a ticket encrypted with a key (stored in its own variable tk) known
only by b.

• The intruder knows the tickets issued during the key exchange part.

We want to check for authentication. Whenever A is connected to B and has the correct
ticket, the nonces nma and nmb must be sent and received without modifications. In PL
this amount to saying:

ψREP = ∀B.j : ∃A.i : (bi = Bj ∧ uj = Ai ∧ tki = tkj) →
(maj = nmai ∧mbi = nmbj)

More precisely, the formula states that: Every instance of B involved in a protocol run with
an instance of A (bi = Bj and uj = Ai) shares with A a ticket (tki = tkj). If this happen
the nonce received by B (stored in maj) is the same sent by A (nmai) in that session. The
same must hold for the nonce sent by B.

The third step of the methodology is the definition of the connection formula. Here we
formalise the first two assumptions of the protocol, indeed we are interested in those traces
where A and B share a session key and a ticket. Therefore the intended invariant property
is:

φREP = ∀A.i : ∀B.j : bi = Bj ∧ tki = tkj →
ski = skj

Every time A is connected with B and has a ticket, then A and B share the same session key
stored in ski and skj . We can restrict the search only to those traces containing at least an
instance of A and B by adding two more conjunct to the formula: ∃B.m : true∧∃A.l : true.
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The repeated authentication part is executed after the first part of the protocol. The
intruder has already seen the ticket issued by instances of B and all messages previously
exchanged. The task of the fourth methodology step is to define the intruder knowledge.
What the intruder knows is:

I0, I0+, I0− messages always known.
{B2, A3, skB2

}tkB2
ticket issued by B2 for A3.

{B1, A3, skB1
}tkB1

ticket issued by B1 for A3.

This is indeed the content of the ksl.kb file. As we can see it is not an initial knowledge
but a template for it. Indeed it contains variables which will be instantiated by the join
operation to the correct values. Name of principal are fixed because they originated from a
previous run of the protocol, namely the key exchange part.

Running ASPASyA with the previous cIP template, PL properties and initial knowledge
leads to sixteen attack traces. An extract of ASPASyA output is reported in table 6.1,
whereas a snapshot of the actual output can be found in Chapter 9.

Violated Constraints: Open Variables
(bA3

= B2) skA3
= skB1

= skB2
= ks

(uB2
= A3) tkB1

= kb1
(tkA3

= tkB2
) tkB2

= kb2
(mbA3

6= nmb2)
Knowledge: Model:
{nmb1}ks, {nmb2}ks, maB1

(κ)→ nmb2
nmb1, {nma3}ks, maB2

(κ)→ nma3

nmb2, {B2, A3, ks}kb2, mbA3
(κ)→ nmb1

nma3, A3, A
+
3 , B2, B

+
2 , B1, B

+
1 ,

{B2, A3, ks}kb2, {B1, A3, ks}kb1,
I0, I

+
0 , I

−

0 .
Intruder:
(1) A3 → I : nma3, {B2, A3, ks}kb2

(2) I → B2 : nma3, {B2, A3, ks}kb2

(3) B2 → I : nmb2, {nma3}ks

(4) I → B1 : nmb2, {B1, A3, ks}kb1

(5) B1 → I : nmb1, {nmb2}ks

(6) I → B2 : {nmb2}ks

(7) I → A3 : nmb1, {nma3}ks

(8) A3 → I : {nmb1}ks

(9) I → B1 : {nmb1}ks

Table 6.1: Attack report for KSL repeated authentication part.

The attack is performed exploiting the presence of two tickets issued for A by two dif-
ferent instances of B containing the same session key. This is highlighted in the connection
conditions for the context in Table 6.1 (skA3

= skB1
= skB2

= ks). The intruder is able to
authenticate itself as A3 with B1 and in doing so let A3 and B2 perform a bad sequence of
message exchanges. In steps (1) to (3) A3 and B2 begin the authentication phase which is
possible because of the tickets in the knowledge instatiated with the correct values. In steps
(4) and (5), I uses B1 as an oracle to encrypt nonce nmb2 with ks. With that information
I can match the input data requested by B2. The attacker subsequently uses A3 as an en-
crypting oracle to obtain {nmb1}ks which is needed to end the protocol run with B1. Hence
the intruder has been able to let B1 believe he was A3.

Some other attacks found by ASPASyA are permutations of the explained attack. There
are some reported attacks that are possible under different connections. One of them is
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possible when there have been two sessions of KSL and the issued tickets not only contain
the same session key but are also encrypted with the same key. Indeed, the connection
formula specified does not negate this possibility even if it is quite unusual.
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Chapter 7

ASPASyA at Work

This section is a library of examples about protocol certification with ASPASyA. Every
protocol is described informally and then a cIP formalisation is given, together with security
properties. Performance measurement1 and reported attacks are also presented. For every
protocol we report the verification time, the state space size (number of configurations)
and average branching factor under different initial connections and increasing number of
instances. We introduce some syntactic sugar to express connection formulae: We denote
with σ a connection formula that holds in contexts that contain at least an instance of
each role of the protocol. Consider a protocol with three roles, A,B and S. Then, σ(A,B,S)

stands for (∃B.x : true) ∧ (∃A.y : true) ∧ (∃S.z : true). We also introduce ρ which is a
connection formula that restrict the search to a single initial context. For example we will
write ρ(2A,1B,2S) to denote the connection formula that holds only in a context with two
instances of A, one instance of B and two instances of S.

7.1 Needham-Schroeder and KSL protocols

In this section we report the analysis results of the Needham-Schroeder and KSL proto-
cols introduced in Chapter 6. They have been the chosen test protocols throughout the
developing phase.

Needham Schroeder protocol performances are reported in the following table:

Instances Connection Time (hh:mm:ss) Conf. B.F. Attack

2 true 1 158 1.66 yes
3 true 3 5.183 1.75 yes
4 true 4:49 374.905 1.83 yes
4 σ(A,B) 2:15 92.813 1.57 yes

4 ρ(2A,2B) 12 18.385 1.52 yes
5 true 16:50:40 50.195.179 1.86 yes
6 ρ(3A,3B) 23:52:48 57.896.853 1.57 yes

As we can see, the benefits of the constrained join are evident. Indeed, verifying the pro-
tocol with 4 instances yields very different computation times depending on the connections
used: A full search requires two times the effort spent with σ(A,B) which in turn is definitely
slower than ρ(2A,2B).

The following table reports the results of the tests performed on the KSL key exchange
part with connection formulae presented in Chapter 6:

1Tests have been performed on an Athlon 2400+ with 1 Gb of ram.
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Instances Connection Time (hh:mm:ss) Conf. B.F. Attack

3 φKSL ∧ ρ(1A,1B,1S) 1 184 1.12 no

3 φ′KSL ∧ ρ(1A,1B,1S) 10 2.775 1.32 yes

3 φ′′KSL ∧ ρ(1A,1B,1S) 1 373 1.13 no
3 φ′′KSL ∧ σ(A,B,S) 3:38:24 1829 1.15 no

5 φ′′KSL ∧ ρ(2A,1B,1S) 58 4.021 1.16 no
5 φ′′KSL ∧ ρ(1A,2B,1S) 1:52 27.326 1.36 no

It is worth to notice that using φKSL, the connection formula that does not take into
consideration the intruder as a possible partner of the server S, the state space is very
small. On the contrary, when more hypothesis are stated with φ′

KSL a bigger state space is
generated containing traces generated by the omitted intruder capability. On the contrary,
φ′′KSL is more restrictive and generates less states.

We also report tests performed on the KSL repeated authentication part:

Instances Connection Time (hh:mm:ss) Conf. B.F. Attack

2 true 1 279 1.1 no

2 φREP ∧ σ(A,B) 1 119 1.1 no

3 φREP ∧ σ(A,B) 3 5.584 1.13 yes
4 φREP ∧ ρ(2A,2B) 3:51 155.220 1.22 no

7.2 ISO symmetric key two-pass unilateral authentica-

tion protocol

This protocol belongs to a family of authentication mechanisms presented in [1]. It aims at
unilateral authentication of a principal A to a principal B. The informal specification is:

(1) B → A : Rb, Text1
(2) A→ B : Text3, {Rb,B, Text2}kab

It is assumed that A and B share the symmetric key kab. B sends a random number (Rb)
to A together with a text field; in the original presentation advices are given on the use of
text fields, but for the sake of the verification it is not important to examine the details. A
sends back a cryptogram containing the random number and B identity, hence principal B
may assume that A is communicating.

The protocol presents some aspects that have to be carefully formalised:

• cIP semantics does not allow messages to be numbers. Random numbers can be
represented as nonces, since they are used to ensure freshness and uniqueness of a
message.

• Text fields are pieces of data that differ in every session of the protocol. They can also
be represented as nonces for the purposes of this verification.

The corresponding cIP template is then:

A
4
= (b, sk)[in(?r, ?td).out(na, {r, b, nc}sk)]

B
4
= (sk)[out(nb, nd).in(?ta, {nb,B, ?tc}sk)]

where nb plays the role of Rb and nonces nd, nc, na represent text fields.

The intended security property is that every time A wants to authenticate itself to B,
datum Rb (nb in cIP) originated from B is correctly received by A and viceversa (Text2
which is nc in cIP).
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ψ = ∀A.i : ∃B.j :
bi = Bj → ri = nbj ∧ tcj = nci

Indeed, the security formula ψ states that every instance of A willing to communicate with
an instance of B (bi = Bj) must receive the random number generated by B (ri = nbj), and
B must receive the correct nonce (tcj = nci).

Open variables have to be joined to let A and B share a symmetric key. In PL:

φ = ∀A.i : ∃B.j : bi = Bj → ski = skj

Indeed, φ amounts to say that every two communicating instances of A and B have their
open variables instantiated with the same symmetric key (ski = skj).

Running ASPASyA with the above specifications and an empty knowledge yields an
attack. The attack found is performed in a context with two instances of A (A1, A2) that
share the same key with B3. The intruder obviously can swap the message originating from
instances of A. Therefore B3 is not able to discriminate. Indeed, ψ is false when b1 = B3

but tc3 6= nc1.

In the following table we report verification results:

Instances Connection Time (hh:mm:ss) Conf. B.F. Attack

2 σ(A,B) ∧ φ 1 17 1.42 no

3 σ(A,B) ∧ φ 1 132 1.21 yes

4 ρ(2A,2B) ∧ φ 1 291 1.24 yes
6 ρ(3A,3B) ∧ φ 3:51 33.580 1.41 yes

7.3 Yahalom protocol

The Yahalom protocol (presented in [11]) has been designed to achieve authentication involv-
ing a trusted third party. The informal specification follows, together with the corresponding
cIP template:

(1) A→ B : A, na
(2) B → S : B, {A, na, nb}kbs

(3) S → A : {B, kab, na, nb}kas , {A, kab}kbs

(4) A→ B : {A, kab}kbs , {nb}kab

A
4
= (b, sk)[out(A, na).in({b, ?r, na, ?tb}sk, ?c).out(c, {tb}r)]

B
4
= (sk)[in(?a, ?ta).out(B, {a, ta, nb}sk).in({a, ?r}sk, {nb}r)]

S
4
= (u, uk, v, vk)[in(u, {v, ?tv, ?tu}uk).out({u, kab, tv, tu}vk, {v, kab}uk)]

In message (1) A starts the protocol by sending B its own identity and a nonce na. B asks
S to generate a new session key kab sending a cryptogram (in message (2)) encrypted with
kbs, a symmetric key shared with S. The trusted server sends A a cryptogram encrypted
with a shared key, containing the session key kab and the nonces na, nb to ensure freshness.
The second cryptogram of message (3) is then forwarded to B to exchange kab. A shows to
be alive by sending back nb that was generated by B in the current session, encrypted with
the session key.

The authentication property involves, as usual, relations among exchanged data:

ψ = ∀A.j : ∃B.l : ∃S.i :
(ui = Bl ∧ vi = Aj ∧ bj = Bl)→
(rj = rl ∧ rl = kabi ∧ tal = tvi∧
tvi = naj ∧ tui = tbj ∧ tbj = nbl)
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The antecedent of the implication states the connections of A and B to the server (ui =
Bl∧vi = Aj) and the willingness of A to communicate with B (bj = Bl). With this premise,
exchanged data (session key and nonces) must be properly communicated like kabi that must
be passed to Aj and Bl (rj = rl = kabi).

As for KSL (Section 6.1.3), the invariant property states the correct connection between
the server S and the principals A and B:

φ = ∀S.i :
(∃B.j : ui = Bj → uki = skj)∧
(∃A.l : vi = Al → vki = skl)∧
(uki 6= vki)

As we can see from the following table no attacks are found. Indeed this version of the
protocol suffers only (according to the author knowledge) of a subtle type flaw attack that
is based on the use of structured keys, and therefore can not be captured with the formal
framework.

Instances Connection Time (hh:mm:ss) Conf. B.F. Attack

3 σ(A,B,S) ∧ φ 2:20 2.640 1.37 no
3 φ 2:11:56 15.980 1.33 no

4 σ(A,B,S) ∧ φ 1:46:54 58.264 1.36 no

7.4 Carlsen protocol

This protocol presented in [12] falls in the same category of the Yahalom protocol. We give
the informal specification:

(1) A→ B : A, na
(2) B → S : A, na,B, nb
(3) S → B : {kab, nb, A}kbs , {na,B, kab}kas

(4) B → A : {na,B, kab}kas , {na}kab , nc
(5) A→ B : {nc}kab

As usual, it is assumed that S shares symmetric key kas with A and kbs with B. This
protocol has some interesting design improvements w.r.t the Yahalom protocol:

• Symmetrically breaking messages. Indeed the message in (3) consists of two cryp-
togram where data is distributed into different patterns. This way, many type flaw
attacks can be avoided, as discussed in [12].

• Minimal number of cryptograms. Symmetric keys shared with the server are used every
time there is a request for authentication. This gives a real attacker, the possibility
to mount a cryptoanalysis attack once that enough cryptograms are collected. This
protocol uses only two such cryptograms.

The resulting cIP template is:

A
4
= (b, sk)[out(A, na).in({na, b, ?r}sk, {na}r, ?tb).out(tbr)]

B
4
= (sk)[in(?a, ?ta).out(a, ta,B, nb).in({?r, nb, a}sk, ?c).out(c, {ta}r, nc).in({nb}r)]

S
4
= (u, uk, v, vk)[in(u, ?tu, v, ?tv).out({kab, tv, u}vk, {tu, v, kab}uk)]

The security property is:
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ψ = ∀A.i : ∃B.j : ∃S.l :
(ul = Ai ∧ vl = Bj ∧ bi = Bj)→
(aj = Ai ∧ ri = rj ∧ rj = kabl∧
tbi = nbj ∧ taj = nai∧
tul = nai ∧ tvl = nbj)

The formula contains many terms but is similar to the Yahalom one. Indeed, the premise is
the same, while the consequent of the implication again states the correctness of messages
exchange. For instance, it states that nonce nai originating from an instance of A must be
received by an instance of B (taj = nai) and then forwarded to a S (tul = nai).

The correct connection is the same as the Yahalom one. Indeed the protocols share the
same assumptions.

φ = ∀S.l :
(∃A.i : ul = Ai → ski = ukl)∧
(∃B.j : vl = Bj → skj = vkl)∧
(ukl 6= vkl)

The Carlsen protocol do not have known attacks and ASPASyA have been used to test
its correctness with at most 4 principal instances.

Instances Connection Time (hh:mm:ss) Conf. B.F. Attack

3 σ(A,B,S) ∧ φ 13 534 1.18 no
3 true 1:02 9.792 1.19 no
4 σ(A,B,S) ∧ φ 2:29 8.138 1.18 no

7.5 Needham-Schroeder signature protocol

This protocol has been presented in [11]. It is used to let a principal A send a message
to B guaranteeing its origin and integrity. A trusted third party is used. The informal
specification is:

(1) A→ S : A, {cs}kas

(2) S → A : {A, cs}kss

(3) A→ B : message, {A, cs}kss

(4) B → S : B, {A, cs}kss

(5) S → B : {A, cs}kbs

A calculates cs, a digest value of message (usually with a one-way function) and sends
it to S. The server then releases an authenticator i.e. a cryptogram encrypted with a
key known only to the server itself hat contains the message digest. A can now send the
message together with the authenticator. When B wants to check for integrity, simply asks
S to decrypt the authenticator (4). S sends back (5) the message digest encrypted by means
of a key shared with B. B can now calculate the digest of the message received and check
against the digest sent by S.

The formal framework does not allow the use of one-way functions, but message digests
can be represented with nonces as an approximation. Indeed we want to check that every
time a datum is created by A, it is received by B through S in the same session without
modifications. We can not express the dependency between cs and the original message.
Abstracting away from the real nature of cs, needs a careful approach: In the following we
will show how to analyse the results of the verification to ensure that found attacks depend
on the protocol and not on the formalisation assumptions. Following these observations we
obtain:
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A
4
= (sk)[out(A, {na}sk).in(?c).out(nm, c)]

B
4
= (sk)[in(?m, ?c).out(B, c).in({?a, ?ta}sk)]

S
4
= (u, uk, v, vk)[in(u, {?tu}uk).out({u, tu}kss).in(v, {?a, ?ta}kss).out({a, ta}vk)]

where na plays the role of cs and nm stands for the message.

The security properties is:

ψ = ∀A.i : ∃B.j : ∃S.l :
ul = Ai ∧ vl = Bj →
ul = al ∧ tul = tal ∧ aj = al∧
taj = tal ∧ tul = nai

It states the relation among data in the same session, without taking into consideration the
dependency between nm and na but only the correct exchange of na that is received by a
server communicating with A(tul = nai) and forwarded to B (taj = tal). to

As the other protocols with a trusted third party already seen, the connection formula
is:

φ = ∀S.l :
(∃A.i : ul = Ai → ski = ukl)∧
(∃B.j : vl = Bj → skj = vkl)∧
(ukl 6= vkl)

ASPASyA finds an attack to this protocol whenever two instances of A (A1, A2) share
the same key with S. Indeed the intruder can exchange digest messages and let B accept
a message originated form A1 even if it was created by A2. We report a fragment of the
attack where, for the sake of clarity, cIP nonces are substituted with their actual meaning:

(1) A1 → I : A1, {digest1}kas

(2) A2 → I : A2, {digest2}kas

(3) I → S3 : A1, {digest2}kas

(4) S → I : {A1, digest2}kss

(5) I → A1 : {A1, digest2}kss

(6) I → A2 : {A1, digest2}kss

(7) A1 → I : message1, {A1, digest2}kss

(8) A2 → I : message2, {A1, digest2}kss

(9) I → B : message2, {A1, digest2}kss

(10) B → I : B, {A1, digest2}kss

(11) I → S : B, {A1, digest2}kss

(12) S → I : {A1, digest2}kbs

(13) I → B : {A1, digest2}kbs

As we can see, the intruder make B accept message2 as if it were originated by A1.
This attack is not based on the dependence between messages and digests (which indeed
is not violated) but on the lack of dependency between the digest and the identity of the
initiator. This example shows how ASPASyA can be effective even in the verification of an
approximated protocol.

Instances Connection Time (hh:mm:ss) Conf. B.F. Attack

3 σ(A,B,S) ∧ φ 10 860 1.2 no
3 true 1:08 4.350 1.17 no

4 ρ(2A,1B,1S) ∧ ψ 16 13.507 1.2 yes
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7.6 Denning-Sacco key distribution protocol

This protocol relies upon asymmetric cryptography to exchange a symmetric session key
between two principals, using a trusted server. The informal specification given in [17] is:

(1) A→ S : A,B
(2) S → A : CertA, CertB
(3) A→ B : CertA, CertB , {{kab}A−}B+

where CertX = {X,X+}S− is a certificate provided by S. A certificate is encrypted with
the private key of S, s hat anyone can decrypt it by means of the public key S+, certifying
in this way S as the generator of the cryptogram.

The cIP specification follows:

S
4
= ()[in(?x, ?y).out({x, x+}S− , {y, y+}S−)]

A
4
= (x, y)[out(A, y).in({A,A+}x+ , {y, ?z}x+).out({A,A+}x− , {y, z}x−, {{kab}A−}z)]

B
4
= (x)[in({?w, ?y}x+ , {B,B+}x+ , {{?r}y}B−)]

The security property states the secrecy of the key kab, received by B by means of the
r variable, and authentication of A to B:

ψ = ∀B.i : ri 6∈ K ∧ (∀B.j : ∃(A.k : yj = Ak)→ (yk = Bj))

Security formula ψ enforces that for every instance of B the received key must not be in
the intruder knowledge and if the received certificate contains information about an instance
of A (yj = Ak) then that instance must be willing to communicate with B (yk = Bj).

An obvious attack is possible when the intruder plays the role of S, but this is against
the hypothesis of S being trusted. A connection formula is sufficient i order to avoid this
case:

φ = ∀A.j : ∀B.i : xi 6= I ∧ xj 6= I ∧ yj 6= xj

Indeed, we want to exclude from the search all the traces whereA orB are communicating
with I as trusted server (xi 6= I, xj 6= I) and where A is trying to authenticate with the
trusted server (xj 6= yj).

ASPASyA discovers an attack on this protocol:

Violated Constraints: Open Variables:
rB1
∈ K xA2

= S4

xB1
= S3

yA2
= S3

Knowledge: Model:
{{k2}A−

2

}S+

3

, {S3, S
+
3 }S−

4

, xS3
(κ)→ S4

{A2, A
+
2 }S−

4

, {S4, S
+
4 }S−

3

, yS3
(κ)→ B1

{B1, B
+
1 }S−

3

, S4, S
+
4 , S3, S

+
3 , A2, yS4

(κ)→ A2

A+
2 , B1, B

+
1 , I0, I

+
0 , I0 xS4

(κ)→ S3

Intruder:
(1)A2 → I : A2, S3

(2)I → S3 : S4, B1

(3)S3 → I : {S4, S
+
4 }S−

3

, {B1, B
+
1 }S−

3

(4)I → S4 : S3, A2

(5)S4 → I : {S3, S
+
3 }S−

4

, {A2, A
+
2 }S−

4

(6)I → A2 : {A2, A
+
2 }S−

4

, {S3, S
+
3 }S−

4

(7)A2 → I : {A2, A
+
2 }S−

4

, {S3, S
+
3 }S−

4

, {{k2}A−

2

}S+

3

(8)I → B1 : {S4, S
+
4 }S−

3

, {B1, B
+
1 }S−

3

, {{S3, S
+
3 }S−

4

}B+

1
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The attack is found in a context with two server instances. The intruder playing the
part of S4, is able to share with B1 a session key. This is possible because in step (3) the
intruder manages to obtain certificates from S3 issued for S4 and B1. Then, in step (5)
the intruder also obtain certificates from S4 issued for S3 and A2. Subsequently, exploiting
the knowledge of the certificates, the intruder can authenticate himself as S4 with B1 using
(S3, S

+
3 ) as session key. Indeed, this can be classified as a type flaw attack with constructed

key that can nonetheless be reported by ASPASyA.

Instances Connection Time (hh:mm:ss) Conf. B.F. Attack

3 σ(A,B,S) ∧ φ 2 6.416 3.3 no

4 ρ(1A,1B,2S) ∧ φ 1:21 127.323 4.0 yes
5 ρ(2A,1B,2S) ∧ φ 3:08:24 11.748.962 4.48 yes

5 ρ(1A,2B,2S) ∧ φ 36:05 2.415.759 4.89 yes

6 ρ(2A,2B,2S) ∧ φ 107:12:46 308.622.707 5.5 yes

Denning-Sacco protocol is the most computationally expensive protocol we tested: Its
average branching factor is high mostly because certificates are involved. Indeed, the in-
truder can decrypt each sent certificate building different certificates with his own key and
subsequently exploit them with the principals he is connected to. Moreover there are many
open variables representing principal names and used to denote asymmetric keys that give
rise to numerous transitions for a single action, thus generating the observed branching
factor.

7.7 Beller-Yacobi protocol

This protocol has been designed in [3], to let a mobile base B exchange a session key with
a control point A. The informal specification follows:

(1) A→ B : A,A+

(2) B → A : {kab}A+

(3) A→ B : {na}kab

(4) B → A : {B,B+, CertB , {na}B−}kab

When a mobile B enters a new cell it tries to authenticate with the control point. The
control point A sends B its identity together with its public key. B generates the session
key kab and sends the received public key to A. In step (4) B shows its own identity by
sending back in response to (3) a cryptogram containing information on its own identity,
public key, a certificate issued by a trusted third party, and the nonce na, received in (3),
encrypted with its own private key. A problem with this protocol is evident even from the
informal specification: There is nothing that ensures the identity of A in step (1), allowing
everyone to play the role of A whose public key is known.

The cIP specification is:

A
4
= (b, s)[out(A,A+).in({?r}A−).out({na}r).in({b, ?bk, {b, bk}s, {na}b−}r)]

B
4
= (s)[in(?a, ?ak).out({kab}ak).in({?ta}kab).out({B,B+, {B,B+}s, {ta}B−}kab)]

The trusted third party identity is shared between A and B by means of the open variable
s. Indeed s represents a private key known by the third party and used to sign the issued
certificates. In general, the formal framework does not allow for asymmetric keys to be
stored in open variables. We analyse the protocol representing s as a symmetric key and
showing that the reported attacks are independent from the details of the certificate.
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The desired security property requires the authentication of A to B and the secrecy of
the session key:

ψ = ∀B.i : (kabi ∈ K→ ai = I)∧
(∃A.j : bj = Bi →
(rj = kabi ∧ bkj = B+

i ∧ tai = naj ∧ kabi 6∈ K))

In each session, the session key kabi generated by Bi must remain secret unless the intruder
is behaving as a honest principal connected to Bi. When Bi is communicating with an
instance Aj , willing to authenticate to Bi (bj = Bi), then nonce naj and key kabi must be
communicated correctly.

A connection formula is needed to restrict the analysis to the cases in which A and B
share the same third party certificate:

φ = ∀A.i : (∃B.j : bi = Bj → si = sj)∨
(∃A.l : bi = Al → si = sl) ∨ (bi = I)

ASPASyA finds several attacks, all originated from the design error spotted before. A
representative intruder is:

Violated Constraints: Open Variables:
na2 ∈ K, bA2

6= I0, bA2
→ B1

kab1 ∈ K, aB1
6= I0, sA2

→ ks
bA2

= B1, rA2
6= kab1 sB1

→ ks
Knowledge: Model:
{B1, B

+
1 }ks, kab1, na2, rA2

(κ)→ kI0
A2, A

+
2 , B1, B

+
1 , I0, akB1

(κ)→ kI0
I+
0 , I

−

0 , kI0 bkA2
(κ)→ B+

1

Intruder:
(1)A2 → I : A2, A

+
2

(2)I → A2 : {kI0}A+

2

(3)A2 → I : {na2}kI0

(4)I → B1 : A2, I
+

(5)B1 → I : {kab1}I+

(6)I → B1 : {na2}kab1

(7)B1 → I : {B1, B
+
1 , {B1, B

+
1 }ks, {na2}B−

1

}kab1

(8)I → A2 : {B!, B
+
1 , {B1, B

+
1 }ks, {na2}B+

1

}kI0

It is important to note that ASPASyA finds all the possible attacks by instantiating
variables in all possible ways. For instance, an attack where kI0 is substituted with I+ or
I− is reported, together with an attack where nonce na is replaced by an intruder generated
nonce.

Instances Connection Time (hh:mm:ss) Conf. B.F. Attack

2 φ 1 848 1.54 yes
3 φ 1:55 139.359 1.48 yes
4 φ ∧ ρ(2A,2B) 9:22:36 6.326.775 1.61 yes

Recently in [6] using stating analysis techniques, an improved version of this protocol,
called the Beller-Yacobi MSR protocol, has been showed to present an unknown new flaw.
In the following we report the specification of the protocol and we show that ASPASyA is
able to find the same attack.

The informal specification of the MSR protocol is:
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(1) A→ B : A, {A}S− , A+

(2) B → A : {kab}A+

(3) B → A : {B,BS−}kab

Message (1) has been modified by adding a certificate issued by a trusted third party
S, containing the certification of the identity. As before, B generates a session key kab and
sends it back to A using its public key received in step (1). In message (3) B sends the
certificate of its own identity encrypted with the session key.

The cIP specification is:

A
4
= (b, s)[out(A, {A}s, A+).in({?r}A−).in({b, {b}s}r)]

B
4
= (s)[in(?a, {a}s, ?ak).out({kab}ak).out({B, {B}s}kab)]

The desired security property is represented by a slightly modified ψ where the references
to nonces are removed:

ψ′ = ∀B.i : (kabi ∈ K→ ai = I)∧
(∃A.j : bj = Bi →
(rj = kabi ∧ ai = Aj ∧ kabi 6∈ K))

Open variables and connections are unchanged and hence φ is used again as the connec-
tion formula.

Performing a search with ASPASyA yields some attacks. Among these we can find the
aforementioned flaw as presented in the following attack report.

Violated Constraints: Open Variables:
bA2

= B1, bA2
→ B1

aB1
6= A2 sA2

→ sB1
→ ks

Knowledge: Model:
{B1, {B1}ks}kab1 , {kab1}A+

2

, {A2}ks, A2, A
+
2 , aB1

(κ)→ A3

B1, B
+
1 , {A3}ks, A3, I0, I

+
0 , I

−

0 akB1
(κ)→ A+

2

Intruder:
(1)A2 → I : A2, {A2}ks, A

+
2

(2)I → B1 : A3, {A3}ks, A
+
2

(3)B1 → I : {kab1}A+

2

(4)B1 → I : {B1, {B1}ks}kab1

(5)I → A2 : {kab1}A+

2

(6)I → A2 : {B1, {B1}ks}kab1

As we can see from the report, the intruder is able to let B1 authenticate himself to A2

believing to be communicating with A3. This is possible because the certificate does not
contain any reference to the public key of the principal whose identity is certified.

7.8 Bilateral key exchange protocol

This protocol has been designed to let two principals A and B exchange a symmetric key
using public key cryptography. The informal specification given in [14] is:

(1) B → A : B, {nb,B}A+

(2) A→ B : {nb, na,A, k}B+

(3) B → A : {na}k

The corresponding cIP template is:
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A
4
= ()[in(?b, {?tb, b}A−).out({tb, na,A, kab}b+).in({na}r)]

B
4
= (a)[out(B, {nb,B}a+).in({nb, ?ta, a, ?r}B−).out({ta}r)]

The desired security property is:

ψ = ∀B.i : (∃A.j : ai = Aj →
tbj = nbi ∧ tai = naj ∧ ri = kabj
bj = Bi ∧ ri 6∈ K) ∨ (ai = I)

The corresponding search yields no attack. Indeed, there are no attacks on this protocol
(as far as author knowledge is concerned) and ASPASyA verify correctness up to 4 principal
instances.

Instances Connection Time (hh:mm:ss) Conf. B.F. Attack

2 true 1 191 2.53 no
3 true 5 6.316 3.1 no
4 true 7:48 373.587 3.7 no
4 ρ(2A,2B) 44 65.793 3.3 no
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Chapter 8

ASPASyA and Friends

In this chapter we review some verification techniques and tools for the verification of security
protocols and we compare ASPASyA with them. Many different approaches have been
presented throughout the literature, like theorem proving, finite state machines, and static
analysis (see Chapter 1). A reasonable comparison can be done by focusing our attention
to the tools that implement a symbolic model checking approach. Among these, the most
important (in the author knowledge) are STA [8], TRUST [43, 42] and PCS [31]. However,
our analysis will be more focused on methodological comparisons than on efficiency or search
strategies. This kind of approach is justified by the fact that the compared tools implement
different semantics and different logics, making the measurements on the size of the generated
state space less important. Indeed, each tool has a different concept of state; thus, states
of different tools may contain different information and may require different amount of
computation to be generated. Moreover, properties must be verified and the verification
cost (in terms of efficiency and number of verifications) is greatly affected by the state. We
think that it is relevant to have a tool that allows the user to clearly specify the assumptions
of the protocols and to easily spot errors in the formalisation phase.

Some remarks and comparisons between ASPASyA and techniques different from model
checking are reported in Section 8.3

8.1 Symbolic model checkers

We briefly introduce STA, TRUST, and PCS describing their features and highlighting
merits and drawbacks (in our opinion) of their related methodologies.

8.1.1 STA: Symbolic Trace Analyser

STA, described in [8], uses symbolic techniques for trace generation and relies upon a dialect
of the spi-calculus [2] to represent principal behaviour. The calculus provides primitives to
represent symmetric and asymmetric encryption with atomic keys, and hashing. Properties
are specified with a logic of correspondence. More precisely STA allows properties of the
form α←↩ β where α and β are principal actions, meaning that for every generated trace, if
β occurs in the trace, then α has occurred at some previous point in the same trace, namely
β corresponds to α.

STA has a very efficient implementation and offers the possibility to specify the initial
knowledge of the intruder. However STA lacks the possibility of template definition. This
means that the user has to specify by hand every principal instance giving rise to a long
and error prone protocol definition. The absence of templates has an impact on certification
effectiveness. Indeed, many protocol assumptions depend on the initial intruder knowledge
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and principal connections, and without templates the user has to specify them by hand.
Even for simple protocols this can lead to not consider some interesting scenarios. For
instance, referring to Section 6.1.5, the repeated authentication part of KSL has a flaw when
different tickets contain the same session key. In STA one should state this hypothesis by
adding to the knowledge the incriminated tickets specifying by hand their content, whereas
in ASPASyA a template for a class of ticket is given and, during the join process, every
hypothesis is automatically generated and checked, preventing omissions. This drawback, is
particularly evident in principal connections. For instance, the STA specification presented
in [8] of the Needham Schroeder protocol defines the process of the initiator A as a non-
deterministic sum of a process willing to communicate with B and a process willing to
communicate with the intruder. With this specification STA cannot automatically find the
type flaw attack presented in Section 6.1.2, as ASPASyA does, forcing the user to give
a different formalisation for each different connection of principals. Finally, the logic of
correspondence is powerful enough to express interesting properties of protocols like secrecy
and authentication, but we believe it may be awkward when used to express more complex
properties.

8.1.2 TRUST

TRUST has been presented in [42] and subsequently enhanced in [43]. Principals are ex-
pressed with a name-passing calculus in the style of π-calculus. Principals have a sort of
open variables that are instatiated with principal names, and can use primitives for encrypt-
ing data with symmetric and asymmetric atomic keys. Properties are embedded in principal
definitions as a set of assertion to be verified during state space exploration.

The implemented reduction semantics is very efficient and optimised, leading to fast
verification of protocol sessions with relatively many instances. TRUST presents the same
problems of STA concerning templates for initial knowledge, because they are specified
without any reference to principal open variables. Regarding principal connections, TRUST
is definitely better than STA because, using open variables and assertions, one can select
interesting initial contexts even if there is not a clear mechanism to make principals share
secrets. We believe that the main drawback in TRUST is property specification. Without a
precise separation of concerns, protocol formalisation can be misleading. Indeed, assertion
are embedded in principal definitions and a change in the property to be checked may lead to
a complete re-formalisation of principal behaviour. One interesting aspect of TRUST is an
optimisation to the reduction semantics that, recording information on messages exchanged
along a trace, can detect when two traces give rise to the same interaction pattern and are
therefore equivalent. With this method, TRUST analyses only one trace for each “class
of equivalence” greatly reducing the state space. Moreover, this approach leads to smaller
reports for attacks allowing for fast analysis of results.

8.1.3 PCS

PCS [31] stands for Prolog Constraint Solver and is a tool based on the strand space model
presented in [39, 40, 13]. A strand is a sequence of actions that represents the behaviour of
either a principal or an intruder. A strand space is a set of strands together with a graph
structure given by a causal dependence. Properties are expressed in terms of connections
between strands of different kinds. A strand can be parameterised with variables and a
trace is generated finding a substitution for which an interaction graph exists. PCS is not a
proper model checker, but it follows a very similar approach. Indeed, principals and hence
strands, are represented with terms of a free algebra that embeds the notion of symmetric
and asymmetric cryptography with structured keys and hashing. Properties are specified
by adding to the strand space, a strand representing what the intruder must not be able to
do. For instance, in the Needham Schroeder protocol nonces na and nb must remain secret.
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To check this property one adds to the strand space an intruder that tries to acquire nb or
na. If a suitable substitution is found by the constraint solving procedure, which satisfies
the requirements of each strand (including the intruder’s one), the intruder can steal the
nonces and an attacks is found.

In PCS there are devices very similar to the join mechanism of ASPASyA but there is not
the possibility for the user to impose constraints on principal connections. Initial knowledge
specification is given by adding data to the strand space, and can be fully parameterised
with variables. We believe that the main drawback of PCS is the specification of properties
that, as in TRUST, are not clearly separated from principal behaviour.

8.2 Summing up

In this section we aim at showing that we further developed verification methodologies trying
to correct unsatisfactory aspects of other approaches. Indeed, ASPASyA provides:

• Clear separation of protocol specification and properties to be tested, which otherwise
may give rise to an error prone protocol formalisation.

• Means to formalise the implicit assumptions present in the informal specification of a
protocol, which are crucial for the correctness of verification.

• Intuitive way to specify intruder’s power, which is a significant means to analyse a
protocol under weaker conditions.

• Template-based protocol specification to avoid omission of interesting scenarios and
hypotheses.

• Mechanisms for selective expansion of the state space by invariant pruning.

On the other hand, ASPASyA has some weak points that we hope to cope with in
future work. Indeed, as the number of instances grows, the join mechanism, deemed to
generate initial hypotheses on open variables, needs a large amount of computational time
and become a bottleneck compared with state expansion and formula verification. Another
issue is the size of the reported results, which can be very large and therefore not easily
checkable, due to the big number of permutations of the same attack trace. The formal
framework also need some straightforward extensions to encapsulate more useful primitives
as hashing, non atomic keys and time-stamps.

Despite these limitations, we think that ASPASyA is an advance with respect to STA,
TRUST and PCS mostly because it allows for a precise representation of principal behaviour
totally separated from the property to be verified. Also, intruder power and knowledge can
be precisely specified as well as principal connections. Moreover, we think that PL logic
is well suited to express relations among principal data and the principal that exchange
them, and can be clearer than correspondence assertions, especially when mixed with prin-
cipal specification. Table 8.1 collects the previously discussed merits and drawbacks of the
analysed tools and ASPASyA.

Regarding efficiency issues, ASPASyA is quite efficient and can handle a number of
instances comparable to other tools. The performance measurements are quite difficult to
compare with other tools. Indeed, they have different semantics leading to different state
spaces. For comparison purposes we reported in Table 8.2 verification times for TRUST and
ASPASyA. We can notice, confronting with [8, 42], that STA and TRUST have the fastest
reduction engines, however ASPASyA considers a bigger state space involving more initial
contexts and therefore checking more scenarios.
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Features STA TRUST PCS ASPASyA

Templates for principals × √ √ √
Templates for knowledge × × √ √
Principal connections × × × √
Embedded properties

√ √ √ ×
Non atomic key cryptography × × √ ×
Hashing

√ √ √ ×
Number of sessions for most protocols 3 3 − 3

Table 8.1: Synthetic comparisons of tools.
√

and × stand for provided and not provided
features, whereas − is an unknown datum. Data have been gathered from [42, 43, 31, 8].

Protocol TRUST ASPASyA

Needham Schroeder (3 instances) 0.50 3
Needham Schroeder (4 instances) 22 2:15
Yahalom (3 instances) 12 2:20

Table 8.2: Verification time comparisons between TRUST [42] and ASPASyA.

8.3 Other tools

For the sake of completeness we briefly review some tools based on different approaches. We
focus on aspects that are related with ASPASyA in terms of methodology.

8.3.1 Finite state model checkers

Before the introduction of symbolic techniques, model checking approaches were limited to
the verification of finite state machines. In finite state model checking, principal behaviour is
formalised by means of a formal calculus and the transition rules are restricted to generate
a finite state space. Hence, the number of principal instances is bounded as well as the
complexity of messages. Indeed, limiting the number of encryption used to build a message
yields to a finite state space. The finite state model checker FDR, has been used by Lowe [28]
to discover an unknown flaw in the Needham Schroeder protocol. Another important tool
reported in the literature is murφ [18]. Symbolic analysis is a further development of this
approach.

8.3.2 A theorem prover

Many theorem provers have been adapted and modified to verify security protocols. Recently
Blanchet [4] has developed a tool based on theorem proving techniques. Principal behaviour
is specified with a formal calculus in the style of π-calculus. A compiler is then used to
translate the specification into a set of logic clauses that are fed the theorem prover. The
tool provides hashing and many different cryptographic primitives. As for PCS, principals
and knowledge are parameterised with variables but the mechanism for the verification is
different. Indeed, on some classes of security protocols Blanchet’s tool is non terminating,
due to the nature of processing. However, it certifies protocol with an unbounded number
of principals (provided that the termination is reached).

8.3.3 A static analyser

As pointed out in Chapter 1, static analysis techniques have been successfully applied to
protocol certification. We refer to a tool based on LySA [5], a calculus similar to π-calculus
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that supports a unique global channel for communication between processes. Principals
are represented as LySA processes with annotations, namely conditions that must hold at
certain control points. The representation is automatically translated in a suitable logic
and subsequently solved with theorem proving techniques. The tool reports a super-set of
values that variables can assume at control points, and no explicit representation of the
intruder behaviour is given. Moreover, there might be false reports of attacks just because
static analysis approximates the solutions. However, this approach has been successfully
applied [6] finding a new attack on the Beller-Yacobi [3] protocol. As shown in Section 7.7,
ASPASyA has been able to find the same flaw and to report the intruder process.
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Chapter 9

User Manual

This chapter describes how to run ASPASyA. We describe command line parameters and
file formats for input and output.

9.1 Using ASPASyA

To certify a protocol, the user must specify in the following order:

• A cIP description of roles, contained in a text file, with a .pr extension,

• a security formula in PL format contained in a .pl file,

• a connection formula in PL format contained in a .pj file,

• the list of messages belonging to the initial intruder knowledge, in a .kb file.

To start a verification session, the user also must provide the numberm of principal instances
specified by the -nprinc m switch. Moreover verification mode must be enabled by means
of the -V switch. The general syntax of the command is:

aspasya file.pr file.pl file.pj file.kb -V -nprinc m switches

The switches have the following semantics:

• -i enables interactive search. Every time an attack is found, the user can choose to
stop searching, continue searching in the same trace (more than one attack is possible)
or in the next trace.

• -f enables search feedback. Useful information is printed during the search. The
user can be aware of the estimated verification time, the number of attack found, the
current sub-tree of the state space tree and the program status (searching or verifying).
Moreover ASPASyA prints out a table with performance data (computation time,
configurations generated on termination, average branching factor).

• -mga enables automatic multiple attack skip. If this option is specified, ASPASyA

searches the state space and reports only one attack per trace.

• -s parameters allows the specification of the initial context. Even if one could select
only one initial context for expansion by means of a complex connection formula, this
switch allows one to directly specify the number of instances for each role. The nth

argument of -s is the number of instances of the nth role specified in the .pr file.
Refer to Section 9.3 for example of use.
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• -g selects the symbolic name expansion during join operation. Indeed the standard
join algorithm assigns to each open variable v representing a name the corresponding
symbolic variable vP (κ). With this option, every name in κ is directly assigned to v.
This generates more initial contexts (that may eventually be pruned), but allows for
a small branching factor during trace expansion.

• -H selects html mode. Attacks are reported in a html page, more readable than the
ASCII report.

It is possible to simply print out the state space without verifying the protocol. This is
specified with -T or -G options. The former prints out every single trace in a text file while
the latter produces a file in GraphViz 1 format.

9.2 Specifying templates

ASPASyA is equipped with parsers to let the user specify protocol data without worrying
about internal representation. Generally speaking, the user have to specify cIP templates
for principal representation, invariant and security properties written in PL and messages
belonging to the initial intruder knowledge.

cIP principals and PL formulae are specified i th input files .pr, .pl and .pj, with a syn-
tax very similar to the one defined in the formal framework and reported in tables 9.1 and 9.2.

PRINCIPAL ::= NAME: (VARIABLES) [PROCESS];
NAME ::= any uppercase strings.
VARIABLES ::= a comma separated list of VARIABLE
VARIABLE ::= any lowercase string not beginning with ’k’ or ’n’
PROCESS ::= ACTION ||

PROCESS.PROCESS ||
PROCESS + PROCESS ||
PROCESS | PROCESS

ACTION ::= in(MESSAGE) || out(MESSAGE)
MESSAGE ::= (MESSAGE, MESSAGE) ||

{MESSAGE}MESSAGE ||
KEY || NAME || NAME+ ||
NAME- || NONCE ||
VARIABLE || ?VARIABLE ||
VARIABLE+ || VARIABLE-

KEY ::= any lowercase string beginning with ’k’
NONCE ::= any lowercase string beginning with ’n’

Table 9.1: cIP grammar.

Every datum in a PL formula is indexed with a index name that will be substituted to
the correct instance value during formula normalisation. Some constants may be indexed
with the correct instance value preceded by the corresponding principal name, as in MES-
SAGE NAME NUMBER of Table 9.2. Relations among data are expressed with = (equality)
and :> (derivability), and are composed with quantifiers and a rich set of boolean operators
to build PL formulae. The content of .kb file is a list of I-MESSAGE separated by com-

mas. The initial knowledge cannot contain messages with literal indexes, but only messages
indexed with instance names and numbers. Refer to Section 9.3 for an extended example.

In every input file, comments are allowed as in standard C++ language: A single line
comment is denoted by // whereas multiline comment begins with /* and ends with */.

1Refer to http://www.research.att.com/sw/tools/graphviz/ for more information.
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FORMULA ::= I-VARIABLE = I-MESSAGE ||
I-VARIABLE <> I-MESSAGE ||
:> I-MESSAGE ||
!:> I-MESSAGE ||
forall NAME.INDEX: FORMULA ||
exists NAME.INDEX: FORMULA ||
! FORMULA ||
FORMULA & FORMULA ||
FORMULA | FORMULA ||
FORMULA => FORMULA ||
(FORMULA) ||
true || false

INDEX ::= a lowercase letter
I-VARIABLE ::= VARIABLE INDEX || VARIABLE NAME NUMBER
I-MESSAGE ::= MESSAGE INDEX || MESSAGE NAME NUMBER

Table 9.2: PL grammar.

9.3 A verification session

This section exemplifies step by step a verification session for the KSL repeated authentica-
tion part as introduced in Section 6.1.5.

The first step is the definition of the kslrep.pr file:

//KSL repeated authentication part.

A: (b,sk,tk) [

out((nma,{((b,A),sk)}tk)).

in((?mb,{nma}sk)).

out({mb}sk)];

B: (sk,tk) [

in((?ma,{((B,?u),sk)}tk)).

out((nmb,{ma}sk)).

in({nmb}sk)];

Security and invariant formulae are specified in kslrep.pl and kslrep.pj files:

//kslrep.pl

forall B.j:

exists A.i:

b_i = B_j and u_j = A_i and tk_i = tk_j =>

ma_j = nma_i and

mb_i = nmb_j;

//kslrep.pj

(exists A.o: true) and

(exists B.o: true) and

forall A.i:

forall B.j:

b_i = B_j and tk_i = tk_j =>

sk_i = sk_j;

Finally, the initial knowledge containing issued tickets is given in kslrep.kb
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//kslrep.kb

I_0, /* intruder name */

{((B_2,A_3), sk_B_2)}tk_B_2, /* ticket from B2 to A3 */

{((B_1,A_3), sk_B_1)}tk_B_1; /* ticket from B1 to A3 */

Once the protocol input data is ready, we can run ASPASyA to certify KSL. For in-
stance we can give the following commands “aspasya kslrep.pr kslrep.pl kslrep.pj

kslrep.kb” with the following options:

-nprinc 3 -V starts a search with 3 principal instances and outputs results on the stan-
dard output in ascii format;

-nprinc 3 -V -f -i starts a search with 3 instances giving remaining time estimate during
the search and printing a table of useful data on the standard error. Moreover, -i
enables interactive mode, and the user will be prompted for continuation after finding
an attack;

-nprinc 5 -V -mga -s 3 2 -H starts a search with 5 instances, reporting in html only
the first attack for every attack trace. With -s 3 2 the search will be limited to the
context made of 3 instances of A and 2 instances of B;

-nprinc 3 -T will produce the description of every trace in ascii format.

Whenever an attack is found, ASPASyA produces information about the incriminated
traces. An attack report is structured in several points:

Violated constraints. A list of the false conjuncts of the security property is displayed.
This is a peculiarity of a model checker which is always able to give counterexamples.

Configuration. A snapshot of the incriminated trace is reported by displaying the knowl-
edge at the end of the trace, the cIP processes of principals instantiated with the the
global substitution χ and the assignment entailed by formula satisfaction.

Intruder reconstruction. The representation of intruder behaviour is displayed in the
informal notation.

In Figure 9.1, we report a screen-shot of ASPASyA verifying the KSL repeated authen-
tication part together with the search data reported by the -f option. Finally, Figure 9.2 is
a screen-shot of the corresponding attack report generated by the -H option.
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Figure 9.1: ASPASyA at work with options “-nprinc 3 -V -f -H” on the KSL repeated
authentication part.

Figure 9.2: The attack report in html.
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Chapter 10

Conclusions

In this thesis we have introduced ASPASyA, a tool for protocol verification based on a sym-
bolic model checking approach together with a methodology for the verification of security
protocols; the methodology has been applied for analysing many protocols.

The development of ASPASyA has been inspired by the theoretical framework presented
in [10, 41], where an interesting modelisation of agent behaviour in open systems is given.
The main ingredients of the theory are:

• The cIP formal calculus. Each cIP process represents a protocol principal, where
cryptographic primitives are embedded in communication actions, and open variables
allow for a parameterised connection between principals. Principals can be connected
to others by the join operation. It embeds cryptographic primitives in principal ac-
tions.

• The PL logic used to state the desired properties of protocol. It allows us to express
relations between the exchanged data, the principals and their roles in the protocol,
the way in which they share secrets and the intruder knowledge.

• A symbolic semantics that models the evolution of principal communications in a
hostile environment, exploiting symbolic techniques to make the verification procedure
effective.

The separation of concerns of the theoretical framework has been adopted in the imple-
mentation as well. We developed ASPASyA implementing each aspect of the verification
framework as a separated module and then realise the verification algorithm by letting all
modules interact. From the implementation point of view we achieved two main goals:

• The modular architecture can be easily expanded both by adding new functionalities
and by applying the environment to other fields.

• An efficient model checker with performances comparable to the similar existent tools.

The most important feature of our work is the verification methodology related to
ASPASyA. Indeed, an effective verification tool should focus on limiting as much as possi-
ble the sources of errors in the formalisation process. Hence, we developed an incremental
methodology that allows for the iterative refinement of protocol specification. It consists of
four steps in which the user specifies:

1. The representation of principals,

2. the desired security property,
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3. the connections among principals and

4. the initial intruder knowledge.

Each step is clearly separated from the others and involves different aspects of the for-
malisation. For instance, the principal behaviour is given in the first step and it is never
changed in the others. Moreover, the third and fourth steps of our methodology allows for
the tuning the search a nd the power of the intruder in an intuitive way. Indeed, principal
connections can be constrained by means of a PL formula and the intruder power can be
augmented by adding information to its initial knowledge. The latter device is particularly
useful to discover attacks where the intruder exploits information about previous sessions of
the protocol. The constrained join mechanisms has been introduced during the development
phase and constitutes an enhancement of the theoretical framework. Concluding, from the
verification methodology point of view, we reached the following goals, most of which are
distinguishing features of our approach:

• Clear separation of protocol specification from the property to be tested, which oth-
erwise may give rise to protocol mis-interpretation.

• Means of formalisation for implicit assumptions present in the informal specification
of a protocol, which are crucial in correctness of verification.

• Intuitive way of specifying intruder’s power, which is a powerful formal tool to analyse
a protocol under different assumptions.

• Template based protocol specification to avoid omission of interesting scenarios and
hypothesis.

• Mechanisms for selective expansion of the state space by invariant pruning.

Experimentally, we have applied the methodology to the verification of several protocols.
We have found many known attacks on the investigated protocols, sometimes without being
aware of some of the which were not so popular in the literature; we also have reported a
very recent attack found by means of static analysis techniques in [6], on the Beller-Yacobi
protocol [3] (Section 7.7). It is not clear if it also can be found with STA or TRUST.
For most protocols we have spotted some design errors that can potentially lead to flaws
(Section 7.5) using ASPASyA to test the robustness of the protocols.

10.1 Future work

The functionalities of ASPASyA can be enriched in several ways. First, the modularity
of the architecture accounts for an easily integration of ASPASyAas a component of the
Profundis Web1, an online service that gathers together and integrates verification tools
based on process calculi. There are two further lines of work. On the one hand, we would
like to extend ASPASyA and its framework to handle non atomic keys, hashing functions
and time-stamps. Perhaps this extension will require additional pruning strategies to further
shrink the state space following an approach similar to [43]. On the other hand, ASPASyA is
based on a theory that models agents in open systems. The theory is naturally oriented to the
modelisation of recently emerged problems, most notably the verification of Web Services.
Web services are software applications that use the markup language XML to exchange data
with other applications by using Internet protocols. Web services operate over any network
to achieve specific tasks, called methods or functions, that other applications can invoke and
use. This is a new vision for using the Internet in the development, engineering and use
of software, aimed at revolutionizing distributed computing. Security properties must be
guaranteed not only on the behaviour of web services but also on their connections. Hence,
we believe that ASPASyA can be adapted to be on of the pioneer tools in this field.

1Refer to http://jordie.di.unipi.it:8080/pweb/index html for more information.
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[43] Vincent Vanackére. History-dependent scheduling for cryptographic processes, 2004.

[44] Tatu Ylonen. SSH — secure login connections over the Internet. In USENIX Associa-
tion, editor, 6th USENIX Security Symposium, July 22–25, 1996. San Jose, CA, pages
37–42, Berkeley, CA, USA, July 1996. USENIX.



78 CHAPTER 10. BIBLIOGRAPHY



Appendix A

Appendix: Source code

We report the source code of each module of ASPASyA. In Figure A.1 the graph of depen-
dencies between modules is also reported. The modules are :

Action contains the definition of labels for the transition system.

Assignment contains the definition of variable substitutions.

Context contains the definition of a context of principal instances.

Core contains the definition of the symbolic match procedures.

Csolver contains the definition of the constraint store and functions to solve it.

Gviz contains functions for Graphviz output.

Join contains functions to add new principal instances to running contexts.

Khash contains the definition of a hash table to store knowledge references.

Kmananger contains functions to correctly update the hash table of knowledges.

Knowledge contains the definition of the intruder knowledge.

Logic contains the definition of PL formulae and functions for their normalisation.

Message contains message definitions and methods to handle them.

Node contains the definition of a node of the state space tree

Parsecmdline contains the definition of the command line options.

Parser contains the definition of the cIP parser.

Pl parser contains the definition of the PL formulae parser.

Principal contains the definition of cIP principals.

Princpool contains functions to correctly instantiate principal indexes after the join.

Process contains the definition of cIP processes.

Status contains the definition of configurations.

Step contains functions to make one step of computation along a trace.

Thestack contains the definition of a general purpose stack used in the search process.
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Tokenizer contains the definition of a simple lexical analyser.

Tracer contains functions to generate and check the entire state space using step, join

and verifier.

Utils contains useful functions on lists.

Verifier contains functions to check satisfability of formulae against configurations.

Utils

Thestack

Message

Assignment

Knowledge

Khash

Kmanager

Process

Principal

Princpool

Context

Status

Action

Node

Tokenizer

Parser

Logic

Csolver

Core

Verifier Pl_parser

Join

Step

Parsecmdline

Gviz

Tracer

Figure A.1: Dependency graph of modules.

Action

open Message open Assignment

type action =

| Input of pname*msg*assignment | Output of pname*msg*assignment | Join

of pname*assignment | NoMoreAct | Closed

let equal =

function x ->

function y ->

match x,y with | Input(p1,m1,s1), Input(p2,m2,s2) -> (s1 m1) = (s2 m2)

| Output(p1,m1,s1), Output(p2,m2,s2) -> (s1 m1) = (s2 m2) | NoMoreAct,

NoMoreAct -> true | _ -> false

let prnt =
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function a ->

match a with | Input((sn,i),m,s) ->

(

print_string(sn^"_"^string_of_int(i)^": In("); prntMsg m;

print_string(") --sigma--> In("); prntMsg (s m); print_string(")\n")

)

| Output((sn,i),m,s) ->

(

print_string(sn^"_"^string_of_int(i)^": Out("); prntMsg

m; print_string(") --sigma--> Out("); prntMsg (s m);

print_string(")\n")

)

| Join(pn,asg) ->

(

print_string("Join: "^fst(pn)^"_"^string_of_int(snd(pn))^"\n")

)

| NoMoreAct -> print_string("0\n")

let tostring =

function a ->

match a with

| Input((sn,i),m,s) -> sn^"_"^string_of_int(i)^":

I("^(Message.tostring (s m))^")" |

Output((sn,i),m,s) -> sn^"_"^string_of_int(i)^":

O("^(Message.tostring (s m))^")" | Join(p,s) ->

"J("^fst(p)^","^string_of_int(snd(p))^")" | NoMoreAct

-> "0"

Aspasya

open Message;; open Sys;; open Utils;; open Parsecmdline;; open Gc;;

open Tracer;;

let opts = init_options();; let continue=ref(true);;

if not (!Sys.interactive) then

(

if Array.length(Sys.argv)<2 then (synopsis false; continue:=false) else (

(parsecmdline (Sys.argv) opts); if (opts.errmsg<>"") then

(print_string("\n"^opts.errmsg^"\n"); continue:=false) else

if opts.help then (synopsis true; continue:=false) else

if opts.pr_file="" then (synopsis false; continue:=false) else

(if opts.pl_file="" then (synopsis false; continue:=false) else

(if opts.kb_file="" then (synopsis false; continue:=false) else ()))

)

)

else (synopsis false; continue:=false);;

let rec readall =



82 APPENDIX A. APPENDIX: SOURCE CODE

function ct ->

if (Parser.more_parsing()) then

let p = Parser.parsePrincipal() in if (Parser.getErrorCode()<>0)

then (print_string(Parser.getErrorMsg()); failwith "\nSyntax error in

parsing principals\n") else ( let ct2 = p::ct in readall(ct2))

else ct;;

if(!continue) then (

Pl_parser.init_parser(opts.pl_file); let pl = Pl_parser.parseFormula() in if

(Pl_parser.getErrorCode()<>0) then (print_string(Pl_parser.getErrorMsg());

failwith "\nSyntax error in parsing formula\n") else ();

Pl_parser.done_parser();

Pl_parser.init_parser(opts.pj_file); let plj = Pl_parser.parseFormula() in if

(Pl_parser.getErrorCode()<>0) then (print_string(Pl_parser.getErrorMsg());

failwith "\nSyntax error in parsing join components\n") else ();

Pl_parser.done_parser();

Pl_parser.init_parser(opts.kb_file); let kbl = Pl_parser.parseKb() in if

(Pl_parser.getErrorCode()<>0) then (print_string(Pl_parser.getErrorMsg());

failwith "\nSyntax error in parsing knowledge\n") else ();

Pl_parser.done_parser();

Parser.init_parser(opts.pr_file); let prns = readall([]) in

Parser.done_parser();

let ss = init_search prns kbl opts in do_joins ss pl plj;

if (opts.output_type = 1) then Gviz.initgraph "aspasya" else (); if

(opts.output_type = 2 && opts.attack_type = 2) then Parsecmdline.htmlinit()

else (); do_search ss; if (opts.output_type = 1) then Gviz.donegraph()

else (); if (opts.output_type = 2 && opts.attack_type = 2) then

Parsecmdline.htmldone() else ();

) else ()

Assignment

open Message open Utils

exception NoMeaning exception NeedVariable
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type assignment = msg -> msg

let getfromtable =

function table ->

function v ->

let res = filter table (function (vv,mm) -> v=vv) in if res = []

then v else snd(head res)

let addtable =

function table ->

function (v,m) ->

let rec closure =

function tt ->

function (vv,mm) ->

let nt = filter tt (function (vvv,mmm) -> mmm=vv) in let ad =

map nt (function (vvv,mmm) -> (vvv,mm)) in ad@(debox(map ad

(function (vvv,mmm) -> closure tt (vvv,mmm))))

in if (v=m) then table else

match v with | Var(_) | SVar(_) -> (

let nm = getfromtable table v in if nm = v then (v,m)::table

else table

)

| _ -> raise NeedVariable

let rec f =

function tt ->

function n ->

let rec pass =

function table ->

function m ->

match m with | Var(p) -> getfromtable table m | SVar(p,i,t) ->

getfromtable table m | BVar(p) ->

let nm =getfromtable table (Var(p)) in if nm = Var(p) then

m else nm

| Couple(m1,m2) -> Couple(pass table m1, pass table m2) |

Crypt(m1,key) -> Crypt(pass table m1, pass table key) | K(_) |

PN(_) | PNp(_) | PNm(_) | NO(_) -> m | Publ(Var(v)) ->

let vv = getfromtable table (Var(v)) in ( match vv with |

PN(s,p) -> PNp(s,p) | SVar(vr,i,t) -> Publ(SVar(vr,i,t)) |

Var(v) -> m | _ -> Publ(vv)

)

| Priv(Var(v)) ->

let vv = getfromtable table (Var(v)) in ( match vv with |

PN(s,p) -> PNm(s,p) | SVar(vr,i,t) -> Priv(SVar(vr,i,t)) |

Var(v) -> m | _ -> Priv(vv)

)

| Publ(SVar(v,i,t)) when (t=Gen || t=GenR)->

let vv2 = getfromtable table (SVar(v,i,t)) in ( match vv2

with | PN(s,p) -> PNp(s,p) | SVar(v,i,Name) -> Publ(vv2)

| SVar(v,i,RName) -> Publ(vv2) | SVar(v,i,t) -> m | _ ->

Publ(vv2)

)
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| Priv(SVar(v,i,t)) when (t=Gen || t=GenR)->

let vv2 = getfromtable table (SVar(v,i,t)) in ( match vv2

with | PN(s,p) -> PNm(s,p) | SVar(v,i,Name) -> Priv(vv2)

| SVar(v,i,RName) -> Priv(vv2) | SVar(v,i,t) -> m | _ ->

Priv(vv2)

)

| Publ(SVar(v,i,Name)) ->

let vv2 = getfromtable table (SVar(v,i,Name)) in ( match

vv2 with | PN(s,p) -> PNp(s,p) | SVar(v,i,Name) -> m |

SVar(v,i,RName) -> Publ(vv2) | _ -> Publ(vv2)

)

| Priv(SVar(v,i,Name)) ->

let vv2 = getfromtable table (SVar(v,i,Name)) in ( match

vv2 with | PN(s,p) -> PNm(s,p) | SVar(v,i,Name) -> m |

SVar(v,i,RName) -> Priv(vv2) | _ -> Priv(vv2)

)

| Publ(SVar(v,i,RName)) ->

let vv2 = getfromtable table (SVar(v,i,RName)) in ( match

vv2 with | PN(s,p) -> PNp(s,p) | SVar(v,i,RName) -> m | _

-> Publ(vv2)

)

| Priv(SVar(v,i,RName)) ->

let vv2 = getfromtable table (SVar(v,i,RName)) in ( match

vv2 with | PN(s,p) -> PNm(s,p) | SVar(v,i,RName) -> m | _

-> Priv(vv2)

)

| Priv(_) | Publ(_) -> m | Bottom -> m | _ -> raise NoMeaning

in match n with | Trick(_) -> Trick(tt) | _ ->

let newm = pass tt n in if newm = n then newm else f tt newm

let void =

function () ->

f []

let newasg =

function table ->

let checktable = filter table (function (v,m) -> v<>m) in f checktable

let isVoid =

function asg ->

let Trick(tab) = asg (Trick([])) in tab = []

let add =

function asg ->

function var ->

function newmsg ->

let Trick(tab) = asg (Trick([])) in let newtable = addtable tab

(var,newmsg) in f newtable

let prntHtml =

function asg ->
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let rec prnttab =

function l ->

match l with | (v,n)::xs -> (prntMsgHtml ((v)); print_string("

-&gt "); prntMsgHtml n; print_string("<br>")); prnttab xs | [] ->

print_string(" .<br>")

in let Trick(tab) = asg (Trick([])) in prnttab tab

let prnt =

function asg ->

let rec prnttab =

function l ->

match l with | (v,n)::xs -> (prntMsg ((v)); print_string(" -> ");

prntMsg n; print_string("\n")); prnttab xs | [] -> print_string(" .\n")

in let Trick(tab) = asg (Trick([])) in prnttab tab

let tostring =

function asg ->

let rec prnttab =

function ll ->

match ll with | [] -> ("\\n"); | (v,n)::xs -> (Message.tostring v)^"

-> "^(Message.tostring n)^("\\n")^(prnttab xs)

in let Trick(tab) = asg (Trick([])) in prnttab tab

let ( * ) =

function alfa ->

function beta ->

function m ->

let Trick(t1) = alfa (Trick([])) in let Trick(t2) = beta (Trick([]))

in let nt = t1@t2 in newasg nt m

let comp = ( * )

let listfy =

function asg ->

let Trick(tab) = asg (Trick([])) in tab

let leftof =

function asg ->

function v ->

let sss = listfy asg in map (filter sss (function (a,b) -> b=v)) (fst)

Context

open Principal open Utils

type context = principal list



86 APPENDIX A. APPENDIX: SOURCE CODE

let void =

function () -> []

let add =

function (ct,np) -> np::ct

let ( ++ ) =

function ct ->

function (mp,np) ->

let rec sublist = function (ls,el,tls) ->

match ls with | [] -> (tls,[]) | x::xs when (x=el) -> (tls,xs) |

x::xs -> sublist(xs,el,(x::tls))

in let (head, tail) = sublist(ct,mp,[]) in (np::head)@(tail)

let rec getprincipal =

function (ct,k) ->

match ct with | x::xs -> if k = 1 then x else getprincipal(xs,k-1)

let getlist =

function ct -> ct

let setlist =

function ct -> ct

let getPrev =

function ct -> List.tl ct

let isEmpty =

function ct -> forall ct (function x -> Principal.isConsumed x)

let hasEmptyPrincipal =

function ct -> exists ct (function x -> Principal.isConsumed x)

let howmany =

function ct -> len ct

let getindexedprinc =

function ct ->

function i ->

function asg ->

let [ttt] = filter ct (function (nn,ii,vlist,expr) -> ii=i) in

Principal.substitute asg ttt

let getopenprinc =

function ct ->

function asg ->

let ttt = filter ct (function (nn,ii,vlist,expr) -> vlist<>[]) in let

mmm = map ttt (function p -> Principal.substitute asg p) in mmm

let getIndexesOf =

function ct ->

function s ->

let ttt = filter ct (function (nn,ii,vlist,expr) -> nn=s) in map ttt
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(function (nn,ii,vlist,expr) -> ii)

let rec getOpenVariables =

function ct ->

match ct with | [] -> (0,[]) | pp::pps ->

let vs = Principal.getVars pp in let (nn,vv) = getOpenVariables pps in

(nn+ len(vs),vs@vv)

let getlentrace =

function ct ->

if ct = [] then 0 else fold ct (function a -> function b -> Principal.len

a + b) 0

let applyall =

function ct ->

function asg ->

map ct (Principal.substitute asg )

let rec prnt =

function ct ->

function asg ->

match ct with | [] -> print_string("\n") | x::xs -> Principal.prnt x

asg; print_string("\n"); prnt xs asg

let rec prntHtml =

function ct ->

function asg ->

match ct with | [] -> print_string("<br>") | x::xs -> Principal.prntHtml

x asg; print_string("<br>"); prntHtml xs asg

let rec tostring =

function ct ->

function asg ->

match ct with | [] -> "\\n" | x::xs -> (Principal.tostring x

asg)^"\\n"^(tostring xs asg)

Core

open Message open Knowledge open Kmanager open Assignment open Utils

exception Undefined

(* Symbolic match functions *) let rec l =

function kman ->

function asg ->

function mm ->

match mm with | K(_) | PNp(_,_) | PNm(_,_) | NO(_,_) | PN(_,_) ->
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[Assignment.void()] | SVar(v,i,_) -> [Assignment.void()] | BVar(v) ->

[Assignment.void()]

| Publ(SVar(v,i,RName)) | Priv(SVar(v,i,RName)) -> [Assignment.void()]

| Publ(SVar(v,i,Name)) | Priv(SVar(v,i,Name)) ->

let kr = if (Knowledge.hasRNames (Kmanager.getK kman i)) then

[(SVar(v,i,RName))] else [] in let kk = (Knowledge.getNames

(Kmanager.getK kman i))@kr in let res1 = map kk (function pn ->

Assignment.add (Assignment.void()) (SVar(v,i,Name)) (pn)) in res1

| Publ(SVar(v,i,t)) when (t=Gen || t=GenR) ->

let res1 = [Assignment.add (Assignment.void()) (SVar(v,i,t))

(SVar(v,i,Name))] in let res2 = (map res1 (function sigma ->

l kman (asg) (sigma mm))) in rebuild res1 res2 (function (s1)

-> function (s2) -> (s2*s1))

| Priv(SVar(v,i,t)) when (t=Gen || t=GenR) ->

let res1 = [Assignment.add (Assignment.void()) (SVar(v,i,t))

(SVar(v,i,Name))] in let res2 = (map res1 (function sigma ->

l kman (asg) (sigma mm))) in rebuild res1 res2 (function (s1)

-> function (s2) -> (s2*s1))

| Couple(m1,m2) ->

let res1 = (l kman asg m1) in let res2 = (map res1 (function sigma

-> l kman (asg) (sigma m2))) in rebuild res1 res2 (function (s1)

-> function (s2) -> (s2*s1))

| Crypt(m, Publ(SVar(v,k,Name))) | Crypt(m, Priv(SVar(v,k,Name))) ->

let kr = if (Knowledge.hasRNames (Kmanager.getK kman k)) then

[(SVar(v,k,RName))] else [] in let kk = (Knowledge.getNames

(Kmanager.getK kman k))@kr in let res1 = map kk (function pn ->

Assignment.add (Assignment.void()) (SVar(v,k,Name)) (pn)) in

let res2 = (map res1 (function sigma -> l kman (asg) (sigma m)))

in rebuild res1 res2 (function (s1) -> function (s2) -> (s2*s1))

| Crypt(m, Publ(SVar(v,k,RName))) | Crypt(m, Priv(SVar(v,k,RName))) ->

l kman asg m

| Crypt(m, SVar(v,k,t)) when (Knowledge.hasKeys (Kmanager.getK kman

k)) && (t=Gen || t=GenR) ->

let oldk = (Kmanager.getK kman k) in let ks = if

(Knowledge.hasSKeys oldk) then [SVar(v,k,SKey)] else [] in let

kpm = if (Knowledge.hasPMKeys oldk) then [SVar(v,k,PMKey)] else

[] in let kmp = if (kpm<>[]) then [SVar(v,k,MPKey)] else [] in

let kps = Knowledge.getPKeys oldk in let kms = Knowledge.getMKeys

oldk in let kk = ks@kpm@kmp@kps@kms in let res1 = map kk (function

pn -> Assignment.add (Assignment.void()) (SVar(v,k,t)) (pn)) in

let res2 = (map res1 (function sigma -> l kman (asg) (sigma m)))

in rebuild res1 res2 (function (s1) -> function (s2) -> (s2*s1))

| Crypt(m, Priv(SVar(v,k,t))) | Crypt(m, Publ(SVar(v,k,t))) when

(t=Gen || t=GenR) ->

let sr = Assignment.add (Assignment.void()) (SVar(v,k,t))

(SVar(v,k,Name)) in let res = l kman asg (sr mm) in map res

(function sigma -> sigma*sr)
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| Crypt(m, SVar(v,k,t)) -> l kman asg m | Crypt(m, kk) when

isGroundKey kk -> l kman asg m | Crypt(m,Publ(_)) -> l kman asg m |

Crypt(m,Priv(_)) -> l kman asg m | Crypt(m, _) -> l kman asg m | _ ->

[]

and mu =

function kman ->

function k ->

function asg ->

function mm -> (

match mm with | BVar(v) when not (Knowledge.isEmpty k)

-> [(Var(v), Assignment.add (Assignment.void()) (Var(v))

(SVar(v,Knowledge.id_of(k),Gen)))] | K(_) when (Knowledge.derives

k (asg) mm) -> [(mm, Assignment.void())] | PN(_,_) when

(Knowledge.derives k (asg) mm) -> [(mm, Assignment.void())]

| PNp(_,_) when (Knowledge.derives k (asg) mm) -> [(mm,

Assignment.void())] | PNm(_,_) when (Knowledge.derives k (asg) mm)

-> [(mm, Assignment.void())] | NO(_,_) when (Knowledge.derives k

(asg) mm) -> [(mm, Assignment.void())]

| SVar(v,i,Gen) -> [(SVar(v,i,GenR), Assignment.add

(Assignment.void()) (SVar(v,i,Gen)) (SVar(v,i,GenR)))] | SVar(v,i,t)

-> [(SVar(v,i,t), (Assignment.void()))]

| Publ(SVar(v,i,RName)) -> [(mm, (Assignment.void()))] |

Priv(SVar(v,i,RName)) -> [(mm, (Assignment.void()))]

| Couple(m1, m2) ->

let res1 = mu kman k asg m1 in let resl = debox (map res1

(function (m1,s1) -> let tt = l kman s1 (s1 m2) in map tt

(function s2 -> (s2 m1, s2*s1)))) in let res2 = (map (map resl

(snd)) (function sigma -> mu kman k (asg) (sigma m2))) in

(rebuild resl res2 (function (m1,s1) -> function (m2,s2) ->

(Couple(m1,m2), s1*s2)))

| Crypt(m, K(s,i)) -> (

let res =

if (Knowledge.derives k (asg) (K(s,i))) then map (mu kman

k asg m) (function (m1,s1) -> (Crypt(m1, K(s,i)), s1)) else []

in let kl = (Knowledge.getCrypts k (K(s,i))) in res@(mulist

kman k asg kl m)

)

| Crypt(m, PNp(s,p)) -> (

let res =

if (Knowledge.derives k (asg) (PNm(s,p))) then map (mu kman k

asg m) (function (m1,s1) -> (Crypt(m1, PNm(s,p) ), s1)) else []

in let kl = (Knowledge.getCrypts k (PNm(s,p))) in res@(mulist

kman k asg kl m)

)

| Crypt(m, PNm(s,p)) -> (

let res =

if (Knowledge.derives k (asg) (PNp(s,p))) then map (mu kman k

asg m) (function (m1,s1) -> (Crypt(m1, PNp(s,p)), s1)) else []

in let kl = (Knowledge.getCrypts k (PNp(s,p))) in res@(mulist

kman k asg kl m)
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)

| Crypt(m, SVar(v,i,SKey)) ->

let res = mu kman k asg m in map res (function (m1,s1) ->

(Crypt(m1, (SVar(v,i,SKey))),s1))

| Crypt(m, Publ(SVar(v,i,RName))) ->

let res = mu kman k asg m in map res (function (m1,s1) ->

(Crypt(m1, Priv(SVar(v,i,RName))),s1))

| Crypt(m, Priv(SVar(v,i,RName))) ->

let res = mu kman k asg m in map res (function (m1,s1) ->

(Crypt(m1, Publ(SVar(v,i,RName))),s1))

| Crypt(m, SVar(v,i,PMKey)) ->

let res = mu kman k asg m in map res (function (m1,s1) ->

(Crypt(m1, SVar(v,i,MPKey)),s1))

| Crypt(m, SVar(v,i,MPKey)) ->

let res = mu kman k asg m in map res (function (m1,s1) ->

(Crypt(m1, SVar(v,i,PMKey)),s1))

| Crypt(m, SVar(v,i,t)) ->

let res = mu kman k asg m in map res (function (m1,s1) ->

(Crypt(m1, SVar(v,i,t)),s1))

| _ -> [] (*map (l kman asg mm) (function s -> (s mm,s))*)

)

and mulist =

function kman ->

function k ->

function asg ->

function cc ->

function n ->

match cc with | Crypt(m,kk)::ccs ->

let rr = ni kman asg m n in (map rr (function r ->

(Crypt(m,kk),r)))@(mulist kman k asg ccs n)

| [] -> []

and ni =

function kman ->

function asg ->

function m ->

function n ->

match m,n with | _ , BVar(v) -> [Assignment.add (Assignment.void())

(Var(v)) m] | K(_), _ when n=m -> [(Assignment.void())] |

PN(_,_), _ when n=m -> [(Assignment.void())] | PNp(_,_),

_ when n=m -> [(Assignment.void())] | PNm(_,_), _ when n=m ->

[(Assignment.void())] | NO(_,_), _ when n=m -> [(Assignment.void())]

| Crypt(mm,K(s,i)), Crypt(nn,K(w,y)) when (s=w && i=y)-> ni kman

asg mm nn | Crypt(mm,PNp(s1,p1)), Crypt(nn,PNm(s2,p2)) when

(s1=s2 && p1=p2) -> ni kman asg mm nn | Crypt(mm,PNm(s1,p1)),

Crypt(nn,PNp(s2,p2)) when (s1=s2 && p1=p2) -> ni kman asg mm nn |

Crypt(mm, SVar(v1,i,SKey)), Crypt(nn, SVar(v2,j,SKey)) ->

let min = if i<j then i else j in let ss = [Assignment.add

(Assignment.add (Assignment.void()) (SVar(v1,i,SKey))

(SVar(v1,min,SKey))) (SVar(v2,j,SKey)) (SVar(v1,min,SKey))]

in let res = map ss (function sigma -> ni kman asg (sigma mm)
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(sigma nn)) in rebuild ss res (function (s1) -> function (s2) ->

(s1*s2))

| Couple(mm1,mm2), Couple(nn1,nn2) ->

let res1 = ni kman asg mm1 nn1 in let res2 = (map res1 (function

sigma -> ni kman (asg*sigma) (sigma mm2) (sigma nn2))) in

rebuild res1 res2 (function (s1) -> function (s2) -> (s1*s2))

| SVar(v1,i,Gen), SVar(v2,j,Gen) ->

let min = if i<j then i else j in [Assignment.add (Assignment.add

(Assignment.void()) m (SVar(v1,min,Gen))) n (SVar(v1,min,GenR))]

| SVar(v1,i,t1), SVar(v2,j,t2) when comparable(t1,t2) ->

let min = if i<j then i else j in [Assignment.add (Assignment.add

(Assignment.void()) m (SVar(v1,min,mintype(t1,t2)))) n

(SVar(v1,min,mintype(t1,t2)))]

| Publ(SVar(v1,i,t1)), Publ(SVar(v2,j,t2)) when comparable(t1,t2) ->

let min = if i<j then i else j in [Assignment.add

(Assignment.add (Assignment.void()) (SVar(v1,i,t1))

(SVar(v1,min,mintype(t1,t2)))) (SVar(v2,j,t2))

(SVar(v1,min,mintype(t1,t2)))]

| Priv(SVar(v1,i,t1)), Priv(SVar(v2,j,t2)) when comparable(t1,t2) ->

let min = if i<j then i else j in [Assignment.add

(Assignment.add (Assignment.void()) (SVar(v1,i,t1))

(SVar(v1,min,mintype(t1,t2)))) (SVar(v2,j,t2))

(SVar(v1,min,mintype(t1,t2)))]

| SVar(v1,i,t1), Publ(SVar(v2,j,t2)) when (t1=Gen ||

t1=GenR)&&(t2=Name || t2=RName) ->

let min = if i<j then i else j in [Assignment.add (Assignment.add

(Assignment.void()) m (Publ(SVar(v1,min,t2)))) (SVar(v2,j,t2))

((SVar(v2,min,t2)))]

| SVar(v1,i,t1), Priv(SVar(v2,j,t2)) when (t1=Gen ||

t1=GenR)&&(t2=Name || t2=RName) ->

let min = if i<j then i else j in [Assignment.add (Assignment.add

(Assignment.void()) m (Priv(SVar(v1,min,t2)))) (SVar(v2,j,t2))

((SVar(v2,min,t2)))]

| Publ(SVar(v2,j,t2)), SVar(v1,i,t1) when (t1=Gen ||

t1=GenR)&&(t2=Name || t2=RName) ->

let min = if i<j then i else j in [Assignment.add (Assignment.add

(Assignment.void()) (SVar(v2,j,t2)) ((SVar(v1,min,t2)))) n

(Publ((SVar(v2,min,t2))))]

| Priv(SVar(v2,j,t2)), SVar(v1,i,t1) when (t1=Gen ||

t1=GenR)&&(t2=Name || t2=RName) ->

let min = if i<j then i else j in [Assignment.add (Assignment.add

(Assignment.void()) (SVar(v2,j,t2)) ((SVar(v1,min,t2)))) n

(Priv((SVar(v2,min,t2))))]

| sm, SVar(v,i,Gen) when notSVar(sm) ->

let res = mu kman (Kmanager.getK kman i) asg (m) in map res

(function (mm,ss) -> (ss*(Assignment.add (Assignment.void())

n mm)))

| sm, SVar(v,i,GenR) when notSVar(sm) ->

let oldk = (Kmanager.getK kman i) in let res = mu kman

oldk asg (m) in let res2 = filter res (function (mm,ss) ->

Knowledge.knows oldk mm) in map res2 (function (mm,ss) ->
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(ss*Assignment.add (Assignment.void()) n mm))

| sm, SVar(v,i,SKey) when notSVar(sm) ->

let oldk = (Kmanager.getK kman i) in let res = mu kman oldk asg

(m) in let res2 = filter res (function (mm,ss) -> ((isskey

mm))) in map res2 (function (mm,ss) -> (ss*Assignment.add

(Assignment.void()) n mm))

| sm, SVar(v,i,Name) when notSVar(sm) ->

let oldk = (Kmanager.getK kman i) in let res = mu kman oldk asg

(m) in let res2 = filter res (function (mm,ss) -> ((isname

mm))) in map res2 (function (mm,ss) -> (ss*Assignment.add

(Assignment.void()) n mm))

| sm, SVar(v,i,RName) when notSVar(sm) ->

let oldk = (Kmanager.getK kman i) in let res = mu kman

oldk asg (m) in let res2 = filter res (function (mm,ss) ->

(Knowledge.isRName oldk mm )) in map res2 (function (mm,ss) ->

(ss*Assignment.add (Assignment.void()) n mm))

| sm, SVar(v,i,t) when (notSVar(sm) && (t=MPKey || t=PMKey)) ->

let oldk = (Kmanager.getK kman i) in let res = mu kman

oldk asg (m) in let res2 = filter res (function (mm,ss) ->

Knowledge.isPMKey oldk mm) in map res2 (function (mm,ss) ->

(ss*Assignment.add (Assignment.void()) n mm))

| SVar(v,i,Gen), sm when notSVar(sm) ->

let res = mu kman (Kmanager.getK kman i) asg (n) in map res

(function (mm,ss) -> (ss*(Assignment.add (Assignment.void())

m mm)))

| SVar(v,i,GenR), sm when notSVar(sm) ->

let oldk = (Kmanager.getK kman i) in let res = mu kman

oldk asg (n) in let res2 = filter res (function (mm,ss) ->

Knowledge.knows oldk mm) in map res2 (function (mm,ss) ->

(ss*Assignment.add (Assignment.void()) m mm))

| SVar(v,i,SKey), sm when notSVar(sm) ->

let oldk = (Kmanager.getK kman i) in let res = mu kman oldk asg

(n) in let res2 = filter res (function (mm,ss) -> ((isskey

mm))) in map res2 (function (mm,ss) -> (ss*Assignment.add

(Assignment.void()) m mm))

| SVar(v,i,Name), sm when notSVar(sm) ->

let oldk = (Kmanager.getK kman i) in let res = mu kman oldk asg

(n) in let res2 = filter res (function (mm,ss) -> ((isname

mm))) in map res2 (function (mm,ss) -> (ss*Assignment.add

(Assignment.void()) m mm))

| SVar(v,i,RName), sm when notSVar(sm) ->

let oldk = (Kmanager.getK kman i) in let res = mu kman

oldk asg (n) in let res2 = filter res (function (mm,ss) ->

(Knowledge.isRName oldk mm )) in map res2 (function (mm,ss) ->

(ss*Assignment.add (Assignment.void()) m mm))

| SVar(v,i,t), sm when (notSVar(sm) && (t=MPKey || t=PMKey)) ->

let oldk = (Kmanager.getK kman i) in let res = mu kman

oldk asg (n) in let res2 = filter res (function (mm,ss) ->

Knowledge.isPMKey oldk mm) in map res2 (function (mm,ss) ->

(ss*Assignment.add (Assignment.void()) m mm))

| SVar(v,i,_), sm when notSVar(sm) ->

let res = mu kman (Kmanager.getK kman i) asg (n) in map res

(function (mm,ss) -> (ss*(Assignment.add (Assignment.void())
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m mm)))

| _ -> []

(* symbolic unification functions *) let rec mu_eq =

function kman ->

function k ->

function asg ->

function mm -> (

match mm with | Var(v) -> if (Knowledge.hasSKeys (Kmanager.getK kman

1)) then [( SVar(v,1,SKey), (Assignment.add (Assignment.void())

mm (SVar(v,1,SKey)) ))] else [] | K(_) when (Knowledge.derives

k (asg) mm) -> [(mm, Assignment.void())] | PN(_,_) when

(Knowledge.derives k (asg) mm) -> [(mm, Assignment.void())]

| PNp(_,_) when (Knowledge.derives k (asg) mm) -> [(mm,

Assignment.void())] | PNm(_,_) when (Knowledge.derives k (asg) mm)

-> [(mm, Assignment.void())] | NO(_,_) when (Knowledge.derives k

(asg) mm) -> [(mm, Assignment.void())] | SVar(v,i,Gen) -> [(mm,

Assignment.void())] | SVar(v,i,GenR) -> [(mm, Assignment.void())]

| SVar(v,i,Name) ->

let oldk = Kmanager.getK kman i in let things =

Knowledge.getAllNames oldk in let res = map things (function x ->

(x, Assignment.add (Assignment.void()) (mm) x)) in res

| SVar(v,i,RName) ->

let oldk = Kmanager.getK kman i in let things =

Knowledge.getRNames oldk in let res = map things (function x ->

(x, Assignment.add (Assignment.void()) (mm) x)) in res

| SVar(v,i,SKey) ->

let oldk = Kmanager.getK kman i in let things =

Knowledge.getSKeys oldk in let res = map things (function x ->

(x, Assignment.add (Assignment.void()) (mm) x)) in res

| SVar(v,i,MPKey) ->

let oldk = Kmanager.getK kman i in let things =

(Knowledge.getMPKeys oldk) in let res = map things (function x ->

(x, Assignment.add (Assignment.void()) (mm) x)) in res

| SVar(v,i,PMKey) ->

let oldk = Kmanager.getK kman i in let things =

(Knowledge.getPMKeys oldk) in let res = map things (function x ->

(x, Assignment.add (Assignment.void()) (mm) x)) in res

| Publ(SVar(v,i,RName)) ->

let oldk = Kmanager.getK kman i in let things =

(Knowledge.getRNames oldk) in let res = map things (function

PN(pn,pi) -> (PNp(pn,pi), Assignment.add (Assignment.void())

(SVar(v,i,RName)) (PN(pn,pi)) )) in res

| Priv(SVar(v,i,RName)) ->

let oldk = Kmanager.getK kman i in let things =

(Knowledge.getRNames oldk) in let res = map things (function

PN(pn,pi) -> (PNm(pn,pi), Assignment.add (Assignment.void())

(SVar(v,i,RName)) (PN(pn,pi)) )) in res

| Publ(SVar(v,i,Name)) ->
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let oldk = Kmanager.getK kman i in let things =

(Knowledge.getAllNames oldk) in let res = map things (function

PN(pn,pi) -> (PNp(pn,pi), Assignment.add (Assignment.void())

(SVar(v,i,RName)) (PN(pn,pi)) )) in res

| Priv(SVar(v,i,Name)) ->

let oldk = Kmanager.getK kman i in let things =

(Knowledge.getAllNames oldk) in let res = map things (function

PN(pn,pi) -> (PNm(pn,pi), Assignment.add (Assignment.void())

(SVar(v,i,RName)) (PN(pn,pi)) )) in res

| Couple(m1, m2) ->

let res1 = mu_eq kman k asg m1 in let res2 = (map (map res1

(function (a,b) -> b)) (function sigma -> mu_eq kman k (asg)

(sigma m2))) in (rebuild res1 res2 (function (m1,s1) -> function

(m2,s2) -> (Couple(m1,m2), s1*s2)))

| Crypt(m, K(s,i)) -> (

let res =

if (Knowledge.derives k (asg) (K(s,i))) then map (mu_eq kman

k asg m) (function (m1,s1) -> (Crypt(m1, K(s,i)), s1)) else []

in let kl = (Knowledge.getCrypts k (K(s,i))) in res@(mulist_eq

kman k asg kl m)

)

| Crypt(m, PNp(s,p)) -> (

let res =

if (Knowledge.derives k (asg) (PNm(s,p))) then map (mu_eq

kman k asg m) (function (m1,s1) -> (Crypt(m1, PNp(s,p) ),

s1)) else []

in let kl = (Knowledge.getCrypts k (PNm(s,p))) in res@(mulist_eq

kman k asg kl m)

)

| Crypt(m, PNm(s,p)) -> (

let res =

if (Knowledge.derives k (asg) (PNp(s,p))) then map (mu_eq

kman k asg m) (function (m1,s1) -> (Crypt(m1, PNm(s,p)),

s1)) else []

in let kl = (Knowledge.getCrypts k (PNp(s,p))) in res@(mulist_eq

kman k asg kl m)

)

| Crypt(m, SVar(v,i,t)) ->

let res = mu_eq kman k asg (SVar(v,i,t)) in let res2 = map res

(function (a,b) -> mu_eq kman k asg (b m)) in rebuild res res2

(function (a,b) -> function (c,d) -> (Crypt(c,a), b*d) )

| Crypt(m, Publ(SVar(v,i,t))) ->

let res = mu_eq kman k asg (Publ(SVar(v,i,t))) in let res2 =

map res (function (a,b) -> mu_eq kman k asg (b m)) in rebuild

res res2 (function (a,b) -> function (c,d) -> (Crypt(c,a), b*d) )

| Crypt(m, Priv(SVar(v,i,t))) ->

let res = mu_eq kman k asg (Priv(SVar(v,i,t))) in let res2 =

map res (function (a,b) -> mu_eq kman k asg (b m)) in rebuild

res res2 (function (a,b) -> function (c,d) -> (Crypt(c,a), b*d) )
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| _ -> []

)

and mulist_eq =

function kman ->

function k ->

function asg ->

function cc ->

function n ->

match cc with | Crypt(m,kk)::ccs ->

let rr = ni_eq kman asg m n in (map rr (function r ->

(Crypt(m,kk),r)))@(mulist_eq kman k asg ccs n)

| [] -> []

and ni_eq =

function kman ->

function asg ->

function m ->

function n ->

match m,n with | K(_), _ when n=m -> [(Assignment.void())]

| PN(_,_), _ when n=m -> [(Assignment.void())] | PNp(_,_),

_ when n=m -> [(Assignment.void())] | PNm(_,_), _ when n=m ->

[(Assignment.void())] | NO(_,_), _ when n=m -> [(Assignment.void())]

| Crypt(mm,K(s,i)), Crypt(nn,K(w,y)) when (s=w && i=y) -> ni_eq

kman asg mm nn | Crypt(mm,PNp(s1,p1)), Crypt(nn,PNp(s2,p2)) when

(s1=s2 && p1=p2) -> ni_eq kman asg mm nn | Crypt(mm,PNm(s1,p1)),

Crypt(nn,PNm(s2,p2)) when (s1=s2 && p1=p2) -> ni_eq kman asg mm nn |

Crypt(mm, SVar(v1,i,t1)), Crypt(nn, SVar(v2,j,t2)) when (t1=SKey ||

t1=MPKey || t1=PMKey)&&(t1=t2) ->

let res = ni_eq kman asg (SVar(v1,i,t1)) (SVar(v2,j,t2)) in let

res2 = map res (function sigma -> ni_eq kman asg (sigma mm)

(sigma nn)) in rebuild res res2 (function (s1) -> function

(s2) -> (s1*s2))

| Couple(mm1,mm2), Couple(nn1,nn2) ->

let res1 = ni_eq kman asg mm1 nn1 in let res2 = (map res1

(function sigma -> ni_eq kman (asg) (sigma mm2) (sigma nn2)))

in rebuild res1 res2 (function (s1) -> function (s2) -> (s1*s2))

| Var(v1), Var(v2) ->

[Assignment.add (Assignment.void()) m n]

| Var(v1), _ ->

[Assignment.add (Assignment.void()) m n]

| _, Var(v2) ->

[Assignment.add (Assignment.void()) n m]

| SVar(v1,i,Gen), SVar(v2,j,Gen) ->

if n=m then [Assignment.void()] else

let min = if i<j then i else j in [Assignment.add

(Assignment.add (Assignment.void()) m (SVar(v1,min,Gen)))

n (SVar(v1,min,Gen))]

| SVar(v1,i,GenR), SVar(v2,j,GenR) ->

if n=m then [Assignment.void()] else

let min = if i<j then i else j in [Assignment.add

(Assignment.add (Assignment.void()) m (SVar(v1,min,GenR)))
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n (SVar(v1,min,GenR))]

| SVar(v1,i,Name), SVar(v2,j,Name) ->

let min = if i<j then i else j in let oldk = Kmanager.getK kman

min in let sk = Knowledge.getAllNames oldk in let ss = map sk

(function x -> Assignment.add (Assignment.add (Assignment.void())

(m) (x) ) (n) (x)) in ss

| SVar(v1,i,RName), SVar(v2,j,RName) ->

let min = if i<j then i else j in let oldk = Kmanager.getK kman

min in let sk = Knowledge.getRNames oldk in let ss = map sk

(function x -> Assignment.add (Assignment.add (Assignment.void())

(m) (x) ) (n) (x)) in ss

| SVar(v1,i,SKey), SVar(v2,j,SKey) ->

let min = if i<j then i else j in let oldk = Kmanager.getK

kman min in let sk = Knowledge.getSKeys oldk in let ss = map sk

(function x -> Assignment.add (Assignment.add (Assignment.void())

(m) (x) ) (n) (x)) in ss

| SVar(v1,i,MPKey), SVar(v2,j,MPKey) ->

let min = if i<j then i else j in let oldk = Kmanager.getK kman

min in let sk = Knowledge.getMPKeys oldk in let ss = map sk

(function x -> Assignment.add (Assignment.add (Assignment.void())

(m) (x) ) (n) (x)) in ss

| SVar(v1,i,PMKey), SVar(v2,j,PMKey) ->

let min = if i<j then i else j in let oldk = Kmanager.getK kman

min in let sk = Knowledge.getPMKeys oldk in let ss = map sk

(function x -> Assignment.add (Assignment.add (Assignment.void())

(m) (x) ) (n) (x)) in ss

| SVar(v1,i,t1), SVar(v2,j,t2) when comparable(t1,t2) ->

let min = if i<j then i else j in let oldk = (Kmanager.getK kman

min) in let mintg = mintype(t1,t2) in let tasg = Assignment.add

(Assignment.add (Assignment.void()) m (SVar(v1,min,mintg)))

n (SVar(v1,min,mintg)) in let mint = if min=i then t1

else t2 in let minm = if mintg=t1 then SVar(v1,min,t1) else

SVar(v2,min,t2) in let maxm = if mintg=t1 then SVar(v2,min,t2)

else SVar(v1,min,t1) in let res = mu_eq kman oldk asg (minm)

in map res (function (mm,ss) -> tasg*ss*(Assignment.add

(Assignment.add (Assignment.void()) maxm mm ) minm mm))

| Publ(SVar(v1,i,t1)), Publ(SVar(v2,j,t2)) when comparable(t1,t2) ->

let min = if i<j then i else j in [Assignment.add

(Assignment.add (Assignment.void()) (SVar(v1,i,t1))

(SVar(v1,min,mintype(t1,t2)))) (SVar(v2,j,t2))

(SVar(v1,min,mintype(t1,t2)))]

| Priv(SVar(v1,i,t1)), Priv(SVar(v2,j,t2)) when comparable(t1,t2) ->

let min = if i<j then i else j in [Assignment.add

(Assignment.add (Assignment.void()) (SVar(v1,i,t1))

(SVar(v1,min,mintype(t1,t2)))) (SVar(v2,j,t2))

(SVar(v1,min,mintype(t1,t2)))]

| SVar(v1,i,t1), Publ(SVar(v2,j,t2)) when (t1=Gen ||

t1=GenR)&&(t2=Name || t2=RName) ->

let min = if i<j then i else j in [Assignment.add (Assignment.add

(Assignment.void()) m (Publ(SVar(v1,min,t2)))) (SVar(v2,j,t2))
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((SVar(v2,min,t2)))]

| SVar(v1,i,t1), Priv(SVar(v2,j,t2)) when (t1=Gen ||

t1=GenR)&&(t2=Name || t2=RName) ->

let min = if i<j then i else j in [Assignment.add (Assignment.add

(Assignment.void()) m (Priv(SVar(v1,min,t2)))) (SVar(v2,j,t2))

((SVar(v2,min,t2)))]

| Publ(SVar(v2,j,t2)), SVar(v1,i,t1) when (t1=Gen ||

t1=GenR)&&(t2=Name || t2=RName) ->

let min = if i<j then i else j in [Assignment.add (Assignment.add

(Assignment.void()) (SVar(v2,j,t2)) ((SVar(v1,min,t2)))) n

(Publ((SVar(v2,min,t2))))]

| Priv(SVar(v2,j,t2)), SVar(v1,i,t1) when (t1=Gen ||

t1=GenR)&&(t2=Name || t2=RName) ->

let min = if i<j then i else j in [Assignment.add (Assignment.add

(Assignment.void()) (SVar(v2,j,t2)) ((SVar(v1,min,t2)))) n

(Priv((SVar(v2,min,t2))))]

| sm, SVar(v,i,Gen) when notSVar(sm) ->

let res = mu_eq kman (Kmanager.getK kman i) asg (m) in map res

(function (mm,ss) -> (ss*(Assignment.add (Assignment.void())

n mm)))

| sm, SVar(v,i,GenR) when notSVar(sm) ->

let oldk = (Kmanager.getK kman i) in let res = mu_eq kman

oldk asg (m) in let res2 = filter res (function (mm,ss) ->

Knowledge.knows oldk mm) in map res2 (function (mm,ss) ->

(ss*Assignment.add (Assignment.void()) n mm))

| sm, SVar(v,i,SKey) when notSVar(sm) ->

let oldk = (Kmanager.getK kman i) in let res = mu_eq kman oldk

asg (m) in let res2 = filter res (function (mm,ss) -> ((isskey

mm))) in map res2 (function (mm,ss) -> (ss*Assignment.add

(Assignment.void()) n mm))

| sm, SVar(v,i,Name) when notSVar(sm) ->

let oldk = (Kmanager.getK kman i) in let res = mu_eq kman oldk

asg (m) in let res2 = filter res (function (mm,ss) -> ((isname

mm))) in map res2 (function (mm,ss) -> (ss*Assignment.add

(Assignment.void()) n mm))

| sm, SVar(v,i,RName) when notSVar(sm) ->

let oldk = (Kmanager.getK kman i) in let res = mu_eq kman

oldk asg (m) in let res2 = filter res (function (mm,ss) ->

(Knowledge.isRName oldk mm )) in map res2 (function (mm,ss) ->

(ss*Assignment.add (Assignment.void()) n mm))

| sm, SVar(v,i,t) when (notSVar(sm) && (t=MPKey || t=PMKey)) ->

let oldk = (Kmanager.getK kman i) in let res = mu_eq kman

oldk asg (m) in let res2 = filter res (function (mm,ss) ->

Knowledge.isPMKey oldk mm) in map res2 (function (mm,ss) ->

(ss*Assignment.add (Assignment.void()) n mm))

| SVar(v,i,Gen), sm when notSVar(sm) ->

let res = mu_eq kman (Kmanager.getK kman i) asg (n) in map res

(function (mm,ss) -> (ss*(Assignment.add (Assignment.void())

m mm)))

| SVar(v,i,GenR), sm when notSVar(sm) ->

let oldk = (Kmanager.getK kman i) in let res = mu_eq kman

oldk asg (n) in let res2 = filter res (function (mm,ss) ->
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Knowledge.knows oldk mm) in map res2 (function (mm,ss) ->

(ss*Assignment.add (Assignment.void()) m mm))

| SVar(v,i,SKey), sm when notSVar(sm) ->

let oldk = (Kmanager.getK kman i) in let res = mu_eq kman oldk

asg (n) in let res2 = filter res (function (mm,ss) -> ((isskey

mm))) in map res2 (function (mm,ss) -> (ss*Assignment.add

(Assignment.void()) m mm))

| SVar(v,i,Name), sm when notSVar(sm) ->

let oldk = (Kmanager.getK kman i) in let res = mu_eq kman oldk

asg (n) in let res2 = filter res (function (mm,ss) -> ((isname

mm))) in map res2 (function (mm,ss) -> (ss*Assignment.add

(Assignment.void()) m mm))

| SVar(v,i,RName), sm when notSVar(sm) ->

let oldk = (Kmanager.getK kman i) in let res = mu_eq kman

oldk asg (n) in let res2 = filter res (function (mm,ss) ->

(Knowledge.isRName oldk mm )) in map res2 (function (mm,ss) ->

(ss*Assignment.add (Assignment.void()) m mm))

| SVar(v,i,t), sm when (notSVar(sm) && (t=MPKey || t=PMKey)) ->

let oldk = (Kmanager.getK kman i) in let res = mu_eq kman

oldk asg (n) in let res2 = filter res (function (mm,ss) ->

Knowledge.isPMKey oldk mm) in map res2 (function (mm,ss) ->

(ss*Assignment.add (Assignment.void()) m mm))

| SVar(v,i,_), sm when notSVar(sm) ->

let res = mu_eq kman (Kmanager.getK kman i) asg (n) in map res

(function (mm,ss) -> (ss*(Assignment.add (Assignment.void())

m mm)))

| _ -> []

Csolver

open Utils open Message

type cns = PC of (msg*msg) | NC of (msg*msg) type cs = cns list list

let init =

function () -> [[]]

let expandable =

function pc1 ->

function pc2 ->

match pc1,pc2 with | PC(v1,m1), PC(v2,m2) when m2=v1 -> true |

PC(v1,m1), NC(v2,m2) when m2=v1 -> true | NC(v1,m1), PC(v2,m2) when

m2=v1 -> true | NC(v1,m1), NC(v2,m2) when m2=v1 -> true | _ , _ -> false

let expand =

function pcte ->

function pc ->
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match pcte, pc with | PC(v1,m1), PC(v2,m2) when v2=m1 -> PC(v1,m2) |

PC(v1,m1), NC(v2,m2) when v2=m1 -> NC(v1,m2) | NC(v1,m1), PC(v2,m2)

when v2=m1 -> NC(v1,m2) | NC(v1,m1), NC(v2,m2) when v2=m1 -> PC(v1,m2)

| _ , _ -> pcte

let rec closure =

function cse ->

function pc ->

let ltr = filter cse (expandable pc) in let rtl = filter cse ((invert

expandable) pc) in let toadd1 = map ltr (function x -> expand x pc)

in let toadd2 = map rtl (function x -> expand pc x) in toadd1@toadd2

let rec addc =

function cse ->

function pcc ->

match pcc with | PC(v1,m1) when v1=m1 -> cse | NC(v1,m1) when v1=m1 ->

cse | _ ->

if exists cse (function x -> x=pcc) then cse else

let toadd = closure cse pcc in if toadd = [] then (pcc::cse)

else fold toadd (invert (addc) ) (pcc::cse)

let addconstraint =

function pc ->

function cs ->

map cs ((invert addc) pc)

let addconstraints =

function pcl ->

function cs ->

if pcl = [] then cs else fold pcl (addconstraint) cs

let adddisjunct =

function cs ->

function pcl ->

mul cs pcl (addc)

let adddisjuncts =

function pcl ->

function cs ->

if pcl = [] then cs else fold pcl (invert adddisjunct) cs

let addconjuncts =

function pcl ->

function cs ->

if pcl = [] then cs else debox(mul [cs] pcl (adddisjunct))

let toasg =

function cs ->

map cs ( function cse ->

let pcs = filter cse (function x -> match x with | PC(_,_) -> true |
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_ -> false) in let table = map pcs (function PC(a,b) -> (a,b)) in

Assignment.newasg table

)

let preserve_truth =

function cs ->

let rec checkcse =

function cse ->

function cso ->

match cse with | PC(v,m)::css ->

if exists cso (function x -> x=NC(v,m)) then false else

if exists cso (

function x ->

match x with | PC(vv,mm) -> v=vv && mm<>m && (notSVar m &&

notSVar mm && notVar m && notVar mm) | _ -> false )

then false else checkcse css cso

| NC(v,m)::css ->

if exists cso (function x -> x=PC(v,m)) then false else checkcse

css cso

| [] -> true

in filter cs (half (checkcse))

let check =

function cs ->

cs = []

let positivize =

function pcl ->

map pcl (function x -> PC(x))

let negativize =

function pcl ->

map pcl (function x -> NC(x))

let linearize =

function cs ->

map (cs) (function x -> [x])

let sss = function l1 -> function l2 -> let cff = function

v1 -> function v2 -> match v1,v2 with | Var(nv1,(np1,ii1)),

Var(nv2,(np2,ii2)) -> (string_of_int(ii1)^nv1) > (string_of_int(ii2)^nv2) |

Var(nv1,(np1,ii1)), SVar((nv2,(np2,ii2)),_,_) -> (string_of_int(ii1)^nv1) >

(string_of_int(ii2)^nv2) | SVar((nv1,(np1,ii1)),_,_), Var(nv2,(np2,ii2))

-> (string_of_int(ii1)^nv1) > (string_of_int(ii2)^nv2) |

SVar((nv1,(np1,ii1)),_,_), SVar((nv2,(np2,ii2)),_,_) ->

(string_of_int(ii1)^nv1) > (string_of_int(ii2)^nv2)

in

match l1, l2 with | PC(v1,m1),PC(v2,m2) -> cff v1 v2 | PC(v1,m1),NC(v2,m2)

-> true | NC(v1,m1),PC(v2,m2) -> false | NC(v1,m1),NC(v2,m2) -> cff v1 v2
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let prnt =

function cs ->

print_list cs ( function cse ->

let scse = sort cse (sss) in

print_list scse ( function cc ->

match cc with | PC(Var(v),m1) -> prntMsg (Var(v)); print_string("

-> "); prntMsg m1; print_string("\n") | NC(Var(v),m1) -> prntMsg

(Var(v)); print_string(" \\> "); prntMsg m1; print_string("\n")

| PC(n1,m1) -> prntMsg (n1); print_string(" -> "); prntMsg m1;

print_string("\n") | NC(n1,m1) -> prntMsg (n1); print_string(" \\>

"); prntMsg m1; print_string("\n")

| _ -> ()

); print_string("\n")

)

let prntHtml =

function cs ->

print_list cs ( function cse ->

let scse = sort cse (sss) in

print_list scse ( function cc ->

match cc with

| PC(Var(v),m1) -> prntMsgHtml (Var(v)); print_string(" -&gt ");

prntMsgHtml m1; print_string("<br>") | NC(Var(v),m1) -> prntMsgHtml

(Var(v)); print_string(" \\&gt "); prntMsgHtml m1; print_string("<br>")

| PC(n1,m1) -> prntMsgHtml (n1); print_string(" -&gt ");

prntMsgHtml m1; print_string("<br>") | NC(n1,m1) -> prntMsgHtml

(n1); print_string(" \\&gt "); prntMsgHtml m1; print_string("<br>")

| _ -> ()

); print_string("<br>")

)

Gviz

open Node open Parsecmdline

let initgraph =

function s ->

print_string("\n/*automatically generated*/\ndigraph

"^s^"{\nconcentrate=true\n ")

let donegraph =

function () ->

print_string("\n}\n/*end of graph*/\n")
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let rec prntTrace =

function n ->

function go ->

let (ct,asg,kb) = Node.getstatus n in let id = Node.getid n in let fth =

Node.getfather n in let level = Node.getlevel n in let nodeinfo =

function () ->

print_string("\n"); print_string(string_of_int(id)^"[label=\"");

if go.actions then (

print_string("Action: "); let act = Node.getlabel n in

print_string((Action.tostring act)^"\\n\\n");

) else print_string(" ");

if go.context then (

print_string("Context:\\n------------\\n");

print_string(Context.tostring ct asg);

) else ();

if go.k then (

print_string("Knowledge:\\n------------\\n");

print_string(Knowledge.tostring kb);

) else ();

if go.asg then (

print_string("Assignment:\\n------------\\n");

print_string(Assignment.tostring asg);

) else ();

print_string("\"]\n"); print_string(string_of_int(id)^" ");

in (

if Node.isNul fth then (

print_string(string_of_int(id)); nodeinfo();

print_string(string_of_int(id)^" ")

)

else

(

prntTrace fth go; if (level<go.level ) then (

print_string("-> "^string_of_int(id)); nodeinfo()

)

else ()

)

)

let rec prntTrace2 =

function n ->

function bm ->

function go ->

let (ct,asg,kb) = Node.getstatus n in let id = Node.getid n in let

fth = Node.getfather n in let nodeinfo =

function () ->

print_string("\n"); print_string(string_of_int(id)^"[label=\"");
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if go.context then (

print_string("Context:\\n------------\\n");

print_string(Context.tostring ct asg);

) else ();

if go.k then (

print_string("Knowledge:\\n------------\\n");

print_string(Knowledge.tostring kb);

) else ();

if go.asg then (

print_string("Assignment:\\n------------\\n");

print_string(Assignment.tostring asg);

) else ();

print_string("\"]\n"); print_string(string_of_int(id)^" ");

in (

if Node.isNul fth then (

print_string(string_of_int(id)); nodeinfo();

print_string(string_of_int(id)^" ")

)

else

(

let fid = (Node.getid fth) in ( (

if (bm.(fid)) then print_string(string_of_int(fid)^" ") else

prntTrace2 fth bm go

);

print_string("-> "^string_of_int(id)); bm.(fid) <- true;

if go.actions then (

print_string("[label=\""); let act = Node.getlabel n in

print_string(Action.tostring act); print_string("\"] ")

) else print_string(" ");

nodeinfo()

) )

)

let rec prntTree =

function nls ->

function nn ->

function go ->

let bitmap = Array.make nn (false) in let rec prntTree2 =

function nl ->

match nl with | n::ns -> prntTrace2 n bitmap go;

print_string("\n"); prntTree2 ns | [] -> print_string("\n")

in prntTree2 nls
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Join

open Node open Message open Assignment open Action open Princpool open Utils

let rec iter =

function i ->

function j ->

function f ->

function en ->

if i>j then en else (f i) (iter (i+1) j f en)

let rec sum =

function i ->

function j ->

function f ->

iter i j ( compose ( f ) ( + ) ) 0

let rec cardfk =

function n ->

function k->

function i ->

if n=2 then 1 else sum 0 (k-1) (cardfk (n-1) (k-i))

let rec getinitialnodes =

function n ->

function k->

if n=2 then k+1 else sum 0 k (getinitialnodes (n-1))

let initjoin =

function pp ->

function kman ->

function thelist ->

function node ->

let nj = Node.getnj node in let k = Princpool.getmax pp in let

rec adder =

function nn ->

function cl ->

function ii ->

match cl with | x::xs -> (

let (oldct, oldasg, oldkb) = Node.getstatus nn

in let p = Princpool.getprinc pp (x-1) ii in

let name = Principal.getName p in let newkb =

(Kmanager.expandK(kman, oldkb, Assignment.void(),

Couple(PN(fst(name),snd(name)),PNp(fst(name),snd(name)))

)) in let newct = Context.add(oldct,p) in let newst =

Status.create(newct, oldasg, newkb) in if ii=1 then (

let newnode = Node.create(newst) in (

Node.setfather(newnode, node); Node.setlabel(newnode,

Join(name, Assignment.void())); adder newnode xs (ii+1)

) )
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else (

Node.setstatus(nn,newst); adder nn xs (ii+1)

)

)

| [] -> nn

in let rec decodenj =

function a ->

function b ->

let c = sum 0 (k) (cardfk (b) (k)) in if a-c <0 then (b, a)

else decodenj (a-c) (b+1)

in let rec gen =

function a ->

function l ->

if l = 0 then [] else a::(gen a (l-1))

in let rec generatelist =

function npp ->

function kk ->

if npp = 1 then (

[gen 1 kk]

)

else (

if npp = 2 then (

let tmp = ref(-1) in let base = gen 0 (kk+1) in let ttt=

map base (function x -> (tmp:=!tmp+1; !tmp)) in map ttt

(function x -> (gen 1 (kk-x))@(gen 2 x))

)

else

let part = iter 0 kk (compose (generatelist (npp-1))

( @ )) [] in map part ( function l ->

let sz = len l in l@(gen npp (kk-sz))

)

)

in let rec onecnt =

function l ->

function ix -> match l with | r::rs -> (gen ix r)@(onecnt rs

(ix+1)) | [] -> []

in if nj= -1 then Node.nulNode() else

let (oldct, oldasg, oldkb) = Node.getstatus node in if

(Context.howmany oldct=k) then (

Node.setnj(node,-1); Node.nulNode()

) else (

if (thelist = []) then (

let codelist = (generatelist (howmany pp) k) in let flag =

(nj >= (len codelist)) in if flag then (

Node.setnj(node,-1); Node.nulNode()

) else (

let sel = ( select codelist nj) in ( Node.setnj(node,nj+1);

adder node sel 1

) )

) else (

Node.setnj(node,-1); adder node (onecnt thelist 1) 1;

)

)
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let rec newAsg =

function ls ->

function ks ->

match ls with | Var(v)::vs -> Assignment.add (newAsg vs ks) (Var(v))

(K("k!"^ks,0)) | [] -> Assignment.void()

let joincontext =

function kman ->

function greed ->

function node ->

let (ct,asg,kb) = Node.getstatus node in let newlct = Context.getlist

(Context.applyall ct asg) in let kbid = Knowledge.id_of kb in let

rec closeprincipal =

function pp ->

match pp with | (a,b,v::vs,c) ->

let tasg =

if (Principal.typeOf pp v) <> SKey then (Assignment.add

(Assignment.void()) (Var(v)) (SVar(v,kbid,Name))) else

Assignment.void()

in tasg*(closeprincipal (a,b,vs,c))

| (_,_,[],_) -> (Assignment.void())

in let rec closep =

function prs ->

match prs with | pp::pps ->

let newasg = closeprincipal pp in newasg*(closep pps)

| [] -> (Assignment.void())

in let rec closeprincipalgreed =

function pp ->

match pp with | (a,b,v::vs,c) ->

let tasg =

if (Principal.typeOf pp v) <> SKey then (

let names = Knowledge.getAllNames kb in map names (function

n -> (Assignment.add (Assignment.void()) (Var(v)) (n)))

)

else [Assignment.void()]

in mul tasg (closeprincipalgreed (a,b,vs,c)) (Assignment.comp)

| (_,_,[],_) -> [(Assignment.void())]

in let rec closepgreed =

function prs ->

match prs with | pp::pps ->

let newasg = closeprincipalgreed pp in mul newasg (closepgreed

pps) (Assignment.comp)

| [] -> [Assignment.void()]

in

let rec instantiateKeys =

function part ->

match part with | x::xs ->

let nk = ref(0) in let nasg = fold x (function ls -> function

fasg -> nk:= !nk+1; ((newAsg ls (string_of_int(!nk)))*fasg))
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(Assignment.void()) in nasg::(instantiateKeys xs )

| [] -> []

in let ctasg =

if (greed) then (

let tempasg = (closepgreed newlct) in let newctg =

Context.applyall ct (head tempasg) in let (nk,vars) =

(Context.getOpenVariables newctg) in let parts = partition

(vars@(Knowledge.getIntruderVariables kb)) in let asgres

= instantiateKeys parts in let ctasgg = if (asgres = [])

then [Assignment.void()] else asgres in mul tempasg ctasgg

(Assignment.comp)

)

else(

let tempasg = (closep newlct) in let newct = Context.applyall

ct tempasg in let (nk,vars) = (Context.getOpenVariables newct)

in let parts = partition (vars@(Knowledge.getIntruderVariables

kb)) in let asgres = instantiateKeys parts in if (asgres =

[]) then [tempasg] else map asgres (Assignment.comp tempasg)

)

in let allnewct = map ctasg (function sigma -> Context.applyall

ct (asg*sigma)) in let allnewkb = map ctasg (function sigma ->

Kmanager.updateK (kman, kb, sigma)) in let allnewst = couplify

(couplify ctasg allnewct) allnewkb in let allnewnode = map allnewst (

function ((newasg,newct),newkb) ->

let newnode = Node.create(Status.create(newct, asg*newasg, newkb)

) in ( Node.setfather (newnode, node); Node.setlabel (newnode,

Join(("Close Principals",Node.getid newnode),asg*newasg)); newnode

)

) in allnewnode

let joinwithmodel =

function kman ->

function greed -> function node ->

function mdls ->

if map mdls (fst) = [] then ([]) else

let (ct,asg,kb) = Node.getstatus node in debox ( map mdls ( function

(ss,cs) ->

let newasg = asg*ss in let newst = Status.create(ct, newasg, kb)

in let newnode = Node.create(newst) in ( Node.setfather (newnode,

node); Node.setlabel (newnode, Join(("Check Component",Node.getid

newnode),ss)); map (joincontext kman greed newnode) (function

nnn -> (nnn,cs))

)

) )
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Khash

open Knowledge

type khash = (kb Weak.t) array

let rec clear =

function hsh ->

function n ->

if n= Array.length hsh then () else (Array.set hsh n (Weak.create 1);

clear hsh (n+1))

let hash =

function key ->

function hsh ->

let (f,i) = modf(0.6180339887 *. float_of_int(key)) in int_of_float(

f *. float_of_int(Array.length hsh))

let init =

function size ->

let bkt = Weak.create 1 in let hsh = Array.make (min size

(Sys.max_array_length-1)) bkt in (clear hsh 0; hsh)

let rec insertbkt =

function bkt ->

function kb ->

function n ->

if n = Weak.length bkt then (

let nbkt = Weak.create (n+1) in Weak.set nbkt n (Some(kb));

Weak.blit bkt 0 nbkt 0 n; nbkt

)

else (

if (Weak.get bkt n = None) then (Weak.set bkt n (Some(kb)); bkt)

else insertbkt bkt kb (n+1)

)

let rec getbkt =

function bkt ->

function key ->

function n ->

if n = Weak.length bkt then ( Knowledge.void()) else (

match Weak.get bkt n with | Some(kb) -> if (Knowledge.id_of kb =

key) then kb else getbkt bkt key (n+1) | None -> getbkt bkt key (n+1)

)

let insert =

function hsh ->

function kb ->

let key = Knowledge.id_of kb in let h = hash key hsh in let bkt =

Array.get hsh h in let nbkt = insertbkt bkt kb 0 in Array.set hsh h nbkt
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let get =

function hsh ->

function key ->

let h = hash key hsh in let bkt = Array.get hsh h in getbkt bkt key 0

let size =

function hsh ->

Array.fold_right (function bkt -> function mm -> max (Weak.length bkt)

mm) hsh 0

Kmanager

open Message open Assignment open Knowledge open Khash

exception NoKnowledge

type km = khash*(int ref)

let initKM =

function n -> (Khash.init n, ref(-1))

let getK =

function (kman,mid) ->

function n ->

let kb = Khash.get kman n in if Knowledge.isVoid kb then

(print_string(string_of_int(n)^"\n"); raise NoKnowledge) else kb

let newK =

function (kman,mid) ->

let newk = Knowledge.expand (Knowledge.void()) (!mid+1) (Assignment.void())

in (

Khash.insert kman newk; mid:=!mid+1; newk

)

let expandK =

function ((kman,mid),k,asg,m) ->

let newk = Knowledge.applyall (Knowledge.learn ((Knowledge.expand (k)

(!mid+1) asg),m)) asg in (

Khash.insert kman newk; mid:=!mid+1; newk;

)

let updateK =

function (kmanage,k,asg) ->

expandK (kmanage,k,asg,Bottom)
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let size =

function (kman,mid) -> Khash.size kman

Knowledge

open Message open Utils

type kb = int*(msg list)

let void =

function () -> (-1,[])

let applyall =

function (kbid,k) ->

function asg -> (kbid, map k (asg))

let expand =

function (kbid,a) ->

function n ->

function asg ->

let (ll, nk) = applyall (kbid,a) asg in (n,nk)

let get =

function (kbid,k) ->

function f -> (filter k f)

let rec scan =

function (kbid,k) ->

function p -> exists k p

let knows =

function k ->

function m ->

scan k (function mm -> mm = m)

let knowsd =

function k ->

function asg ->

function m ->

scan k (function mm -> (asg mm) = m)

let add =

function ((kbid,k), n) -> (kbid, n::k)

let addlist =

function ((kbid,k), n) -> (kbid, n@k)
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let rec getlist =

function (kbid, k) -> k

let rec getAllCrypts =

function k ->

get k (iscrypt)

let rec listfy =

function (k,ln) ->

let rec llistfy =

function n ->

(

match n with | Couple(m1, m2) -> (llistfy m1)@(llistfy m2) |

Crypt(mm, K(s,i)) when knows k (K(s,i)) -> llistfy mm | Crypt(mm,

PNp(s,p)) when knows k (PNm(s,p)) -> if (knows k (PNp(s,p)))

then llistfy mm else n::(llistfy mm) | Crypt(mm, PNm(s,p)) when

knows k (PNp(s,p)) -> if (knows k (PNm(s,p))) then llistfy mm else

n::(llistfy mm) | Crypt(mm, SVar(_,_,_)) -> llistfy mm | Crypt(mm,

Publ(SVar(_,_,_))) -> llistfy mm | Crypt(mm, Priv(SVar(_,_,_)))

-> llistfy mm | Crypt(mm,kk) when not(knows k (n)) -> [n] | K(_)

when not (knows k n) -> [n] | PNp(s,p) when not (knows k n) -> [n] |

PNm(s,p) when not (knows k n) -> [n] | NO(s,p) when not (knows k n)

-> [n] | PN(s,p) when not (knows k n) -> [n] | SVar(_,_,_) when not

(knows k n) -> [n] | Var(_) when not (knows k n) -> [n] | _ -> []

) in

match ln with | m1::ms -> (llistfy(m1))@(listfy(k,ms)) | [] -> []

let rec learn =

function (k,n) ->

if n = Bottom then k else ( let gg = remclone (listfy(k,n::(getAllCrypts

k))) (function m1 -> function m2 -> m1<>m2) in let kk = filter gg

(function m -> (match m with | Crypt(_,_) -> false | _ -> true)&&(not

(knows k m))) in let cc = filter gg (function m -> (match m with |

Crypt(_,_) -> true | _ -> false)&&(not (knows k m))) in if kk = []

then addlist(k,cc) else learn (addlist(k,kk),n)

)

let rec derives =

function k ->

function asg ->

function m ->

(match m with | Couple(m1,m2) -> (derives k (asg) m1) && (derives k

(asg) m2) | Crypt(m1,K(s,i)) -> (derives k (asg) m1) && (derives k

(asg) (K(s,i))) | Crypt(m1,PNp(a,b)) -> (derives k (asg) m1) &&

(derives k (asg) (PNm(a,b))) | Crypt(m1,PNm(a,b)) -> (derives k

(asg) m1) && (derives k (asg) (PNp(a,b))) | SVar(v,i,_) -> true |

o -> knowsd k asg o )||(knowsd k asg m)

let getIntruderVariables =

function k ->

get k (function m -> match m with | Var(_) -> true | _ -> false)
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let rec getAllNames =

function k ->

get k (isname)

let rec getRNames =

function k ->

get k (function m -> (isname m) && (knows k (toPNp m)) && (knows k

(toPNm m)))

let isRName =

function k ->

function n ->

let rn = getRNames k in exists rn (function m -> m=n)

let rec getNames =

function k ->

diff (getAllNames k) (getRNames k)

let rec getKeys =

function k ->

get k (function m -> isskey m || ismkey m || ispkey m )

let rec getSKeys =

function k ->

get k isskey

let rec getAllPKeys =

function k ->

get k ispkey

let rec getPMKeys =

function k ->

get k (function m -> (ispkey m && (knows k (compl(m)))))

let rec getPKeys =

function k ->

diff (getAllPKeys k) (getPMKeys k)

let isPMKey =

function k ->

function n ->

let rn = getPMKeys k in exists rn (function m -> toName(m)=toName(n))

let rec getAllMKeys =

function k ->

get k ismkey
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let rec getMPKeys =

function k ->

map (getPMKeys k) (function m -> compl(m))

let rec getMKeys =

function k ->

diff (getAllMKeys k) (getMPKeys k)

let rec getCrypts =

function k ->

function kk ->

if (knows k (compl(kk))) && (knows k kk) then [] else (

get k (function m ->

(match m with | Crypt(_,ss) when (ss=kk)-> true | _ -> false )

)

)

let rec getSCrypts =

function k ->

let keys = getSKeys k in let res = map keys (function kk -> getCrypts

k kk) in debox res

let rec getPCrypts =

function k ->

let keys = getPKeys k in let res = map keys (function kp -> getCrypts

k kp) in debox res

let rec getMCrypts =

function k ->

let keys = getMKeys k in let res = map keys (function km -> getCrypts

k km) in debox res

let id_of =

function (kbid,k) -> kbid

let isEmpty =

function (kbid, k) -> k=[]

let isVoid =

function (kbid, k) -> kbid= -1

let rec hasKeys =

function k ->

scan k (function m -> (isskey m) || (ispkey m) || (ismkey m))

let rec hasSKeys =

function k ->

scan k isskey



114 APPENDIX A. APPENDIX: SOURCE CODE

let rec hasPKeys =

function k ->

scan k ispkey

let rec hasMKeys =

function k ->

scan k ismkey

let rec hasNames =

function k ->

scan k isname

let rec hasPMKeys =

function k ->

scan k ( function m ->

if (ispkey m || ismkey m) then (

scan k (function mm -> mm = compl(m))

) else false

)

let rec hasRNames =

function k ->

scan k ( function m -> if isname m then (

((get k (function m1 -> m1 = toPNp m))<>[])&&((get k (function m1 ->

m1 = toPNm m))<>[])

) else false

)

let rec prntHtml =

function (kbid, k) ->

let r = ref(0) in let rec prntKb =

function ml ->

match ml with | m::xs -> Message.prntMsgHtml m; print_string(",

"); r:=!r+1; (if (!r mod 5=0) then print_string("<br>") else ());

prntKb xs | [] -> (print_string(".<br>"))

in (prntKb k)

let rec prnt =

function (kbid, k) ->

let rec prntKb =

function ml ->

match ml with | m::xs -> Message.prntMsg m; print_string("\n");

prntKb xs | [] -> (print_string(".\n"))

in (print_string("Kid: "^string_of_int(kbid)^"\n"); prntKb k)

let rec tostring =

function (kbid,k) ->

let rec prntKb =

function ml ->

match ml with | m::[] -> (Message.tostring m)^(prntKb []) | m::xs ->

(Message.tostring m)^(", ")^(prntKb xs) | [] -> (".\\n\\n")
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in ("("^string_of_int(kbid)^")"^prntKb k)

Logic

open Message open Node open Utils open Assignment

type index = string

type pls =

| Forall of index*string*pls | Exists of index*string*pls | Not of pls |

And of pls*pls | Or of pls*pls | Equal of msg*msg | Diff of msg*msg |

Derive of msg | NDerive of msg | True | False

type npls =

pls list list

let rec not_norm =

function w ->

match w with | Not(And(a,b)) -> Or(not_norm(Not(a)), not_norm(Not(b))) |

Not(Or(a,b)) -> And(not_norm(Not(a)), not_norm(Not(b))) | Not(Not(a))

-> not_norm a | Not(Equal(v,m)) -> Diff(v,m) | Not(Diff(v,m)) ->

Equal(v,m) | Not(Derive(m)) -> NDerive(m) | Not(NDerive(m)) -> Derive(m)

| Not(Forall(i,s,a)) -> Exists(i,s,not_norm(Not(a))) | Not(Exists(i,s,a))

-> Forall(i,s,not_norm(Not(a))) | Not(True) -> False | Not(False) -> True

| And(a,b) -> And(not_norm a, not_norm b) | Or(a,b) -> Or(not_norm a,

not_norm b) | Forall(i,s,a) -> Forall(i,s, not_norm a) | Exists(i,s,a)

-> Exists(i,s, not_norm a) | _ -> w

let and_or_norm =

function p ->

let i = ref(0) in let rec and_or =

function w ->

match w with | And(Or(b,c),a) | And(a,Or(b,c)) ->

let z = and_or (And(a,b)) in let v = and_or(And(a,c)) in (i:=

!i+1; Or(z,v))
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| And(a,b) ->

let v1 = !i in let c = and_or a in let v2 = !i in let d = and_or

b in if (v1 = v2 && v2 = !i) then And(c,d) else and_or (And(c,d))

| Or(a,b) -> Or(and_or a, and_or b) | _ -> w

in and_or p

let rec expand_quantifiers =

function w ->

function ct ->

let rec expand =

function is ->

function i ->

function name ->

function l ->

let rec ist =

function mm ->

match mm with | Var(n,(p,ii)) when p=is -> Var(n,(name,i))

| Publ(Var(n,(p,ii))) when p=is -> Publ(Var(n,(name,i)))

| Priv(Var(n,(p,ii))) when p=is -> Priv(Var(n,(name,i)))

| NO(n,ii) when n.[0]=’_’ ->

let pll = (String.rindex n ’_’ ) in let nl

= String.length n in let iii = (String.sub n 1

(pll-1)) in if iii=is then NO(String.sub n (pll+1)

((nl)-pll-1), i) else mm

| K(n,ii) when n.[0]=’_’ ->

let pll = (String.rindex n ’_’ ) in let nl

= String.length n in let iii = (String.sub n 1

(pll-1)) in if iii=is then K(String.sub n (pll+1)

((nl)-pll-1), i) else mm

| PN(n,ii) when n=(name^is) -> PN(name,i) | PNm(n,ii) when

n=(name^is) -> PNm(name,i) | PNp(n,ii) when n=(name^is)

-> PNp(name,i) | Couple(m1,m2) -> Couple(ist m1, ist m2)

| Crypt(m1,kk) -> Crypt(ist m1, ist kk) | _ -> mm

in match l with | And(a,b) -> And(expand is i name a,

expand is i name b) | Or(a,b) -> Or(expand is i name a,

expand is i name b) | Forall(ii,s,a) -> Forall(ii, s, expand

is i name a) | Exists(ii,s,a) -> Exists(ii, s, expand is i

name a) | Equal(v,m) -> Equal(ist v, ist m) | Diff(v,m) ->

Diff(ist v, ist m) | Derive(m) -> Derive(ist m) | NDerive(m)

-> NDerive(ist m) | _ -> l

in match w with | Forall(i,s,a) ->

let b = expand_quantifiers a ct in let ii = Context.getIndexesOf

ct s in let tt = map ii (function index -> expand i index s b)

in if ((len tt) < 2) then (if tt=[] then True else head tt)

else fold2 tt (function x -> function y -> And(x,y))

| Exists(i,s,a) ->

let b = expand_quantifiers a ct in let ii = Context.getIndexesOf

ct s in let tt = map ii (function index -> expand i index s b)

in if ((len tt) < 2) then (if tt=[] then False else head tt)

else fold2 tt (function x -> function y -> Or(x,y))

| And(a,b) -> And(expand_quantifiers a ct, expand_quantifiers b ct) |

Or(a,b) -> Or(expand_quantifiers a ct, expand_quantifiers b ct) | _ -> w
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let rec listfy =

function pl ->

let rec listfyAnd =

function pa ->

match pa with | And(a,b) -> (listfyAnd a)@(listfyAnd b) | _ -> [pa]

in let rec listfyOr =

function po ->

match po with | Or(a,b) -> (listfyOr a)@(listfyOr b) | And(_,_) ->

[listfyAnd po] | _ -> [[po]]

in listfyOr pl

let rec prnt =

function p ->

match p with | Forall(i,n,pl) -> (print_string("{FA "^i^":"^n^"| "); prnt

pl; print_string("}")) | Exists(i,n,pl) -> (print_string("{EX "^i^":"^n^"|

"); prnt pl; print_string("}")) | Not(pl) -> (print_string("[not ");

prnt pl; print_string("]")) | And(pl1,pl2) -> (print_string("{"); prnt

pl1; print_string(" and "); prnt pl2; print_string("}")) | Or(pl1,pl2)

-> (print_string("["); prnt pl1; print_string(" or "); prnt pl2;

print_string("]")) | Equal(v,m) -> (print_string("("); prntMsg v;

print_string(" = "); prntMsg m; print_string(")")) | Derive(m) ->

(print_string("( K :> "); prntMsg m; print_string(")")) | Diff(v,m)

-> (print_string("("); prntMsg v; print_string(" <> "); prntMsg m;

print_string(")")) | NDerive(m) -> (print_string("( K !:> "); prntMsg

m; print_string(")")) | True -> (print_string(" T ")) | False ->

(print_string(" F "))

let rec prntHtml =

function p ->

match p with | Forall(i,n,pl) -> (print_string("Forall

"^n^"<sub>"^i^"</sub>: "); prntHtml pl) | Exists(i,n,pl) ->

(print_string("Exists "^n^"<sub>"^i^"</sub>: "); prntHtml pl) | Not(pl)

-> (print_string("not "); prntHtml pl) | And(pl1,pl2) -> (prntHtml pl1;

print_string(" and "); prntHtml pl2) | Or(pl1,pl2) -> (prntHtml pl1;

print_string(" or "); prntHtml pl2) | Equal(v,m) -> (prntMsgHtml v;

print_string(" = "); prntMsgHtml m) | Derive(m) -> (print_string("K :&gt

"); prntMsgHtml m) | Diff(v,m) -> (prntMsgHtml v; print_string(" &lt &gt

"); prntMsgHtml m) | NDerive(m) -> (print_string("K !:&gt "); prntMsgHtml

m) | True -> (print_string(" T ")) | False -> (print_string(" F "))

let prntnplHtml =

function pln->

print_list pln ( function ll ->

print_list ll ( function pll -> prntHtml pll; print_string("<br>")

); print_string("<br>")

)

let prntnpl =

function pln->

print_list pln ( function ll ->
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print_list ll ( function pll -> prnt pll; print_string("\n")

); print_string("\n")

)

let rec normalize =

function p ->

function node ->

let checkequality =

function a1 ->

function a2 ->

let rec compare =

function l1 ->

function l2 ->

match (l1) with | ll::ls ->

if exists l2 (function y -> y=ll) then compare ls l2

else false

| [] -> true

in if (len a1) = (len a2) then (

(compare a1 a2) && (compare a2 a1)

)

else false

in let (ct,asg,k) = Node.getstatus node in let ttt =

and_or_norm(expand_quantifiers (not_norm p) ct) in let res = remclone

(listfy ttt) (function x -> function y -> not (checkequality x y)) in res

let rec concretize =

function pl ->

function asg ->

let subst =

function y ->

map y (function z ->

match z with | Equal(v,m) -> Equal(asg v, asg m) | Diff(v,m) ->

Diff(asg v, asg m) | Derive(m) -> Derive(asg m) | NDerive(m) ->

NDerive(asg m) | _ -> z

)

in map pl (function x -> subst x)

let getatoms = function n1 -> function n2 -> let ttt = couplify n1 n2 in

let res = map ttt (

function (a,b) ->

let trr= couplify a b in let atoms = filter trr (function (a1, a2) ->

a2=False && (a1<>False)) in map atoms (fst) ) in remclone (debox res) (<>)

Message

type pname = string*int type variable = string*pname type svtype =

| Gen | GenR | SKey | Name | RName | PMKey | MPKey
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type msg =

| K of string*int | PN of string*int | PNp of string*int | PNm of string*int

| NO of string*int

| Var of variable | BVar of variable | SVar of variable*int*svtype

| Crypt of msg*msg | Couple of msg*msg | Publ of msg | Priv of msg |

Bottom | Trick of (msg*msg) list

let setVariable ((name,index),(namevar,(namep, indexp))) =

(namevar,(name,index))

let notSVar =

function m ->

match m with | SVar(_,_,_) -> false | _ -> true

let notVar =

function m ->

match m with | Var(_) -> false | _ -> true

let compl =

function kk ->

match kk with | K(_) -> kk | PNp(s,p) -> PNm(s,p) | PNm(s,p) -> PNp(s,p)

| _ -> Bottom

let toName =

function

| PNp(p,i) -> PN(p,i) | PNm(p,i) -> PN(p,i) | _ -> Bottom

let toPNp =

function

| PN(p,i) -> PNp(p,i) | _ -> Bottom

let toPNm =

function

| PN(p,i) -> PNm(p,i) | _ -> Bottom

let isKey =

function k ->

match k with | K(_) | PNp(_,_) | PNm(_,_) | Var(_) | SVar(_,_,_) |

Publ(Var(_)) | Priv(Var(_)) | Publ(SVar(_)) | Priv(SVar(_)) -> true |

_ -> false

let isGroundKey =

function k ->

match k with | K(_) | PNp(_,_) | PNm(_,_) -> true | _ -> false

let rec checkmsg =

function m ->

match m with | Crypt(m1,k) -> (checkmsg m1)&&isKey(k) | Couple(m1,m2) ->

(checkmsg m1)&&(checkmsg m2) | Publ(K(_)) | Publ(PNp(_)) | Publ(PNm(_))

| Priv(K(_)) | Priv(PNp(_)) | Priv(PNm(_)) -> false | _ -> true
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let rec isBinding =

function (m,v) ->

match m with | Couple(m1,m2) -> isBinding(m1,v)||isBinding(m2,v) |

Crypt(m1,_) -> isBinding(m1,v) | BVar(var) -> Var(var)=v | _ -> false

let prntVar =

function (s,(a,i)) -> print_string(s^"_"^a^"_"^string_of_int(i))

let prntVarHtml =

function (s,(a,i)) -> print_string(s^"<sub>"^string_of_int(i)^"</sub>")

let tostringVar =

function (s,(a,i)) -> (s^"_"^a^"_"^string_of_int(i))

let rec prntVarlist =

function vs -> match vs with | x::y::xs -> prntVar x; print_string(",

"); prntVarlist (y::xs) | x::[] -> prntVar x | [] -> ()

let rec prntVarlistHtml =

function vs -> match vs with | x::y::xs -> prntVarHtml x; print_string(",

"); prntVarlistHtml (y::xs) | x::[] -> prntVarHtml x | [] -> ()

let rec tostringVarList =

function vs -> match vs with | x::y::xs -> (tostringVar x)^",

"^(tostringVarList (y::xs)) | x::[] -> tostringVar x | [] -> ""

let rec prntMsgHtml =

function s ->

match s with | (K(m,i)) ->

print_string(m^"<sub>"^string_of_int(i)^"</sub>") | (PN(s,i)) ->

print_string(s^"<sub>"^string_of_int(i)^"</sub>") | (PNp(s,i)) ->

print_string(s^"<sub>"^string_of_int(i)^"</sub>"^"<sup>+</sup>")

| (PNm(s,i)) ->

print_string(s^"<sub>"^string_of_int(i)^"</sub>"^"<sup>-</sup>") |

(NO(s,i)) -> print_string (s^"<sub>"^string_of_int(i)^"</sub>") |

Crypt(m1,m2) -> (print_string "{";prntMsgHtml m1; print_string

"}"; print_string "<sub>"; prntMsgHtml m2; print_string

"</sub>") | Couple(m1,m2) -> (prntMsgHtml m1; print_string ",";

prntMsgHtml m2;) | (Var(s,(a,i))) | (BVar(s,(a,i))) -> prntVarHtml

(s,(a,i)) | (SVar((s,(a,i)),n, Gen)) -> ((prntVarHtml (s,(a,i)));

print_string("(K:"^string_of_int(n)^":*)")) | (SVar((s,(a,i)),n, GenR)) ->

((prntVarHtml (s,(a,i))); print_string("(K:"^string_of_int(n)^":*r)"))

| (SVar((s,(a,i)),n, SKey)) -> ((prntVarHtml (s,(a,i)));

print_string("(K:"^string_of_int(n)^":sk)")) | (SVar((s,(a,i)),n, Name)) ->

((prntVarHtml (s,(a,i))); print_string("(K:"^string_of_int(n)^":n"))

| (SVar((s,(a,i)),n, RName)) -> ((prntVarHtml (s,(a,i)));

print_string("(K:"^string_of_int(n)^":nr)")) | (SVar((s,(a,i)),n, MPKey))

-> ((prntVarHtml (s,(a,i))); print_string("(K:"^string_of_int(n)^":mp)"))

| (SVar((s,(a,i)),n, PMKey)) -> ((prntVarHtml (s,(a,i)));

print_string("(K:"^string_of_int(n)^":pm)")) | Publ(Var(v)) ->
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(prntVarHtml v; print_string("<sup>+</sup>")) | Priv(Var(v)) ->

(prntVarHtml v; print_string("<sup>-</sup>")) | Publ(SVar(v,i,t))

-> (prntMsgHtml(SVar(v,i,t)); print_string("<sup>+</sup>"))

| Priv(SVar(v,i,t)) -> (prntMsgHtml(SVar(v,i,t));

print_string("<sup>-</sup>")) | Publ(nn) -> (prntMsgHtml(nn);

print_string("<sup>+</sup>")) | Priv(nn) -> (prntMsgHtml(nn);

print_string("<sup>-</sup>")) | Bottom -> print_string(".") | Trick(_)

-> print_string("Trick")

let rec prntMsg =

function s ->

match s with | (K(m,i)) -> print_string(m^"_"^string_of_int(i)) |

(PN(s,i)) -> print_string(s^"_"^string_of_int(i)) | (PNp(s,i))

-> print_string(s^"_"^string_of_int(i)^"+") | (PNm(s,i)) ->

print_string(s^"_"^string_of_int(i)^"-") | (NO(s,i)) -> print_string

(s^"_"^string_of_int(i)) | Crypt(m1,m2) -> (print_string "{";prntMsg

m1; print_string "}"; prntMsg m2) | Couple(m1,m2) -> (prntMsg m1;

print_string ","; prntMsg m2;) | (Var(s,(a,i))) | (BVar(s,(a,i))) ->

prntVar (s,(a,i)) | (SVar((s,(a,i)),n, Gen)) -> ((prntVar (s,(a,i)));

print_string("(K:"^string_of_int(n)^":gen)")) | (SVar((s,(a,i)),n, GenR))

-> ((prntVar (s,(a,i))); print_string("(KR:"^string_of_int(n)^":gen)"))

| (SVar((s,(a,i)),n, SKey)) -> ((prntVar (s,(a,i)));

print_string("(K:"^string_of_int(n)^":skey)")) | (SVar((s,(a,i)),n, Name))

-> ((prntVar (s,(a,i))); print_string("(K:"^string_of_int(n)^":name)"))

| (SVar((s,(a,i)),n, RName)) -> ((prntVar (s,(a,i)));

print_string("(K:"^string_of_int(n)^":rname)")) |

(SVar((s,(a,i)),n, MPKey)) -> ((prntVar (s,(a,i)));

print_string("(K:"^string_of_int(n)^":mpkey)")) |

(SVar((s,(a,i)),n, PMKey)) -> ((prntVar (s,(a,i)));

print_string("(K:"^string_of_int(n)^":pmkey)")) | Publ(Var(v))

-> (prntVar v; print_string("+")) | Priv(Var(v)) -> (prntVar v;

print_string("-")) | Publ(SVar(v,i,t)) -> (prntMsg(SVar(v,i,t));

print_string("+")) | Priv(SVar(v,i,t)) -> (prntMsg(SVar(v,i,t));

print_string("-")) | Publ(nn) -> (prntMsg(nn); print_string("+")) |

Priv(nn) -> (prntMsg(nn); print_string("-")) | Bottom -> print_string(".")

| Trick(_) -> print_string("Trick")

let rec tostring =

function s ->

match s with | (K(m,i)) -> (m^"_"^string_of_int(i)) | (PN(s,i))

->(s^"_"^string_of_int(i)) | (PNp(s,i)) -> (s^"_"^string_of_int(i)^"+")

| (PNm(s,i)) -> (s^"_"^string_of_int(i)^"-") | (NO(s,i)) ->

(s^"_"^string_of_int(i)) | Crypt(m1,m2) -> "{"^(tostring m1)^"}"^(tostring

m2) | Couple(m1,m2) -> ((tostring m1)^","^(tostring m2)) | (Var(s,(a,i)))

| (BVar(s,(a,i))) -> tostringVar (s,(a,i)) | (SVar((s,(a,i)),n,Gen))

-> ((tostringVar (s,(a,i)))^("(KG:"^string_of_int(n)^")"))

| (SVar((s,(a,i)),n,GenR)) -> ((tostringVar

(s,(a,i)))^("(KRG:"^string_of_int(n)^")")) | (SVar((s,(a,i)),n,SKey))

-> ((tostringVar (s,(a,i)))^("(KSK:"^string_of_int(n)^")"))

| (SVar((s,(a,i)),n,Name)) -> ((tostringVar

(s,(a,i)))^("(KN:"^string_of_int(n)^")")) | (SVar((s,(a,i)),n,RName))

-> ((tostringVar (s,(a,i)))^("(KRN:"^string_of_int(n)^")"))

| (SVar((s,(a,i)),n,PMKey)) -> ((tostringVar

(s,(a,i)))^("(KPM:"^string_of_int(n)^")")) | (SVar((s,(a,i)),n,MPKey)) ->
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((tostringVar (s,(a,i)))^("(KMP:"^string_of_int(n)^")")) | Publ(Var(v))

-> (tostringVar v)^("+") | Priv(Var(v)) -> (tostringVar v)^("-") |

Publ(SVar(v,i,t)) -> (tostring(SVar(v,i,t))^"+") | Priv(SVar(v,i,t)) ->

(tostring(SVar(v,i,t))^"-") | Publ(nn) -> (tostring(nn)^"+") | Priv(nn) ->

(tostring(nn)^"-") | Bottom -> (".") | Trick(_) -> ("Trick")

let rec hasntFreeVar =

function m ->

let rec checkall =

function mm ->

match mm with | Couple(m1,m2) -> (checkall m1) && checkall(m2)

| Crypt(m1, kk) when isGroundKey kk-> (checkall m1) | Crypt(m1,

Var(v)) | Crypt(m1, Publ(Var(v))) | Crypt(m1, Priv(Var(v))) ->

(checkall m1)&&isBinding(m,Var(v)) | Var(_) -> false | Publ(Var(_))

-> false | Priv(Var(_)) -> false | _ -> true

in checkall m

let ispkey =

function m ->

match m with | PNp(_,_) -> true | _ -> false

let ismkey =

function m ->

match m with | PNm(_,_) -> true | _ -> false

let isskey =

function m ->

match m with | K(_) -> true | _ -> false

let isname =

function m ->

match m with | PN(_,_) -> true | _ -> false

let iscrypt =

function m ->

match m with | Crypt(_,_) -> true | _ -> false

let mintype =

function (t1,t2) ->

let tval =

function t ->(

match t with | Gen -> 4 | GenR -> 3 | Name -> 1 | SKey -> 1 | RName ->

0 | _ -> -1)

in if tval(t1)>tval(t2) then t2 else t1

let comparable =

function (t1,t2) ->

((t1<>Name && t1<>RName)||(t2<>SKey))&& ((t2<>Name &&

t2<>RName)||(t1<>SKey))

let rec typeOfVar =

function m ->
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function v ->

match m with | Couple(m1,m2) ->

mintype(typeOfVar m1 v, typeOfVar m2 v)

| Crypt(m1, Var(vv)) when v=vv -> SKey | Publ(Var(vv)) when v=vv -> Name

| Priv(Var(vv)) when v=vv -> Name | Crypt(m1, Publ(Var(vv))) when vv=v

-> Name | Crypt(m1, Priv(Var(vv))) when vv=v -> Name | Crypt(m1, kk) ->

mintype(typeOfVar m1 v, typeOfVar kk v)

| _ -> Gen

Node

open Status open Principal open Message open Assignment open Process open

Action

type redex = principal*action*principal

type noderecord = {

mutable status: status; mutable numprinc: int; mutable numjoin: int;

mutable father: node; mutable label: action; mutable redextable: redex

list; mutable jointable: action list; mutable closed: bool; mutable

inorout: bool; mutable joining: bool; mutable nsons: int; mutable id:

int; mutable level: int

} and node = NulNode | Node of noderecord

let kid = ref(0)

let create =

function st -> kid:=!kid+1;

let nn = {

status = st; numprinc = 0; numjoin = 0; father = NulNode; label =

NoMoreAct; redextable = []; jointable = []; closed = false; inorout =

true; joining = true; nsons = 0; id = !kid; level = 0;

} in Node(nn)

let setstatus =

function Node(nn),stl -> nn.status <- stl

let setlabel =

function Node(nn),lbl -> nn.label <- lbl

let settable =

function Node(nn),rll -> nn.redextable <- rll

let setjoins =

function Node(nn),jjr -> nn.jointable <- jjr

let addson =

function Node(nn) ->
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nn.nsons <- (nn.nsons+1)

let setnd =

function Node(nn),npp -> nn.numprinc <- npp

let setnj =

function Node(nn),njj -> nn.numjoin <- njj

let close =

function Node(nn) -> nn.closed <- true

let setIn =

function Node(nn) -> nn.inorout <- false

let setJn =

function Node(nn) -> nn.joining <- false

let getlevel =

function Node(nn) -> (nn.level)

let setfather =

function Node(nn),fth -> (

nn.father <- fth; nn.level <- ((getlevel fth)+1); addson fth

)

let getlabel =

function Node(nn) -> (nn.label)

let getfather =

function Node(nn) -> (nn.father)

let getnd =

function Node(nn) -> (nn.numprinc)

let getnj =

function Node(nn) -> (nn.numjoin)

let getstatus =

function Node(nn) -> (nn.status)

let gettable =

function Node(nn) -> (nn.redextable)

let getjoins =

function Node(nn) -> (nn.jointable)

let getSons =

function Node(nn) -> (nn.nsons)
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let getRedex =

function Node(nn) ->

match (nn.redextable) with | x::xs -> (nn.redextable <- xs; x) |

[] when (nn.closed) -> (("",0,[],Nil),Closed,("",0,[],Nil)) | [] ->

(("",0,[],Nil),NoMoreAct,("",0,[],Nil))

let getJoin =

function Node(nn) ->

match (nn.jointable) with | x::xs -> (nn.jointable <- xs; x) | [] when

nn.closed -> (Closed) | [] -> (NoMoreAct)

let getid =

function Node(nn) -> nn.id

| _ -> -1

let isNul =

function NulNode -> true

| Node (_) -> false

let isOut =

function NulNode -> true

| Node (nn) -> nn.inorout

let isJn =

function NulNode -> true

| Node (nn) -> nn.joining

let isLeaf =

function NulNode -> false

| Node (nn) -> (nn.nsons = 0)

let nulNode =

function () -> NulNode

let isTerminal =

function Node(nn) -> Status.isTerminal (nn.status)

let isPartiallyTerminated =

function Node(nn) -> Status.isPartiallyTerminated (nn.status)

let rec prntT =

function ll ->

match ll with | [] -> print_string("\n"); | (p1,Input(pp,m,s),p2)::ls -> (

print_string("Input <"); prntMsg (s m); print_string(">\n"); prntT ls

)

| (p1,Output(pp,m,s),p2)::ls -> (

print_string("Output <"); prntMsg (s m); print_string(">\n"); prntT ls

)
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let rec prntJ =

function ll ->

match ll with | [] -> print_string("\n"); | (Join(p,s))::ls -> (

print_string("Join <"); print_string(fst(p)^"_"^string_of_int(snd(p)));

print_string(">\n"); prntJ ls

)

let prnt =

function Node(nn) ->

(

print_string("\n---------------------------------\nAction: ");

Action.prnt (nn.label); print_string("\n ||\n ||\n \\/\n");

print_string("\n-----\nNode: id="^string_of_int(nn.id)^"

lev="^string_of_int(nn.level)^"\n-----\nSon

of:"^string_of_int(getid(nn.father))^"\n"); Status.prnt (nn.status)

) | NulNode -> print_string("\nNode: NULNODE\n")

Parsecmdline

type graphopt = {

mutable context: bool; mutable actions: bool; mutable k: bool;

mutable asg: bool; mutable level: int;

}

type options = {

mutable output_type: int; mutable attack_type: int; mutable pr_file:

string; mutable pl_file: string; mutable pj_file: string; mutable kb_file:

string; mutable trace_terminal: bool; mutable go: graphopt; mutable errmsg:

string; mutable help: bool; mutable max_princ: int; mutable interactive:

bool; mutable feedback: bool; mutable lazyness: bool; mutable mga:bool;

mutable ic: int list; mutable greed: bool;

}

let init_options =

function () ->

let t = { output_type = -1;

attack_type = 0; pr_file = ""; pl_file = ""; pj_file = "";

kb_file = ""; trace_terminal = false; go = { actions = false;

k = false; asg = false; context = false; level = 16384;

};

errmsg = ""; help = false; max_princ = 0; interactive =

false; feedback = false; lazyness = true; mga = false; ic =

[]; greed = false;

} in t

let initgo =

function n ->

function lev -> {

context = (n >= 8); actions = (n mod 8 >= 4); k = (n mod 4 >= 2 ); asg =
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(n mod 2 = 1); level = lev;

}

let parsecmdline =

function argv ->

function opts ->

let i = ref(1) in let n = Array.length argv in let rec parse =

function () ->

if !i<n then (

match argv.(!i) with | "-T" -> (opts.output_type <- 0; i:= !i+1;

parse()) | "-G" ->

opts.output_type <- 1; if (!i+1<n) then (

try (

let mm = int_of_string(argv.(!i+1)) in (opts.go <-

initgo mm opts.go.level; i:=!i+2; parse())

) with _ -> (opts.errmsg <- "-G requires numeric option")

)

else (opts.errmsg <- "-G requires numeric option")

| "-l" ->

if (!i+1<n) then (

try (

let mm = int_of_string(argv.(!i+1)) in (opts.go.level <-

mm; i:=!i+2; parse())

) with _ -> (opts.errmsg <- "-l requires numeric option")

)

else (opts.errmsg <- "-G requires numeric option")

| "-V" -> (opts.output_type <- 2; i:= !i+1; parse()) |

"-L" -> (opts.attack_type <- 1; i:= !i+1; parse()) | "-H" ->

(opts.attack_type <- 2; i:= !i+1; parse()) | "-h" | "--help" ->

(opts.help <- true; i:= !i+1; parse()) | "-lazy" -> (opts.lazyness

<- false; i:= !i+1; parse()) | "-mga" -> (opts.mga <- true; i:=

!i+1; parse()) | "-t" | "--terminal" -> (opts.trace_terminal

<- true; i:= !i+1; parse()) | "--interactive" | "-i" ->

(opts.interactive <- true; i:= !i+1; parse()) | "--feedback" |

"-f" -> (opts.feedback <- true; i:= !i+1; parse()) | "-g" |

"--greed" ->(opts.greed <- true; i:= !i+1; parse())

| "-s" | "--session"->

if (!i+1<n) then (

let rec roles =

function () ->

try (

let mm = int_of_string(argv.(!i+1)) in (opts.ic <-

mm::(opts.ic); i:=!i+1); roles();

) with _ -> i:=!i+1

in roles(); parse(); )

else (opts.errmsg <- "number of roles in a session required")

| "-max" | "-nprinc" ->

if (!i+1<n) then (

try (
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let mm = int_of_string(argv.(!i+1)) in (opts.max_princ <-

mm ; i:=!i+2; parse())

) with _ -> (opts.errmsg <- "number of principal in a

session required")

)

else (opts.errmsg <- "number of principal in a session

required")

| s ->

if (opts.pr_file = "") then (opts.pr_file <- s; i:=!i+1;

parse()) else

if (opts.pl_file = "") then (opts.pl_file <- s; i:=!i+1;

parse()) else

if (opts.pj_file = "") then (opts.pj_file <- s; i:=!i+1;

parse()) else

if (opts.kb_file = "") then (opts.kb_file <- s;

i:=!i+1; parse()) else (opts.errmsg <- "don’t know

what to do with "^s)

) else ()

in parse()

let synopsis =

function flag ->

print_string("\nUsage: tool principals logic join knowledge [-GVT]

[-max nprinc] [-if]\n\n"); if flag then (

print_string("\n -T: Output is text representing the set of traces");

print_string("\n -G param: Output is a GraphViz compliant file

representing state space tree"); print_string("\n param: a numeric

value [0..15] specifing what to print. See manual"); print_string("\n

-V: Enable verification of formula. Output is the description of

attacks");

print_string("\n -t, --terminal: with -T prints out terminal

traces only"); print_string("\n -i, --interactive: with -V asks for

continuation after the discovery of an attack"); print_string("\n -f,

--feedback: prints on stderr info on search status");

print_string("\n -h, --help: print this help");

print_string("\n")

) else ()

let htmlinit =

function () ->

print_string("<html><body>")

let htmldone =

function () ->

print_string("</body></html>")
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Parser

open Tokenizer open Message open Principal open Process

type pars =

| Pexp of process | Dot | Plp | Ino of msg | Outo of msg | Sumo | Paro | End

exception ParseError exception CantReduce

let errOK = 0;;

let errCOMMENT_NOT_OPENED = 1;; let

errCOMMENT_NOT_CLOSED = 2;; let errUNKNOWN_TOKEN

= 3;; let errMISSING_OPENING_ROUND_PAR =

4;; let errMISSING_CLOSING_ROUND_PAR =

5;; let errMISSING_OPENING_SQUARE_PAR =

6;; let errMISSING_CLOSING_SQUARE_PAR = 7;;

let errMISSING_OPENING_CURLY_PAR = 8;; let

errMISSING_CLOSING_CURLY_PAR = 9;; let errMISSING_COMMA

= 10;; let errMISSING_SEMICOLON = 11;; let

errMISSING_COLON = 12;; let errEXPECTED_IDE

= 13;; let errUNEXPECTED_TOKEN = 14;; let errWRONG_KEY

= 15;; let errWRONG_VAR = 16;; let

errMALFORMED_EXPR = 17;; let errUPPERCASE_PRINCIPAL

= 18;; let errBINDING_VARIABLE_AS_A_KEY = 19;;

let errorString = Array.create 20 "";; errorString.(errOK) <-

"Ok.";; errorString.(errCOMMENT_NOT_OPENED) <- "Comment not

opened";; errorString.(errCOMMENT_NOT_CLOSED) <- "Comment

not closed";; errorString.(errUNKNOWN_TOKEN) <- "Unknown

token";; errorString.(errMISSING_OPENING_ROUND_PAR) <-

"Missing (";; errorString.(errMISSING_CLOSING_ROUND_PAR) <-

"Missing )";; errorString.(errMISSING_OPENING_SQUARE_PAR) <-

"Missing [";; errorString.(errMISSING_CLOSING_SQUARE_PAR) <-

"Missing ]";; errorString.(errMISSING_OPENING_CURLY_PAR) <-

"Missing {";; errorString.(errMISSING_CLOSING_CURLY_PAR) <-

"Missing }";; errorString.(errMISSING_COMMA) <- "Missing

,";; errorString.(errMISSING_SEMICOLON) <- "Missing ;";;

errorString.(errMISSING_COLON) <- "Missing :";; errorString.(errEXPECTED_IDE)

<- "Identifier expected";; errorString.(errUNEXPECTED_TOKEN) <- "Unexpected

token";; errorString.(errWRONG_KEY) <- "Wrong key";; errorString.(errWRONG_VAR)

<- "Wrong variable";; errorString.(errMALFORMED_EXPR) <- "Malformed

expression";; errorString.(errUPPERCASE_PRINCIPAL) <- "Principal name should

be uppercase";; errorString.(errBINDING_VARIABLE_AS_A_KEY) <- "A binding

variable cannot occur as a key";;

let whereError =

function () -> "

("^(string_of_int(fst(where())))^","^(string_of_int(snd(where())))^")"
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let errorCode = ref(0) let errorData = ref ("") let errorMsg =

function () -> "ER"^string_of_int(!errorCode)^": "^errorString.(!errorCode)^"

"^(!errorData)^" "^whereError()^"\n"

let putError =

function (code, s) -> errorData:= s; errorCode:=code

let getErrorMsg = function () -> errorMsg() let getErrorCode = function ()

-> !errorCode

let isUpper =

function s ->

let isUp =

function ch ->

match ch with | ’A’..’Z’ -> true | _ -> false

in let rec isU =

function (s, i, m) ->

if (i<m) then

if isUp(s.[i]) then isU(s, i+1, m) else false

else true

in isU(s,0, String.length s)

let rec ignoreComment =

function () ->

let a = getToken() in match a with | LSym("*") ->

let b = getToken() in if b=LSym("/") then () else (pushback(b);

ignoreComment())

| LStop -> (raise ParseError) | _ -> ignoreComment()

let rec readToken =

function () ->

let a = getToken() in match a with | LSym("/") ->

let b = getToken() in if b=LSym("/") then (flushline(); readToken())

else

if b=LSym("*") then ((let ss = whereError() in try (ignoreComment())

with ParseError -> putError(errCOMMENT_NOT_CLOSED,ss)); readToken())

else (pushback(b); a)

| LSym("*") ->

let b = getToken() in if b=LSym("/") then

(putError(errCOMMENT_NOT_OPENED,""); raise ParseError) else

(pushback(b); a)

| LUnknown(a) -> (putError(errUNKNOWN_TOKEN,""); raise ParseError) | _ -> a

let rec getMsg =

function () ->

let p1 = readToken() in if p1<>LSym("(") then

(putError(errMISSING_OPENING_ROUND_PAR,""); raise ParseError) else

let ms = getMessage() in let p2 = readToken() in if p2<>LSym(")") then

( putError(errMISSING_CLOSING_ROUND_PAR,""); raise ParseError) else ms
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and getMessage =

function() ->

let a = readToken() in match a with | LSym("(") -> getCouple() | LSym("{")

-> getCrypt() | LSym("?") -> (

let y=getVal() in match y with | (Var(s,(a,b))) -> (BVar(s,(a,b))) |

Publ(v) | Priv(v) -> (putError(errBINDING_VARIABLE_AS_A_KEY,""); raise

ParseError) | _ -> (putError(errUNKNOWN_TOKEN,""); raise ParseError)

)

| LIde(v) -> pushback(a); getVal() | _ -> (putError(errUNKNOWN_TOKEN,"");

raise ParseError)

and getCouple =

function () ->

let m1 = getMessage() in let v1 = readToken() in if v1<>LSym(",") then

(putError(errMISSING_COMMA,""); raise ParseError) else

let m2 = getMessage() in let v2 = readToken() in if v2<>LSym(")")

then (putError(errMISSING_CLOSING_ROUND_PAR,""); raise ParseError)

else Couple(m1,m2)

and getCrypt =

function () ->

let m1 = getMessage() in let v1 = readToken() in if v1<>LSym("}") then

(putError(errMISSING_CLOSING_CURLY_PAR,""); raise ParseError) else

let k1 = getVal() in Crypt(m1,k1)

and getVal =

function () ->

let a = readToken() in match a with | LIde(s) when isUpper(s) -> (

let k = readToken() in match k with | LSym("+") -> (PNp(s,0)) |

LSym("-") -> (PNm(s,0)) | LSym(c) -> pushback(k); (PN(s,0)) | _

->(putError(errWRONG_KEY,""); raise ParseError)

)

| LIde(s) -> (

if s.[0] = ’n’ then (NO(s,0)) else

if s.[0] = ’k’ then (K(s,0)) else (

let k = readToken() in match k with | LSym("+") ->

Publ(Var(s,("",0))) | LSym("-") -> Priv(Var(s,("",0))) | LSym(c)

-> pushback(k); (Var(s,("",0))) | _ ->(putError(errWRONG_VAR,"");

raise ParseError)

)

)

| _ -> (putError(errEXPECTED_IDE,""); raise ParseError);;

let reducer =

function (stack, pr) ->

match stack with | Ino(m)::st -> Pexp(In(m,Nil))::st |

Outo(m)::st -> Pexp(Out(m,Nil))::st | Pexp(e)::Dot::Outo(m1)::st ->

Pexp(Out(m1,e))::st | Pexp(e)::Dot::Ino(m1)::st -> Pexp(In(m1,e))::st

| Pexp(e1)::Sumo::Pexp(e2)::st -> Pexp(Sum(e2,e1))::st |

Pexp(e1)::Paro::Pexp(e2)::st when pr<>Sumo -> Pexp(Par(e2,e1))::st | _

-> raise CantReduce;;

let rec parseExp =

function (tok, stack) ->



132 APPENDIX A. APPENDIX: SOURCE CODE

match (tok, stack) with | LIde("in"), _ -> let ms = getMsg() in

Ino(ms)::stack | LIde("out"), _ -> let ms = getMsg() in Outo(ms)::stack

| LSym("."), _ -> Dot::stack | LSym("+"), _ -> (try parseExp (tok,

reducer(stack, Sumo)) with CantReduce -> Sumo::stack) | LSym("|"), _ ->

(try parseExp (tok, reducer(stack, Paro)) with CantReduce -> Paro::stack)

| LSym("("), _ -> Plp::stack | LSym(")"), Pexp(e)::Plp::st -> Pexp(e)::st

| LSym(")"), _ -> parseExp (tok, reducer(stack, Dot)) | LSym("]"), _ ->

End::stack | _ -> putError(errUNKNOWN_TOKEN,""); raise ParseError;;

let rec reduce_all =

function stack ->

match stack with

| [Pexp(e)] -> e | [] ->

(putError(errMISSING_SEMICOLON,"");Nil) | _ ->

reduce_all ( reducer (stack, Dot));;

let rec parser =

function stack ->

let a = readToken() in (match a with | LStop -> [] | _ ->

let ss = parseExp (a, stack) in let c = List.hd ss in if c=End

then stack else parser ss

);;

let parseName =

function () ->

let a = readToken() in match a with | LIde(n) when isUpper(n) -> (

let s = readToken() in if s<>LSym(":") then

(putError(errMISSING_COLON,""); raise ParseError) else n

)

| _ -> (putError(errUPPERCASE_PRINCIPAL,""); raise ParseError);;

let rec parseVariables =

function () ->

let p1 = readToken() in if p1<>LSym("(") then

(putError(errMISSING_OPENING_ROUND_PAR,""); raise ParseError) else

let vs = parseVars([]) in let p2 = readToken() in if p2<>LSym(")") then

(putError(errMISSING_CLOSING_ROUND_PAR,""); raise ParseError) else vs

and parseVars =

function ll ->

let a = readToken() in match (a,ll) with | (LSym(")"), _) -> pushback(a);

ll | (LIde(s), _ ) -> (

let a2 = readToken() in if (a2<> LSym(",") && a2<>LSym(")") )

then (putError(errUNEXPECTED_TOKEN,""); raise ParseError) else

(pushback(a2); parseVars(ll@[(s,("",0))]))

)

| (LSym(","), l::ls) -> (

let a2 = readToken() in match a2 with | LIde(j) -> (pushback(a2);

parseVars(ll)) | _ -> (putError(errUNEXPECTED_TOKEN,""); raise

ParseError)

)

| _ -> (putError(errUNEXPECTED_TOKEN,""); raise ParseError);;
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let parsePrincipal =

function () ->

let (fl1, name) = (try ((true,parseName())) with ParseError -> (false,""))

in if not fl1 then Principal.create("",-1, [], Nil) else

let (fl2,vars) = (try ((true,parseVariables())) with ParseError ->

(false,[])) in if not fl2 then Principal.create("",-1, [], Nil) else

let p1 = readToken() in if p1<>LSym("[") then

(putError(errMISSING_OPENING_SQUARE_PAR,""); Principal.create("",-1,

[], Nil)) else

let (fl3,ex) = (

try ((true, reduce_all (parser []))) with | CantReduce ->

(putError(errMALFORMED_EXPR,""); (false,Nil)) | ParseError ->

(false, Nil)

)

in if fl3 then

let p2 = readToken() in if p2<>LSym(";") then

(putError(errMISSING_SEMICOLON,""); Principal.create("",-1,

[], Nil)) else (putError(errOK,""); Principal.create(name, 0,

vars, ex))

else Principal.create("",-1, [], Nil)

let more_parsing =

function () ->

let a = readToken() in (pushback(a); a <> LStop)

let init_parser =

function fname -> init_tokenizer(fname);;

let done_parser =

function () -> done_tokenizer();;

Pl parser

open Tokenizer open Message open Logic

type pars =

| Pexp of pls | PNot | PAnd | POr | Impl | DImpl | Fa of string*string

| Ex of string*string | Plp | Token of string | End

exception ParseError exception CantReduce

let errOK = 0;;

let errCOMMENT_NOT_OPENED = 1;; let

errCOMMENT_NOT_CLOSED = 2;; let errUNKNOWN_TOKEN

= 3;; let errMISSING_OPENING_ROUND_PAR =

4;; let errMISSING_CLOSING_ROUND_PAR = 5;; let
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errMISSING_SEMICOLON = 6;; let errMISSING_COLON

= 7;; let errMISSING_DOT = 8;; let

errEXPECTED_IDE = 9;; let errUNEXPECTED_TOKEN

= 10;; let errWRONG_KEY = 11;; let

errWRONG_VAR = 12;; let errMALFORMED_EXPR

= 13;; let errUPPERCASE_PRINCIPAL = 14;; let

errMISSING_VARIABLE = 15;; let errMISSING_COMMA

= 16;; let errMISSING_OPENING_CURLY_PAR = 17;; let

errMISSING_CLOSING_CURLY_PAR = 18;; let errMISSING_INDEX

= 19;;

let errorString = Array.create 20 "";; errorString.(errOK) <-

"Ok.";; errorString.(errCOMMENT_NOT_OPENED) <- "Comment not

opened";; errorString.(errCOMMENT_NOT_CLOSED) <- "Comment

not closed";; errorString.(errUNKNOWN_TOKEN) <- "Unknown

token";; errorString.(errMISSING_OPENING_ROUND_PAR) <-

"Missing (";; errorString.(errMISSING_CLOSING_ROUND_PAR) <-

"Missing )";; errorString.(errMISSING_OPENING_CURLY_PAR) <-

"Missing {";; errorString.(errMISSING_CLOSING_CURLY_PAR) <-

"Missing }";; errorString.(errMISSING_SEMICOLON) <- "Missing ;";;

errorString.(errMISSING_COLON) <- "Missing :";; errorString.(errMISSING_DOT)

<- "Missing .";; errorString.(errMISSING_COMMA) <- "Missing

,";; errorString.(errEXPECTED_IDE) <- "Identifier expected";;

errorString.(errUNEXPECTED_TOKEN) <- "Unexpected token";;

errorString.(errWRONG_KEY) <- "Wrong key";; errorString.(errWRONG_VAR) <-

"Wrong variable";; errorString.(errMALFORMED_EXPR) <- "Malformed expression";;

errorString.(errUPPERCASE_PRINCIPAL) <- "Principal name should be uppercase";;

errorString.(errMISSING_VARIABLE) <- "Missing variable in equality";;

errorString.(errMISSING_INDEX) <- "Missing index";;

let whereError =

function () -> "

("^(string_of_int(fst(where())))^","^(string_of_int(snd(where())))^")"

let errorCode = ref(0) let errorData = ref ("") let errorMsg =

function () -> "ER"^string_of_int(!errorCode)^": "^errorString.(!errorCode)^"

"^(!errorData)^" "^whereError()^"\n"

let putError =

function (code, s) -> errorData:= s; errorCode:=code

let getErrorMsg = function () -> errorMsg() let getErrorCode = function ()

-> !errorCode

let isUpper =

function s ->

let isUp =



135

function ch ->

match ch with | ’A’..’Z’ -> true | ’_’ -> true | _ -> false

in let rec isU =

function (s, i, m) ->

if (i<m) then

if isUp(s.[i]) then isU(s, i+1, m) else false

else true

in isU(s,0, String.length s)

let rec ignoreComment =

function () ->

let a = getToken() in match a with | LSym("*") ->

let b = getToken() in if b=LSym("/") then () else (pushback(b);

ignoreComment())

| LStop -> (raise ParseError) | _ -> ignoreComment()

let rec readToken =

function () ->

let a = getToken() in match a with | LSym("/") ->

let b = getToken() in if b=LSym("/") then (flushline(); readToken())

else

if b=LSym("*") then ((let ss = whereError() in try (ignoreComment())

with ParseError -> putError(errCOMMENT_NOT_CLOSED,ss)); readToken())

else (pushback(b); a)

| LSym("*") ->

let b = getToken() in if b=LSym("/") then

(putError(errCOMMENT_NOT_OPENED,""); raise ParseError) else

(pushback(b); a)

| LUnknown(a) -> (putError(errUNKNOWN_TOKEN,""); raise ParseError) | _ -> a

let getName =

function () ->

let a = readToken() in let b = readToken() in match a,b with |

LIde(n), LSym(".") when isUpper(n) -> n | LIde(n), LSym(".") ->

(putError(errUPPERCASE_PRINCIPAL,""); raise ParseError) | LIde(n),

_ -> (putError(errMISSING_DOT,""); raise ParseError) | _ ->

(putError(errUNEXPECTED_TOKEN,""); raise ParseError)

let getIndex =

function () ->

let a = readToken() in match a with | LIde(n) ->

let b = readToken() in if b<>LSym(":") then

(putError(errMISSING_COLON,""); raise ParseError) else n

| _ -> (putError(errUNEXPECTED_TOKEN,""); raise ParseError);;

let getIndexedDatum =

let getNum =

function st -> try (int_of_string(st)) with _ -> -1

in let splitName =

function ws ->

let sl = String.length ws in let pl = (try ((String.rindex ws
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’_’ )) with Not_found -> -1) in if (pl = -1 || pl=sl-1) then

(putError(errMISSING_INDEX,""); raise ParseError) else (pl, String.sub

ws 0 pl, String.sub ws (pl+1) (sl-pl-1))

in function s ->

let nl = String.length s in let (pos, n, i) = splitName(s) in let im =

String.sub s (pos+1) (nl-pos-2) in if (isUpper(n)) then (

match s.[nl-1] with | ’+’ ->(

let vi = getNum(im) in if vi<> -1 then PNp(n,vi) else PNp(n^im,0)

)

| ’-’ ->(

let vi = getNum(im) in if vi<> -1 then PNm(n,vi) else PNm(n^im,0)

)

| _ ->(

let vi = getNum(i) in if vi<> -1 then PN(n,vi) else PN(n^i,0)

)

)

else (

if (s.[0]<>’n’ && s.[0]<>’k’) then (

match s.[nl-1] with | ’+’ ->(

let vi = getNum(im) in if vi<> -1 then (

let (x, nn, np) = splitName(n) in Publ(Var(nn,(np,vi)))

)

else Publ(Var(n,(im,0)))

)

| ’-’ ->(

let vi = getNum(im) in if vi<> -1 then (

let (x, nn, np) = splitName(n) in Priv(Var(nn,(np,vi)))

)

else Priv(Var(n,(im,0)))

)

| _ ->(

let vi = getNum(i) in if vi<> -1 then (

let (x, nn, np) = splitName(n) in Var(nn,(np,vi))

)

else Var(n,(i,0))

)

)

else (

let vi = getNum(i) in if vi<> -1 then (

if (s.[0]=’k’) then K(n,vi) else NO(n,vi)

)

else (

if (s.[0]=’k’) then K("_"^i^"_"^n,0) else NO("_"^i^"_"^n,0)

)

)

)

let getVar =

function s ->

match getIndexedDatum(s) with | Var(p) -> Var(p) | PN(p,i) -> PN(p,i)

| _ -> (putError(errWRONG_VAR,""); raise ParseError)
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let rec getMessage =

function() ->

let a = readToken() in match a with | LSym("(") -> getCouple() |

LSym("{") -> getCrypt() | LIde(v) -> (pushback(a); getVal()) | _ ->

(putError(errUNEXPECTED_TOKEN,""); raise ParseError)

and getCouple =

function () ->

let m1 = getMessage() in let v1 = readToken() in if v1<>LSym(",") then

(putError(errMISSING_COMMA,""); raise ParseError) else

let m2 = getMessage() in let v2 = readToken() in if v2<>LSym(")")

then (putError(errMISSING_CLOSING_ROUND_PAR,""); raise ParseError)

else Couple(m1,m2)

and getCrypt =

function () ->

let m1 = getMessage() in let v1 = readToken() in if v1<>LSym("}") then

(putError(errMISSING_CLOSING_CURLY_PAR,""); raise ParseError) else

let k1 = getVal() in Crypt(m1,k1)

and getVal =

function () ->

let a = readToken() in match a with | LIde(s) -> (

let k = readToken() in match k with | LSym("+") ->

getIndexedDatum(s^"+") | LSym("-") -> getIndexedDatum(s^"-") | _ ->

(pushback(k); getIndexedDatum(s))

)

| _ -> (putError(errEXPECTED_IDE,""); raise ParseError);;

let pvalue =

function p ->

match p with | PNot -> 0 | PAnd | POr -> 1 | Impl -> 2 | DImpl -> 2 |

Fa(i,n) -> 3 | Ex(i,n) -> 3 | _ -> -1

let reducer =

function (stack, pr) ->

match stack with | Pexp(e)::PNot::st -> Pexp(Not(e))::st |

Pexp(e1)::PAnd::Pexp(e2)::st when pvalue(pr)>=pvalue(PAnd)

-> Pexp(And(e2,e1))::st | Pexp(e1)::POr::Pexp(e2)::st

when pvalue(pr)>=pvalue(POr) -> Pexp(Or(e2,e1))::st |

Pexp(e1)::Impl::Pexp(e2)::st when pvalue(pr)>=pvalue(Impl) ->

Pexp(Or(Not(e2),e1))::st | Pexp(e1)::DImpl::Pexp(e2)::st when

pvalue(pr)>=pvalue(DImpl) -> Pexp(Or(And(Not(e2),Not(e1)),And(e1,e2)))::st

| Pexp(e)::Fa(i,n)::st when pvalue(pr)>=pvalue(Fa(i,n))

-> Pexp(Forall(i,n,e))::st | Pexp(e)::Ex(i,n)::st when

pvalue(pr)>=pvalue(Ex(i,n)) -> Pexp(Exists(i,n,e))::st | _ -> raise

CantReduce;;

let rec parseExp =

function (tok, stack) ->

match (tok, stack) with | LIde("true"), _ -> Pexp(True)::stack |

LIde("false"), _ -> Pexp(False)::stack | LIde("forall"), _ ->
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let n = getName() in let i = getIndex() in Fa(i,n)::stack

| LIde("exists"), _ ->

let n = getName() in let i = getIndex() in Ex(i,n)::stack

| LSym("&"), _ | LIde("and"), _ -> (try parseExp (tok, reducer(stack,

PAnd)) with CantReduce -> PAnd::stack) | LSym("|"), _ | LIde("or"), _ ->

(try parseExp (tok, reducer(stack, POr)) with CantReduce -> POr::stack) |

LSym("=>"), _ | LIde("implies"), _ -> (try parseExp (tok, reducer(stack,

Impl)) with CantReduce -> Impl::stack) | LSym("<=>"), _ | LIde("iff"),

_ -> (try parseExp (tok, reducer(stack, DImpl)) with CantReduce ->

DImpl::stack) | LSym("!"), _ | LIde("not"), _ -> PNot::stack | LSym(":>"),

_ | LIde("derive"), _ -> let ms = getMessage() in Pexp(Derive(ms))::stack

| LSym("="), Token(s)::st | LIde("equal"), Token(s)::st -> let ms =

getMessage() in Pexp(Equal(getVar(s),ms))::st | LSym("<>"), Token(s)::st

-> let ms = getMessage() in Pexp(Diff(getVar(s),ms))::st

| LIde(s), _ -> Token(s)::stack

| LSym("("), _ -> Plp::stack | LSym(")"), Pexp(e)::Plp::st -> Pexp(e)::st

| LSym(")"), _ -> parseExp (tok, reducer(stack, Fa("",""))) | LSym(";"),

_ -> End::stack | LStop, _ -> (putError(errMISSING_SEMICOLON,""); raise

ParseError) | _ -> putError(errUNKNOWN_TOKEN,""); raise ParseError;;

let rec reduce_all =

function stack ->

match stack with

| [Pexp(e)] -> e | [] ->

(putError(errMISSING_SEMICOLON,""); raise ParseError)

| _ -> reduce_all ( reducer (stack, Fa("","")));;

let rec parser =

function stack ->

let a = readToken() in let d =

(match a with | LSym("=") ->

(let b = readToken() in if b<>LSym(">") then (pushback(b); a)

else LSym("=>"))

| LSym(":") ->

(let b = readToken() in if b<>LSym(">") then (pushback(b); a)

else LSym(":>"))

| LSym("<") ->

(let b = readToken() in if (b=LSym(">")) then LSym("<>") else if

(b<>LSym("=")) then (pushback(b); a) else (

let c = readToken() in if (c=LSym(">")) then LSym("<=>") else

(pushback(c); LSym("<="))

)

)

| _ -> a) in

let ss = parseExp (d, stack) in let c = List.hd ss in if c=End then

stack else parser ss;;

let parseFormula =

function () ->
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let (f,ff) =

try (true, reduce_all (parser [])) with | CantReduce ->

(putError(errMALFORMED_EXPR,""); (false,False)) | ParseError ->

(false, False)

in if f then ff else False

let rec parseKb =

function () ->

let m = getMessage() in let a = readToken() in match a with

| LSym(",") -> m::(parseKb()) | LSym(";") -> [m] | _ ->

(putError(errMISSING_SEMICOLON,""); raise ParseError)

let init_parser =

function fname -> init_tokenizer(fname);;

let done_parser =

function () -> done_tokenizer();;

Principal

open Process open Message open Utils

type principal = string*int*(variable list)*process

let create =

function (name, index, vlist, expr) ->

let rec updateVars =

function ls ->

match ls with | x::xs -> setVariable((name,index),x)::(updateVars xs)

| [] -> []

in let rec updateMsg =

function m ->

match m with | Couple(m1,m2) -> Couple(updateMsg m1, updateMsg

m2) | Crypt(m1,m2) -> Crypt(updateMsg m1, updateMsg m2) |

(Var(v)) -> (Var(setVariable((name,index),v))) | (BVar(v))

-> (BVar(setVariable((name,index),v))) | Publ(Var(v)) ->

Publ(Var(setVariable((name,index),v))) | Priv(Var(v)) ->

Priv(Var(setVariable((name,index),v))) | (NO(s,p)) -> (NO(s,index))

| (PNp(s,p)) -> (PNp(s,index)) | (PNm(s,p)) -> (PNm(s,index)) |

(PN(s,p)) -> (PN(s,index)) | (K(s,i)) -> (K(s,index)) | o -> o

in let rec updateExpr =

function e ->

match e with | Par(e1,e2) -> Par(updateExpr e1, updateExpr e2)

| Sum(e1,e2) -> Sum(updateExpr e1, updateExpr e2) | In(m,e1) ->

In(updateMsg m, updateExpr e1) | Out(m,e1) -> Out(updateMsg m,

updateExpr e1) | Nil -> Nil

in (name, index, updateVars vlist, updateExpr expr)
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let check =

function (pn,pi,pv,pp) ->

Process.validate pp

let substitute =

function asg ->

function (pn,pi,pv,pp) ->

let rec subvar =

function vv ->

match vv with | v::vs -> if (asg (Var(v)))<>Var(v) then subvar vs

else v::(subvar vs) | [] -> []

in (pn,pi, subvar pv, Process.substitute asg pp)

let typeOf =

function (pn,pi,pv,pp) ->

function v ->

let rec findtype =

function pr ->

match pr with | In(m,e) ->

let tt = (typeOfVar m v) in if tt = Gen then findtype e else tt

| Out(m,e) ->

let tt = (typeOfVar m v) in if tt = Gen then findtype e else tt

| Par(e1,e2) ->

let tt1 = findtype e1 in let tt2 = findtype e2 in

mintype(tt1,tt2)

| Sum(e1,e2) ->

let tt1 = findtype e1 in let tt2 = findtype e2 in

mintype(tt1,tt2)

| Nil -> Gen

in if exists pv (function vv -> v=vv) then findtype pp else Gen

let isConsumed =

function (_,_,v,e) -> (e=Nil && v=[])

let getName =

function (n,i,_,_) -> (n,i)

let getVars =

function (_,_,vs,_) -> map vs (function v -> Var(v))

let len =

function (_,_,_,e) -> Process.len e

let prnt =

function p ->

function asg ->

let (name, index, vlist, expr) = substitute asg p in (

print_string(name^"_"^string_of_int(index)^": "); print_string("(");

Message.prntVarlist vlist; print_string(") ["); Process.prnt (expr);

print_string("]")

)
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let prntHtml =

function p ->

function asg ->

let (name, index, vlist, expr) = substitute asg p in (

print_string(name^"<sub>"^string_of_int(index)^"</sub>: ");

print_string("("); Message.prntVarlist vlist; print_string(") [");

Process.prntHtml (expr); print_string("]")

)

let tostring =

function p ->

function asg ->

let (name, index, vlist, expr) = substitute asg p in

(""^name^"_"^string_of_int(index)^": (")^((Message.tostringVarList

vlist)^") ["^(Process.tostring (expr))^"]")

Princpool

open Utils open Principal

exception NoMorePrinc

type ppool = (principal list) * int

let create = function p -> function n -> (p,n)

let getmax =

function (pp,max) -> max

let howmany =

function (pp,max) -> Utils.len pp

let getprinc =

function (pp,max) -> function n -> function i ->

if i>max then raise NoMorePrinc else

try (

let (name,index,vlist,e) = select pp n in

Principal.create (name, i, vlist, e)

) with UtilException -> raise NoMorePrinc

Process

open Message open Assignment
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exception SubstitutionException

type process =

| In of msg*process | Out of msg*process | Sum of process*process |

Par of process*process | Nil

let rec substitute =

function asg ->

function e ->

match e with

| Par(e1, e2) -> Par(substitute (asg)

e1, substitute (asg) e2) | Sum(e1, e2) ->

Sum(substitute (asg) e1, substitute (asg) e2)

| In(m,e1) -> In(asg m, substitute (asg) e1)

| Out(m,e1) -> Out(asg m, substitute (asg)

e1) | Nil -> Nil

let rec validate =

function e ->

match e with

| Par(e1, e2) | Sum(e1, e2) -> (validate e1)&&(validate

e2) | In(m,e1) | Out(m,e1) -> (validate e1)&&(checkmsg

m) | Nil -> true

let rec len =

function e ->

match e with

| Par(e1, e2) -> (len e1) + (len e2) | Sum(e1, e2) ->

let l1 = len e1 in let l2 = len e2 in

if (l1>l2) then l1 else l2

| In(m,e1) | Out(m,e1) -> 1+(len e1) | Nil -> 0

let rec tostring =

function s ->

match s with | In(m,Nil) -> ("In(")^(Message.tostring m)^")" | Out(m,Nil)

-> ("Out(")^(Message.tostring m)^")" | In(m,e) -> ("In(")^(Message.tostring

m)^")."^(tostring e) | Out(m,e) -> ("Out(")^(Message.tostring

m)^")."^(tostring e) | Sum(e1,e2) -> "("^(tostring e1)^" + "^(tostring

e2)^")" | Par(e1,e2) -> ("(")^(tostring e1)^" | "^(tostring e2)^")" |

Nil -> ""

let rec prnt =

function s ->

match s with | In(m,Nil) -> print_string(("In(")^(Message.tostring m)^")")

| Out(m,Nil) -> print_string(("Out(")^(Message.tostring m)^")") | In(m,e)

-> print_string(("In(")^(Message.tostring m)^")."^(tostring e)) | Out(m,e)

-> print_string(("Out(")^(Message.tostring m)^")."^(tostring e)) |

Sum(e1,e2) -> print_string("("^(tostring e1)^" + "^(tostring e2)^")") |

Par(e1,e2) -> print_string(("(")^(tostring e1)^" | "^(tostring e2)^")")

| Nil -> ()

let rec prntHtml =

function s ->
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match s with | In(m,Nil) -> print_string(("<i>in</i>("));

prntMsgHtml m; print_string (")") | Out(m,Nil) ->

print_string(("<i>out</i>(")); prntMsgHtml m; print_string (")") | In(m,e)

-> print_string(("<i>in</i>(")); prntMsgHtml m; print_string (").");

prntHtml e | Out(m,e) -> print_string(("<i>out</i>(")); prntMsgHtml m;

print_string (")."); prntHtml e | Sum(e1,e2) -> print_string("(");

prntHtml e1; print_string(" + "); prntHtml e2; print_string(")") |

Par(e1,e2) -> print_string("("); prntHtml e1; print_string(" | ");

prntHtml e2; print_string(")") | Nil -> ()

Status

open Context open Assignment open Knowledge open Message

type status = context*assignment*kb

let create =

function (ct, asg, k) -> (ct, asg, k)

let isTerminal =

function (ct,asg,k) -> (Context.isEmpty ct)&&(not (Assignment.isVoid

asg))

let isPartiallyTerminated =

function (ct,asg,k) -> (Context.hasEmptyPrincipal ct)&&(not

(Assignment.isVoid asg))

let prnt =

function (ct,asg,kb) ->

print_string("Status:\n{\nContext:\n"); Context.prnt ct

asg; print_string("\nAssignment:\n"); Assignment.prnt

asg; print_string("\nKnowledge:\n"); Knowledge.prnt kb;

print_string("\n}\n")

Step

open Node open Context open Status open Process open Principal open Message

open Assignment open Utils open Action open Core

let findPrincipalRedexes =

function kman ->

function k ->

function asg ->
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function e ->

function act ->

function chs ->

let rec expand =

function rds ->

function ex -> (

match rds with | [] -> [] | (a,(nm, ii, vlist, expr))::xs

when expr=Nil -> (a,(nm, ii, vlist, ex))::(expand xs ex)

| (a,(nm, ii, vlist, expr))::xs -> (a,(nm, ii, vlist,

Par(expr,ex)))::(expand xs ex)

)

in let rec scan =

function exp ->

match exp with | Par(e1,e2) ->

let re1 = scan e1 in let re2 = scan e2 in (expand re1

e2) @ (expand re2 e1)

| Sum(e1,e2) ->

let re1 = scan e1 in let re2 = scan e2 in re1@re2

| Nil -> [] | ee when chs(ee) -> (act ee e kman k asg) |

_ -> []

in let (nm,ii,vlist,expr) = e in scan expr

let lazyaction =

function e ->

function p ->

function kman ->

function k ->

function asg ->

let ll = l kman asg in let mm = mu kman k in let (nm,ii,vlist,expr)

= p in match e with | In(m,e1) ->

(

let jjj = [] (*llazy k asg m m*) in let jjf = filter jjj

(function s -> try (Principal.check (Principal.substitute

s p)) with _ -> false) in let zzz = if jjf=[] then

[Assignment.void()] else jjf in let rrr = debox (map zzz

(function s -> let ls = ll (s m) in mul [s] ls (function

a -> function b -> a * b))) in let nss = if rrr = []

then [Assignment.void()] else rrr in let res = (map nss

(function sigma -> mm (sigma) (sigma m))) in let mlm

= rebuild nss res (function sigma -> function (m1,a)

->(Input(((nm,ii),m1,sigma*a)),(nm, ii, vlist, e1))) in

remclone mlm (function (x,p1) -> function (mes,p2) -> not

(Action.equal x mes))

)

| Out(m,e1) ->

(

let jjj = [] in let jjf = filter jjj (function s -> try

(Principal.check (Principal.substitute s p)) with _ ->

false) in let rrr = if jjf=[] then [Assignment.void()] else

jjf in let res = debox (map rrr (function s -> let ls = ll

(s m) in mul [s] ls (function a -> function b -> a * b)))

in let trr = map res (function sigma -> (Output(((nm,ii),m,
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sigma)),(nm, ii, vlist, e1))) in remclone trr (function

(x,p1) -> function (mes,p2) -> not (Action.equal x mes))

)

let isOUT =

function x ->

match x with | Out(_) -> true | _ -> false

let isIN =

function x ->

match x with | In(_) -> true | _ -> false

let getRedex =

function node ->

let np = Node.getnd node in Node.getRedex node

let generatelazyRedexesOut =

function kman ->

function k ->

function asg ->

function ct ->

function np ->

let op = (Context.getprincipal (ct, np)) in let pp =

Principal.substitute asg op in map (((findPrincipalRedexes kman k

(asg) pp lazyaction isOUT))) (function (b,c) -> (op,b,c))

let generatelazyRedexesIn =

function kman ->

function k ->

function asg ->

function ct ->

function np ->

let op = (Context.getprincipal (ct, np)) in let pp =

Principal.substitute asg op in map (((findPrincipalRedexes kman k

(asg) pp lazyaction isIN))) (function (b,c) -> (op,b,c))

let rec transition =

function frout ->

function frin ->

function kman ->

function node ->

let (oldct, oldasg, oldkb) = Node.getstatus node in let nd =

Node.getnd node in if nd = -1 then Node.nulNode() else

(

let red = getRedex node in match red with | (_, Closed, _) ->

(Node.setnd (node,-1); Node.nulNode()) | (_, NoMoreAct, _) -> (

if (nd<(Context.howmany oldct)&&(Node.isOut node)) then (

Node.setnd (node,nd+1); let outs = frout kman oldkb oldasg

oldct (nd+1) in if outs = [] then (

if (nd+1 = (Context.howmany oldct)) then (

Node.setnd(node,0); Node.setIn node

) else ();

transition frout frin kman node
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)

else (

Node.close node; Node.settable (node, (outs)); transition

frout frin kman node

)

)

else

if (nd<(Context.howmany oldct)&&( not (Node.isOut node)))

then (

Node.setnd (node,nd+1); let ins = frin kman oldkb oldasg

oldct (nd+1) in (

Node.settable (node, (ins)); transition frout frin

kman node

)

)

else (

Node.setnd (node,-1); Node.nulNode()

)

)

| (p1, Output(ppn,m,sigma), p2) -> (

let newasg = oldasg * sigma in let newct = Context.applyall

(oldct ++ (p1, (Principal.substitute newasg p2))) newasg in

let newkb = (Kmanager.expandK(kman, oldkb, newasg, sigma m))

in let newst = Status.create(newct, newasg, newkb) in let

newnode = Node.create(newst) in ( Node.setfather (newnode,

node); Node.setlabel (newnode, Output(ppn,m,sigma)); newnode)

)

| (p1, Input(ppn,m,sigma), p2) -> (

let newasg = oldasg * sigma in let newct = Context.applyall

(oldct ++ (p1, (Principal.substitute newasg p2))) newasg

in let newkb = Kmanager.updateK(kman,oldkb,newasg) in let

newst = Status.create(newct, newasg, newkb) in let newnode

= Node.create(newst) in ( Node.setfather (newnode, node);

Node.setlabel (newnode, Input(ppn,m,sigma)); newnode)

)

)

let getTransitionFunction =

function km ->

transition generatelazyRedexesOut generatelazyRedexesIn km

Thestack

open Utils

exception StackException type ’a stack = ’a list

let init =

function bottom -> [bottom]
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let push =

function ns -> function n ->

n::ns

let pushl =

function ns -> function nl -> nl@ns

let pushlr =

function ns -> function nl -> reverse(nl)@ns

let pop =

function ns ->

if ns=[] then raise StackException else tail ns

let top =

function ns ->

if ns=[] then raise StackException else head ns

let isEmpty =

function ns ->

ns = []

let length =

function ns -> len ns;

Tokenizer

type ltok =

| LIde of string | LSym of string | LEnd | LStop | LUnknown of char;;

type lbuf = string*(int ref)*int;;

let forward buf = match buf with

| (s,n,sz) -> n:= !n+1;;

let nextIs = fun (ch, (s,n,sz)) ->

if !n=sz-1 then false else ch=s.[!n+1];;

let getIde buf = let (s,n,sz) = buf in

let rec cntIde l = if l=sz then l

else(

match s.[l] with

| ’A’..’Z’ | ’a’..’z’ | ’0’..’9’ | ’_’ ->

cntIde (l+1) | _ -> l

)

in let k = cntIde !n

in let res = String.sub s !n (k - !n)

in (n:=k; res);;

let rec gettok buf =

let analyze ch = (
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match ch with

| ’ ’ | ’\t’ | ’\n’ -> (forward buf; gettok buf) |

’A’..’Z’ | ’a’..’z’ | ’0’..’9’ -> LIde(getIde buf)

| ’(’ | ’)’ | ’.’ | ’|’ | ’+’ | ’{’ | ’}’ | ’,’ |

’?’ | ’;’ | ’-’ | ’:’ | ’[’ | ’]’ | ’&’ | ’|’ |

’>’ | ’=’ | ’<’ | ’!’ | ’/’ | ’*’ -> (forward

buf; LSym(String.make 1 ch)) | _ -> (forward buf;

LUnknown(ch))

)

in match buf with

| (s,n,sz) when !n<sz-> analyze s.[!n] | (s,n,sz) -> LEnd;;

let prnt h = match h with

| LIde(s) -> print_string ("-->"^s^"\n") | LSym(s) ->

print_string ("-->"^s^"\n") | LEnd -> print_string ("fine\n") |

LStop -> print_string ("stop\n") | LUnknown(c) -> print_string

("Unknown:"^(String.make 1 c)^"\n");;

let mainbuf = ref(("",ref(0),0));; let chan = ref(stdin);; let cline = ref(0);;

let init_tokenizer fname = chan:= (open_in fname);; let done_tokenizer =

fun () -> close_in !chan;;

let flushline = fun () ->

let nline = try (input_line !chan) with End_of_file -> "\n" in

if (nline="\n") then (cline:=!cline+1; mainbuf:= (nline,

ref(0), -1)) else (cline:=!cline+1; mainbuf:= (nline, ref(0),

String.length nline));;

let rec getToken = function () ->

let res = gettok !mainbuf

in match res with

| LEnd -> (

flushline(); let (nline,n,sz) = !mainbuf in

if sz<> -1 then getToken() else LStop

)

| _ -> res;;

let pushback s = match s with

| LIde(k) | LSym(k) -> let (ss, p, nn) = !mainbuf in

mainbuf:=(ss,ref(!p-String.length k), nn) | _ -> ();;

let where = fun () -> let (nline,n,sz) = !mainbuf in (!cline,!n);;

Tracer

open Message open Principal open Kmanager open Node open Parsecmdline open

Logic open Step open Utils open Thestack open Action open Verifier open
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Csolver open Join

exception StopSearch exception AttackFound exception NextTrace

type ss = {

mutable bfm: float; mutable maxbf: int; mutable minbf: int; mutable

len_traces: int list; mutable son_traces: float list;

mutable initial_nodes: int; mutable current_node: int; mutable

closed_nodes: int; mutable transitions: int; mutable num_nodes: int;

mutable num_traces: int; mutable num_terminal_traces: int; mutable

num_attacks: int;

mutable root_node: node; mutable startnodes: node list; mutable startjoins:

(node * cs) list list; mutable startpls: npls list; mutable joinpls:

npls list;

mutable kman: km; mutable trans: node -> node; mutable init: node ->

node; mutable join: node -> (node) list; mutable opts: options;

mutable jointime: float; mutable searchtime: float; mutable verifytime:

float; mutable elapsed: float;

mutable vflag: bool;

}

let init_search =

function prns ->

function kbl ->

function options ->

let ct = Context.void() in let asg = Assignment.void() in let kmanage

= Kmanager.initKM (Sys.max_array_length) in let kb1 = (Kmanager.newK

kmanage) in let pool = Princpool.create (prns) options.max_princ in

let transition = getTransitionFunction kmanage in let initjoinfn =

initjoin pool kmanage options.ic in let joinmodel = joincontext

kmanage options.greed in let kb = (Kmanager.expandK(kmanage, kb1,

asg,( fold2 kbl (function a -> function b -> Couple(a,b)) )))

in let st = Status.create(ct,asg,kb) in let root = Node.create(st)

in let current_status = {

bfm = 0.0; maxbf = 0; minbf = 0; len_traces = []; son_traces = [];

initial_nodes = getinitialnodes (len prns) (options.max_princ);

current_node = 0; closed_nodes = 0; transitions = 0; num_nodes

= 0; num_traces = 0; num_terminal_traces = 0; num_attacks = 0;

root_node = root; startnodes = []; startjoins = []; startpls =

[]; joinpls = []; kman = kmanage; trans = transition; init =

initjoinfn; join = joinmodel; opts = options; jointime = 0.0;

searchtime = 0.0; verifytime = 0.0; elapsed = 0.0; vflag = false;

} in current_status

let format_time =

function time ->

let hour = int_of_float(ceil time) / 3600 in let min = (int_of_float(ceil

time) - (hour * 3600)) / 60 in let sec = (int_of_float(ceil time)
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- (3600*hour + 60*min)) in if (hour < 0) then ("infinity") else

(string_of_int(hour)^":"^string_of_int(min)^":"^string_of_int(sec))

let rec prntTrace =

function ss ->

function nn ->

if Node.isNul(nn) then print_string("\n-------\n Trace

("^string_of_int(ss.num_traces)^")|<<---------------------------|\n-------\n\n")

else

let np = Node.getfather nn in (

prntTrace ss (np); Node.prnt nn

)

let rec build_intruder =

function nn ->

function aaaa ->

let ff = Node.getfather nn in if Node.isNul(ff) then

print_string("Intruder:\n") else (

build_intruder ff aaaa; let acc = Node.getlabel nn in match acc with |

Output((nm,ii),mm,s) -> print_string(nm^"_"^string_of_int(ii)^" ->

I: ");prntMsg (aaaa mm); print_string("\n") | Input((nm,ii),mm,s)

-> print_string("I -> "^nm^"_"^string_of_int(ii)^": ");prntMsg

(aaaa mm); print_string("\n") | _ -> ()

)

let rec build_intruder_html =

function nn ->

function aaaa ->

let ff = Node.getfather nn in if Node.isNul(ff) then () else (

build_intruder_html ff aaaa; let acc = Node.getlabel nn in match

acc with | Output((nm,ii),mm,s) ->

print_string(nm^"<sub>"^string_of_int(ii)^"</sub> -&gt <b>I</b>:

"); prntMsgHtml (aaaa mm); print_string("<br>")

| Input((nm,ii),mm,s) ->

print_string("<b>I</b> -> "^nm^"<sub>"^string_of_int(ii)^"</sub>:

"); prntMsgHtml (aaaa mm); print_string("<br>")

| _ -> ()

)

let calcexpect =

function ss ->

let i = ref(-1) in let vals = map (ss.len_traces) (function lt ->

i:=!i+1; if !i < ss.current_node then 0.0 else (select ss.son_traces

!i) *. (ss.bfm ** (float_of_int(lt) ))) in fold vals (function en ->

function ctot -> en +. ctot) (float_of_int(ss.num_nodes))

let calcbf =

function ss ->

function ns ->

if ns>(ss.maxbf) then ss.maxbf <- ns else (); if

ns<(ss.minbf)||(ss.minbf=0) then ss.minbf <- ns else (); ss.transitions

<- ss.transitions+ns; ss.closed_nodes <- ss.closed_nodes+1; ss.bfm <-
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(float_of_int(ss.transitions)) /. (float_of_int(ss.closed_nodes))

let feedback =

function ss ->

if (ss.opts.feedback) then(

let expect = calcexpect ss in let perc = (100.0

*. (float_of_int(ss.num_nodes) /. expect)) in let tm = Sys.time()

-. ss.searchtime in let time = ((tm *. 100.0) /. perc) -. tm

in let remaining = format_time time in let elapsed = format_time tm in

prerr_string("\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b");

prerr_string(string_of_int(int_of_float(perc))^"%");

prerr_string(" elapsed "^elapsed^" "); prerr_string("~

remaining "^remaining^" "); prerr_string(" subtree

"^string_of_int(ss.current_node+1)^"/"^string_of_int(ss.initial_nodes));

prerr_string(" ("^string_of_int(ss.num_attacks)^") "); if (ss.vflag)

then (

ss.vflag <- false; prerr_string(" - V ")

) else (

prerr_string(" - S ")

);

flush stderr

) else ()

let printAttack =

function ss ->

function nn ->

function conj ->

function nid ->

function cssf ->

if (ss.opts.attack_type = 2) then(

ss.num_attacks <- ss.num_attacks+1; print_string("<center><table

border=1><tr><td colspan=2 >"); print_string("

<b>ATTACK "^string_of_int(ss.num_attacks)^"

-- (Id: "^string_of_int(nid)^")</b>");

print_string("</td></tr><tr><td><b>Violated

Constraints</b></td><td><b>Open

Variables</b></td></tr><tr><td>"); let (cti,asgi,ki) =

Node.getstatus (select ss.startnodes ss.current_node) in let

(ctx,asgx,kx) = Node.getstatus nn in ( Logic.prntnplHtml

([conj]); print_string("</td><td>"); let asgcs =

Csolver.toasg cssf in let mdls = Csolver.linearize cssf

in let cpl1 = couplify asgcs mdls in let (ax,cx) = head

cpl1 in let newasg = (Assignment.comp ax asgx) in let

(nv,vars) = Context.getOpenVariables cti in print_list

vars (function v -> Message.prntMsgHtml v; print_string("

-&gt "); Message.prntMsgHtml (newasg v);print_string("<br>"));

print_string("</td></tr><tr><td><b>Knowledge</b></td><td><b>Context</b></td></tr><tr><td>");

Knowledge.prntHtml (Knowledge.applyall kx newasg);

print_string("</td><td>"); Context.prntHtml

cti newasg; print_string("</td></tr>");

print_string("<tr><td><b>Model</b></td><td><b>Intruder

process<b></td></tr><tr><td>"); Csolver.prntHtml cx;

print_string("</td><td>"); build_intruder_html nn newasg;
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print_string("</td></tr></table></center><br><hr><br>")

)

) else (

ss.num_attacks <- ss.num_attacks+1; print_string("

ATTACK "^string_of_int(ss.num_attacks)^"

-- (Id: "^string_of_int(nid)^")");

print_string("\n--------------------------------------------------------------\n\n");

let (cti,asgi,ki) = Node.getstatus (select ss.startnodes

ss.current_node) in let (ctx,asgx,kx) = Node.getstatus nn in

( print_string("Violated Constraints:\n"); Logic.prntnpl

([conj]); let asgcs = Csolver.toasg cssf in let mdls =

Csolver.linearize cssf in let cpl1 = couplify asgcs mdls in

let (ax,cx) = head cpl1 in let newasg = (Assignment.comp

ax asgx) in print_string("\n***************\n");

print_string("Open Variables:\n"); let (nv,vars) =

Context.getOpenVariables cti in print_list vars (function v ->

Message.prntMsg v; print_string(" -> "); Message.prntMsg (asgx

v);print_string("\n")); print_string("Context:\n"); Context.prnt

cti newasg; print_string("Knowledge:\n"); Knowledge.prnt

(Knowledge.applyall kx newasg); print_string("\nModel:\n");

Csolver.prnt cx; build_intruder nn newasg;

print_string("\n\n\n");

print_string("There are

"^string_of_int(len cpl1)^" possible models.");

print_string("\n\n");

if (ss.opts.mga) then () else (

print_list (tail cpl1) ( function (aa,cc) ->

print_string("\nModel:\n"); Csolver.prnt cc;

) ) );

print_string("\n***************\n");

print_string("\n--------------------------------------------------------------\n\n");

);

flush stdout

let verification =

function ss ->

function nn ->

function cf ->

let ask =

function () ->

if (ss.opts.interactive) then (

prerr_string("\nAttack found

("^string_of_int(ss.num_attacks)^"). [N]ext, [S]top, [O]ther

trace? "); flush stderr; let res = try (input_line stdin)

with End_of_file -> "Y" in if (res="O") then (raise NextTrace)

else if (res="S") then (raise StopSearch) else ()

) else ()

in ss.vflag <- true; feedback ss;

let conjuncts = select ss.startpls ss.current_node in let jpl =

select ss.joinpls ss.current_node in try (
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iter conjuncts ( function ff ->

ss.vflag <- true; feedback ss; let (conj,verf) = fast_checkpl

([ff]) (cf) (ss.kman) nn in try (

iter verf ( function (pl,asg,ccf) ->

let (ctn,asgn, kbn) = Node.getstatus nn in let newasg =

Assignment.comp asgn asg in let newct = Context.applyall

ctn newasg in let newnode = Node.create((newct,newasg,kbn))

in Node.setfather (newnode, nn); Node.setlabel (newnode,

Join(("Lazy Check",Node.getid newnode),newasg)); ss.vflag <-

true; feedback ss; if (fast_sat_model (jpl) (ccf) (ss.kman)

(newnode)) then (

printAttack ss newnode ff (Node.getid nn) ccf; raise

AttackFound

)

else ()

) ) with AttackFound -> ask(); if (ss.opts.mga && (not

ss.opts.interactive)) then raise NextTrace else ();

) ) with NextTrace -> ()

let iterstack =

function ss ->

function cf ->

function nstack ->

let cti = Sys.time() in let top = Thestack.top nstack in let nk =

ss.trans top in ss.num_nodes <- (if(Node.getid nk > ss.num_nodes) then

Node.getid nk else ss.num_nodes); if (cti -. ss.elapsed > 1.0 ) then (

ss.elapsed <- cti; feedback ss

)

else (); if (Node.isNul nk) then (

let nss = Thestack.pop nstack in if (Node.isLeaf top) then (

ss.num_traces <- ss.num_traces+1; if (Node.isTerminal top ) then (

ss.num_terminal_traces <- ss.num_terminal_traces +1; if

(ss.opts.output_type = 2 ) then (

let stime = Sys.time() in (verification ss top cf);

ss.verifytime <- ss.verifytime +. Sys.time() -. stime;

)

else

if (ss.opts.output_type = 0) then prntTrace ss top else

if (ss.opts.output_type = 1 && (not ss.opts.lazyness))

then Gviz.prntTrace top (ss.opts.go) else

if (ss.opts.output_type = 1) then (

Gviz.prntTrace top (ss.opts.go)

)

else ();

nss

)

else (

if (ss.opts.output_type=0 && (not ss.opts.trace_terminal)) then

prntTrace ss top else (); if (ss.opts.output_type=1 && (not

ss.opts.trace_terminal)) then Gviz.prntTrace top (ss.opts.go)

else (); nss

)

)
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else (

calcbf ss (Node.getSons top); nss

)

)

else (

Thestack.push nstack nk

)

let do_joins =

function ss ->

function pl ->

function plj ->

let nc = ref(0) in let nd = ref(0) in let rec join_principals =

function () ->

let nk = (ss.init ss.root_node) in if (Node.isNul nk) then []

else (

if (ss.opts.feedback) then (nc:=!nc+1;

prerr_string("\b\b\b\b\b\b\b\b\b\b"^string_of_int(!nc)^"/"^string_of_int(ss.initial_nodes)^"

"); flush stderr) else (); let ne = (nk, normalize (Not(pl))

nk, normalize ((plj)) nk ) in ne::(join_principals())

)

in ( let rec first_generation_lazy =

function ls ->

function js ->

match ls, js with | nn::nns, pj::pjs ->

if (ss.opts.feedback) then (nd:=!nd+1;

prerr_string("\b\b\b\b\b\b\b\b\b\b"^string_of_int(!nd)^"/"^string_of_int(ss.initial_nodes)^"

"); flush stderr) else (); let nodes = ss.join nn in let

thenodes = filter nodes (fast_sat pj (ss.kman)) in let

res = map thenodes (function n -> (n,Csolver.init()))

in res::(first_generation_lazy nns pjs)

| [], [] -> []

in if (ss.opts.feedback) then (

prerr_string("\n\nJoining principals...\n\n"); flush stderr

) else ();

let stime = Sys.time() in let rb = join_principals() in if

(ss.opts.feedback) then (

prerr_string("\n\nFirst generation...\n\n"); flush stderr

) else ();

ss.startnodes <- (map rb (function (nn, pp, pj) -> nn)); ss.startpls <-

(map rb (function (nn, pp, pj) -> pp)); ss.joinpls <- (map rb (function

(nn, pp, pj) -> pj)); ss.current_node <- 0; ss.initial_nodes <-

len ss.startnodes; ss.len_traces <- map ss.startnodes (function nn

-> let (ctx,asgx,kx) = Node.getstatus nn in Context.getlentrace

ctx); ss.num_nodes <- ss.initial_nodes +1; ss.transitions <-

ss.initial_nodes; let ra =

first_generation_lazy (ss.startnodes) (ss.joinpls)

in ss.startjoins <- ra; ss.son_traces <- map (ss.startjoins)

(function l -> float_of_int(len l)); ss.jointime <- Sys.time() -. stime

)

let do_search =
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function ss ->

let rec searchstack =

function ls ->

match ls with | (nn,cf)::nns -> (

let nstck = ref(Thestack.init nn) in (

while (not (Thestack.isEmpty (!nstck))) do

(nstck := (iterstack ss cf (!nstck)))

done

)); searchstack nns

| [] -> ()

in let rec startsearch =

function ls ->

match ls with | jn::jns ->

searchstack jn; ss.current_node <- ss.current_node+1; feedback

ss; startsearch jns

| [] -> ss.current_node <- ss.current_node-1; feedback ss

in let stime = Sys.time() in if (ss.opts.feedback) then (

prerr_string("\n\nSearching...\n\n"); flush stderr

) else ();

(try (startsearch ss.startjoins) with StopSearch -> ()); ss.searchtime <-

Sys.time() -. stime

let prnt_stats =

function chan ->

function ss ->

output_string chan

("\n\n--------------------------------------------\nTotal traces:

"^string_of_int(ss.num_traces)^"\n"); output_string chan ("Total terminal

traces: "^string_of_int(ss.num_terminal_traces)^"\n"); output_string

chan ("Total nodes: "^string_of_int(ss.num_nodes)^"\n"); output_string

chan ("Total starting nodes: "^string_of_int(ss.initial_nodes)^"\n");

output_string chan ("Total pruned starting nodes: "^string_of_int(len

(filter ss.startjoins (function l -> (len l) = 0)))^"\n");

output_string chan ("\nTotal time: "^format_time(ss.searchtime

+. ss.jointime)^"\n"); output_string chan ("Search time:

"^format_time(ss.searchtime -. ss.verifytime )^"\n"); output_string

chan ("Join time: "^format_time(ss.jointime)^"\n"); output_string

chan ("Verify time: "^format_time(ss.verifytime)^"\n"); let nps =

float_of_int(ss.num_nodes) /. (ss.searchtime -. ss.verifytime)

in let nts = float_of_int(ss.num_traces) /. (ss.searchtime

-. ss.verifytime) in let nvs = float_of_int(ss.num_terminal_traces)

/. (ss.verifytime) in output_string chan ("\nnode/s:

"^string_of_int(int_of_float(nps))^"\n"); output_string chan

("trace/s: "^string_of_int(int_of_float(nts))^"\n"); output_string

chan ("verification/s: "^string_of_int(int_of_float(nvs))^"\n");

output_string chan ("branching factor: "^string_of_float(ss.bfm)^",

("^string_of_int(ss.transitions)^"/"^string_of_int(ss.closed_nodes)^")\n");

output_string chan ("max branching factor:

"^string_of_int(ss.maxbf)^"\n"); output_string chan ("min branching

factor: "^string_of_int(ss.minbf)^"\n"); output_string chan ("initial

branching factors: "); print_list (ss.son_traces) (function
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i -> output_string chan (string_of_int(int_of_float(i))^" "));

output_string chan ("\ntrace length: "); print_list (ss.len_traces)

(function i -> output_string chan (string_of_int(i)^" "));

output_string chan ("\n"); output_string chan ("\nNumber of attacks:

"^string_of_int(ss.num_attacks)^"\n--------------------------------------------\n")

let print_stats = prnt_stats stdout let prerr_stats = prnt_stats stderr

Utils

exception UtilException

let rec len =

function l ->

match l with | x::xs -> 1 + (len xs) | [] -> 0

let rec select =

function l ->

function n ->

match l with | x::xs when n=0 -> x | x::xs -> select (xs) (n-1) |

[] -> print_string("select!\n"); raise UtilException

let rec debox =

function l ->

match l with | x::xs -> x@(debox xs) | [] -> []

let rec map =

function l ->

function f ->

match l with | x::xs -> (f x)::(map xs f) | [] -> []

let rec iter =

function l ->

function f ->

match l with | x::xs -> let y = (f x) in (iter xs f) | [] -> ()

let rec filter =

function l ->

function p ->

match l with | x::xs -> if (p x) then x::(filter xs p) else (filter

xs p) | [] -> []

let rec mul =

function la ->

function lb ->

function f ->

match la with | a::aa -> (map lb (f a))@(mul aa lb f) | [] -> []

let rec exists =

function l ->
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function p ->

match l with | x::xs -> if (p x) then true else exists xs p | [] -> false

let rec forall =

function l ->

function p ->

match l with | x::xs -> if (p x) then (forall xs p) else false |

[] -> true

let rec remclone =

function l ->

function p ->

match l with | x::xs -> x::(remclone (filter xs (p x)) p) | [] -> []

let diff =

function l1 ->

function l2 ->

filter l1 (function x -> forall l2 (function y -> y<>x ))

let rec print_list =

function ll ->

function pr ->

match ll with | x::xs -> pr x; print_list xs pr | [] ->

print_string("\n")

let rec fold =

function l ->

function f ->

function en ->

match l with | ll::[] -> f ll en | ll::ls -> f ll (fold ls f en) |

[] -> print_string("fold!\n");raise UtilException

let rec fold2 =

function l ->

function f ->

match l with | ll1::ll2::[] -> f ll1 ll2 | ll::[] ->

print_string("fold2_1!\n"); raise UtilException | [] ->

print_string("fold2_2!\n");raise UtilException | ll::ls -> f ll (fold2

ls f )

let head =

function l ->

match l with | ll::ls -> ll | [] -> print_string("head!\n");raise

UtilException

let tail =

function l ->

match l with | ll::ls -> ls | [] -> []
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let rec aleph =

function l ->

match l with | ll::ls ->

(let ss = aleph ls in (mul [ll] (aleph ls) (function a -> function

b -> a::b))@ss )

| [] -> [[]]

let rec rebuild =

function l1 ->

function l2 ->

function f ->

match (l1,l2) with | x::xs,y::ys -> (mul ([x]) y f)@(rebuild xs ys f)

| [],[] -> []

let rec reverse =

function l ->

match l with | x::xs -> (reverse xs)@[x] | [] -> []

let rec grow =

function a ->

function n ->

if n<=0 then [] else a::(grow a (n-1))

let rec couplify =

function l1 ->

function l2 ->

match l1,l2 with | x::xs, y::ys -> (x,y)::(couplify xs ys) | [],[] ->

[] | _ -> print_string("Couplify!\n"); raise UtilException

let rec tensor =

function ll ->

function f ->

match ll with | x::xs ->

( (f x)::xs)::(mul [x] (tensor xs f) ( function a -> function b

-> a::b))

| [] -> []

let rec partition =

function elements ->

let rec nextpart =

function part ->

function e ->

match part with | y::[] -> ([[e]]@y)::(tensor y (function a ->

e::a)) | y::ys ->
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let newpart = ([[e]]@y)::(tensor y (function a -> e::a)) in

newpart@(nextpart ys e)

| [] -> [[[e]]]

in match elements with | x::xs ->

let prevp = partition xs in nextpart prevp x

| [] -> []

let compose =

function f1 ->

function f2 ->

function x ->

f2 (f1 x)

let invert =

function f ->

(

function x ->

function y -> f y x

)

let half =

function f ->

(

function x -> f x x

)

let rec sort = function l -> function lt -> if l=[] then l else (

let top = head l in let half1 = filter l (lt top) in let half2 = filter l

(compose (lt top) (not)) in if (half1=[] || half2=[]) then l else (sort

half1 lt)@(sort half2 lt)

)

Verifier

open Logic open Assignment open Core open Utils open Csolver open Message

type ops = Positive | Negative | Noop

let solve_membership =

function Derive(m) ->

function kman ->

function node ->

let (ct, asg, k) = Node.getstatus node in map (mu_eq kman k asg m)

(snd)

let solve_equality =

function Equal(v,m) ->

function kman ->
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function node ->

let (ct, asg, k) = Node.getstatus node in ni_eq kman asg v m

let expandasg =

function asg ->

function kman ->

let lcs = (listfy asg) in let kx = Kmanager.getK kman 1 in if lcs =

[] then [] else

let toexp = fold lcs (

function (a,b) ->

function ls ->

let t=asg a in (

match a,t with | Var(_), SVar(_,_,ty) when ((ty<>Gen &&

ty<> GenR))->

let res = mu_eq kman kx asg t in (positivize(map res

(function (mm,ss) -> (t,mm))))::ls

| SVar(v,_,ty), _ when ((ty = Gen || ty = GenR) && notSVar(t))

->

(positivize([(a,t)]))::ls

| _ -> ls

)

) [] in

remclone toexp ( <> )

let getemptymodel =

function () -> (Assignment.void(),Csolver.init())

let fast_solveconjunct =

function pls ->

function kman ->

function node ->

let rec fast_solve_positive_atoms =

function spls ->

match spls with | Equal(v,m)::lls ->

let asgl = solve_equality (Equal(v,m)) kman node in if asgl =

[] then (False::lls, [], Positive) else (True::lls, asgl,

Positive)

| Derive(m)::lls ->

let asgl = solve_membership (Derive(m)) kman node in if

asgl = [] then (False::lls, [], Positive) else (True::lls,

asgl, Positive)

| ll::lls ->

let (a,c,d) = fast_solve_positive_atoms lls in (ll::a, c, d)

| [] -> ([],[], Noop)

in let rec fast_solve_negative_atoms =

function spls ->

match spls with | Diff(v,m)::lls ->

let asgl = solve_equality (Equal(v,m)) kman node in if asgl =

[] then (True::lls, [], Negative) else

if (Assignment.isVoid (head asgl)) then (False::lls,
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[], Negative) else (True::lls, asgl, Negative)

| NDerive(m)::lls ->

let asgl = solve_membership (Derive(m)) kman node in if asgl =

[] then (True::lls, [], Negative) else

if (Assignment.isVoid (head asgl)) then (False::lls,

[], Negative) else (True::lls, asgl, Negative)

| ll::lls ->

let (a,c,d) = fast_solve_negative_atoms lls in (ll::a, c, d)

| [] -> ([],[], Noop)

in

let pres = (fast_solve_positive_atoms pls) in match pres with |

(_,_,Noop) -> fast_solve_negative_atoms pls | _ -> pres

let fast_solve =

function stack ->

function kman ->

function node ->

let (pl,pasg,css) = Thestack.top stack in let cs = preserve_truth

css in if (check cs) then (([], pasg, cs),Thestack.pop stack) else (

let (newpl1, asg, tops) = fast_solveconjunct pl kman node in if

(tops=Noop) then (

(*verification terminated*) ((newpl1, pasg, cs),(Thestack.pop

stack))

)

else (

if (asg=[]) then (

(*Unification failed -> unicity of result*) (([],pasg,cs),

Thestack.push (Thestack.pop stack) ((newpl1, pasg, cs)))

) else (

(*New constraints -> concretizing results*) if (tops=Positive)

then (

(*concretizing with assignments*) let newpstack = map asg (

function x ->

let lll = positivize(listfy x) in (debox (concretize

([newpl1]) x), pasg*x, addconstraints lll cs)

)

in (([],pasg,cs), Thestack.pushl (Thestack.pop stack)

newpstack)

) else (

let newfstack = (newpl1, pasg, (addconjuncts (map asg

(function x -> negativize (listfy x))) cs))

in (([],pasg,cs), Thestack.push (Thestack.pop stack) newfstack)

)

)

)

)

let fast_solver =

function bottom ->

function kman ->



162 APPENDIX A. APPENDIX: SOURCE CODE

function node ->

let pstack = ref (Thestack.init bottom) in let result = ref ([]) in (

while (not (Thestack.isEmpty (!pstack))) do

(

let (tres, tstack) = (fast_solve (!pstack) kman node) in pstack

:= tstack; match tres with | ([],_,_) -> () | _ -> result :=

(tres)::(!result)

)

done; !result

)

let fast_checkpl =

function pl ->

function css ->

function kman ->

function node ->

let (ct,asg,k) = Node.getstatus node in let npl =

concretize pl asg in let lcs = positivize (listfy asg)

in let csf = Csolver.adddisjuncts (expandasg asg kman) css

(*(Csolver.addconstraints lcs css)*) in let rec scan_conjuncts =

function ipl ->

function pll -> match ipl,pll with | ipls::iplls, pls::plls ->

let res = fast_solver ((pls,asg,csf)) kman node in let ok =

filter res (function (lp,lasg,lcsf) -> (forall lp (function

x -> (x=True))) && (not (Csolver.check csf))) in if (ok =

[]) then scan_conjuncts iplls plls else (ipls,map ok

(function (lp,lasg,lcsf) -> ([lp],lasg,lcsf)))

| [],[] -> ([],[])

in scan_conjuncts pl npl

let very_fast_checkpl =

function pl ->

function css ->

function kman ->

function node ->

let (ct,asg,k) = Node.getstatus node in let npl = concretize pl

asg in let csf = Csolver.adddisjuncts (expandasg asg kman) css in

let rec scan_conjuncts =

function ipl ->

function pll -> match ipl,pll with | ipls::iplls, pls::plls ->

let res = fast_solver ((pls,asg,csf)) kman node in let ok =

filter res (function (lp,lasg,lcsf) -> (forall lp (function

x -> (x=True))) && (not (Csolver.check csf))) in if (ok =

[]) then scan_conjuncts iplls plls else (ipls,map ok

(function (lp,lasg,lcsf) -> ([lp],lasg,lcsf)))

| [],[] -> ([],[])

in scan_conjuncts pl npl

let fast_sat_model =

function pl ->

function cs ->
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function kman ->

function node ->

let res = very_fast_checkpl pl (cs) kman node in (res <> ([],[]) )

let fast_sat =

function pl ->

function kman ->

function node ->

fast_sat_model pl (Csolver.init()) kman node


