
Synchronised Hyperedge
Replacement as a Model

for Service Oriented
Computing

Emilio Tuosto
University of Leicester

International PhD School in Theory and Practice of

Business Process Execution and Service Orientation
The IT University of Copenhagen, Denmark, October 16 - 19, 2007

SHR framework
SHR as a uniform framework for (non-)functional aspects of SOC

Context-free flavour

“SOC systems as Hypergraphs” & “SOC computations as SHR”

Components = hyperedges

Systems = bunches of hyperedges

Computing = rewrite hypergraphs...(distributed constraint
solving)

...using “some” (parameterisable) synchronisation policy

leices

intel
unibo

leices

intel
unibo

Models
Process calculi

CSP, CCS and π-calculus...

Graph-based models

Synchronised Hyperedge Replacement (SHR)

Originally, SHR as a model of distributed systems
and software architectures but

expressive enough to model many process calculi

...

SHR features

can express many forms of synchronisation

constraint satisfaction guide rewriting by synchronising “context-
free productions”

components’ behaviour independently specified by productions

productions impose conditions on adjacent nodes

global transitions as application of “compatible” productions

QoS mechanism for driving the rewritings

SOC
Modern distributed systems

complex and heterogeneous

many architectural levels

many communication
infrastructures

geographically distributed

highly dynamic

SOC as modelling paradigm

Services are

independently specified/
published

searched/discovered and
dynamically assembled

dynamically reconfiguration

mobile and requiring complex
synchronisations

“QoS aware”

SHR rewriting: in a nutshell

L C L

condition
condition
idle C L

SHR rewriting: in a nutshell

L C L

condition
condition
idle

L

C L

SHR rewriting: in a nutshell

L C L

condition
condition
idle

L
condition

condition

C L

idle

SHR rewriting: in a nutshell

L C L

condition
condition
idle

C L

Why we deem SHR
suitable for SOC

Why we deem SHR
suitable for SOC

Edge replacement: “local”

Why we deem SHR
suitable for SOC

Edge replacement: “local”

Multi-party synchronisation

Why we deem SHR
suitable for SOC

Edge replacement: “local”

Multi-party synchronisation

New node creation

Why we deem SHR
suitable for SOC

Edge replacement: “local”

Multi-party synchronisation

New node creation

Node fusion: model of
mobility and communication

Why we deem SHR
suitable for SOC

Edge replacement: “local”

Multi-party synchronisation

New node creation

Node fusion: model of
mobility and communication

Expressive for

Why we deem SHR
suitable for SOC

Edge replacement: “local”

Multi-party synchronisation

New node creation

Node fusion: model of
mobility and communication

Expressive for

modelling process calculi

Why we deem SHR
suitable for SOC

Edge replacement: “local”

Multi-party synchronisation

New node creation

Node fusion: model of
mobility and communication

Expressive for

modelling process calculi

distributed coordination

Why we deem SHR
suitable for SOC

Edge replacement: “local”

Multi-party synchronisation

New node creation

Node fusion: model of
mobility and communication

Expressive for

modelling process calculi

distributed coordination

application level QoS

Why we deem SHR
suitable for SOC

Edge replacement: “local”

Multi-party synchronisation

New node creation

Node fusion: model of
mobility and communication

Expressive for

modelling process calculi

distributed coordination

application level QoS

sophisticated
synchronisations

Plan

Give the basic definitions for SHR

Analise 2 specific cases:

Milner synchronisation (with(out) mobility)

SHReQ

ADR (if time allows)

Hypergraphs
Syntax

Exercises

L

Mz

z’

N

x

y

Exercises

L

Mz

z’

N

x

y

Exercises

Give the syntactic
judgement of the
hypergraph on the right L

Mz

z’

N

x

y

Exercises

Give the syntactic
judgement of the
hypergraph on the right

Draw the graph of the
following judgements:

L

Mz

z’

N

x

y

Exercises

Give the syntactic
judgement of the
hypergraph on the right

Draw the graph of the
following judgements:

x,y ⊢ L(x,y) | L(x) | M(y)

L

Mz

z’

N

x

y

Exercises

Give the syntactic
judgement of the
hypergraph on the right

Draw the graph of the
following judgements:

x,y ⊢ L(x,y) | L(x) | M(y)

x,y ⊢ L(x,y) | L(x,z)

L

Mz

z’

N

x

y

The simplest SHR:
Basic Milner SHR

“Milner” synchronisation
without mobility [fhlmt05]

bMSHR: in a nutshell

L C L

condition
condition
idle C L

bMSHR: in a nutshell

L C L

condition
condition
idle

L

C L

bMSHR: in a nutshell

L C L

condition
condition
idle

L
condition

condition

C L

idle

bMSHR: in a nutshell

L C L

condition
condition
idle

C L

SHR & mobility

“Milner” synchronisation
mobility [fmt01]

Quest for mobility...
In Ambient: open a | a[...] ➝ ...

Oa

aa[...]

open a

Oa

open a

a
open a

Quest for mobility...
In Ambient: open a | a[...] ➝ ...

Oa

aa[...]

open a

Oa

open a

a
open a

Oa

a...

Quest for mobility...
In Ambient: open a | a[...] ➝ ...

Oa

aa[...]

open a

Oa

open a

a
open a

Oa

a...

a

Oa

Quest for mobility...
In Ambient: open a | a[...] ➝ ...

Oa

aa[...]

open a

Oa

open a

a
open a

...

An example with mobility

C A B2
S1

S2
C

An example with mobility

C A B2
S1

S2
C

An example with mobility

C
auth

C

A
auth

A

C A B2
S1

S2
C

An example with mobility

C
auth

C

A
auth

A

auth

auth

mgu(=) yields { / }

C A B2
S1

S2
C

An example with mobility

C
auth

C

A
auth

A

Synchronisation algebras
with mobility

Synchronisation algebras
with mobility

C A B2
S1

S2

Synchronisation algebras
with mobility

C A
S1

S2
:b
ro
ad
ca
st

:m
iln
er

SHReQ

C A
S1

S2

C A
S1

S2

<p1,req>

<p2,req>
<∞,req>

<p1,req>

<∞,req>(y)

<p1,req>(y)
<∞,auth><∞,auth>

A
S2

S1
C

Dealing with quality

Watch...

...for more fun :)

Service Oriented
Architectural Design

with
R. Bruni, A. Lluch Lafuente, and U. Montanari

Dipartimento di Informatica
Universita’ di Pisa

Motivations

Key issues of service-based architectures:
design
reconfiguration

Styles for reusing existing design patterns
Run-time changes (e.g., dynamic binding)

require reconfigurations of architectures
complement their static reconfigurations
driven by architectural information specified during design

Often, architectural styles must be preserved or
consistently changed

SEnSOria aims to develop an approach
for engineering SOCs

ADR principles
Architectures are modelled as suitable graphs
Hierarchical architectural designs

style preserving rules (not original)
algebraic presentation (original)

Reconfigurations defined over style proofs instead of
actual architectures

exploits the algebraic presentation
straightforward definition of hierarchical and inductive
reconfigurations (ordinary term rewriting and SOS)
only valid contexts considered (not all concrete designs)
matching is simpler during reconfigurations (design driven)

ADR ingredients

Hypergraphs
edges model components: can be
terminal and non-terminal edges
nodes model connecting ports

Type-(hyper)graphs
Productions

rules like L ::= R
specify how non-terminals
should be replaced

◦

p

!!

i
""

##

r

$$

! i%% && ◦ i%% && " W%%

c

##

ADR by example
A local networking architecture
2 styles where each network hub has degree of
connectivity 2 or 3
Connections between hubs are also driven by the style

•

!"
!"

NET

•

• 3hub!! ""

##

•

3hub

$$

""

##

• 3hub!!

%%

##

•

!"
!"

NET

•

• 2hub!! "" •

2hub

$$

&&

2hub

''

%%

Designs and productions

Designs and productions
• 2hub!! "" •

•

• 3hub!! ""

##

•

• 2N!! "" •

•

• 3N!! ""

##

•

•

NET

##
Edges for the network example

Designs and productions

A design consists of
a lhs L which is a graph made of
a single non-terminal edge
a rhs R graph possibly containing
non-terminal edges
a map from the nodes of L to
the nodes of R

A production is a design where
the occurrences of non-terminal
are distinguished

 represents the
abstract class of the component

typ
e o

f th
e

pro
duc

tion

• 2hub!! "" •

•

• 3hub!! ""

##

•

• 2N!! "" •

•

• 3N!! ""

##

•

•

NET

##

•

!"
!"
!"

3N

•

• 3N!! ""

##

•

• #$ • 3N!! ""

##

• 3N!! ""

##

• •$#

3N ::= link3(3N, 3N, 3N)

link3 : 3N× 3N× 3N→ 3N

Edges for the network example

ADR metaphor

A term of a grammar is an instance of a design
Terms with variables are partial designs
Replacing variables corresponds to refinement
Replacing subterms with variables corresponds to
abstraction
Replacements are driven by term rewriting rules,
namely reconfiguration rules t -> t’

style is preserved if t and t’ have the same abstract class
otherwise styles change...in a consistent way

Design rewritings

link3to2 : x1
3to2−→ x′

1 x2
3to2−→ x′

2 x3
3to2−→ x′

3

link3(x1, x2, x3)
3to2−→ link2(link2(x′

2, x
′
1), x′

3)

Design rewritings

link2 : 2N× 2N→ 2N

2N

• !" • 2N!! "" • 2N!! "" • •"!

link3 : 3N× 3N× 3N→ 3N
•

!"
!"
!"

3N

•

• 3N!! ""

##

•

• #$ • 3N!! ""

##

• 3N!! ""

##

• •$#

link3to2 : x1
3to2−→ x′

1 x2
3to2−→ x′

2 x3
3to2−→ x′

3

link3(x1, x2, x3)
3to2−→ link2(link2(x′

2, x
′
1), x′

3)

Design rewritings

link2 : 2N× 2N→ 2N

2N

• !" • 2N!! "" • 2N!! "" • •"!

link3 : 3N× 3N× 3N→ 3N
•

!"
!"
!"

3N

•

• 3N!! ""

##

•

• #$ • 3N!! ""

##

• 3N!! ""

##

• •$#

link3to2 : x1
3to2−→ x′

1 x2
3to2−→ x′

2 x3
3to2−→ x′

3

link3(x1, x2, x3)
3to2−→ link2(link2(x′

2, x
′
1), x′

3)
•

!"
!"

NET

•

• 3hub!! ""

##

•

3hub

$$

""

##

• 3hub!!

%%

##

•

!"
!"

NET

•

• 2hub!! "" •

2hub

$$

&&

2hub

''

%%

