
Semantics of global view of choreographiesI

Emilio Tuosto

∣∣ a,∗, Roberto Guancialeb,∗∗

aUniversity of Leicester, UK
bKTH, Sweden

Abstract

We propose two abstract semantics of the global view of choreographies given
in terms of partial orders. The first semantics is formalised as pomsets of
communication events while the second one is based on hypergraphs of events.
These semantics can accommodate different levels of abstractions. We discuss
the adequacy of our models by considering their relation with communicating
machines, that we use to formalise the local view. Our approach increases
expressiveness and allows us to overcome some limitations that affect alternative
semantics of global views. This will be illustrated by discussing some interesting
examples. Finally, we show that the two semantics are equivalent and have
different merits. More precisely, the semantics based on pomsets yields a more
elegant presentation, but it is less suitable for implementation. The semantics
based on hypergraphs instead is amenable to a straightforward implementation.

Keywords: Choreography, communicating finite-state machines, global graphs,
hypergraphs, pomsets, semantics.

1. Introduction

Distributed applications are nowadays widespread. Rarely applications are
stand-alone anymore: software is today conceived to dynamically interact with
other applications. The combination of ubiquitous connectivity and the evolution
of portable or wearable devices (such as smart phones or watches) practically
changed the nature of software and it is also determining new approaches to
software development [28]. Big vendors as well as small software companies,
have to satisfy the appetite of users who want data and applications ‘always
handy’. Also, software is becoming more and more important as it increasingly
deals with delicate societal and economical aspects. Distributed applications
are used in many aspects of our lives, from handling commercial transactions

IThe authors are grateful to the reviewers for the helpful comments and to Ivan Lanese for
useful comments.
This report extends the published version of our journal paper with full proofs.
∗Principal Corresponding author
∗∗Corresponding author

Preprint submitted to Elsevier November 7, 2017

1 INTRODUCTION 2

to social interaction, to providing e-health and e-government services. For such
(and other) reasons, developers are required to carefully design their applications
so that unintended behaviours do not happen at runtime.

The problem. It is widely accepted that distributed systems and applications
are not easy to design, implement, verify, deploy, and maintain. A key issue
to tackle is the coordination of distributed components. For this, two primary
(and in our view, complementary) approaches have been identified: orchestration
and choreography. We focus here on the latter. More precisely, we propose
a new semantics of a model of choreographies for message-passing software.
We argue that our semantics offer a framework that (i) generalises existing
linguistic constructs of choreographies by removing some unnecessary constraints
adopted elsewhere, (ii) allows architects to design the coordination of distributed
applications without forcing them to consider low level details, and (iii) enables
the possibility of tool support at earlier stages of the development.

Choreographies have been advocated as a suitable methodology for the design
and analysis of distributed applications since, unlike models based on orches-
tration, they do not require an explicit coordinator. Roughly, a choreography
describes how two or more distributed components coordinate with each other by
exchanging messages. Among the possible interpretations of what choreographies
are (see [2] for a discussion and references), we embrace the one suggested by
W3C’s [23]:

Using the Web Services Choreography specification, a contract con-
taining a global definition of the common ordering conditions and
constraints under which messages are exchanged, is produced that
describes, from a global viewpoint [...] observable behaviour [...].
Each party can then use the global definition to build and test
solutions that conform to it. The global specification is in turn
realised by combination of the resulting local systems [...]

This description conceptualises two views, a global and a local one, which
enable the relations represented by the following diagram:

Global
view

Local
view

Local
systems

projection comply (1)

where the operation of ‘projection’ produces the local view from the global one
and the operation ‘comply’ verifies that the behaviour of each component adheres
to the one of the corresponding local view.

For diagram (1) to make sense, precise semantics should be fixed for the
global and the local views. The semantics of the latter is well understood: it
directly emanates from the adopted communication model. In fact, the local
view details how communications take place. For instance, in a channel-based
communication model, the local view may specify what is the behaviour of each
component in terms of its send/receive actions.

What is instead “the semantics of the global view”? We investigate such
question here. And, after making it more precise, we propose a new semantic
framework for global views and discuss its advantages over existing frameworks.

1 INTRODUCTION 3

Before continuing, we remark that the relations among views and systems of
choreographies are richer than those depicted in diagram (1). For instance, local
views can also be ‘compiled’ into template code for the local components and
the projection operation may have an “inverse” (cf. [26]). Those aspects are not
in the scope of this paper though.

A view of global views. The W3C description above is intriguing, however it is
not very enlightening to understand what a global view is; basically it says that a
global view has to describe the observable behaviour from a global viewpoint...a
bit too much circularity for a definition!

We will consider global views as high-level descriptions of systems abstracting
away some aspects in order to offer a holistic understanding of the communication
behaviour of distributed systems. (This is still vague, but will become precise in
the forthcoming sections.) In a global view, components are not taken anymore
in isolation. Rather they are specified together, while forgetting some details. For
us, this will mean to describe the protocol of interaction of a system in a way that
makes it explicit how messages are actually exchanged among components. For
instance, in our example based on channels, the global view may abstract away
from send/receive actions and use interactions as the unit of coordination [7].

The idea depicted in diagram (1) is beautiful. To our best knowledge, it has
been firstly formally pursued in [19] (later refined in [21]) and then followed
by others. The main reason that makes diagram (1) attractive is the interplay
between global and local artefacts1 as it fosters some of the best principles of
computer science and of software engineering:

Separation of concerns The intrinsic logic of the distributed coordination is
expressed in and analysed on global artefacts, while the local artefacts
refine such logic at lower levels of abstraction.

Modular software development life-cycle The W3C description above yields
a distinctive element of choreographies which makes them appealing (also
to practitioners). Choreographies allow independent development: com-
ponents can harmoniously interact when proven compliant to their cor-
responding local view. Global and local views yield the “blueprints” of
systems as a whole and of each component, respectively.

Principled design A choreographic framework orbits around the following
implication:

if cond(global artefact) then behave(projection(global artefact))

1We will use the term ‘artefact’ when referring to actual specifications embodying the
global/local views. Such embodiments may assume various forms: types [21], programs [13],
graphs and automata [26, 15], executable models [23, 1], etc. Typically, the literature uses the
(overloaded) word ‘model’ to refer to this flora of embodiments. We prefer the word ‘artefact’
because it allows us to refer to different contexts and different abstraction levels without
attaching yet another meaning to ‘model’.

1 INTRODUCTION 4

that is, proving that a correctness condition cond holds on an abstraction
(the global artefacts) guarantees that the system is well behaved, provided
that the local artefacts are “compiled” from the global ones via a projection
operation that preserves behaviour.

Therefore, providing suitable semantics for global artefacts is worthwhile: it
gives precise algorithms and establishes precise relations between specifications
of distributed systems (the global artefacts) and their refinements (the local
artefacts). It is worth remarking that the languages we adopt here for global
and local views are specification languages. In particular, we abstract away from
concrete programming mechanisms (e.g., adopting non-deterministic constructs),
avoiding to specify local computations (that is computations that do not require
the interactions of components), and abstract away from data, in fact the term
“message” here has to be understood as “data type” rather than actual value2.

We have previously proposed in [18] a hypergraph semantics of choreographies,
which is apt to be implemented (we are currently embedding the hypergraph
semantics in ChorGram [25], a toolchain for choreographic modelling). The new
pomset semantics proposed here is more abstract (and, we believe, more elegant)
than the hypergraph semantics. In particular, the use of pomsets simplifies the
notion of projection and generalises well-sequencedness and well-branchedness.
Besides, defining the pomsets semantics and showing its equivalence with the
hypergraph-based semantics, in this paper we have revised and simplified the
presentation in [18].
Contributions Our main technical contributions are two semantics of global
views of choreographies, modelled as global graphs [15]. Our first semantic
framework relies on pomsets [29, 16], which provide a simple and elegant the-
oretical presentation of concurrency and distribution. We note that pomsets
have been adopted also in [22] as a semantic framework of message-sequence
charts. Our second semantic framework relies on a model of hypergraphs. This
framework is more suitable for developing analysis tools. As we show in the
paper, the two semantic models are equivalent, in the sense that they yield
the same causality relations of choreographies. To the best of our knowledge,
our semantics generalise existing approaches; we demonstrate this by giving
examples of global views usually discarded in other approaches.

We note that in [14] (grammars of) hypergraphs have been used as a formal
operational semantics of distributed computations. Here we use hypergraphs as
the semantic codomain in a denotational style.
Outline Section 2 highlights the advantages of abstract semantics of global views.
The syntax of our language of global artefacts is in Section 3 with some examples
used in later sections to explain some of our constructions. Section 4 presents
the abstract semantics of global artefacts by capturing their causal dependencies
using pomsets. A first technical advantage of our semantics is provided by
the definition of well-branched choices, explained through some illustrative

2The term “message” could be misleading, but we adopt it because it is widespread in the
literature.

2 WHY GOING ABSTRACT? 5

examples. Our semantics is used to identify all licit traces of a choreography, so
to precisely characterise the behaviour expected by the specification. Section 5
first recalls the communicating finite state machines (that are used to formalise
the local behaviours) and then defines the projection of global artefacts on
communicating machines. The main technical results establish that well-branched
choreographies yield deadlock-free systems (Theorem 1) whose behaviour is
included in the behaviours specified by the global view (Theorem 2). Section 6
presents an alternative semantics based on hypergraphs and introduces the
notion of reflection, crucial for our model. Theorem 3 establishes equivalence
between the two semantics (detailed proofs are in Appendix B). Section 7 draws
some conclusions.

2. Why going abstract?

We propose a denotational semantics of global views of choreographies based
on partial orders. Our new semantics is more abstract than existing ones as
it is not based on traces and it makes minimal assumptions on how messages
are exchanged at lower levels. Conceptually this is easy to achieve. We fix a
specification language of global artefacts and we interpret a specification as a
set of “minimal and natural” causal dependencies among the messages. We then
define when a global artefact is sound, namely when its causal dependencies are
consistent so that they are amenable to be executed distributively by some local
artefacts, regardless of the underlying message passing semantics. We illustrate
the advantages of our approach by adopting a rather liberal language of global
artefacts inspired by global graphs [15]. We then show the relation of such
language on a local view featuring local artefacts as communicating machines [5].

As discussed in Section 1, many authors have adopted the idea in diagram
(1) and several semantics of (models of) the global view have been introduced.
We distinguish two broad classes.3

The first class consists of the approaches where the semantics of the global
view is obtained by composing the semantics of the local view. For instance,
this class includes the seminal work on global types [20]. The idea is to give an
explicit semantics of local artefacts and define the semantics of global artefacts
in terms of the semantics of their projections. In the case of global types,
the projection yields local types, that are process algebras equipped with an
operational semantics. This approach is ubiquitous in the literature based on
behavioural types and it has also been adopted in [26] where global artefacts are
global graphs [15] and local artefacts are communicating finite-state machines [5].

In the other class, the semantics of global view is defined explicitly. A first
such semantics appeared in [6] where a language of global views syntactically
equivalent to ours has been considered (the semantics is however different from
ours since in [6] synchrony is assumed both at the global and local level). Also, the
global types of [20] are refined and equipped with an operational semantics in [21].

3 We mention a tiny portion of the literature in way of example; no claim of exhaustiveness.

2 WHY GOING ABSTRACT? 6

In [9] an operational interleaving semantics is defined for global specifications
while in [3] a trace-based semantics is given. In both cases, the idea is to “split”
the interactions in the global view into its constituent send/receive actions.
A slightly more abstract interleaving operational semantics of global types is
given in [8] where interleaving is attained by swapping independent interactions,
rather than manipulating traces of send/receive actions. A denotational trace-
based model of global views is given in [30] (unlike ours, this semantics is based
on synchronous communication and respects the sequential compositions of
projections on well-formed global views (Theorem 2 in [30]). In this category we
also put approaches like [12, 13] where global artefacts become global programs
with an operational semantics. In this area authors have proposed to mitigate
the limitations usually present in languages for global views using operational
approaches [6, 24, 13, 8].

The classes above contain perfectly reasonable approaches. After all, from a
theoretical perspective, we just need a semantics for the global view; whatever
“fits” with the semantics of the local view would do. We believe that an abstract
semantics of global view like the one we propose here makes it easier reason
about global artefacts and to develop the algorithmic and tool support for such
reasoning.4 Trace-based (denotational or operational) semantics of global views
are less suitable in this respect because they require the designer to consider the
dynamics of the interactions in terms of (an approximation of) their execution. In
other words, existing semantics of global views are “too concrete” and require to
manipulate traces in order to capture relevant aspects of the design. For instance,
many approaches take traces up-to permutations of non causally-related events to
“mimick” asynchrony at the global level. Another drawback present in some of the
approaches based on traces is that they make the semantics of the global view a
dependent variable of the semantics of the local one brings in the following issues.
For instance, to guarantee some properties it is sometimes necessary to adopt
(syntactic) restrictions imposed by the underlying communication infrastructure.
In several cases these restrictions limit the expressiveness of the language at hand
(for instance, languages featuring the parallel composition of global artefacts
do not allow components involved in more than one parallel thread). Another
example of such dependency is the introduction in the semantics of the global
views of low-level elements (e.g., to guarantee order-preserving asynchronous
outputs).

To sum up, we suggest that an abstract semantics of global views yields a
more suitable framework to foster the interplay between global and local views
described in Section 1.

4 We are currently working on the definition and implementation of algorithms to establish
equivalences of global views based on the abstract semantics presented in this paper.

3 GLOBAL VIEWS AS GRAPHS 7

3. Global views as graphs

Let P be a set of participants (ranged over by A, B, etc.),M a set of messages
(ranged over by m, x, etc.), and K a set of control points (ranged over by i, j, etc.).
We take P, M, and K pairwise disjoint. The participants of a choreography
exchange messages to coordinate with each other. In the global view, this is
modelled with interactions5 A

m−→ B, representing the fact that participant A
sends message m to participant B, which is expected to receive m. A global
choreography (g-choreography for short) is a term G derived by the following
grammar (recursion/iteration is omitted for simplicity as discussed in Section 7)

G ::= 0
∣∣ i : A m−→ B

∣∣ G;G′
∣∣ i :(G|G′) ∣∣ i :(G + G′) (2)

A g-choreography can be empty, a simple interaction, the sequential or parallel
composition of g-choreographies, or the choice between two g-choreographies.
We implicitly assume A 6= B in interactions i : A

m−→ B. In (2), control points,
denoted by i, tag nodes of g-choreographies that correspond to events of interest.
For instance, the control point of an interaction identifies its output and input
events, the one of a fork (resp. choice) identifies when a g-choreography splits
in more threads (resp. branches). Note that the empty g-choreography is not
tagged with a control point because it does not have any event; likewise for
sequential composition G;G′ whose events are already completely determined
by the control points of G and G′. We assume that in a g-choreography G any
two control points occurring in different positions are different, e.g., we cannot
write i :(j : A

m−→ B|i : C y−→ D). Let G be the set of g-choreographies and, for G ∈ G,
let cp(G) denote the set of control points in G. Control points are a technical
device and could be avoided.6 The concrete representation of control point is
immaterial; throughout the paper, for all G ∈ G, we will assume that cp(G) are
strictly positive integers. Also, we may omit control points when immaterial,
e.g., writing G + G′ instead of i :(G + G′).

The syntax in (2) captures the structure of a visual language of acyclic7

directed graphs. In fact, each g-choreography G can be represented as a rooted
graph with a single “enter” (resp. “exit”) node; namely, G has a distinguished
source (resp. sink) node that can reach (resp. be reached by) any other node in
G. Before commenting on our visual notation in Fig. 1, we remark that each
fork or branch gate with control point i in our pictures will have a corresponding
join and merge gate with control point −i; note that negative control points
will appear only in the visual notation of a global graph and not in its textual
representation. This will also be used in Section 6.

In Fig. 1, dotted edges connect nodes • to boxed G to identify source and
sink nodes of G. More precisely, a dotted edge from • to a boxed G means

5 We depart from the usual notation A −→ B : m to a have a more lightweight syntax.
6At the cost of adding technical complexity, one can automatically assign a unique identifier

to such control points.
7Cycles are not considered for simplicity and can be easily added.

3 GLOBAL VIEWS AS GRAPHS 8

A
m−→ B i

i

G G′

−i

i

G G′

−i

G

G′

empty interaction parallel branching sequential

Figure 1: Our graphs: ◦ is the source node, } the sink one; other nodes are drawn as •

that • is the source of G; similarly, a dotted edge from a boxed G to • means
that • is the sink of G. For instance, the dotted edges entering and leaving the
g-choreography G in the sequential composition in Fig. 1 respectively identify
the source and sink nodes of G while the other dotted edges identifies the source
and sink nodes of G′; in other words, the sequential composition of G and G′

is obtained by coalescing the sink of G with the source of G′. Figs. 2a and 2b
give an example of this construction for sequential and parallel composition
respectively (in the latter figure we omitted the control points of interactions
for readability). Fig. 2a shows why there is no need to assign a control point to
sequential composition: there is no interesting event at the coalescing • node.
Indeed, the pattern → • → in a graph does not yield any important event to
trace and in the following we will often replace it with a simple edge →). Note
that the graph8 G(2b) in Fig. 2b represents a choreography where A sends B
messages m and n in any order. Akin to BPMN [17] diagrams, our graphs yield a
visual description of the distributed coordination of communicating components.
In this respect, control points mark the nodes of the graph where communication
and distributed work flow activities may happen. This is similar to BPMN
where tasks (corresponding to our communication activities) and control gates
(corresponding to our fork/join and branch/merge gates) have a special standing
in the graphical notation.

Our graphs resemble the ones in [15, 26] the only differences being that

• by construction, forking and branching control points i have a corresponding
join and merge control point −i;

• there is a unique sink control point with a unique incoming edge (as
in [15, 26], there is also a unique source control point with a unique
outgoing edge).

8We indexed our examples with the numbering of the figure they are in; therefore, we will
hereafter avoid cross-referencing the figures.

3 GLOBAL VIEWS AS GRAPHS 9

A
m−→ B i

C
m−→ D j

(a) G(2a)

i

A
m−→ B A

n−→ B

−i

(b) G(2b) = i :(A
m−→ B|A n−→ B)

Figure 2: Examples of choreographies

We now consider a few examples to give an intuition of g-choreographies
and of the problems arising when defining their semantics. Indeed, not all g-
choreographies of our language have a defined semantics. In particular, sequential
and non-deterministic composition of choreographies can lead to choreographies
that are impossible to realise. We will also use these examples through the paper
to highlights some aspects of our constructions.

The problem of giving semantics to the sequential composition can be illus-
trated with the graph G(2a). The graph specifies that the interaction between
A and B must be followed (in some sense) by an interaction between C and D.
Intuitively, this is not directly realisable in a distributed setting. In fact, neither
the participant C nor D are informed about the termination of the interaction
A

m−→ B, making it impossible to respect the order of the interactions without
further communication between A or B and C or D. In Section 4.2 we intro-
duce the notion of well-sequencedness (cf. Definition 6) to identify sequential
composition of choreographies that are meaningful. Typically, this problem is
addressed by imposing syntactic constraints on sequential composition so to
obtain the intended causal order on output and input events. Our notion of
well-sequencedness is given instead at the semantic level so to accommodate
more cases. Intuitively, we will require that G;G′ is defined when the causal
order it generates allows each participant to ascertain when its execution in G is
completed and the one in G′ can start.

We now turn our attention to non-deterministic g-choreographies. The graph
G(3a) contains a sound choice: participant A decides which message (between
x and y) is delivered to B. A further example of correct choreography is G(3b).
Here, participant A decides which branch is taken and informs either B or C,
which in turn notifies the third participant. Intuitively, participant B can wait
for a message coming from A or C and identify the selected branch accordingly.
Let us first consider two correct non-deterministic g-choreographies that are
only partially accommodated in the literature. The first interesting case is
G(3c). Intuitively, no difference can be observed between G(3c) and A

m−→ B, thus

every participant complying with A
m−→ B is also complying with G(3c). Another

3 GLOBAL VIEWS AS GRAPHS 10

i

A
x−→ B A

y−→ B

−i

(a) G(3a) = i :(A
x−→ B︸ ︷︷ ︸
G1

+ A
y−→ B︸ ︷︷ ︸
G2

)

i

A
x−→ B A

y−→ C

B
z−→ C C

w−→ B

−i

(b) G(3b) = A
x−→ B;B

z−→ C︸ ︷︷ ︸
G1

+ A
y−→ C;C

w−→ B︸ ︷︷ ︸
G2

i

A
m−→ B A

m−→ B

−i

(c) G(3c) = i :(A
m−→ B︸ ︷︷ ︸
G1

+ A
m−→ B︸ ︷︷ ︸
G1

)

i

A
m−→ B A

m−→ B

B
x−→ C B

y−→ C

−i

(d) G(3d) = A
m−→ B;B

x−→ C︸ ︷︷ ︸
G1

+ A
m−→ B;B

y−→ C︸ ︷︷ ︸
G2

Figure 3: Correct non-deterministic g-choreographies

example of correct choreography is the graph G(3d), where the two branches have
the same first interaction. Here A has the same behaviour in both G1 and G2, B
decides which message is delivered to C, and C is informed about the choice taken
by B via the reception of different messages. These simple cases are sometimes
tackled in the literature by merging the branches of a choice. However, these
type of (partial) operations have been defined in literature by constraining the
parallelism in the branches of choices [7]. Note also that in our framework in
G;G′ and in G + G′ both G and G′ can be parallel choreographies, matching the
level of generality of the choreographic languages in [6, 7] and in [24], however,
our notion of well-branchedness is more general than the corresponding notions
there.

The following examples discuss and anticipate some of the problems related to
non-deterministic composition of g-choreographies. Choreography G(4a) provides
an example of unsound choices. Participant A decides to which participant the
message x is delivered. The participant that is not selected by A has no way to
identify if/when the choice has been made. This will force that participant to
wait indefinitely for the message x. Another example of incorrect choreography

4 POMSET-BASED SEMANTICS OF CHOREOGRAPHIES 11

i

A
x−→ B A

x−→ C

−i

(a) G(4a) = i :(A
x−→ B︸ ︷︷ ︸
G1

+ A
x−→ C︸ ︷︷ ︸
G2

)

i

A
x−→ B C

x−→ D

−i

(b) G(4b) = i :(A
x−→ B︸ ︷︷ ︸
G1

+ C
x−→ D︸ ︷︷ ︸
G2

)

Figure 4: Incorrect non-deterministic choices

is G(4b), since it requires both A and C to commit to a distributed choice without
any communication among them.

The choreography G(5) illustrates a complex choreography with nested choices.
Here, the participant making all the choices is A. However, B and C receive
different information about these choices. The behaviour of B is uniform in all
branches of G1 (where it always receives l from A) as well as in all those of G2

(where it always receives r from A). The behaviour of C is more complex. The
first message sent by A is either h or y1. If h is received, C discovers that the
left branch of either G1 or G2 has been selected: in both cases all the tasks of C
in the choreography have been completed. If instead y1 is received, C discovers
that the right branch of either G1 or G2 has been selected: in all cases C waits
for the reception of the message y2 from A and uses the subsequent message (z1,
z2 or z3) to identify the choice made by A.

In Section 4.2 we introduce the notion of well-branchedness to identify non-
deterministic composition of choreographies that are meaningful.

4. Pomset-based semantics of choreographies

The basic idea to provide a semantics to g-choreographies is to use collections
of pomsets in order to account for the casual dependencies among communications
that are introduced by different alternatives of choices.

4.1. Preliminaries: pomsets for global graphs

In our framework, interactions are based on actions that happen on channels,
which we identify by the names of the participants involved in the communication.
Formally, a channel is an element of the set C = P2 \ {(A,A)

∣∣ A ∈ P} and we
abbreviate (A,B) ∈ C as AB. The set of labels L is defined by

L = L! ∪ L? where L! = C × {!} ×M and L? = C × {?} ×M

4 POMSET-BASED SEMANTICS OF CHOREOGRAPHIES 12

i

i′

A
h−→ C

A
l−→ B

A
y1−→ C

A
y2−→ C

A
l−→ B

A
z1−→ C

−i′

i′′

A
r−→ B

A
h−→ C

i′′′

A
r−→ B

A
y1−→ C

A
y2−→ C

A
z2−→ C

A
r−→ B

A
y1−→ C

A
y2−→ C

A
z3−→ C

−i′′′

−i′′

−i

G(5) = i :(G1 + G2)

G1 = i′ :

A

h−→ C;A
l−→ B

+

A
y1−→ C;A

y2−→ C;

A
l−→ B;A

z1−→ C

G2 = i′′ :

A
r−→ B;A

h−→ C
+
i′′′ :(G2a + G2b)

G2a =
A

r−→ B;A
y1−→ C;

A
y2−→ C;A

z2−→ C

G2b =
A

r−→ B;A
y1−→ C;

A
y2−→ C;A

z2−→ C

Figure 5: A complex choreography

The elements of L! and L?, outputs and inputs, respectively represent sending
and receiving actions; we shorten (AB, !,m) as AB!m and (AB, ?,m) as AB?m
and let l, l′, . . . range over L. The subject of an action is defined by

sbj(AB!m) = A (the sender) and sbj(AB?m) = B (the receiver)

In the following, we write l ∈ G when there is an interaction A
m−→ B in the

g-choreography G such that l ∈ {AB!m,AB?m}, and accordingly l̃ ⊆ G means
that l ∈ G for all l ∈ l̃.

We reuse the formalisation of partially-ordered multi-set of [16] later used
by [22] to give semantics to message-sequence charts.

Definition 1. A labelled partially-ordered set (lposet) is a triple (E ,≤, λ), with
E a set of events, ≤⊆ E × E a reflexive, anti-symmetric, and transitive relation
on E, and λ : E → L a labelling function.

For e 6= e′, λ(e) = λ(e′) means that e and e′ model different occurrences of
the same action. Intuitively, ≤ represents causality; for e 6= e′, if e ≤ e′ and
both events occur then e′ is caused by e. In the following, we use ε to denote
the empty lposet and e→ e′ to denote that e ≤ e′.

Definition 2. Two lposets (E ,≤, λ) and (E ′,≤′, λ′) are isomorphic iff there
exists a bijection φ : E → E ′ such that e ≤ e′ iff φ(e) ≤′ φ(e′) and λ = λ′ ◦ φ.

Definition 3. A partially-ordered multi-set (of actions), pomset for short, is an
isomorphism class of lposets.

4 POMSET-BASED SEMANTICS OF CHOREOGRAPHIES 13

 AB!x AB?x BA!y

BA?y

(a) r(6a)

 AB!x

AB?x

AB!y

AB?y

(b) r(6b)

 AB!x

AB?x

 AB!y

AB?y

(c) R(6c)

Figure 6: Examples of pomsets

The main benefit of using pomset in place of lposets is that we can abstract
from the mathematical structure used to define the events E , freeing us from
introducing canonical representations of lposets. In the following, [E ,≤, λ]
denotes the isomorphism class of (E ,≤, λ), we let r, r′, . . . (resp. R,R′, . . .)
range over pomsets (resp. sets of pomsets), and we assume that any r contains
at least one lposet which will possibly be referred to as (Er, ≤r, λr). Examples
of pomsets are depicted in Fig. 6, where events are not explicitly shown as their
labels univocally determine them. Intuitively, r(6a) establishes a total causal
order from the left-most to the bottom right-most event; r(6b) represents the
pomset of the parallel execution of two threads. In Fig. 6, R(6c) represents a
set of two pomsets, where each pomset defines the causal order of events that
corresponds to a choice made by the participant A; in one case A sends message
x, in the other case A sends message y.

In the following, given a natural number n, n represents the singleton {n}.
Also, we use X] Y to represent the disjoint union of two sets X and Y :
X] Y = (X × 1) ∪ (Y × 2). Finally, given a function f on X, we define
f ⊗ n = {(x, n) 7→ f(x)

∣∣ x ∈ X} as the function extending f to X × n;

analogously, for a relationR ⊆ X×Y , we letR⊗ n = {((x, n), (y, n))
∣∣ (x, y) ∈ R}

be the relation extending R to (X × n)× (Y × n).
We now define two important constructions to compose pomsets in parallel

and sequentially.

Definition 4. Let r = [E ,≤, λ] and r′ = [E ′,≤′, λ′] be two pomsets. The parallel
composition of r and r′ is:

par(r, r′) = [E] E ′, (≤ ⊗ 1) ∪ (≤′ ⊗ 2), (λ⊗ 1) ∪ (λ′ ⊗ 2)]

For a pomset r and a participant A ∈ P, let Er,A = {e ∈ Er
∣∣ sbj(λr(e)) = A} be

the set of events of A in Er. The sequential composition of r and r′ is:

seq(r, r′) = [E] E ′,≤seq, (λ⊗ 1) ∪ (λ′ ⊗ 2)]

where

≤seq =

(
(≤ ⊗ 1) ∪ (≤′ ⊗ 2) ∪

⋃
A∈P

((Er,A × 1)× (Er′,A × 2))

)?

and ? is the reflexive-transitive closure.

4 POMSET-BASED SEMANTICS OF CHOREOGRAPHIES 14

AB!x

AB?x

AC!y

AC?y

(a) A

x−→ B;A
y−→ C

AB!x

AB?x

BC!y

BC?y

(b) A

x−→ B;B
y−→ C

AB!x

AB?x

CB!y

CB?y

(c) A

x−→ B;C
y−→ B

AB!x

AB?x

AB!y

AB?y

(d) A

x−→ B;A
y−→ B

AB!x

AB?x

CD!y

CD?y

(e) A

x−→ B;C
y−→ D

Figure 7: Examples of sequential composition

Both parallel and sequential composition preserve the causal dependencies of
its constituents ≤ and ≤′. However, while there is no new dependency introduced
by the parallel composition, the sequential composition of two pomsets adds
to those in ≤ and ≤′ the dependencies among events in r and r′ with the
same subject. Basically, a causal relation is induced whenever a participant
performing a communication in r also performs a communication in r′. Fig. 7
depicts the sequential compositions of two pomsets, say r and r′. The former
pomset corresponds to the interaction A

x−→ B, while the second ranges over the
interactions

A
y−→ C, B

y−→ C, C
y−→ B, A

y−→ B, and C
y−→ D

Simple arrows represent the dependencies induced by the subjects and dotted ar-
rows represent dependencies induced by the sequential composition (the meaning
of stroken arrows will be explained in Section 4.2).

4.2. Semantics of choreographies

The semantics of a choice-free g-choreography G ∈ G (i.e. a choreography
that does not contain + terms) can be expressed using a partial order, which
represents the causal dependencies of the communication actions specified by
G. Choices are a bit more tricky. Intuitively, the semantics of G + G′ consists
of two (sets of) partial orders, one representing the causal dependencies of the
communication actions of G and the other of those of G′. Therefore, the semantics

4 POMSET-BASED SEMANTICS OF CHOREOGRAPHIES 15

of a g-choreography is a family of pomsets defined as

[[0]] = {ε}

[[A
m−→ B]] = {[

(
{e1, e2}, {(e1, e1), (e2, e2), (e1, e2)}, λ

)
]} where λ :

{
e1 7→ AB!m

e2 7→ AB?m

[[G|G′]] =

{
{par(r, r′)

∣∣ (r, r′) ∈ [[G]] × [[G′]]} if wf (G,G′)

⊥ otherwise

[[G;G′]] =

{
{seq(r, r′)

∣∣ (r, r′) ∈ [[G]] × [[G′]]} if ws(G,G′)

⊥ otherwise

[[G + G′]] =

{
[[G]] ∪ [[G′]] if wb(G,G′)

⊥ otherwise

where wf (G,G′), ws(G,G′), and wb(G,G′) in the last three clauses check that
parallel, sequential, and non-deterministic composition of choreographies are
meaningful. Before defining those predicates we discuss the other cases. The
semantics of the empty g-choreography 0 and of interaction A

m−→ B are straight-
forward; for the latter, the send part AB!m of the interaction must precede its
receive part AB?m.

For the parallel composition G|G′ we take the union of the dependencies of
every possible execution, thus allowing the concurrent occurrence of the events of
each thread. We also require that input events of G and G′ are disjoint. Formally,

Definition 5. Pomsets r = [E ,≤, λ] and r′ = [E ′,≤′, λ′] are well-forked if

λ(E) ∩ λ′(E ′) ∩ L? = ∅

We write wf (r, r′) when r and r′ are well-forked and, for G,G′ ∈ G, wf (G,G′)
when [[G]] 6=⊥ ∧[[G′]] 6=⊥ ∧∀r ∈ [[G]], r′ ∈ [[G′]] :wf (r, r′)

Parallel composition of the pomsets of G1 and G2 preserves the order rela-
tions of parallel threads. Additionally, well-forkedness ensures that the actions
corresponding to the events in one thread cannot be confused with those in other
threads. When well-forkedness does not hold, the pomsets induced by G1 and G2

would yield an order on shared inputs that would be too strict. This is illustrated
by considering the the choreography G(8) = G(8a)|G(8b), where G(8a) and G(8b)

are given in Fig. 8 together with their semantics. In the parallel composition,
the interaction A

x−→ B is shared between the two threads. The semantics of G(8)

should be the parallel composition of [[G(8a)]] and [[G(8b)]], without any further
dependencies among the events of the two pomsets. Notice that, independently
of the interleaving of the constituent threads, the event AC!r1 must always
precede the event BC!r2. However, this property cannot be enforced because an
implementation of G(8) can proceed as follows

1. the left thread of A executes AC!l1 and AB!x

4 POMSET-BASED SEMANTICS OF CHOREOGRAPHIES 16

A
l1−→ C

A
x−→ B

B
l2−→ C

AC!l1 AC?l1

AB!x AB?x

BC!l2 BC?l2

(a) G(8a) = A

l1−→ C;A
x−→ B;B

l2−→ C

A
r1−→ C

A
x−→ B

B
r2−→ C

AC!r1 AC?r1

AB!x AB?x

BC!r2 BC?r2

(b) G(8b) = A

r1−→ C;A
x−→ B;B

r2−→ C

Figure 8: A non well-forked choreography

2. the right thread of B executes AB?x, “stealing” the message x generated
by the left thread of A and meant for the left thread of B

3. the right thread of B executes BC!r2.

Informally, the participant B cannot ascertain if the reception of AB?m belongs
to the first or second thread, therefore he cannot decide which message between
l2 and r2 should be delivered.

The semantics of sequential composition G;G′ establishes happens-before
relations as computed by seq(r, r′) provided that they cover the dependencies
between the output events of G and the input events of G′. Formally,

Definition 6. Pomsets r = [E ,≤, λ] and r′ = [E ′,≤′, λ′] are well-sequenced if

≤seq(r,r′) ⊇ ({e ∈ E
∣∣ λ(e) ∈ L!} × 1)× ({e ∈ E ′

∣∣ λ′(e) ∈ L?} × 2)

We write ws(r, r′) when r and r′ are well-sequenced and, for G,G′ ∈ G, ws(G,G′)
when [[G]] 6=⊥ ∧[[G′]] 6=⊥ ∧∀r ∈ [[G]], r′ ∈ [[G′]] :ws(r, r′).

Well-sequencedness ensures the soundness of sequential composition; when it
does not hold, there is a participant A in G′ that cannot ascertain when to start
its execution in G′. All examples in Fig. 7 are sound, bar the one in Fig. 7e,
where the stroken edge depicts the missing causal dependency.

The semantics of a choice G + G′ is defined provided that the well-branched
condition holds. The definition of well-branchedness relies on the notions of
active and passive participants (defined below) that single out those participants
that (internally) select which branch to execute and those participants that have
to “understand” what choice was made according to the messages they receive,
instead of internally choosing a branch.

Definition 7. Two g-choreographies G and G′ are well-branched when

(i) there is at most one active participant in G + G′ and

(ii) all the other participants of G + G′ are passive.

We write wb(G,G′) to denote that G and G′ are well-branched.

4 POMSET-BASED SEMANTICS OF CHOREOGRAPHIES 17

As said earlier, in the semantics of G + G′ no additional dependencies are
introduced other than the ones induced by either G or G′. In fact, either the
actions of the first branch or the actions of the second one will be performed.
The behaviour of two branches can be the same up to a point of divergence
where some participants start to behave differently on the two branches. It is at
points of divergence where we discriminate if a participant is active or passive.

As usual, |X denotes the restriction of a function to a subset X of its domain.
In order to identify a point of divergence we need to consider the part of a
pomset involving a participant. In the following, we fix a participant A ∈ P.

Definition 8. Let r = [E ,≤, λ] be a pomset. The pomset

r�A = [Er,A, ≤ ∩ (Er,A × Er,A), λ|Er,A]

is the pomset of A in r; �A extends to sets of pomsets element-wise.

A way of defining points of divergence of two branches is in terms of the
events that differ in the two branches after “a common prefix”, where a prefix of
a pomset r is a pomset r′ on a subset of the events of r that preserves the order
and labelling of r; formally (following [22])

Definition 9. A pomset r′ = [E ′,≤′, λ′] is a sub-pomset of pomset r = [E ,≤, λ]
if

E ′ ⊆ E and ≤′=≤ ∩(E ′ × E ′) and λ′ = λ|E′

A sub-pomset r′ of r is a prefix of r if ≤ ∩((E \ E ′)× E ′) = ∅.

Definition 10. The suffix of a pomset r with respect to one of its prefixes r′,
denoted as r − r′, is the pomset [E ′, ≤r ∩(E ′ × E ′), λr|E′], where E ′ = Er \ Er′ .

The semantics of each branch in a choice G1 + G2 is, in general, a set of
pomsets. Our definition relies on finding a “common part” of the branches for
which participants behave uniformly in both branches G1 and G2 of the choice.
To identify such common part we consider the behaviour of each participant
A on the branches of the choice “in isolation”; namely, we analyse [[G1]]�A and
[[G2]]�A that is the events on the branches that involve A. A complication in
finding common prefixes is due to the fact that a pomset in [[G1]]�A could be
“matched” by several pomsets in [[G2]]�A. To address this problem, we need to
identify how the pomsets in [[G1]]�A correspond to those in [[G2]]�A. For instance,
for the participant C in the example G(5) (page 12), we need to relate the right
branch of i′ to both branches of i′′′ because of the common prefix consisting of
the reception of y1 followed by the reception of y2.

Definition 11. The pair of functions (φ, ψ) is an A-prefix map of G1 and G2 if

• domφ and codφ are partitions9 of [[G1]]�A and [[G2]]�A respectively, φ is
bijective, and

9Namely, families of disjoint subsets covering [[G1]]�A and [[G2]]�A, respectively.

4 POMSET-BASED SEMANTICS OF CHOREOGRAPHIES 18

• domψ = domφ and codψ is a set of pomsets

such that, for all R ∈ domφ and (r, r′) ∈ R×φ(R), the pomset ψ(R) is a prefix
pomset of both r and r′.

Definition 12. Let l̃1 and l̃2 be two subsets of L, we say that (̃l1, l̃2) is the
divergence point of G1 and G2 (or that G1 and G2 diverge at (̃l1, l̃2)) with respect
to the A-prefix map (φ, ψ), denoted divφ,ψA (G1,G2) = (̃l1, l̃2) if

l̃1 =
⋃

R ∈ domφ,
r ∈ R

λr
(
min

(
r − ψ(R)

))
and l̃2 =

⋃
R ∈ codφ,
r ∈ R

λr
(
min

(
r − ψ(φ−1(R))

))

where, for a pomset r, min r = {e ∈ Er
∣∣ 6 ∃e′ ∈ Er :e′ 6= e ∧ e′ ≤r e}.

The bijection φ “matches” sets of executions (pomsets) in [[G1]]�A with those
in [[G2]]�A that have an initial common behaviour determined by the common
prefix identified by the mapping ψ. Thus, l̃1 (resp. l̃2) is the union of the labels
at the point of divergence for [[G1]]�A (resp. [[G2]]�A), i.e. the union of the labels
of the minimal events of the pomsets in [[G1]]�A (and [[G2]]�A) after removing the
common prefixes. We use the examples of Sections 3 and 4 to demonstrate the
notion of divergence points.

Example G(3a). For participant A we have R1 = [[G1]]�A= {[AB!x]} and R2 =
[[G2]]�A= {[AB!y]}. Since R1 and R2 are singletons, each of them has exactly one
partition. Let φ = R1 7→ R2 and ψ = R1 7→ ε (i.e. the empty pomset, which is
the only common prefix) then divφ,ψA (G1,G2) = ({AB!x}, {AB!y}). For participant
B, R1 = [[G1]]�B= {[AB?x]} and R2 = [[G2]]�B= {[AB?y]}. Let φ = R1 7→ R2 and
ψ = R1 7→ ε then divφ,ψB (G1,G2) = ({AB?x}, {AB?y}).

Example G(3b). Similarly to the previous example, participant A diverges at
({AB!x}, {AC!y}). For participant B, R1 = [[G1]] �B= {[AB?x → BC!z]} and
R2 = [[G2]] �B= {[CB?w]}, with φ = R1 7→ R2 and ψ = R1 7→ ε we obtain
divφ,ψB (G1,G2) = ({AB?x}, {CB?w}). For participant C, R1 = [[G1]]�C= {[BC?z]}
and R2 = [[G2]]�C= {[AC?y→ CB!w]}. Let φ = R1 7→ R2 and ψ = R1 7→ ε then
divφ,ψB (G1,G2) = ({BC?z}, {AC?y}).

Example G(3c). For participant A, we have two cases depending on which prefix
map we consider. Note that R1 = R2 = [[G1]]�A= [[G2]]�A= {r}, where r = [AB!m],
and let φ = R1 7→ R2. If we choose the empty prefix (that is ψ = R1 7→ ε) the
point of divergence can be computed as divφ,ψA (G1,G2) = ({AB!m}, {AB!m}). A
different point of divergence can be computed using the prefix r: let ψ = R1 7→ r
then divφ,ψA (G1,G2) = (∅, ∅). Similarly, for the participant B, R1 = R2 =
[[G1]]�B= [[G2]]�B= {r}, where r = [AB?m]. According with the prefix chosen, two
different points of divergence can be computed. For the non-empty prefix: let
φ = R1 7→ R2 and ψ = R1 7→ r then divφ,ψB (G1,G2) = (∅, ∅).

4 POMSET-BASED SEMANTICS OF CHOREOGRAPHIES 19

Example G(3d). Here the two branches have the same first interaction. For
participant A, we have R1 = R2 = [[G1]] �A= [[G2]] �A= {[AB!m]}; hence φ =
R1 7→ R2 is the unique candidate function for φ while either ψ = R1 7→ ε or
ψ = R1 7→ [AB!m]; choosing the latter, we obtain that divφ,ψA (G1,G2) = (∅, ∅).
For participant C, R1 = [[G1]]�C= {[BC?x]} and R2 = [[G2]]�C= {[BC?y]}. Let
φ = R1 7→ R2 and ψ = R1 7→ ε (i.e. the only possible choice, since there is no
common prefix) then divφ,ψC (G1,G2) = ({BC?x}, {BC?y}). Finally, for participant
B, R1 = [[G1]]�B= {[AB?m 7→ BC!x]} and R2 = [[G1]]�B= {[AB?m 7→ BC!y]}. Let
φ = R1 7→ R2 and ψ = R1 7→ [AB?m] then divφ,ψB (G1,G2) = ({BC!x}, {BC!y}).

Example G(4a). Participant A sends either AB!x or AC!y and the point of diver-
gence can be computed similarly to the case G(3b). The divergence points for the
other participants are more interesting. We consider participant B only as the
case for C is similar. We have R1 = [[G1]]�B= {[AB?x]} and R2 = [[G2]]�B= {ε}.
The only B-prefix map candidate is (φ, ψ) with φ = R1 7→ R2 and ψ = R1 7→ ε,
hence divφ,ψB (G1,G2) = ({AB?x}, ∅). This reflects the fact that in one branch
B receives notification of the choice made by A, while in the other branch no
information is received.

Example G(4b). Here, it is easy to verify that participant A diverges at ({AB!x}, ∅),
B at ({AB?x}, ∅), C at (∅, {CD!x}), and D at (∅, {CD?x}).

Example G(5). For participant C, the numbers of pomsets in the semantics of
the two branches at control point i differ:

R1 ={[AC?h], [AC?y1 → AC?y2 → AC?z1]}
R2 ={[AC?h], [AC?y1 → AC?y2 → AC?z2], [AC?y1 → AC?y2 → AC?z3]}

The function φ can be chosen to

• map the subset R1a = {[AC?h]} of R1 to the subset {[AC?h]} of R2 and

• map the subset R1b = {[AC?y1 → AC?y2 → AC?z1]} of R1 to the subset
{[AC?y1 → AC?y2 → AC?z2], [AC?y1 → AC?y2 → AC?z3]} of R2.

With ψ =

{
R1a 7→ [AC?h]

R1b 7→ [AC?y1 → AC?y2]
we have that, for participant C, the

divergence point is divφ,ψC (G1,G2) = ({AC?z1}, {AC?z2,AC?z3}). With similar
calculations, we can show that B diverges at ({AB?l}, {AB?r}) and that partici-
pant A diverges at ({AC!h,AC!y1}, {AB!r}). In passing, note that there are other
possible choices of prefix maps for G(5) not considered here.

We now formalise the concepts of active and passive participants.

Definition 13. A participant A ∈ P is active in G1 + G2 if there exists an
A-prefix map (φ, ψ) of G1 and G2 such that, if divφ,ψA (G1,G2) = (̃l1, l̃2), then

l̃1 ∪ l̃2 ⊆ L! l̃1 ∩ l̃2 = ∅ l̃1 6= ∅ l̃2 6= ∅

4 POMSET-BASED SEMANTICS OF CHOREOGRAPHIES 20

Thus, the behaviour of an active participant A in G1 and G2 must be the same
up to the point where it informs the other participants, by sending different
messages, which branch it chooses.

Definition 14. A participant A ∈ P is passive in G1 + G2 if there exists an
A-prefix map (φ, ψ) of G1 and G2 such that, if divφ,ψA (G1,G2) = (̃l1, l̃2), then

• l̃1 ∪ l̃2 ⊆ L? and l̃1 = ∅ ⇐⇒ l̃2 = ∅

• ∀R ∈ domφ, r ∈ R : l̃2 ∩ λr(Er−ψ(R)) = ∅

• ∀R ∈ codφ, r ∈ R : l̃1 ∩ λr(Er−ψ(φ−1(R))) = ∅

Thus, the behaviour of a passive participant A in G1 and G2 must be the same up
to a point where it receives either of two different messages, each one identifying
which branch had been selected. Clearly, A cannot perform outputs at the points
of branching.

Interestingly, if one always takes a mapping yielding the empty prefix in the
determination of active and passive roles, the definitions above yield exactly the
same notions used e.g., in [21, 3, 11].

Lemma 1. Participant A cannot be both passive and active in G1 + G2.

Proof sketch. The proof shows that if a participant is active (passive) for φ and
ψ then for every φ′ and ψ′ the prefixes in the image of ψ′ are prefixes of the
pomsets in the codomain of ψ. Appendix A reports the details of the proof.

We demonstrate the notion of well-branchedness on the examples of Section 3.
When it exists, the selector of the choice is the active participant that determines
the branch to execute. For instance, in the choreography G(3a) participant
A is the selector of the choice since it diverges at ({AB!x}, {AB!y}). Hence,
choreography G(3a) is well-branched because the other participant B diverges at
({AB?x}, {AB?y}) and is therefore passive. Likewise, choreography G(3b) is well-
branched since A diverges at ({AB!x}, {AC!y}), B diverges at ({AB?x}, {CB?w}),
and C diverges at ({BC?z}, {AC?y}); thus A is active and the other participants
are passive.

Unlike its correspondents in the rest of the literature, our notion of well-
branchedness does not require the selector to exist. For instance, the choreogra-
phy G(3c) is well-branched even if it has no active participant. Both participants
are passive, since for both of them is possible to find a prefix map that leads
to divergence at (∅, ∅). Another example (usually discharged in the literature
by imposing syntactic constraints) is the choreography G(3d). Here, the two
branches have the same first interaction. Choosing the prefix [AB!m] for the
participant A makes it passive. The participant C diverges at ({BC?x}, {BC?y}),
thus it is passive. Finally, choosing the prefix AB?m for participant B, makes
its point of divergence to be ({BC!x}, {BC!y}). Thus B is active and the choice
well-branched.

An example of non well-branched choreography is G(4a): the participant A is
active (sending either AB!x or AC!y). However, B and C are neither passive nor

4 POMSET-BASED SEMANTICS OF CHOREOGRAPHIES 21

active. In fact, participant B diverges at ({AB?x}, ∅) (there is no other possible
point of divergence for B). Another example of non well-branched choreography
is G(4b), since no participant is active or passive.

Choreography G(5) illustrates that our notion of well-branchedness allows
to specify complex distributed choices. This example clarifies the need of
partitioning the semantics of branches to compute active and passive participants.
As shown (page 19), even though the semantics yield different numbers of pomsets
in the two branches for participant C, we can choose a C-prefix map (φ, ψ) such
that divφ,ψC (G1,G2) = ({AC?z1}, {AC?z2,AC?z3}); thus C is passive. Hence, G(5)

is well-branched since B is passive and that A is the unique active participant.
The choreography G(5) has two other interesting well-branched variants. One
where the interactions in G2 are replaced with

G′2 = A
r−→ B; i′′ :(A

h−→ C + A
y1−→ C;A

y2−→ C; i′′′ :(A
z2−→ C + A

z3−→ C))

In G′2 the interaction i : A
r−→ B is factorised before the choice in i′′. The other

variant is one where such interaction is executed in parallel to the others in G2a

or G2b.

4.3. Languages of choreographies

The abstract semantics of a g-choreography is the set of partial orders among
the events of the g-choreography. A more concrete semantics, akin to the usual
trace-based semantics of global views, can be given by considering the language
of a g-choreography. Informally, the language of a g-choreography G ∈ G consists
of the sequences of words over the alphabet consisting of the communication
actions of the events in G that preserve the causal relations of [[G]], provided that
[[G]] is defined. The language of G ∈ G is the set LG defined by

LG =

⋃
r∈[[G]]

Lr, if [[G]] is defined

⊥, otherwise

where the language Lr of a pomset r = [E ,≤, λ] is the set of λ(w) such that
w ∈ E? and, for any indexes i and j between 0 and the length of w and i 6= j,

1. w[i] 6= w[j]

2. if w[i] ≤ w[j] then i ≤ j
3. for every e ∈ E , if e ≤ w[i] and e 6= w[i] then there exists h < i such that
w[h] = e

Clause 1 states that events in the word are not repeated. Clause 2 states that
words preserve the causal relations of events. Clause 3 requires that all the
predecessors of an event which appears in the word must precede that event in
that word. Notice that Lr is prefix-closed (hence LG is prefix-closed too).

Hereafter, we comment on the languages of the examples in Section 4. The
language LG(3a)

= {ε,AB!x,AB!y,AB!x.AB?x,AB!y.AB?y} is the prefix-closure

5 PROJECTING ON COMMUNICATING MACHINES 22

of {AB!x.AB?x,AB!y.AB?y} (we write . for concatenation of words). Similarly,
the languages of LG(3b)

, LG(3c)
, and LG(3d)

respectively are the prefix-closure of

{AB!x.AB?x.BC!z.BC?z,AC!y.AC?y.CB!w.CB?w}
{AB!m.AB?m}
{AB!m.AB?m.BC!x.BC?x,AB!m.AB?m.BC!y.BC?y}

The languages LG(4a)
and LG(4b)

are undefined, since the choreographies are

not well-branched. The language LG(5)
is bigger and defined in a similar way.

5. Projecting on communicating machines

As in [26, 15], we adopt communicating finite state machines (CFSM) as
local artefacts. We borrow the definition of CFSMs in [5] adapting it to our
context. A CFSM M = (Q, q0,−→) is a finite transition system where

• Q is a finite set of states with q0 ∈ Q the initial state, and

• −→ ⊆ Q× L×Q; we write q
l−→ q′ for (q, l, q′) ∈−→.

A CFSM M = (Q, q0,−→) is A-local if sbj(l) = A for each q
l−→ q′. Given an

A-local CFSM MA = (QA, q0A,−→A) for each A ∈ P, the tuple S = (MA)A∈P is
a (communicating) system. For all A 6= B ∈ P, it is assumed that there is an
infinite FIFO queue bAB where MA puts the message to MB and from which MB

consumes the messages from MA.
The semantics of communicating systems is defined in terms of transition

systems, which keep track of the state of each machine and the content of each
queue. Let S = (MA)A∈P be a communicating system. A configuration of S
is a pair s = 〈q̃ ; b̃〉 where q̃ = (qA)A∈P with qA ∈ QA and b̃ = (bAB)AB∈C with
bAB ∈ M∗; state qA keeps track of the state of the machine MA and buffer bAB
keeps track of the messages sent from A to B. The initial configuration s0 is the
one where, for all A ∈ P, qA is the initial state of the corresponding CFSM and
all buffers are empty.

A configuration s′ = 〈q̃′ ; b̃′〉 is reachable from another configuration s =

〈q̃ ; b̃〉 by firing a transition l, written s l=⇒s′ if there is a message m ∈M such
that either (1) or (2) below holds:

1. l = AB!m and qA
l−→A q′A and

a. q′C = qC for all C 6= A and

b. b′AB = bAB.m and

c. b′CD = bCD for all (C,D) 6=
(A,B) ∈ C

2. l = AB?m and qB
l−→B q′B and

a. q′C = qC for all C 6= B and

b. bAB = m.b′AB and

c. b′CD = bCD for all (C,D) 6=
(A,B) ∈ C

Condition (1) puts m on channel AB, while (2) gets m from channel AB. In both
cases, any machine or buffer not involved in the transition is left unchanged in
the new configuration s′.

5 PROJECTING ON COMMUNICATING MACHINES 23

A configuration s = 〈q̃ ; b̃〉 is stable if all buffers are empty: b̃ = ε̃. A
configuration s = 〈q̃ ; b̃〉 is a deadlock if s 6⇒ and

• there exists a participant A ∈ P such that qA
AB?m−−−→A q′A

• or b̃ 6= ε̃

This definition is adapted from [10] and is meant to capture communications
misbehaviour. Observe that, according to this definition, a configuration s where
all machines are in a state with no outgoing transitions and all buffers are empty
is not a deadlock configuration even though s 6⇒.

The language of a communicating system S is the set LS ∈ L? of sequences

l0 . . . ln−1 such that s0
l0=⇒ . . .

ln−1
==⇒sn. Note that LS is prefix-closed.

Given two CFSMsM = (Q, q0,−→) andM ′ = (Q′, q′0,−→′), we use the following
notations:

• M × M ′ = (Q × Q′, (q0, q
′
0),−→′′) is the product of M and M ′ where(

(q1, q
′
1), l, (q2, q

′
2)
)
∈−→′′ if, and only if,(

(q1, l, q2) ∈−→ and q′1 = q′2
)

or
(
(q′1, l, q

′
2) ∈−→′ and q1 = q2

)
•
{
q′/q

}
M represents the machine obtained by substituting the state q with

the state q′, provided that q′ is not in the states of M ;

• M ⊗ n represents the machine (Q× n, (q0, n),−→ ⊗ n);

• M ◦ M ′ represents the machine (Q ∪Q′, q0,−→ ∪ −→′);

To define the projection of a g-choreography G to CFSMs we provide a function
defined by induction on the syntax of G that returns a triple (M, q0, qe) where M
is a CFSM, q0 is its initial state, and qe is special state of M used to connect it to
other machines. We will use (M, q0, qe)⊗ n to represent (M ⊗ n, (q0, n), (qe, n)).
We will use a graphical notation to represent those triples where an arrow
without target exiting a state singles out the second element of the pair (so,
for (M, q0, qe) we will have a dangling arrow leaving qe); also, an arrow without
source entering a state of M singles out the initial state of the machine. Let
G be a g-choreography, the function G ↓A yields the projection of G over the

5 PROJECTING ON COMMUNICATING MACHINES 24

participant A as follows:

G ↓A=

q0 if G = 0

q0 if G = B
m−→ C

q0 qe
AB!m if G = A

m−→ B, with q0 6= qe

q0 qe
BA?m if G = B

m−→ A, with q0 6= qe(
M1 ◦

{
q1e/q20

}
M2, q

1
0 , q

2
e

)
if G = G1;G2

and (M1, q
1
0 , q

1
e) = G1 ↓A ⊗ 1

and (M2, q
2
0 , q

2
e) = G2 ↓A ⊗ 2({

q2e/q1e

}
M1 ◦

{
q10/q20

}
M2, q

1
0 , q

2
e

)
if G = G1 + G2

and (M1, q
1
0 , q

1
e) = G1 ↓A ⊗ 1

and (M2, q
2
0 , q

2
e) = G2 ↓A ⊗ 2

(M1 ×M2, (q
1
0 , q

2
0), (q1

e , q
2
e)) if G = G1|G2,

and (M1, q
1
0 , q

1
e) = G1 ↓A ⊗ 1

and (M2, q
2
0 , q

2
e) = G2 ↓A ⊗ 2

Figure 9 shows examples of projections for participants A and B.

q0

qe

q0

qe

AB!x AB?x

(a) A
x−→ B

q0

qe

q0

qe

AB!y AB?y

(b) A
y−→ B

q0, q0

qe, q0 q0, qe

qe, qe

q0, q0

qe, q0 q0, qe

qe, qe

AB!x AB!y

AB!y AB!x

AB?x AB?y

AB?y AB?x

(c) A
x−→ B|A y−→ B

Figure 9: Examples of projections (we use q for (q, 1) and q for (q, 2)) for participants A (left)
and B (right)

5 PROJECTING ON COMMUNICATING MACHINES 25

We let G ↓A denote the CFSM in the first component of the triplet returned
by the projection when the other components (i.e., the states) are not needed.
Let ∆(M) denote the CFSM obtained by determinising M when interpreting
them as finite automata on the alphabet L. The following theorem shows that
the system made of the projections of a g-choreography G is deadlock-free if [[G]]
is defined.

Theorem 1 (Progress). Given G ∈ G such that [[G]] 6=⊥, if s is reachable from
the initial configuration s0 of the communicating system (∆(G ↓A))A∈P then s is
not a deadlock.

Proof sketch. By structural induction on the syntax of g-choreography. The
base cases are straightforward, since the projection of an empty choreography
or of a single interaction are deterministic and do not lead to a deadlock by
construction. For the inductive steps, we rely on the fact that determinisation
of CFSMs preserves the language of the communicating system and does not
introduce deadlocks. For sequential and parallel composition, the proof is done by
showing that if there is a deadlock in the composed communicating system, then
there must be a deadlock in at least one of the constituent systems. This holds
straightforwardly for the sequential composition. For the parallel composition,
we note that

• in each thread, every output of message, say m, has a corresponding input
action in a receiving machine, say B;

• the machine MB of B is the product of the threads on B.

Therefore, the configurations where the message m is sent have to reach a
configuration where B has the reception of m enabled (otherwise in one of the
threads there would be a deadlock violating the inductive hypothesis). Hence,
eventually m will be consumed.

For the non-deterministic composition, we show that if there is a trace in
system S made of machines (∆((G1 + G2) ↓A))A∈P , then there must be the same
trace in one of the systems made of machines (∆(G1 ↓A))A∈P or (∆(G2 ↓A))A∈P .
This is due to the well-branched condition. If the active participant, say B,
selects Gi ↓B in the communicating system S then all other participants are
forced to follow the same choice. This allows us to build a simulation relation
between the communicating system of the non-deterministic choice and the one
consisting of the CFSMs (Gi ↓A)A∈P .

The following theorem shows that the traces of the system made of the pro-
jections of a g-choreography G are included in the language of the g-choreography
if [[G]] is defined.

Theorem 2 (Adequacy). If G ∈ G with [[G]] 6=⊥ and S = (∆(G ↓A))A∈P then
LS ⊆ LG.

Proof sketch. The proof is by structural induction over the syntax of the g-
choreographies. The two main proof obligations are to show that (i) the depen-
dencies are preserved in the case of sequential composition and (ii) no additional

6 AN ALTERNATIVE SEMANTICS OF GLOBAL GRAPHS 26

communication occurs in the case of parallel composition. For the sequential
composition we proceed as follows. By definition, every word w0 in LG;G′ is the
shuffling of two words, w ∈ LG and w′ ∈ LG′ . Additionally, the side condition of
the semantics of sequential composition ensures that all the events of w having
subject A precede in w0 every event of w′ with subject A. For the second task
we rely on the fact that [[G]] is defined and we follow the same reasoning done
for Theorem 1. Appendix A reports the details of the proof.

In general, the converse of the inclusion in Theorem 2, that is LG ⊆ LS,
does not hold. The reason is that the semantics of parallel composition of
g-choreographies does not assume a FIFO policy on channels. In fact, the
communicating system can have less behaviours than the interleaving of the two
constituent threads because of the additional dependencies imposed by FIFO
channels. For instance, take the g-choreography G = A

x−→ B|A y−→ B; the word
AB!x.AB!y.AB?y.AB?x is in LG but it is not in L(∆(G↓A))A∈P .

6. An alternative semantics of global graphs

The presentation of the semantics of choreographies in terms of pomsets has
the benefits of being elegant and reusing existing theories [29, 16]. However, this
presentation is not ideal for implementing tools10 based on the semantics. Firstly,
there is a computational explosion (common to trace-based methods): each
choice duplicates events making the resulting number of pomsets exponential
in the number of choices in the choreography. Secondly, the pomset semantics
is based on equivalence classes, which are notoriously not straightforward to
implement. To overcome these limitations, we give an alternative yet equivalent
semantics in terms of hypergraphs, which yields compact representations of sets
of partial orders.

6.1. Preliminaries

Fixed a set V (of vertices), a (directed) hypergraph on V is a relation
H ⊆ 2V × 2V , namely a hyperarc L ṽ, ṽ′ M in H relates two sets of vertices, the
source ṽ and the target ṽ′. (To avoid cumbersome parenthesis, singleton sets
in hyperarcs are shortened by their element, e.g., we write L v, ṽ M instead of
L {v}, ṽ M.) The vertices of our hypergraphs are drawn from the set

V = (L ×K) ∪ K (ranged over by v)

Vertices in L×K represent communication actions together with the originating
control points while those in K represent “non-observable” actions, like (the
execution of) a choice or a merge. In the following, we shorten (l, i) as l[i], extend
cp to vertices so that cp(v) denotes the control point of a vertex v, we use

10 We are currently developing the ChorGram [25, 27] tool chain. In particular, we are
extending the toolkit with algorithms based on the semantics presented in this section. However,
the development is in too a preliminary phase to be in the scope of this paper.

6 AN ALTERNATIVE SEMANTICS OF GLOBAL GRAPHS 27

AB!x[i1]

AB?x[i1]

BA!y[i2]

BA?y[i2]

(a) H(10a)

i3

AB!x[i1]

AB?x[i1]

AB!y[i2]

AB?y[i2]

−i3

(b) H(10b)

i3

AB!x[i1]

AB?x[i1]

AB!y[i2]

AB?y[i2]

−i3

(c) H(10c)

Figure 10: Example hypergraphs

act(l[i]) = l to denote the action at l[i], and we extend function sbj() to vertices
in the obvious way. Take sbj() and act() to be undefined on K and the subject
of a vertex l[i] to be simply sbj(l), the subject of its corresponding action l.

To systematically identify vertices of hypergraphs corresponding to non-
observable events, we fix a function µ : G → (K → K) such that, for each
g-choreography G ∈ G, µ(G) (written µG)

• is bijective when restricted to cp(G) and

• for all i ∈ cp(G), µG(i) 6∈ cp(G).

Basically, µ yields a bijective correspondence between (i) branch and merge
control points corresponding to choices, (ii) fork and join control points corre-
sponding to parallel compositions, and (iii) complementary send/receive actions.
Since we decided to concretely represent control points of g-choreographies as
positive integers, in the following we assume µG(i) to be the opposite −i, for each
i ∈ cp(G).

Examples of hypergraphs. In Fig. 10, the graphs H(10a) and H(10b) contain only
simple arcs, while the graphH(10c) contains two hyperarcs: L i3, {AB!x[i1],AB!y[i2]} M
and L {AB?x[i1],AB?y[i2]},−i3 M. Intuitively, H(10a) corresponds to the pomset r(6a)

of Fig. 6 (establishing a total causal order from the top-most to the bottom-most
vertex); graph H(10b) represents a choice at control point i3 between the left and
the right branch and corresponds to the set of pomsets R(6c) of Fig. 6. Finally,
graph H(10c) represents the parallel execution of two threads at the control point
i3 and corresponds to the pomset r(6b); note that the edge L i3, {AB!x[i1],AB!y[i2]} M
of H(10c) relates the vertex i3 to both AB!x[i1] and AB!y[i2]. Fig. 11 depicts a
further example. Here, both the hypergraph H(11c) and the set of pomsets
R(11b) represent the dependencies of the choreography G(11a). Notice that the
hypergraph based representation does not grow exponentially when choices are
composed sequentially.

6 AN ALTERNATIVE SEMANTICS OF GLOBAL GRAPHS 28

i

A
x1−→ B A

x2−→ B

−i

i’

B
y1−→ C B

y2−→ C

−i’

(a) G(11a)

AB!x1

AB?x1

BC!y1

BC?y1

AB!x1

AB?x1

BC!y2

BC?y2

AB!x2

AB?x2

BC!y1

BC?y1

AB!x2

AB?x2

BC!y2

BC?y2

(b) R(11b)

i

AB!x1[i1]

AB?x1[i1]

AB!x2[i2]

AB?x2[i2]

−i

i’

BC!y1[i1]

BC?y1[i1]

BC!y2[i2]

BC?y2[i2]

−i’

(c) H(11c)

Figure 11: A choreography and its semantics represented as set of pomsets and hypergraph

We define the maximal and minimal elements of H respectively as

maxH = {v ∈ V
∣∣ 6 ∃L ṽ, ṽ′ M ∈ H :v ∈ ṽ}

minH = {v ∈ V
∣∣ 6 ∃L ṽ, ṽ′ M ∈ H :v ∈ ṽ′}

For instance, H(10b) andH(10c) in Fig. 10 respectively have minH(10b) = minH(10c) =
{i3} and maxH(10b) = maxH(10c) = {−i3}, while the minimal and maximal ele-
ments of H(10a) are AB!x[i1] and BA?y[i2] respectively.

We can now define seq(H,H ′), the sequential composition of hypergraphs
H and H ′:

seq(H,H ′) = H ∪H ′ ∪
{
L v, v′ M

∣∣ ∃L ṽ1, ṽ2 M ∈ H, L ṽ′1, ṽ′2 M ∈ H ′ :
v ∈ (ṽ1 ∪ ṽ2) \ K ∧ v′ ∈ (ṽ′1 ∪ ṽ′2) \ K ∧
sbj(v) = sbj(v′)

}
As done in Section 4.1 for pomsets, the sequential composition of two hypergraphs
H and H ′ adds dependencies between a vertex in H and one in H ′ when they
have the same subject.

A hyperedge h = L ṽ, ṽ′ M ∈ 2V × 2V represents that the causes in ṽ must
precede the effects in ṽ′. Let cs, ef : 2V × 2V → 2V be the maps respectively
returning the causes (cs) and effects (ef) of a hyperedge, that is: if h = L ṽ, ṽ′ M
then cs(h) = ṽ and ef(h) = ṽ′. Given H,H ′ ⊆ 2V × 2V , define the hypergraph

H ◦H ′ = {L cs(h), ef(h′) M
∣∣ h ∈ H, h′ ∈ H ′, ef(h) ∩ cs(h′) 6= ∅}

That is, H◦H ′ is the relational composition of H and H ′. The reflexive-transitive
closure H? of H with respect to the composition relation ◦ is defined as expected

6 AN ALTERNATIVE SEMANTICS OF GLOBAL GRAPHS 29

ṽ = { e1 · · · eh }

ṽ′ = { e′1 · · · e′i }

L
ṽ
,ṽ
′M

ṽ′′ = { e′′1 · · · e′′j }

L
e
′i ,ṽ
′′M

L
ṽ
,ṽ
′′M

Figure 12: Composition of hyperedges

as H? =
⋃
n≥0

H ◦ · · · ◦H︸ ︷︷ ︸
n-times

. Fig. 12 yields an intuitive representation of how

causal relations follow composition: the vertices in ṽ cause all the vertices in
ṽ′′ due to the dependency of the vertex e′i from the vertices in ṽ and the fact
that e′i causes each of the vertices in ṽ′′. Formally, the happens-before relation

Ĥ ⊆ V × V induced by a hypergraph H is

Ĥ =
⋃

L ṽ,ṽ′ M∈H

ṽ × ṽ′

Basically, 〈v, v′〉 ∈ Ĥ when v precedes v′ in H, namely Ĥ are the causal
dependencies among the vertices in H.

Let H be an acyclic hypergraph, the happens-before relation of the reflexive-
transitive closure of H yields a partial order on the vertices defined as

vH = (̂H?)

Sometimes it will be convenient to take the intersection of sets of vertices
ṽ u ṽ′ disregarding their control points: ṽ u ṽ′ = act(ṽ) ∩ act(ṽ′).

6.2. Semantics of choreographies

The semantics of a g-choreography is a partial map
{
| |
}

: G → 2(2V×2V)

defined by induction on the structure of choreographies as per Equations 3-7
below. The base cases and the inductive case for the parallel composition are
very simple: {

|0|
}

= ∅ (3){
|i : A m−→ B|

}
= {LAB!m[i],AB?m[i] M} (4){

|i :(G|G′)|
}

=

{{
|G|
}
∪
{
|G′|
}
∪H if (

{
|G|
}
u
{
|G′|
}

) ∩ L? = ∅
⊥ otherwise

(5)

6 AN ALTERNATIVE SEMANTICS OF GLOBAL GRAPHS 30

where, in (5), H = {L i,min
{
|G|
}
∪min

{
|G′|
}

M, Lmax
{
|G|
}
∪max

{
|G′|
}
,−i M} and the

side condition is analogous to the well-forkedness condition in Section 4.2. Note
that the hyperedges in H are not necessary and are added only to make the graphs
connected so to simplify the definition of some of the following constructions.

The case of sequential composition requires some auxiliary definitions. We
first define the (hyperedges involving) “first” and the “last” communication
actions in a hypergraph H:

fstH = {L ṽ, ṽ′ M ∈ H
∣∣ (ṽ ∪ ṽ′) ∩ K = ∅ ∧ ∀L ṽ′′, ṽ M ∈ H? : ṽ′′ \ ṽ ⊆ K}

lstH = {L ṽ, ṽ′ M ∈ H
∣∣ (ṽ ∪ ṽ′) ∩ K = ∅ ∧ ∀L ṽ′, ṽ′′ M ∈ H? : ṽ′′ \ ṽ′ ⊆ K}

(note that fstH =
(
lst (H−1)

)−1
). Also, let Hseq = seq(H,H ′) and Hcom =

cs(lstH)× ef(fstH ′); the predicate ws(H,H ′) is defined as Ĥseq ⊇ Ĥcom, which
requires that the sequential composition covers the dependencies between the
causes of the last communication actions of H with the effects of the first actions
of H ′. This condition corresponds to the predicate ws(r, r′) of Section 4.2.

The semantics of sequential composition can now be defined as follows:

{
|G;G′|

}
=

{
seq(

{
|G|
}
,
{
|G′|
}

) if ws(
{
|G|
}
,
{
|G′|
}

)

⊥ otherwise
(6)

Equation 6 establishes happens-before relations as computed by seq(
{
|G|
}
,
{
|G′|
}

)
provided that the well-sequencedness condition holds. Note that well-sequencedness
is violated in the example in Fig. 7e (on page 14).

Similarly to the pomset semantics of Section 4.2, the semantics of a choice
is defined provided that well-branchedness holds; this amounts to saying that
(i) there is at most one active participant and (ii) all the other participants
are passive. However, the notions of active and passive participants for the
hypergraph semantics are defined in a different way; we give the new definitions
of active and passive participants in Definitions 15 and 16 below and prove them
equivalent to the notions in Definitions 13 and 14 in Appendix B.

{
|i :(G + G′)|

}
=

{
|G|
}
∪
{
|G′|
}
∪H if wb(G,G′) and

H = {L i,min
{
|G|
}

M, L i,min
{
|G′|
}

M,
Lmax

{
|G|
}
,−i M, Lmax

{
|G′|
}
,−i M}

⊥ otherwise

(7)

The semantics of a choice i :(G + G′) returns the hypergraphs of the branches
connected to the control points of the start and merge of the choice. Besides
the dependencies induced by G and G′,

{
|i :(G + G′)|

}
contain those making i (the

control point of the branch) precede all minimal vertices of G and G′; similarly,
the maximal vertices of G and G′ have to precede the conclusion of the choice
(marked by the control point −i). This captures the fact that either the actions
of the first branch or the actions of the second one should be performed.

Lemma 2. ∀G ∈ G :L i, ṽ M, L i, ṽ′ M ∈
{
|G|
}

=⇒ ṽ ∩ ṽ′ = ∅.

6 AN ALTERNATIVE SEMANTICS OF GLOBAL GRAPHS 31

Proof. The lemma is immediate given that control points cannot have more than
one occurrence in a g-choreography G.

Given a hypergraph H, we say that ṽ causes ṽ′ (in H) if ṽ 6= ṽ′ and
L ṽ, ṽ′ M ∈ H?.

Lemma 3 (Acyclicity). For all G ∈ G such that
{
|G|
}

is defined, if ṽ causes ṽ′

in
{
|G|
}

then ṽ′ does not cause ṽ in
{
|G|
}

.

Proof. By induction on the syntax of G. If G = 0 then
{
|G|
}

= ∅ and if G =

i : A
m−→ B then

{
|G|
}

= {LAB!m[i],AB?m[i] M} hence the thesis holds vacuously.

For the parallel composition G = i :(G1|G2), we have
{
|G|
}

=
{
|G1|
}
∪
{
|G2|
}
∪

{L i,min
{
|G1|
}
∪min

{
|G2|
}

M, Lmax
{
|G1|
}
∪max

{
|G2|
}
,−i M}; by induction we have

the thesis since each vertex of G is either a control point j or a pair (̃l, j) and each
i has a unique occurrence in G, then the vertices of

{
|G1|
}

and
{
|G2|
}

are disjoint.
A similar argument applies in the remaining cases noting that the additional
dependencies added in the sequential or non-deterministic composition are all
between vertices taken from disjoint sets of vertices.

The notions of well-sequencedness and of well-branchedness (used in the last
two clauses in the definition of

{
| |
}

) are very similar to the corresponding ones for
pomsets given in Section 4.2. However, they are defined on different structures
(indeed, the attentive reader would have noticed the different fonts) and require
alternative definitions of active and passive participants, which have now to be
adapted to the hypergraphs-based semantics.

The A-only part of a set of vertices ṽ ∈ 2V for a participant A ∈ P is the set
ṽ@A where the actions of ṽ not having subject A are replaced with the control
point of the action; formally

ṽ@A = {v ∈ ṽ
∣∣ sbj(v) = A ∨ v ∈ K}

∪ {cp(v)
∣∣ v ∈ ṽ ∩ (L! ×K) ∧ sbj(v) 6= A}

∪ {−cp(v)
∣∣ v ∈ ṽ ∩ (L? ×K) ∧ sbj(v) 6= A}

Accordingly, the A-only part of a hypergraph H is defined as

H@A =
⋃

L ṽ,ṽ′ M∈H

{L ṽ@A, ṽ
′
@A M}

For instance, the B-only part of H(10c) (on page 27) is{
L i3, {i1, i2} M, L i1,AB?x[i1] M, L i2,AB?y[i2] M, L {AB?x[i1],AB?y[i2]},−i3 M

}
Notice that we use cp(v) and −cp(v) for outputs and inputs respectively, so
that different vertices not belonging to A remain distinguished and the causality
relations are not spoiled.

Given a hypergraph H, v1, v2 ∈ H are independent in H if there are h ∈ H
and v′1, v

′
2 ∈ ef(h) such that, for each i, j ∈ {1, 2}, 〈v′i, vj〉 ∈ (̂H?) ⇐⇒ i = j.

6 AN ALTERNATIVE SEMANTICS OF GLOBAL GRAPHS 32

H H′

∀ṽ2 ∈ V f(ṽ2)

f(ṽ1)∃ṽ1 ∈ V
v1 ∃v′1

v2 ∀v′2

f

The relations H and H′ have to be
thought of as specifying the causal re-
lations of two branches of a distributed
choice. All the vertices of ṽ ∈ V and of
f(ṽ) have the same subject.
The bijection f preserves both actions
and causality relation in all the sets ṽ ∈
V . So, any predecessor v1 in H of a
vertex v2 ∈ ṽ2 with the same subject as
v2 must be in a set ṽ1 of V . Moreover,
the f-images of ṽ1 and ṽ2 must reflect
such order in H′. Such condition must
also hold for the inverse of f.

Figure 13: Reflectivity

Intuitively, two vertices are independent if they have a common fork ancestor
and belong to two different threads. If the first common ancestor is a branch,
then the two events are not independent, since they can not both occur in the
same execution. For instance, vertices AB?x[i1] and AB?y[i2] of Fig. 10b are not
independent, because their common ancestor is a branch (i.e. the two events
do not belong to the same edge departing from the ancestor and, therefore, are
mutually exclusive). Vertices AB!x[i1] and AB?x[i1] of Fig. 10c are not independent,
because they are successors of the same child of the common ancestor (i.e. they
belong to the same thread). Finally, vertices AB?x[i1] and AB?y[i2] of Fig. 10c
are independent. For a participant A ∈ P, a set of vertices ṽ ⊆ H is A-uniform
in H if ṽ ∩ K = ∅, sbj(ṽ) = {A}, act(ṽ) is a singleton, and each v 6= v′ ∈ ṽ are

not independent and are such that {〈v, v′〉, 〈v′, v〉} ∩ (̂H?) = ∅.
The notions of active and passive participants of choices for the hypergraph-

based semantics are defined in terms of reflectivity. A partition V of a subset of
vertices of H A-reflects a partition V ′ of a subset of vertices of H ′ if there is a
bijection f : V → V ′ such that the following conditions hold:

• for each ṽ ∈ V both ṽ and f(ṽ) are A-uniform and act(ṽ) = act(f(ṽ))

• ∀ṽ2 ∈ V, v2 ∈ ṽ2, 〈v1, v2〉 ∈ Ĥ :sbj(v1) = A =⇒
(
∃ṽ1 ∈ V :v1 ∈ ṽ1 ∧ ∀v ∈

ṽ2, v
′ ∈ ṽ1 : 〈v, v′〉 6∈ Ĥ ∧ ∀v′2 ∈ f(ṽ2)∃v′1 ∈ f(ṽ1) : 〈v′1, v′2〉 ∈ Ĥ ′

)
, and

symmetrically

• ∀ṽ′2 ∈ V ′, v′2 ∈ ṽ′2, 〈v′1, v′2〉 ∈ Ĥ ′ : sbj(v′1) = A =⇒
(
∃ṽ′1 ∈ V ′ : v′1 ∈ ṽ′1 ∧

∀v ∈ ṽ′2, v′ ∈ ṽ′1 :〈v, v′〉 6∈ Ĥ ′ ∧ ∀v2 ∈ f -1(ṽ′2)∃v1 ∈ f -1(ṽ′1) :〈v1, v2〉 ∈ Ĥ
)
.

The notion of reflection has an intuitive explanation given in Fig. 13.
For a participant A ∈ P, two g-choreographies G,G′ ∈ G, a partition V of

a subset of vertices of
{
|G|
}

, and a partition V ′ of a subset of vertices of
{
|G′|
}

we say that (ṽ1, ṽ2) is the A-branching pair of G + G′ with respect to V and V ′,

6 AN ALTERNATIVE SEMANTICS OF GLOBAL GRAPHS 33

denoted (ṽ1, ṽ2) = divV,V
′

A (G,G′), if

V ′ A-reflects V and

ṽ1 =

⋃
cs(fst (

{
|G|
}

@A)) \
⋃
V

and

ṽ2 =
⋃
cs(fst (

{
|G′|
}

@A)) \
⋃
V ′

The requirement of A-reflectivity is used to identify such common behaviour (i.e.
all vertices in V and V ′) and to ignore it when checking the behaviour of A in
the branches. This has a similar role of prefix-maps of Section 4.2. In fact, by
taking the A-only parts of these hypergraphs and selecting their first interactions
(that is the A-branching pair ṽ1, ṽ2) we identify when the behaviour of A in G
starts to be different with respect to the behaviour in G′.

Definition 15. A participant A ∈ P is active in G + G′ if there are V and

V ′ such that divV,V
′

A (G,G′) is defined and, if (ṽ1, ṽ2) = divV,V
′

A (G,G′) then the
following holds:

ṽ1 ∪ ṽ2 ⊆ (L! ×K) ṽ1 u ṽ2 = ∅ ṽ1 6= ∅ ṽ2 6= ∅

Given a g-choreography G ∈ G, the happens-before relation of the reflexive-
transitive closure of

{
|G|
}

yields a partial order (by Lemma 3) on the vertices of
G defined as

vG =

{
̂({|G|}?), if

{
|G|
}

is defined

∅, otherwise

Observe that vG=v{|G|} when
{
|G|
}

is defined.

Definition 16. A participant A ∈ P is passive in G + G′ if there are V and

V ′ such that divV,V
′

A (G,G′) is defined and, if (ṽ1, ṽ2) = divV,V
′

A (G,G′) then the
following holds:

ṽ1 u {v ∈ G′
∣∣ 6 ∃v′ ∈ ṽ2 :v vG′ v

′} = ∅ ṽ1 ∪ ṽ2 ⊆ (L? ×K)
ṽ2 u {v ∈ G

∣∣ 6 ∃v′ ∈ ṽ1 :v vG v
′} = ∅ ṽ1 = ∅ ⇐⇒ ṽ2 = ∅

6.3. Languages of choreographies from hypergraphs

Informally, the language of a g-choreography G ∈ G consists of the sequences
of words made of the communication actions of the vertices in G that preserve
the causal relations of

{
|G|
}

, provided that
{
|G|
}

is defined.

Given a g-choreography G ∈ G, let G⊕ =
{
|G|
}
∩ (2K × 2V) (the hyperedges in

G whose source is a control point) and let D =
⋃
cs(G⊕) be the set of vertices

in G⊕ which do not represent communication events. A map ρ : D → 2V is
a resolution of G if L i, ρ(i) M ∈ G⊕(i) for each i ∈ D, where G⊕(i) is the set of
the outgoing hyperedges of i defined as G⊕(i) = G⊕ ∩ {L i, ṽ M

∣∣ ṽ ⊆ V}. We will

confound ρ with its graph {L i, ρ(i) M
∣∣ i ∈ D}. The partial order corresponding to

a resolution is the reflexive and transitive closure of the relation obtained by (i)
removing the hyperedges not chosen by the resolution and (ii) removing every

6 AN ALTERNATIVE SEMANTICS OF GLOBAL GRAPHS 34

dead vertex (i.e. vertices that are not reachable from the initial vertices after
removing the non-selected hyperedges).

We use <G to denote the set of resolutions of G. Intuitively, a resolution
fixes a branch for every choice in a g-choreography G and therefore it induces
a partial order of the vertices compatible with G and the resolution. Formally,
given a resolution ρ ∈ <G of G, we define the hypergraph Grρ as follows:

Grρ = reachable
(
min

{
|G|
}
,
{
|G|
}
\
(⋃

i∈dom ρ

G⊕(i) \ ρ
))

where reachable(ṽ, H) is the function that removes every node in the hypergraph
H that is not reachable from ṽ. The important property of Grρ is that resolutions
yield consistent choices.

Lemma 4 (Consistency). Given a resolution ρ ∈ <G of a g-choreography G ∈ G,
if for all i 6= j ∈ dom ρ

L i, ρ(i) M ∈ Grρ and i vG j and ∀v ∈ ρ(i) :v 6vG j

then ∀h ∈ Grρ : j 6∈ cs(h).

Proof. Let ρ̄ =
⋃

k∈dom ρ
G⊕(k) \ ρ. Since i vG j, there must be L i, ṽ M ∈ G⊕(i)

such that v v G j for a v ∈ ṽ. Also, it must be ρ(i) 6= ṽ (otherwise there is
a vertex in ρ(i) preceeding j), therefore L i, ṽ M ∈ ρ̄ (by Lemma 2). Hence, each
vertex in ṽ will not be in

{
|G|
}
\ ρ̄ ⊇ Grρ, which makes j not reachable in Grρ

(otherwise we would contradict the hypothesis that L i, ρ(i) M ∈ Grρ or that each
vertex in ρ(i) does not preceed j). Therefore for any h ∈ Grρ we have that
j 6∈ cs(h).

Let ΣGrρ = {v ∈ L × K
∣∣ v is a vertex in Grρ}. The language of G ∈ G is

undefined when
{
|G|
}

is undefined, otherwise it is

LG =
⋃
ρ∈<G

{
act(w)

∣∣ w ∈ (ΣGrρ)
? ∧ γ(w, ρ)

}
where γ(w, ρ) holds iff for all i 6= j between 1 and the length of w we have that

1. w[i] 6= w[j], where w[i] stands for the i-th vertex in w

2. if w[i] v Grρ w[j] and w[i] 6= w[j] then i < j

3. if v v Grρ w[i] and v 6= w[i] then there is h < i such that w[h] = v

Clause 1 states that vertices in the word are not repeated and, since w ∈ (ΣGrρ)
?,

by the consistency lemma (Lemma 4), w is made only of vertices present in
the order of the resolution, i.e. w does not mix vertices belonging to different
branches. Clause 2 states that words preserve the causal relations of vertices.
Clause 3 requires that all the predecessors of an event in the word must precede
the event in the word. Notice that LG is prefix-closed.

Let G ∈ G be a g-choreography such that [[G]] and
{
|G|
}

are defined. We

say that the two semantics are equivalent if the languages of [[G]] and
{
|G|
}

are

7 CONCLUSIONS 35

equal. This is demonstrated by showing language equivalence between pomsets
and resolutions. Let r ∈ [[G]] be a pomset and ρ be a resolution of G, we say
that r is equivalent to ρ when ρ corresponds to r up to

{
|G|
}

and each event in

r corresponds to some vertex in
{
|G|
}

; these correspondences are formalised in
Appendix B (on page 56); here it suffices to give an intuition:

• a vertex v in
{
|G|
}

corresponds to e ∈ Er for an r ∈ [[G]] (and vice versa)
when λr(e) is the label of v and for each v′ vG v on the same branch of v
there is an event e′ ∈ Er such that e′ ≤r e with e′ corresponding to v′.

• a resolution ρ ∈ <G corresponds to r ∈ [[G]] when for all vertices v on the
branch corresponding to ρ wich are not in K there is e ∈ r that corresponds
to v (basically, there is a partial order homomorphism between ρ and r).

To prove the equivalence of our two semantics we must show that there is a
bijective correspondence between pomsets in [[G]] and the set <G of resolutions
of
{
|G|
}

.

Theorem 3 (Correctness and completeness). For each G ∈ G,
{
|G|
}
6=⊥ iff

[[G]] 6=⊥. Moreover, for each ρ ∈ <G there is a pomset r ∈ [[G]] equivalent to ρ
and vice versa.

Appendix B reports the details of the proof.

7. Conclusions

We introduced an abstract semantics framework of choreographies expressed
as global graphs. Our approach is oblivious of the underlying communication
semantics and, as discussed below, can be easily adapted to alternative semantics.
The semantics of the global artefacts permits to analyse the distributed coordi-
nation at the global-level, without the need of examining the local behaviours
produced by the projections. Moreover, we can establish precise relations be-
tween specifications (choreographies) and their implementations (local artefacts)
and we can verify correctness of projections and refinements.

Our framework is more expressive than existing ones; it allows the same
participant to operate in both threads of the parallel composition and it does
not force passive participants to receive a message signalling the selected choice
as first operation in a non-deterministic composition. This is possible due to the
well-branched condition. Interestingly, this condition is parametric and depends
on the strategy used to find the partitions and the common prefixes required
to identify the A-prefix-map. This can range from using always the trivial
partitions and the empty prefix (thus enforcing the same syntactical constrains
of the existing proposals, some of which have been discussed in Section 2) to
finding the partitioning relative to the longest common prefixes. We plan to
give a more formal comparison between our semantics and those available in
the literature. For this, an interesting approach would be to follow the ideas
applied to CCS in [4]. There pomsets where used in combination with proved

7 CONCLUSIONS 36

transition systems to give an non-interleaving semantics of CCS; basically, given

a sequence of transitions p
α1−→ · · · αn−−→ q between two CCS processes p and q, a

pomset r can be derived from a proved transition system so that r represents the
equivalence class of traces between p and q “compatible” with traces labelled
α1, . . . , αn.

The adequacy of our framework is demonstrated by considering the projections
of g-choreographies on communicating machines. With this aim we provide a
projection algorithm and we prove its soundness, showing (Theorem 1) that
the projection of a sound choreography (i.e. whose semantics is defined) is a
deadlock-free system and (Theorem 2) that every execution of the projections is
accepted by the choreography.

Theorem 2 manifests the independence of the global semantics from the local
one. We regard as a good property of our semantics the fact that global artefacts
have “more executions” than the local ones obtained from their projections.
Intuitively, this amounts to saying that projections are refinements of the (more
abstract) global view. Another advantage is that changing local artefacts does
not necessarily require to modify the semantics of the global view. For example,
if we consider CFSMs where buffers are used as multisets (instead of as FIFO
queues), then all our constructions apply and Theorem 2 can be proved with
language equality rather than just inclusion.

Our semantic framework is amenable to variations to consider different se-
mantics at the global level. For instance, an alternative semantics of global views
could consider out-of-order outputs; this can be easily formalised by removing
the causal dependency between the outputs of two sequential interactions (i.e.
the topmost dotted arrows of both Fig. 7a and Fig. 7d are removed). However,
soundness of this change depends on the semantics of the local artefacts. In fact,
the projections of Fig. 7d can lead to a deadlock if the outputs are interleaved
and FIFO CFSM are used as local artefacts, while the interleaved outputs do
not cause deadlocks if multiset buffers are used by local artefacts. As another
variant one could consider a semantics where a sender has to wait for the receiver
to consume the sent messages before proceeding; this is simply attained by
adding a causal dependency from the input of B in Fig. 7a to the output from A
to C (while removing the dotted relation). We conjecture that this semantics
would correspond to the half-duplex semantics of CFSMs. Finally, one can allow
sequentially composing choreographies that involve disjoint participants (i.e.
allowing the choreography in Fig. 7e since both C and D do not occur in A

x−→ B).
For simplicity we did not considered recursion/iteration. This can be simply

added with a sort of an iterative construct !G where after the execution of the body
G, participants “agree” about repeating the loop (unfolding it and generating
new communication events) or exiting it. This essentially reduces the problem
to a distributed choice, which we solved with the well-branchedness condition.
Intuitively, one has to be careful when giving the semantics of (!G);G′. In fact,
in order to decide when to exit the body of the iteration G and continue with G′

we have to require the existence of an active participant, the well-branchedness
of G + G′, and the well-sequencedness of G;G′.

REFERENCES 37

In order to simplify the development of tools based on the semantics we
also provide an alternative semantics of choreographies in terms of hypergraphs.
Even if its presentation is more cumbersome, it has the benefit that its size
does not grow exponentially with the number of choices in the choreography.
Moreover, we believe that our semantics could lead to alternative projection
algorithms. For instance, we plan to define projections that exploit reflections
(which in the hypergraph based semantics resembles the notion of A-prefix-map).
This could be better explained by observing what happens when projecting the
simple choreography A

m−→ B;A
x−→ B + A

m−→ B;A
y−→ B, say on participant B (we

ignore control points because immaterial). Our algorithm yields the following
machine:

q0

q q′

qe

AB?m

AB?y

AB?m

AB?x

which after determinisation becomes

{qo}

{q, q′}

{qe}

AB?m

AB?x
AB?y

However, exploiting the bijection of the reflection, one could directly obtain
the machine on the right (avoiding the cost of determinising machines). Note
that other projection algorithms capable of handling the example above (as e.g.,
the one in [26]) also require determinisation, while projections based on types
(as e.g., the ones in [21]) are undefined on the previous example because they
require prefixes of branches to be pairwise different. Finally, the hypergraph
based semantics can be easily extended to graphs with structured loops that
are represented as repetitions of g-choreography. This is possible since the
semantics side-conditions do not depend on the (possibly infinite) language of
the choreography, but rather on the hypergraphs, which are finite.

References

[1] Charlton Barreto & et al. (2007): Web Services Business Process Execu-
tion Language Version 2.0. https://www.oasis-open.org/committees/

download.php/23964/wsbpel-v2.0-primer.htm.

[2] Davide Basile, Pierpaolo Degano, Gian-Luigi Ferrari & Emilio Tuosto (2016):
Relating two automata-based models of orchestration and choreography.
JLAMP 85(3), pp. 425 – 446.

[3] Laura Bocchi, Hernán C. Melgratti & Emilio Tuosto (2014): Resolving
Non-determinism in Choreographies. In: ESOP, pp. 493–512.

[4] Gérard Boudol & Ilaria Castellani (1988): Permutation of transitions: an
event structure semantics for CCS and SCCS. In J.W. de Bakker, W.-P.

https://www.oasis-open.org/committees/download.php/23964/wsbpel-v2.0-primer.htm
https://www.oasis-open.org/committees/download.php/23964/wsbpel-v2.0-primer.htm

REFERENCES 38

de Roever & G. Rozenberg, editors: Linear Time, Branching Time and
Partial Order in Logics and Models for Concurrency, Lecture Notes in
Computer Science 354, Springer-Verlag, pp. 411–427.

[5] Daniel Brand & Pitro Zafiropulo (1983): On Communicating Finite-State
Machines. Journal of the ACM 30(2), pp. 323–342.

[6] Mario Bravetti & Gianluigi Zavattaro (2007): Towards a Unifying Theory for
Choreography Conformance and Contract Compliance. In: Proceedings of
the 6th International Conference on Software Composition, SC’07, Springer-
Verlag, pp. 34–50.

[7] Marco Carbone, Kohei Honda & Nobuko Yoshida (2007): A Calculus of
Global Interaction based on Session Types. Electronic Notes in Theoretical
Computer Science 171(3), pp. 127 – 151.

[8] Marco Carbone & Fabrizio Montesi (2013): Deadlock-freedom-by-design:
multiparty asynchronous global programming. In: POPL13, pp. 263–274.

[9] Giuseppe Castagna, Mariangiola Dezani-Ciancaglini & Luca Padovani
(2012): On Global Types and Multi-Party Session. LMCS 8(1).

[10] Gérard Cécé & Alain Finkel (2005): Verification of programs with half-duplex
communication. I&C 202(2), pp. 166–190.

[11] Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida & Luca
Padovani (2016): Global progress for dynamically interleaved multiparty
sessions. Mathematical Structures in Computer Science 26(2), pp. 238–302.

[12] Mila Dalla Preda, Maurizio Gabbrielli, Saverio Giallorenzo, Ivan Lanese &
Mauro Jacopo (2015): Dynamic Choreographies - Safe Runtime Updates of
Distributed Applications. In: COORDINATION 2015, pp. 67–82.

[13] Mila Dalla Preda, Maurizio Gabbrielli, Saverio Giallorenzo, Ivan Lanese &
Mauro Jacopo (2017): Dynamic Choreographies - Safe Runtime Updates of
Distributed Applications. Logical methods in Computer Science 13(2).

[14] Pierpaolo Degano & Ugo Montanari (1987): A Model for Distributed Systems
Based on Graph Rewriting. Journal of the ACM 34(2), pp. 411–449.

[15] Pierre-Malo Deniélou & Nobuko Yoshida (2012): Multiparty Session Types
Meet Communicating Automata. In: ESOP, pp. 194–213.

[16] Haim Gaifman & Vaughan R Pratt (1987): Partial order models of concur-
rency and the computation of functions. In: LICS, pp. 72–85.

[17] Object Management Group: Business Process Model and Notation. http:

//www.bpmn.org.

http://www.bpmn.org
http://www.bpmn.org

REFERENCES 39

[18] Roberto Guanciale & Emilio Tuosto (2016): An Abstract Semantics of
the Global View of Choreographies. In: Proceedings 9th Interaction and
Concurrency Experience, ICE 2016, Heraklion, Greece, 8-9 June 2016., pp.
67–82.

[19] Kohei Honda, Nobuko Yoshida & Marco Carbone (2008): Multiparty asyn-
chronous session types. In George C. Necula & Philip Wadler, editors:
Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL 2008, San Francisco, California,
USA, January 7-12, 2008, ACM, pp. 273–284, doi:10.1145/1328438.1328472.
Available at http://doi.acm.org/10.1145/1328438.1328472.

[20] Kohei Honda, Nobuko Yoshida & Marco Carbone (2008): Multiparty asyn-
chronous session types. In: POPL, pp. 273–284.

[21] Kohei Honda, Nobuko Yoshida & Marco Carbone (2016): Multiparty Asyn-
chronous Session Types. Journal of the ACM 63(1), pp. 9:1–9:67. Extended
version of a paper presented at POPL08.

[22] Joost-Pieter Katoen & Lennard Lambert (1998): Pomsets for message
sequence charts. Formale Beschreibungstechniken für Verteilte Systeme, pp.
197–208.

[23] Nickolas Kavantzas, Davide Burdett, Gregory Ritzinger, Tony Fletcher
& Yves Lafon (2004): Web Services Choreography Description Language
Version 1.0. http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217.

[24] Ivan Lanese, Claudio Guidi, Fabrizio Montesi & Gianluigi Zavattaro (2008):
Bridging the Gap Between Interaction- and Process-Oriented Choreographies.
In: Proceedings of the 2008 Sixth IEEE International Conference on Software
Engineering and Formal Methods, SEFM ’08, IEEE Computer Society, pp.
323–332.

[25] Julien Lange & Emilio Tuosto: ChorGram. https://bitbucket.org/

emlio_tuosto/chorgram/wiki/Home.

[26] Julien Lange, Emilio Tuosto & Nobuko Yoshida (2015): From Communicat-
ing Machines to Graphical Choreographies. In: POPL15, pp. 221–232.

[27] Julien Lange, Emilio Tuosto & Nobuko Yoshida (2017): A tool for
choreography-based analysis of message-passing software. ACM. To appear.
Available at http://www.cs.le.ac.uk/~et52/chorgram_betty_ch.pdf.

[28] James Lewis & Martin Fowler (2014): Microservices: a definition of this new
architectural term. http://martinfowler.com/articles/microservices.
html.

[29] Vaughan Pratt (1986): Modeling concurrency with partial orders. Interna-
tional Journal of Parallel Programming 15(1), pp. 33–71.

http://dx.doi.org/10.1145/1328438.1328472
http://doi.acm.org/10.1145/1328438.1328472
http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217
https://bitbucket.org/emlio_tuosto/chorgram/wiki/Home
https://bitbucket.org/emlio_tuosto/chorgram/wiki/Home
http://www.cs.le.ac.uk/~et52/chorgram_betty_ch.pdf
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html

REFERENCES 40

[30] Zongyan Qiu, Xiangpeng Zhao, Chao Cai & Hongli Yang (2007): Towards
the Theoretical Foundation of Choreography. In: WWW07, ACM, pp.
973–982.

APPENDIX A PROOFS OF CONSISTENCY OF RESOLUTIONS 41

Appendix A. Proofs of consistency of resolutions

Lemma 1. Participant A cannot be both passive and active in G1 + G2.

Proof. We show the proof for A active (the passive case is similar). Let (φ, ψ) a A-
prefix map such that p is active at the point of divergence divφ,ψA (G1,G2) = (̃l1, l̃2),
that is (cf. Definition 13)

• both l̃1 and l̃2 contain only events in L!

• also l̃1 ∩ l̃2 = ∅, l̃1 6= ∅, and l̃2 6= ∅

• φ is a bijection from partitions of [[G1]]�A to partitions of [[G2]]�A

Clearly A cannot be passive for (φ, ψ) since l̃1 ∪ l̃2 6⊆ L?. Consider an A-

prefix map (φ′, ψ′) such that divφ
′,ψ′

A (G1,G2) = (̃l
′
1, l̃
′
2) 6= (̃l1, l̃2). Then for every

R′ ∈ domφ′ there exists R ∈ domφ such that ψ′(R′) is a prefix of ψ(R). Indeed,
let R ∈ domφ and R′ ∈ domφ′ such that R ∩ R′ 6= ∅ (such R and R′ exist
because domφ and domφ′ are partitions of [[G1]]�A). Note that ψ(R) and ψ′(R′)
are both prefixes of each pomset in R∩R′ (by Definition 11). Suppose now that
ψ′(R′) is not a prefix of ψ(R), then l ∈ l̃1 for the label l of each minimal event e
in ψ′(R′) and not in ψ(R) (by construction). We distinguish two cases:

• If φ(R) ∩ φ′(R′) 6= ∅ then both ψ(R) and ψ′(R′) are prefixes of each
r ∈ φ(R) ∩ φ′(R′); then for every minimal e in ψ′(R′) and not in ψ(R)
there is an event in each pomset r with the same label l, therefore l ∈ l̃2.

• If φ(R) ∩ φ′(R′) = ∅, let r ∈ φ′(R′) and let R̄ ∈ img(φ) such that r ∈ R̄.
If the pomset ψ′(R′) is not a prefix of ψ(φ−1(R̄)) then there is no event in
ψ(φ−1(R̄)) labelled by l then l ∈ l̃2.

In either cases l ∈ l̃2 contradicts the hypothesis that l̃1 ∩ l̃2 = ∅ of Definition 13.
Hence ψ′(R′) is a prefix of ψ(R) and A cannot be passive at the branching point
of (φ′, ψ′).

Figure A.14 summarises the crucial steps to prove Theorems 1 and 2. We first
define delayed-choice machines in Definition 18, which are finite-state automata
built from set of pomsets. Delayed-choice machines built from the semantics of
choreographies are deterministic (cf. Lemma 8) and language equivalent to the set
of pomsets of the semantics (cf. Lemma 7). This implies that the delayed-choice
machine M([[G]]) built from the pomset semantics of a g-choreography G yields an
alternative characterization of the language of G. Although M([[G]]) is “global” (it
contains transitions of all the participants in G), delayed-choice machines can also
be obtained for single participants and hence be seen as CFSMs. In fact, when
taking the delayed-choice machine of pomsets projected on a participant p one
gets an A-local CFSM. Also, Lemma 9 shows that for a participant A the CMFS
obtained by projection (G ↓A) and the delayed-choice machine (M([[G]]�A)) are
language equivalent. Thus, due determinisation, Lemma 10 shows that ∆(G ↓A)

APPENDIX A PROOFS OF CONSISTENCY OF RESOLUTIONS 42

[[G]]

M([[G]])

((M([[G]]�A))A∈P , ε̃)

((∆(G ↓A))A∈P , ε̃)

I(q̃, b̃)

conf. of ((M([[G]]�A))A∈P

I(q̃1, b̃)

conf. of (∆(G ↓A))A∈P

I(q̃′, b̃′)

conf. of ((M([[G]]�A))A∈P

I(q̃′1, b̃)

conf. of (∆(G ↓A))A∈P

Language equivalence
Lemma 7

Simulation
Lemma 12

Bisimulation
Lemma 10

lLemma 11

Bisimulation
Lemma 10

lLemma 11

Bisimulation
Lemma 10

Figure A.14: Proof strategy

and M([[G]]�A) are bisimilar. In practice, we can use the A-local delayed-choice
machine in place of the A’s CFMS machine obtained using the projection.

To prove Theorem 1 we introduce a property, called causality invariant, which
guarantees that the communications among the machines implement the inter-
participant causal dependencies of the choreography and that all participants
agree on the selected branches of choices. A configuration that satisfies the
invariant is not a deadlock. Lemma 11 shows that all reachable configurations of
the system obtained by composing the local delayed-choice machines is causally
invariant. This property can be transferred to the system consisting of the CMFS
projections using the bisimulation.

Finally, Lemma 12 shows that the system obtained by composing the local
delayed-choice machines is simulated by the global delayed-choice machine.
Which together with Lemma 10 and Lemma 7 guarantees that the language of
the system consisting of the CMFS projections is a subset of the language of the
choreography (Theorem 2).

We start associating associating auxiliary automata to pomsets.

Definition 17. Given a pomset r, the r-automaton is the finite-state automaton
M(r) = (2Er , ∅, 2Er ,−→), where q l−→ q′ iff exists e ∈ Er \ q such that q′ = q ∪ {e},
λr(e) = l, and for all e′≤re ∧ e′ 6= e holds e′ ∈ q.

Note that, in Definition 17, all the states of M(r) are accepting. By disre-
garding the accepting states, such automata can be use used as CFSMs. Also, it
is a simple observation that, for any participant A, M(r�A) is A-local.

The construction r-automaton Definition 17 yields a different characterization
of the language of r (hereafter, LM(r) is the language accepted an r-automaton
M(r)). Given a CFSM M , LM is the language accepted by the finite-state
automaton corresponding to M when all states are of M are accepting states.

APPENDIX A PROOFS OF CONSISTENCY OF RESOLUTIONS 43

Lemma 5. If r is a pomset then LM(r) = Lr

Proof. The proof is straightforward by induction on the length of the words. It
uses the fact that ∅ ω−→ q′ iff ω is a permutation of the labels of events in q′.

Lemma 6. Let G ∈ G with [[G]] 6=⊥ and r ∈ [[G]] then M(r) is deterministic.

Proof. By induction on the syntax of G. The base cases are trivial, since they
produce machines with zero or one transition. For sequential composition, we
notice that seq(r, r′) ensures that all transitions involving events of r′ occurs
after transitions involving events of r. The proof is trivial for non-deterministic
choice, since the semantics consists of the union of the pomsets of each branch.
For parallel composition G|G′, non-determinism can only be introduced by the
interleaving of two threads that send or receive the same message. However,
wf (G,G′) ensures that this can not happen.

Definition 18. Let R = {r1, . . . , rn} be a set of pomsets and, for 1 ≤ i ≤ n,
M(ri) = (Qi, ∅, Qi,−→i) be the ri-automaton of ri ∈ R and let Q =

∏
1≤i≤n(Qi ∪

{⊥}). The delayed-choice machine M(R) of R is the automaton M(R) =
(Q, (∅)1≤i≤n, Q,−→) where (q1, . . . , qn) l−→ (q′1, . . . , q

′
n) iff

• there exists 1 ≤ i ≤ n such that qi
l−→i q

′
i and

• for all 1 ≤ i ≤ n, q′i =

{
q if qi

l−→i q

⊥ otherwise
.

Hereafter, for each r, r′ ∈ R, we implicitly assume that Er ∩ Er′ = ∅ when
considering M(R).

Recalling that sets of pomsets are used to give semantics the non-deterministic
composition (choice) of g-choreographies, we note a key property guaranteed by
Definition 18: a transition of a delayed-choice machine “forces” all branches to
progress together when they can offer the same interactions.

Lemma 7. If R is a set of pomset then LM(R) = LR

Proof. The proof directly follows from Lemma 5.

Lemma 8. If G ∈ G with [[G]] 6=⊥ then M([[G]]) is deterministic. Also, if A is a
participant then M([[G]]�A) is A-local and deterministic.

Proof. The proof directly follows from the definition of delayed-choice machine
and Lemma 6

Lemma 9. If A is a participant of G ∈ G with [[G]] 6=⊥ then LG↓A = LM([[G]]�A).

Proof. By induction on the syntax of G.
Case G = 0. LG↓A = LM(R) = ε by construction.

Case G = C
m−→ B. If A 6= C and A 6= B then, as in the previous case, both

languages contain only the empty word. If A = C then LG↓A = LM(R) =

APPENDIX A PROOFS OF CONSISTENCY OF RESOLUTIONS 44

{ε,AB!m} by construction. If A = B then, by construction, LG↓A = LM(R) =
{ε,BA?m}.
Case G = G1|G2. Let

∃

be the shuffling operator of formal languages, then
LG↓A = {ω1

∃

ω2

∣∣ ω1 ∈ LG1↓A ∧ ω2 ∈ LG2↓A}, and L[[G]]�A
= {ω1

∃
ω2

∣∣ ω1 ∈
LM([[G1]]�A) ∧ω2 ∈ LM([[G2]]�A). Then the thesis directly follows by inductive hypoth-
esis, since LGh↓A = LM([[Gh]]�A) for h ∈ {1, 2}.
Case G = G1;G2. We use the fact that {seq(r1, r2)

∣∣ (r1, r2) ∈ [[G1]] × [[G2]]}�A=

{seq(r1, r2)
∣∣ (r1, r2) ∈ ([[G1]]�A)× ([[G2]]�A)}. and that, by inductive hypothesis,

LGh↓A = LM([[Gh]]�A) for h ∈ {1, 2}. Then the thesis follows by observing that
LG↓A = LG1↓A · LG2↓A = LM([[G1]]�A) · LM([[G2]]�A) = LM([[G]]�A) where · is the usual
operation of language concatenation.
Case G = G1 + G2. The proof is similar to the previous case noting that for
both machines the language is equal to the union of languages of the machines
obtained by G1 and G2.

Lemma 10. For each participant A of G ∈ G with [[G]] 6=⊥, ∆(G ↓A) is bisimilar
to M([[G]]�A).

Proof. The proof follows from Lemmas 8 and 9 and the fact that language
equivalence implies bisimilarity for deterministic finite automata.

In the following we use tuples as functions; for example, q̃(r) denotes the
component qr of a tuple q̃ = (qr)r∈R on a set of pomsets R.

We now introduce a property, dubbed causality invariant, that intuitively
guarantees that (1) the machine of each participant executes the interactions
of a choice uniformly across the branches of the choice; (2) inputs can only
be executed after their corresponding outputs; (3) buffers contains messages
that have been sent but not consumed; (4) all participants agree on the branch
selected. Since the local choice taken by the active participant is communicated
asynchronously (and using different messages for each passive participant), some
participants can be unaware of the branch taken. Hereafter, for a set of pomsets
R, a pomset r ∈ R, and a configuration s = 〈q̃ ; b̃〉 of (M(R�A))A∈P , we say that
the pomset r has been discarded, and we write q̃ 6 .r, iff there exists A ∈ P such
that q̃(A)(r�A) =⊥. We also write q̃ . r if the pomset has not been discarded.

Definition 19. Given a set of pomsets R, a configuration s = 〈q̃ ; b̃〉 of
(M(R�A))A∈P is causally invariant iff

1. for all A ∈ P and r, r′ ∈ R if q̃ . r and q̃ . r′ then there is a label- and
order-preserving bijection between q̃(A)(r�A) and q̃(A)(r′�A).

2. for all A 6= B, for every pomsets r ∈ R if q̃ . r then, for every output event
e ∈ r�A and input event e′ ∈ r�B, if e is an immediate predecessor of e′

with respect to ≤r, then e′ ∈ q̃(B)(r�B)⇒ e ∈ q̃(A)(r�A)

3. for all A 6= B, for every pomsets r ∈ R if q̃ . r then b̃(AB) is a permutation
of (m)λr(e)=AB!m,e∈ẽ where ẽ is the set of output events of q̃(A)(r�A) whose
immediate input successor in r�B is not in q̃(B)(r�B).

4. there exists r ∈ R such that q̃ . r

APPENDIX A PROOFS OF CONSISTENCY OF RESOLUTIONS 45

We write I(s) when s is causally invariant.

Lemma 11. If G ∈ G with [[G]] 6=⊥ then I(s) for all reachable configurations of
S = (M([[G]]�A))A∈P .

Proof. The proof is by induction on the syntax of G.
Case G = 0. We have that the only reachable configuration of S is the initial
one which consists of a tuple of empty sets and empty buffers and therefore it is
trivially causally consistent.
Case G = i : A

m−→ B. We have [[G]] = {r} where

≤r= e e′ with λr =

{
e 7→ AB!m

e′ 7→ AB?m

Hence, M([[G]]�A) = ∅ {e}
AB!m and M([[G]]�B) = ∅ {e′}

AB?m

which implies that the delayed-choice machine of G produces the message m in
M([[A

m−→ B]]�A) and consumes the same message in M([[A
m−→ B]]�B) going through

causally invariant configurations only.

In all the remaining cases, for h ∈ {1, 2}, we let Sh = (M([[Gh]]�A))A∈P , and
let s = (q̃, b̃) and s′ = (q̃′, b̃′). Before continuing with the proof it is convenient to
introduce the following notation; given a map f from pomsets to sets of events,
we define

∂l(f) = r 7→

{
f(r) ∪ {e} if e ∈ Er \ f(r) ∧ λr(e) = l ∧ ∀e′ ≤r e :e′ ∈ f(r)

⊥ otherwise

Case G = G1|G2. The proof consists of the following steps:

1. decompose s into two configurations s1 of S1 and s2 of S2 such that I(s1)
and I(s2) hold

2. from s l=⇒s′, exhibit sh
l=⇒s′h with I(s′1) for a h ∈ {1, 2}, say for h = 1

3. show that s′1 and s2 is a decomposition of s′ and that I(s′) holds.

By definition, [[G]] = {par(r1, r2)
∣∣ (r1, r2) ∈ [[G1]] × [[G2]]}, hence [[G]] �A=

{par(r1, r2)
∣∣ (r1, r2) ∈ [[G1]]�A ×[[G2]]�A}, for each participant A.

Regarding step (1), for h ∈ {1, 2} we let sh = 〈q̃h ; b̃h〉 where, for r ∈ [[G1]]
and A ∈ P

q̃1(A)(r�A) =

⋃

r′∈[[G2]]

{e
∣∣ (e, 1) ∈ q̃(A)(par(r, r′)�A)} ∃r′ ∈ [[G2]] : q̃(A)(par(r, r′)�A) 6=⊥

⊥ otherwise

and, for r ∈ [[G2]] and A ∈ P

q̃2(A)(r�A) =

⋃

r′∈[[G1]]

{e
∣∣ (e, 2) ∈ q̃(A)(par(r′, r)�A)} ∃r′ ∈ [[G1]] : q̃(A)(par(r′, r)�A) 6=⊥

⊥ otherwise

APPENDIX A PROOFS OF CONSISTENCY OF RESOLUTIONS 46

Moreover, for all AB ∈ C and h ∈ {1, 2}, let b̃h(AB) be the buffer obtained by
removing from b̃(AB) all messages that do not occur in Gh. Note that

• for all r1 ∈ [[G1]], r2 ∈ [[G2]], and A ∈ P, we have q̃(A)(par(r1, r2)�A) =
q̃1(A)(r1�A)] q̃2(A)(r2�A), for A ∈ P, r1 ∈ [[G1]], and r2 ∈ [[G2]] (by the
definition of par(,))

• due to wf (G1,G2), G1 and G2 contain distinct messages, thus for all AB ∈ C
a message of b̃(AB) cannot be in both b̃1(AB) and b̃h(AB), and b̃(AB) ∈
b̃1(AB)

∃

b̃2(AB).

Also, for h ∈ {1, 2}, sh = 〈q̃h ; b̃h〉 is a reachable configuration of (M([[Gh]]�A))A∈P
otherwise s would not be a reachable configuration of S. Hence, I(s1) and I(s2)
hold by the inductive hypothesis.

For (2), we rely on the fact that the pending messages those that have been
sent but not been consumed. Since wf (G1,G2) guarantees that l either come
from G1 or from G2, without loss of generality we can consider the case only

where l is generated in G1 (the other case is analogous). Let A = sbj(l), if s l=⇒s′

then q̃(A)
l−→ q̃′(A) and there is an event e of a pomset r ∈ [[G1]] such that

e /∈ q̃1(A)(r) and λr(e) = l. Therefore, q̃1(A)
l−→ ∂̃l(q̃1(A)).

We consider the case l = AB!m first. By Definitions 17 and 18.

q̃′ = q̃[A 7→ ∂l(q̃(A))] and b̃′ = b̃[AB 7→ b̃(AB) ·m]

Also, s1
l=⇒s′1 and s′1 = 〈q̃′1 ; b̃′1〉 where

q̃′1 = q̃1[A 7→ ∂l(q̃1(A))] and b̃′1 = b̃1[AB 7→ b̃1(AB) ·m]

Due to the inductive hypotheses configuration s′1 is causally invariant. Also, for
all C 6= A ∈ P and all r = par(r1, r2) ∈ [[G]]�C, q̃′(C)(r) = q̃′1(C)(r1)] q̃2(A)(r2)
and, for all CD ∈ C, b̃′(CD) = b̃′1(CD)

∃

b̃2(CD).
Finally for (3), we verify that s′ satisfies the conditions of Definition 19:

• the first condition holds because q̃′ differs from q̃ only on A and for each
r = par(r1, r2) ∈ [[G1]]�A and r′ = par(r′1, r

′
2) ∈ [[G2]]�A with q̃′(A)(r) 6=⊥ and

q̃′(A)(r′) 6=⊥ we have that q̃′(A)(r) = q(A)(r) ∪ {(e, 1)} and q̃′(A)(r′) =
q(A)(r′) ∪ {(e′, 1)} for some e ∈ r1�A and e′ ∈ r′1�A such that λr1(e) =
λr′1(e′) = l. Therefore, we can extend the bijection between q̃(A)(r) and

q̃(A)(r′) by mapping the (e, 1) to (e′, 1).

• for the second condition we have to check that for all A 6= C and all
r = par(r1, r2) ∈ [[G]], if q̃′(A)(r �A) 6=⊥ and q̃′(C)(r �C) 6=⊥ then, for
every output event (e, 1) ∈ Er1�A × 1 and input event (e′, 1) ∈ Er1�C × 1,
if (e, 1) is an immediate predecessor of (e′, 1) with respect to ≤r, then
e′ ∈ q̃′(C)(r�C) =⇒ e ∈ q̃′(A)(r�A) which holds otherwise I(s′1) would not
hold

APPENDIX A PROOFS OF CONSISTENCY OF RESOLUTIONS 47

• for the third condition, take r = par(r1, r2) ∈ [[G]] such that q̃′(A)(r�A) 6=⊥
and q̃′(C)(r�C) 6=⊥; then b̃′(AC) is a permutation of

(
m
)
λr(e)=AC!m,e∈ẽ where

ẽ is the set of output events of q̃(A)(r�A) whose immediate input successor
in r�C is not in q̃(C)(r�C), again because I(s′1) and I(s2) hold.

• finally, there is r = par(r1, r2) ∈ [[G]] such that q̃′(C)(r�C) 6=⊥ for all C ∈ P
because, if a participant C ∈ P discarded a branch r1 ∈ [[G1]] in q̃′1 (i.e.
q̃′1(C)(r1�C) 6= q̃1(C)(r1�C) and q̃′1(C)(r1�C) =⊥) then it has discarded all
corresponding branches in q̃′ (i.e. for all r2 ∈ [[G2]], q̃′(C)(par(r1, r2)�C) =⊥).

Hence I(s′).
We consider the case l = BA?m.

q̃′ = q̃[A 7→ ∂l(q̃(A))] and b̃ = b̃′[BA 7→ m · b̃′(BA)]

by Definitions 17 and 18. Due to wf (G,G′) we know that m cannot be in the buffer
b̃2(BA). In fact, messages exchanged in concurrently composed g-choreographies
must be disjoint. This, and the fact that b̃(BA) contains an interleaving of the
messages of the buffers of b̃1(BA) and b̃2(BA), ensures that the message is in the

head of the buffer b̃1(BA). Therefore s1
l=⇒s′1 and s′1 = 〈q̃′1 ; b̃′1〉 where

q̃′1 = q̃1[A 7→ ∂l(q̃1(A))] and b̃1 = b̃′1[BA 7→ m · b̃′1(BA)]

The proof continues similarly to the output case.
Case G = G1;G2. By definition, [[G]] = {seq(r1, r2)

∣∣ (r1, r2) ∈ [[G1]]× [[G2]]} and,

for a participant A, [[G]]�A= {seq(r1, r2)
∣∣ (r1, r2) ∈ [[G1]]�A ×[[G2]]�A}. The proof

works as follows:

1. we find two causally invariant configurations s1 of S1 and s2 of S2 that
correspond to s

2. we show that since s l=⇒s′ for one of the two configurations holds sh
l=⇒s′h

3. due to the inductive hypotheses the invariant is preserved by sh
l=⇒s′h

4. we show that s′ corresponds to s′1 and s′2 and prove that s′ is causally
invariant.

For (1), let h ∈ {1, 2} and sh = 〈q̃h ; b̃h〉 where, for r ∈ [[G1]] and A ∈ P

q̃1(A)(r�A) =

⋃

r′∈[[G2]]

{e
∣∣ (e, 1) ∈ q̃(A)(seq(r, r′)�A)} ∃r′ ∈ [[G2]] : q̃(A)(seq(r, r′)�A) 6=⊥

⊥ otherwise

and, for r ∈ [[G2]] and A ∈ P

q̃2(A)(r�A) =

⋃

r′∈[[G1]]

{e
∣∣ (e, 2) ∈ q̃(A)(seq(r′, r)�A)} ∃r′ ∈ [[G1]] : q̃(A)(seq(r′, r)�A) 6=⊥

⊥ otherwise

APPENDIX A PROOFS OF CONSISTENCY OF RESOLUTIONS 48

Moreover, for all AB ∈ C, let idx(AB) be the difference between the number of
output events in the image of q̃(A) from A to B obtained from the pomsets in
[[G1]] and the input events of B from A in the image of q̃(A), and define

b̃1(AB) = m1 · · ·midx(AB) and b̃2(AB) = midx(AB)+1 · · ·mi

Note that idx(AB) is between 0 and the number of messages in b̃ because
ws(G1,G2) holds by hypothesis and by the definition of seq(G1,G2).

• for all A ∈ P, r1 ∈ [[G1]], and r2 ∈ [[G2]], we have q̃(A)(seq(r1, r2)�A) =
q̃1(A)(r1�A)] q̃2(A)(r2�A), (by the definition of seq(,))

• and b̃(AB) = b̃1(AB) · b̃2(AB) for all AB ∈ C.

Also, for h ∈ {1, 2}, sh = 〈q̃h ; b̃h〉 is a reachable configuration of (M([[Gh]]�A))A∈P
otherwise s would not be a reachable configuration of S. Hence, I(s1) and I(s2)
by the inductive hypothesis.

For (2), we rely on the fact that the pending messages of the buffers in a
reachable configuration are those obtained by output events not matched by

corresponding input events. If s l=⇒s′ then, by construction, we have s1
l=⇒s′1 or

s2
l=⇒s′2. We consider the case l = AB!m first. If s1

l=⇒s′1 then there is an event e
of a pomset r ∈ [[G1]] such that e /∈ q̃1(A)(r), λr(e) = AB!m, and s′1 = 〈q̃′1 ; b̃′1〉
where

q̃′1 = q̃1[A 7→ ∂AB!m(q̃1(A))] and b̃′1 = b̃1[AB 7→ b̃1(AB) ·m]

by Definitions 17 and 18. Therefore,

q̃′ = q̃[A 7→ ∂AB!m(q̃)] and b̃′ = b̃[AB 7→ b̃(AB) ·m]

(again by Definitions 17 and 18) where the latter equality holds because ws(G1,G2)
and by definition of seq(G1,G2) imply that b̃2(AB) is empty. Finally, we verify
that s′ satisfy the conditions of Definition 19:

• the first condition holds because q̃′ differs from q̃ only on A and for
every r1, r

′
1 ∈ [[G1]]�A and r2 ∈ [[G2]]�A with q̃′(A)(seq(r1, r2)�A) 6=⊥ and

q̃′(A)(seq(r′1, r2)�A) 6=⊥ we have that q̃′(A)(seq(r1, r2)�A) = q(A)(seq(r1, r2)�A
)∪{(e, 1)} and q̃′(A)(seq(r1, r2)�A) = q(A)(seq(r1, r2)�A)∪{(e′, 1)} for some
e ∈ r1 �A and e′ ∈ r′1 �A, and λr1(e) = λr′1(e′) = l. Therefore we can

extend the bijection between q̃(A)(seq(r1, r2)�A) and q̃(A)(seq(r′1, r2)�A) by
mapping the (e, 1) to (e′, 1).

• for the second condition we have to check that for all A 6= C and all
r = seq(r1, r2) ∈ [[G]], if q̃′(A)(r �A) 6=⊥ and q̃′(C)(r �C) 6=⊥ then, for
every output event (e, 1) ∈ Er1�A × 1 and input event (e′, 1) ∈ Er1�C × 1,
if (e, 1) is an immediate predecessor of (e′, 1) with respect to ≤r, then
e′ ∈ q̃′(C)(r�C) =⇒ e ∈ q̃′(A)(r�A) which holds otherwise I(s1) would not
hold

APPENDIX A PROOFS OF CONSISTENCY OF RESOLUTIONS 49

• for the third condition we have that, for all r = seq(r1, r2) ∈ [[G]], when
q̃′(A)(r �A) 6=⊥ and q̃′(B)(r �B) 6=⊥, then b̃′(AB) is a permutation of(
m
)
λr(e)=AB!m,e∈ẽ where ẽ is the set of output events of q̃(A)(r�A) whose

immediate input successor in r�B is not in q̃(B)(r�B), again because I(s1)
holds

• finally, there is r = seq(r1, r2) ∈ [[G]] such that q̃′(C)(r�C) 6=⊥ for all C ∈ P
because, if a participant C ∈ P “discarded” a branch r1 ∈ [[G1]] in q̃′1 (i.e.
q̃′1(C)(r1�C) 6= q̃′1(C)(r1�C) and q̃′1(C)(r1�C) =⊥) then it has discarded all
corresponding branches in q̃′ (i.e. for all r2 ∈ [[G2]], q̃′(C)(seq(r1, r2)�C) =⊥).

Hence I(s′). We now consider the case s2
AB!m===⇒s′2

As before, there is an event e of a pomset r ∈ [[G2]] such that e /∈ q̃2(A)(r),
λr(e) = AB!m, and s′2 = 〈q̃′2 ; b̃′2〉 where

q̃′2 = q̃2[A 7→ ∂AB!m(q̃2(A))] and b̃′2 = b̃2[AB 7→ b̃2(AB) ·m]

by Definitions 17 and 18. Therefore,

q̃′ = q̃[A 7→ ∂AB!m(q̃)] and b̃′ = b̃[AB 7→ b̃(AB) ·m]

(again by Definitions 17 and 18) where the latter equality holds because ws(G1,G2)
and by definition of seq(G1,G2) imply that b̃1(AB) is empty. Finally, reasoning as
in the previous case we can verify that s′ satisfy the conditions of Definition 19.

In the case of input, assume l = BA?m. Suppose first that the input transition
is performed by s1(A). Then, b̃1(BA) = m · ω for some word ω ∈M? since I(s1)

(otherwise s1
l=⇒s′1 would not be possible). If the input transition is performed

by s2(A) for every r1 ∈ [[G1]] we have s1(A)(r1�A) = Er1�A because of the order

imposed by the sequential composition and Definition 18. Hence, buffer b̃1(BA)
is empty and buffer b̃2(BA) has message m on its top (that is, b̃2(BA) = m · ω for

some word ω ∈M? since I(s2)) otherwise s1
l=⇒s′1 would not be possible.

Finally, I(s′) follows by the fact that no event of A of G2 can be performed
before the events A of G1 and that, for h ∈ {1, 2}, the messages produced by
outputs of Gh are consumed by inputs of Gh.
Case G = G1 + G2. The proof works as follows:

1. we find a causally invariant configuration s1 of S1 or s2 of S2 that corre-
sponds to s (without loss of generality, we consider the former case only,
since the other is analogous)

2. from s l=⇒s′ we find a transition s1
l=⇒s′1 and show that s′1 corresponds to s′

and it is causally invariant

For (1), let h ∈ {1, 2} and A ∈ P and sh = 〈q̃h ; b̃〉 where

q̃h(A)(r�A) =

{
q̃(A)(r�A) if r ∈ [[Gh]] ∧ ∃r′ ∈ [[Gh]] : q̃(A)(r′�A) 6=⊥
⊥ otherwise

APPENDIX A PROOFS OF CONSISTENCY OF RESOLUTIONS 50

Since I(s) by hypothesis, by property (4) of Definition 19, there is r̂ ∈ [[G]] =
[[G1]] ∪ [[G2]] such that, for all A ∈ P, q̃(A)(r̂ �A) 6=⊥. Therefore, there is a
h ∈ {1, 2} such that r̂ ∈ [[Gh]] and sh is reachable in Sh = (M([[Gh]]�A))A∈P
otherwise s would not be a reachable configuration of S. Hence, I(sh) holds by
the inductive hypothesis. Hereafter we assume that r̂ ∈ [[G1]] (the other case is
analogous).

Let A = sbj(l) and R = {r ∈ [[G]]
∣∣ ∂l(q̃(A))(r�A) 6=⊥}. Since s l=⇒s′, then

q̃′ = q̃[A 7→ ∂l(q̃(A))], q̃(A)
l−→ q̃′(A), and R 6= ∅.

If R ∩ [[G1]] 6= ∅, then q̃1(A)
l−→ q̃′1(A) and s1

l=⇒s′1, where s′1 = (q̃1[A 7→
∂l(q̃1(A))], b̃′). By the inductive hypothesis, I(s′1) holds. Therefore, properties (1
– 3) of Definition 19 are satisfied by s′ for every r1 ∈ [[G1]]. Also, every pomset
r1 ∈ [[G1]] that satisfies property (4) in q′1 also satisfies (4) in q′. To prove that
properties (1 – 3) are satisfied by s′ for r2 ∈ [[G2]] we distinguish three cases. If
R∩ [[G2]] = ∅, then q′(A)(r2) =⊥ and for every B 6= A holds q′(B)(r2) = q(B)(r2),
thus (1 – 3) trivially hold. If R ∩ [[G2]] 6= ∅ and s2 is reachable in S2, then

q̃2(A)
l−→ q̃′2(A) and s2

l=⇒s′2, where s′2 = (q̃2[A 7→ ∂l(q̃2(A))], b̃′). By the inductive
hypothesis, I(s′2) holds, thus properties (1 – 3) are satisfied by s′ (this case
corresponds to A executing events belonging to the common prefixes of the two
branches). Finally, If R ∩ [[G2]] 6= ∅ and s2 is not reachable in S2, then (1 – 3)
vacuously hold, since there is B 6= A such that q(B)(r2�B) =⊥. Hence, I(s′)
holds.

If s2 is not reachable in S2 then for every pomset r2 ∈ [[G2]] and every B ∈ P
holds q′(B)(r2) =⊥

If R∩ [[G1]] = ∅, then R∩ [[G2]] 6= ∅ and q̃2(A)
l−→ ∂̃l(q̃2(A)). If s2 is reachable

in S2 = (M([[G2]]�A))A∈P , then there is r̂′ ∈ [[G2]] such that for all B ∈ P,
q̃(B)(r̂′�B) 6=⊥. The proof can continue as the previous case (i.e. s1 is reachable
and R ∩ [[G1]] 6= ∅). Notice that this case corresponds to participant A being
active and selecting the branch G2. In fact, up to the event l, every participant
B ∈ P executed the same actions in G1 and G2 (i.e. for every r1 ∈ R ∩ [[G1]] and
r2 ∈ R ∩ [[G2]] there are order- and label-preserving bijections among r1�B, r2�B,
and the prefixes of the corresponding partitions). Also, A is executing an action
that is not part of the common prefix, thus l is in the points of divergence on G2

of A.
If s2 is not reachable in S2 = (M([[G2]]�A))A∈P then for every pomset r2 ∈

R ∩ [[G2]], holds q2(A)(r2) 6=⊥ and there exists B ∈ P such that q2(B)(r2) =⊥.
Up to the event l, the participant A executed the same actions in G1 and G2 (i.e.
for every r1 ∈ R ∩ [[G1]] and r2 ∈ R ∩ [[G2]] there are order- and label-preserving
bijections among r1�A, r2�A, and the prefixes of the corresponding partitions).
Also, A is executing an action that is not part of the common prefix, thus l is on
the points of divergence on G2 of A. This case corresponds participant A selecting
the branch of G2, and participant B selecting the branch of G1. We show that
this case is a contradiction and violates the well-branchedness condition. We
distinguish two cases: input and output.

If l = CA?m, then participant C of the corresponding output CA!m has

APPENDIX A PROOFS OF CONSISTENCY OF RESOLUTIONS 51

already sent the message by property (2) of Definition 19. Thus there exists a
corresponding output event in q(C)(r) for every r ∈ [[G]]. However, these events
cannot be in the common prefixes, thus C has already discarded branch G1 (i.e.
for every r1 ∈ [[G1]] holds q̃(C)(r1�C) =⊥), which contraddicts the hypotesis that
s1 is reachable.

If l = AC!m, then A must be active, because its points of divergence contains
a output. However, there cannot be any participant B ∈ P that has already
discarded all branches of G2, which contraddicts the condition that for every
pomset r2 ∈ R ∩ [[G2]] exists B ∈ P such that q2(B)(r2) =⊥, which is implied by
the assumption that s2 is not reachable.

Theorem 1 (Progress). Given G ∈ G such that [[G]] 6=⊥, if s is reachable from
the initial configuration s0 of the communicating system (∆(G ↓A))A∈P then s is
not a deadlock.

Proof. The theorem directly follows from Lemma 11 and Lemma 10.

Lemma 12. If G ∈ G with [[G]] 6=⊥ and S = (M([[G]]�A))A∈P then M([[G]])
simulates S.

Proof. The proof of the theorem is done by induction on the syntax of G. The
proof is trivial for choreographies that are empty or are simple interactions.
Case G = G1;G2. For h ∈ {1, 2}, let Sh = (M([[Gh]]�A))A∈P ; by inductive
hypothesis, there exists a simulation .h such that M([[Gh]]) .h Sh. We exhibit
a simulation relation . such that M([[G]]) . S.

We know that [[G]] = {seq(r1, r2)
∣∣ (r1, r2) ∈ [[G1]] × [[G1]]} . In the following,

for r ∈ [[G]], we use r1 and r2 to denote the pomsets r1 ∈ [[G1]] and r2 ∈ [[G1]] such
that r = seq(r1, r2). Let g be a state of M([[G]]), by definition of delayed choice
machine for every r ∈ [[G]] holds g(r) ⊆ Er∪{⊥}. Also, let s be a configuration of
S, then for every A and r ∈ [[G]] holds s(A)(r�A) ⊆ Er�A ∪{⊥}. For a participant A
and r ∈ [[G]], g(r) = g1(r)] g2(r) and s(A)(r) = s1(A)(r1�A)] s2(A)(r2�A) where,
for h ∈ {1, 2} and j 6= h,

• for r ∈ [[G1]]

g1(r) =

⋃

r′∈[[G2]]

{e
∣∣ (e, 1) ∈ g(seq(r, r′))} ∃r′ ∈ [[G2]] :g(seq(r, r′)) 6=⊥

⊥ otherwise

• for r ∈ [[G2]]

g2(r) =

⋃

r′∈[[G1]]

{e
∣∣ (e, 2) ∈ g(seq(r′, r))} ∃r′ ∈ [[G1]] :g(seq(r′, r)) 6=⊥

⊥ otherwise

• s1 and s2 are the configurations of S1 and S2 that correspond to s defined
in case “Seq” of proof of Lemma 11

APPENDIX A PROOFS OF CONSISTENCY OF RESOLUTIONS 52

We say that g . s iff g1 .1 s1 and g2 .2 s2. To prove that . is a simulation,

assume that s l=⇒s′ and g . s, then we must show that g
l−→ g′ and g′ . s′. Let

A = sbj(l), the proof follows the following steps:

1. Since g1 .1 s1 and g2 .2 s2 one of the two system (say h ∈ {1, 2})
is able to execute the same transition: if exists r1 ∈ [[G1]] such that
s1(A)(r1�A) 6= {Er1�A,⊥} then l is performed by G1; otherwise l is performed
by G2.

2. Due to the relation among the buffers we show that the configuration of

the corresponding system Sh performs the transition sh
l=⇒s′h

3. The inductive hypotheses ensures that the state gh of the CFSM machine

M([[Gh]]) that is similar to sh via .h performs the transition gh
l−→ g′h.

4. finally, we show that g
l−→ g′

The proof of (2) reuses the same arguments of the proof of Lemma 11 case “seq”’.
Then (4) follows by the definition of delayed choice machine and from the fact
that if the transition is enabled in the machine produced by [[G1]], then the same
transition is executed by the machine produced by [[G]]. Similarly, if a transition
is enabled in the machine produced by [[G2]], then Lemma 10 ensures that all
events of [[G1]] of A have been processed, thus the same transition is enabled in
[[G]].
Case G = G1 + G2. For h ∈ {1, 2}, let Sh = (M([[Gh]]�A))A∈P ; by inductive
hypothesis, there exists a simulation .h such that M([[Gh]]) .h Sh. We exhibit
a simulation relation . such that M([[G]]) . S.

We know that [[G]] = [[G1]] ∪ [[G1]] Let g be a state of M([[G]]), by definition of
delayed choice machine for every r ∈ [[G]] holds g(r) ⊆ Er ∪ {⊥}. Also, let s be a
configuration of S, then for every A and r ∈ [[G]] holds s(A)(r�A) ⊆ Er�A ∪ {⊥}.
For h ∈ {1, 2} let

• gh = (g(r))r∈[[Gh]]

• sh be the configurations of Sh that correspond to s defined in case “Choice”
of proof of Lemma 11

We say that g . s iff

• g1 .1 s1 or g2 .2 s2

• for h ∈ {1, 2} if gh 6.h sh then gh = (⊥)r∈[[Gh]]

To prove that . is a simulation, assume that s l=⇒s′ and g . s, then we must

show that g
l−→ g′ and g′ . s′. Let A = sbj(l), the proof follows the following

steps:

1. if g1 .1 s1 (the other case is analogous) and the CFSM of A obtained by

M([[G1]]�A) performs the transition s1(A)
l−→ s′1(A) then

(a) s1
l=⇒s′1

APPENDIX A PROOFS OF CONSISTENCY OF RESOLUTIONS 53

(b) the inductive hypotheses ensures that the state g1 of the automaton

M([[G1]]) that is similar to s1 via .1 performs the transition g1
l−→ g′1

and preserves the simulation.

(c) this guarantees that g
l−→ g′ and that the simulation is preserved.

2. if g1 .1 s1 (the other case is analogous) and the CFSM of A obtained by

M([[G1]]�A) does not perform the transition s1(A)
l−→ s′1(A) then we must

demonstrate that g′1 = (⊥)r∈[[G1]]

Proof of (1.a) reuses the same arguments of the proof of Lemma 11 case “Choice.
Proof of (1.c) follows by the definition of delayed choice machine and from the
fact that if the transition is enabled in the machine produced by [[G1]], then the
same transition is executed by the machine produced by [[G]] (which is obtained
by the union of the two sets of pomsets [[G1]] and [[G2]]), by scheduling the same
event of G1. Finally, (2) is demonstrated by showing that the transition uses an
event that can not be in any pomset of [[G1]]. In fact, this case corresponds to
the execution of an event on the points of divergence of A that has label in l̃A,2.
Case G = G1|G2. For h ∈ {1, 2}, let Sh = (M([[Gh]]�A))A∈P ; by inductive
hypothesis, there exists a simulation .h such that M([[Gh]]) .h Sh. We exhibit
a simulation relation . such that M([[G]]) . S.

We know that [[G]] = {par(r1, r2)
∣∣ (r1, r2) ∈ [[G1]] × [[G2]]}. In the following,

for r ∈ [[G]], we use r1 and r2 to denote the pomsets r1 ∈ [[G1]] and r2 ∈ [[G2]] such
that r = par(r1, r2). Let g be a state of M([[G]]), by definition of delayed choice
machine, for all r ∈ [[G]], g(r) ⊆ Er ∪ {⊥}. Also, let s be a configuration of S,
then for every A and r ∈ [[G]] holds s(A)(r�A) ⊆ (Er�A)∪ {⊥}. For a participant A
and r ∈ [[G]], g(r) = g1(r)] g2(r) and s(A)(r) = s1(A)(r1�A)] s2(A)(r2�A) where,
for h ∈ {1, 2} and j 6= h,

• for r ∈ [[G1]]

g1(r) =

⋃

r′∈[[G2]]

{e
∣∣ (e, 1) ∈ g(par(r, r′))} ∃r′ ∈ [[G2]] :g(par(r, r′)) 6=⊥

⊥ otherwise

• for r ∈ [[G2]]

g2(r) =

⋃

r′∈[[G1]]

{e
∣∣ (e, 2) ∈ g(par(r′, r))} ∃r′ ∈ [[G1]] :g(par(r′, r)) 6=⊥

⊥ otherwise

• s1 and s2 are the configurations of S1 and S2 that correspond to s defined
in case “Par” of proof of Lemma 11

We say that g . s iff g1 .1 s1 and g2 .2 s2. To prove that . is a simulation,

assume that s l=⇒s′ and g . s, then we must show that g
l−→ g′ and g′ . s′. The

proof follows the following steps:

APPENDIX B PROOF OF EQUIVALENCE OF THE SEMANTICS 54

1. Due to wf (G1,G2) the message of l occurs exactly in one of G1 and G2. We
assume that G1 contains the message (the other case is analogous).

2. Due to the relation among the buffers and wf (G1,G2) we show that the

configuration of the system S1 performs the transition s1
l=⇒s′1

3. The inductive hypotheses ensures that the state g1 of machine M([[G1]]),

which is similar to s1 via .1, performs the transition g1
l−→ g′1.

4. finally, we show that g
l−→ g′

The proof of (2) reuses the same arguments of the proof of Lemma 11 case “Par.
Finally (4) follows by the definition of delayed choice machine and from the fact
that if the transition is enabled in the machine produced by [[G1]], then the same
transition is executed by the machine produced by [[G]] (which is obtained by
parallel composition), by scheduling the same event of G1.

Theorem 2 (Adequacy). If G ∈ G with [[G]] 6=⊥ and S = (∆(G ↓A))A∈P then
LS ⊆ LG.

Proof. The theorem directly follows from Lemma 12, Lemma 10, and Lemma 7.

Appendix B. Proof of equivalence of the semantics

To prove the equivalence of our two semantics we will show that there is a
bijective correspondence between pomsets in [[G]] and the set <G of resolutions
of
{
|G|
}

. To exhibit this bijective correspondence it is useful to use the following
variant of the semantics given in Section 4.2.

[[[0]]] = {ε}
[[[i : A

m−→ B]]] = {({(i, s), (i, r)}, {((i, s), (i, s)), ((i, r), (i, r)), ((i, s), (i, r))}, λ)}

where λ :

{
(i, s) 7→ AB!m,

(i, r) 7→ AB?m

[[[G|G′]]]

{
{par(r, r′)

∣∣ (r, r′) ∈ [[[G]]] × [[[G′]]]}if ∀(r, r′) ∈ [[[G]]] × [[[G′]]] :wf (r, r′)

⊥ otherwise

[[[G;G′]]] =

{
{seq(r, r′)

∣∣ (r, r′) ∈ [[[G]]] × [[[G′]]]} if ∀(r, r′) ∈ [[[G]]] × [[[G′]]] :ws(r, r′)

⊥ otherwise

[[[G + G′]]] =

{
[[[G]]] ∪ [[[G′]]] if wb(G,G′)

⊥ otherwise

The above semantics, which we call representative, assumes that the set of events
E includes the set K× {s, r}; events (i, s) (resp. (i, r)) are used for output (resp.
input) events. The representative semantics is trivially equivalent to the one in
Section 4.2 since the only difference is in the identities of the communication

APPENDIX B PROOF OF EQUIVALENCE OF THE SEMANTICS 55

events. Hereafter, we work with the representative pomsets semantics of g-
choreographies, v ∈ H will abbreviate ∃L ṽ, ṽ′ M ∈ H : v ∈ ṽ ∪ ṽ′ and, given a
pomset r, e ∈ r will abbreviate e ∈ Er.

An event e is an (i, s)-event (resp. (i, r)-event) if e = (i, s) (resp. e = (i, r))
or e is of the form (e′, 1) or (e′, 2) and e′ is an (i, s)-event (resp. (i, r)-event).
For an (i, s)-event (resp. (i, r)-event) e, e denotes the corresponding (i, r)-event
(resp. (i, s)-event), namely (i, s) = (i, r), (i, r) = (i, s), and (e, h) = (e, h) for
h ∈ {1, 2}. Note that, when [[[G]]] 6=⊥ and e ∈ [[[G]]] then e is either an (i, s)- or
an (i, r)-event.

The following lemmata will be useful in the rest of the proofs.

Lemma 13. Let G ∈ G (i) if [[[G]]] 6=⊥ then e ∈ [[[G]]] ⇐⇒ e ∈ [[[G]]], and (ii) if{
|G|
}
6=⊥ then AB!m[i] ∈

{
|G|
}
⇐⇒ AB?m[i] ∈

{
|G|
}

.

Proof. By induction on the syntax of G.
Case G = 0. We have

{
|0|
}

= ∅ and [[[0]]] = {ε}, hence the thesis vacuously
holds.
Case G = i : A

m−→ B. We have
{
|i : A m−→ B|

}
= {LAB!m[i],AB?m[i] M} and [[[i : A

m−→ B]]] =
{({(i, s), (i, r)}, . . .} by definition, and again the thesis hold.
Case G = G1|G2. We have

{
|G1|G2|

}
=
{
|G1|
}
∪
{
|G2|
}
∪ H (where H is an

hypergraph on the vertices of
{
|G1|
}

and
{
|G2|
}

as in Eq. (5) on page 29 and it is

immaterial here) and since v ∈
{
|G1|G2|

}
\H iff v ∈

{
|G1|
}

or v ∈
{
|G2|
}

, then part
(i) of the thesis immediately follows by the inductive hypothesis.
For part (ii) of the thesis, [[[G]]] = {par(r1, r2)

∣∣ (r1, r2) ∈ [[[G1]]] × [[[G2]]]}. Hence,
for each r ∈ [[[G]]] there are r1 ∈ [[[G1]]] and r2 ∈ [[[G2]]] such that r = par(r1, r2).
Therefore, the events in r are of the form (e, 1) with e ∈ r1 or (e, 2) with e ∈ r2.
In the former case e ∈ r1 by inductive hypothesis and hence (e, 1) ∈ r; the other
case is similar.

The remaining cases are similar to the last one noting that if G = G1;G2

then seq(,) yields (disjoint) union of the events of G1 and those of G2 while if
G = G1 + G2 then

{
|G|
}

includes
{
|G1|
}
∪
{
|G2|
}

and [[[G]]] = [[[G1]]] ∪ [[[G2]]].

Lemma 14. Let G ∈ G be such that [[[G]]] 6=⊥ and
{
|G|
}
6=⊥. An (i, s)- or

(i, r)-event e is in a pomset r ∈ [[[G]]] iff
(
λr(e)

)
[i]
∈
{
|G|
}

.

Proof sketch. Easy by structural induction on G, observing that [[[]]] assigns to
(i, s)- and (i, r)-events labels that are the output or input communication actions
decorated in the definition of

{
| |
}

with the control point i.

The resolution of a g-choreography corresponds to particular pomset obtained
by taking the semantics after “cutting” all the branches not chosen in the
resolution. Formally

APPENDIX B PROOF OF EQUIVALENCE OF THE SEMANTICS 56

Definition 20. For G ∈ G we define

G(ρ) =

G1(ρ1);G2(ρ2) if G = G1;G2 and ∀h ∈ {1, 2} :ρh = ρ|cp(Gh)

G1(ρ1)|G2(ρ2) if G = G1|G2 and ∀h ∈ {1, 2} :ρh = ρ|cp(Gh)

Gh(ρh) if G = i :(G1 + G2) and ∃h ∈ {1, 2} :cp(ρ(i)) ⊆ cp(Gh)

G otherwise

Note that G(ρ) is well defined because when G = i :(G1 + G2) the events in
ρ(i) are all either in G1 or in G2 by the definition of resolution and that of

{
|G|
}

.

Lemma 15. If [[[G]]] 6=⊥ and ρ ∈ <G then [[[G(ρ)]]] is a singleton.

Proof. By construction G(ρ) is a branching-free g-choreography and the thesis
follows by definition of [[[]]].

The next lemma simplifies the proof of correctness and completeness.

Lemma 16. If G1,G2 ∈ G and
{
|G1;G2|

}
6=⊥ then any resolution of G1;G2 can

be obtained by extending a resolution of G1 with a resolution of G2.

Proof. We show that for each resolution ρ ∈ <G1;G2
there are ρ1 ∈ <G1

and
ρ2 ∈ <G2

such that ρ = ρ1[i 7→ ρ2(i)]i∈dom ρ2
. Note that dom ρ1 ∩ dom ρ2 = ∅

since cp(G1;G2) = cp(G1) ∪ cp(G2) and cp(G1) ∩ cp(G2) = ∅. For h ∈ {1, 2},
taking ρh =

(
j 7→ ρ(j)

)
j∈dom ρ∩cp(Gh)

we have that ρh is a resolution of Gh and

ρ = ρ1[i 7→ ρ2(i)]i∈dom ρ2
.

For a g-choreography G ∈ G such that [[[G]]] 6=⊥ and
{
|G|
}
6=⊥ and a pomset

r ∈ [[[G]]], we say that l[i] ∈
{
|G|
}

corresponds to e ∈ Er (and vice versa) when
λr(e) = l. Also, we say that a resolution ρ ∈ <G and a pomset r ∈ [[[G]]] are
equivalent via η when η is a bijection between the events of r and the vertices of
G(ρ) not in K such that for all e ∈ r, e corresponds to η(e).

Theorem 4. Given G ∈ G for which [[[G]]] 6=⊥ and
{
|G|
}
6=⊥, if r ∈ [[[G]]] and

ρ ∈ <G are equivalent via η then

∀e, e′ ∈ Er :e ≤r e′ ⇐⇒ η(e) vG(ρ) η(e′)

Proof. By induction on the syntax of G.
Case G = 0. The thesis holds vacuously.
Case G = i : A

m−→ B. The only resolution of G is an empty mapping, since
cp(G) ∩ K = ∅, which yields

Gr∅ =

AB!m[i]

AB?m[i]

and we set r to the only pomset in [[[G]]]: ≤r=
(i, s)

(i, r)

and λr =

{
(i, s) 7→ AB!m

(i, r) 7→ AB?m

APPENDIX B PROOF OF EQUIVALENCE OF THE SEMANTICS 57

where the arrows in the diagram of ≤r represent the order relation. The thesis
follows from the definition of vG(ρ).
Case G = i :(G1|G2). We have G(ρ) = G1(ρ1)|G2(ρ2) with ρ1 = ρ|cp(G1) and
ρ2 = ρ|cp(G2) (by Definition 20) and since

{
|G|
}

=
{
|G1|
}
∪
{
|G2|
}
∪H (where H is a

hypergraph on the vertices of
{
|G1|
}

and
{
|G2|
}

as in Eq. (5) on page 29 and it is

immaterial here) is defined by hypothesis,
{
|G1|
}
6=⊥ and

{
|G2|
}
6=⊥. Hence, both

[[[G1]]] 6=⊥ and [[[G2]]] 6=⊥(otherwise [[[G]]] would not be defined, contrary to our
hypothesis). Also, r = par(r1, r2) for some r1 ∈ [[[G1]]] and r2 ∈ [[[G2]]]. Let η be
the bijection showing r equivalent to ρ. Since cp(G1) ∩ cp(G2) = ∅, we have, for
h ∈ {1, 2}, that ηh : e 7→ η(e, h) for each e ∈ Erh are bijections showing that rh is

equivalent to ρh. Finally, L v, v′ M ∈
{̂
|G|
}?

iff L v, v′ M ∈
{̂
|G1|
}?

or L v, v′ M ∈
{̂
|G2|
}?

,
and we consider the former case only since the other case is similar. By definition,

L v, v′ M ∈
{̂
|G|
}?

is equivalent to v vG1(ρ1) v
′ which, by the inductive hypothesis,

is equivalent to η−1(v) ≤r1 η
−1(v′) and the thesis follows since ≤r1 ×1 ⊆ ≤r.

Case G = G1;G2. By Lemma 16, there are resolutions ρ1 of G1 and ρ2 of G2

with disjoint domains such that ρ = ρ1[i 7→ ρ2(i)]i∈dom ρ2
. We have that both

[[[G1]]] 6=⊥ and [[[G2]]] 6=⊥ (otherwise [[[G]]] =⊥ contrary to our hypothesis). Also,
by inductive hypothesis and by Lemma 15,

• [[[G1(ρ1)]]] = {r1} and [[[G2(ρ2)]]] = {r2} with, for h ∈ {1, 2}, rh equivalent
to ρh, and

• vGh(ρh) isomorphic to ≤rh when restricting the two orders to communica-
tion events.

Note that G(ρ) = G1(ρ1);G2(ρ2) (by Definition 20) and let e, e′ ∈ Er and let
v = η(e) and v′ = η(e′). We have to prove the thesis when v ∈

{
|G1(ρ1)|

}
and v′ ∈

{
|G2(ρ2)|

}
(since the other cases follow by induction similarly to the

previous case). With no loss of generality, we can assume that v is maximal
in
{
|G1(ρ1)|

}
and v′ is minimal in

{
|G2(ρ2)|

}
(otherwise, using transitivity and

induction the proof reduces to such case). More formally, we can assume that
there are L ṽ1, ṽ2 M ∈ lst

{
|G1(ρ1)|

}
and L ṽ′1, ṽ′2 M ∈ fst G2(ρ2) such that v ∈ ṽ1 ∪ ṽ2

and v′ ∈ ṽ′1 ∪ ṽ′2. Since v vG(ρ) v
′ by hypothesis, it must be sbj(v) = sbj(v′) by

the definition of seq(G1(ρ1),G2(ρ2)). Hence, we have that (e, e′) ∈ seq(r1, r2) by
definition. The proof ends noting that the other direction is similar.
Case G = i :(G1 + G2). By Definition 20, G(ρ) yields either a resolution of G1

or one of G2. In either case, the thesis immediately follows by induction.

For a pomset r, define max r = {e ∈ Er
∣∣ 6 ∃e′ ∈ Er : e′ 6= e ∧ e ≤r e′}. The

following lemma is a simple corollary of Theorem 4.

Lemma 17. Given G ∈ G for which [[[G]]] 6=⊥ and
{
|G|
}
6=⊥, if r ∈ [[[G]]] and

ρ ∈ <G are equivalent via η then η establishes bijective correspondences between
min r and

⋃
cs(fst G(ρ)) and between max r and

⋃
ef(lst G(ρ)).

Proof sketch. By inspection of the proof of Theorem 4.

APPENDIX B PROOF OF EQUIVALENCE OF THE SEMANTICS 58

We establish some useful properties of A-uniformity and reflectivity before
proving the equivalence of our semantics.

Lemma 18. Let G ∈ G be such that
{
|G|
}
6=⊥. If ṽ ⊆ G is A-uniform for a

participant A of G and ρ ∈ <G then ṽ ∩ G(ρ) contains at most one vertex.

Proof. By construction, each vertex in G(ρ) has at most one outgoing hyperedge.
Therefore, two vertices v, v′ ∈ G(ρ) are not comparable with respect to vG(ρ)

only if they are independent, hence they cannot both belong to ṽ.

It is useful to adopt the following terminology and notation. We say that [[[G]]]
corresponds to <G (and viceversa) when there is a bijection β : [[[G]]] → <G such
that r and β(r) are equivalent for each r ∈ [[[G]]]; the identity of such bijection
will often be immaterial, therefore, if r ∈ [[[G]]] we write r̆ ∈ <G to denote the
equivalent resolution, likewise if ρ ∈ <G, we write ρ̆ ∈ [[[G]]] to denote the pomset
equivalent to ρ.

Lemma 19. For h ∈ {1, 2}, given Gh ∈ G such that
{
|Gh|
}
6=⊥ and [[[Gh]]] 6=⊥,

A ∈ P, and Vh partition of a subset of vertices of
{
|Gh|
}

if V2 A-reflects V1 and
<Gh

corresponds to [[[Gh]]] then there is an A-prefix map of G1 and G2.

Proof. Let f : V1 → V2 be the bijection exhibiting the reflectivity relation
between V1 and V2 and, moreover, for h ∈ {1, 2},
• let ρ `h ṽ hold when G(ρ) contains at least vertices in ṽ ⊆

{
|Gh|
}

• let ≡h be the equivalence relation of <Gh
defined by ρ ≡h ρ′ ⇐⇒ (∀ṽ ∈

Vh :ρ `h ṽ ⇐⇒ ρ′ `h ṽ).

Note that f induces a bijection between <G1/≡1
and <G2/≡2

by mapping
[
ρ
]
≡h

to[
f(ρ)

]
≡h

. Also, we can define an equivalence relation ∼h on [[[Gh]]] corresponding

to ≡h, namely r ∼h r′ ⇐⇒ r̆ ≡h r̆′ . We can now exhibit an A-prefix map (φ, ψ)
as follows:

φ :
([
ρ̆
]
∼1

)
�A 7→

([˘f(ρ)
]
∼2

)
�A and ψ :

([
ρ̆
]
∼1

)
�A 7→ [(V,≤, λ)] where

• V = {ṽ ∈ V1

∣∣ ∀r ∈ ([ρ̆]∼1

)
�A : r̆ `1 ṽ},

• λ(ṽ) = act(v) if v ∈ ṽ, and

• ṽ ≤ ṽ′ ⇐⇒ ∃v ∈ ṽ, v′ ∈ ṽ′ :v vG1
v′.

Note that φ is a bijection (because f is bijective), domφ =
(
[[[G1]]]/∼1

)
�A= domψ,

codφ =
(
[[[G2]]]

/∼2

)
�A, and λ is well-defined because act(ṽ) is a singleton. Also,

the relation ≤ is a partial order. To verify that for all R =
([
r
]
∼1

)
�A∈ domφ

and (r1, r2) ∈ R× φ(R), the pomset ψ(R) is a prefix pomset of rh, for h ∈ {1, 2},
we note that for each ṽ ∈ V and belonging to r̆1 (by Lemma 18); hence, we can
univocally map V in Er1 (associating each ṽ ∈ V to the event e that corresponds
to the vertex v ∈ r̆1 ∩ ṽ). Finally, if ṽ ≤ ṽ′ then there are v ∈ ṽ and v′ ∈ ṽ′ such
that v vG1(r̆1), hence by Theorem 4 the event corresponding to v precedes the
one corresponding to v′ in ≤r1 .

APPENDIX B PROOF OF EQUIVALENCE OF THE SEMANTICS 59

Lemma 20. Given A ∈ P and, for h ∈ {1, 2}, Gh ∈ G such that [[[Gh]]] 6=⊥ and{
|Gh|
}
6=⊥, if <Gh

corresponds to [[[Gh]]] and there is an A-prefix map (φ, ψ) of G1

and G2 then there are V1 and V2 partition of a subset of vertices of
{
|G1|
}

and{
|G2|
}

such that V2 A-reflects V1.

Proof. Fix R ∈ domφ. We will write e ∈ R when ∃r ∈ R :e ∈ Er. By definition
of A-prefix map (cf. Definition 11), for r ∈ R and r′ ∈ φ(R), is a prefix of both r
and r′, that is (cf. Definition 9) there is an order- and label-preserving bijection
πR
r from Eψ(R) to a subset of Er and similarly for Er′ . Say that e ∈ R corresponds

to e′ ∈ φ(R) when ∃ê ∈ Eψ(R) :πR
r

(
ê
)

= e ∧ πφ(R)
r

(
ê
)

= e′; when e corresponds to

e′ we will write ĕ to denote e′ and ĕ′ to denote e.
The relations ∼R on

⋃
r∈R π

R
r

(
Er
)
, '1 on E1 =

⋃
R∈domφ

⋃
r∈R π

R
r

(
Er
)
, and '2

on E2 =
⋃

R∈codφ

⋃
r∈R π

R
r

(
Er
)
, are defined as:

e ∼R e
′ ⇐⇒ πR

r

(
e
)

= πR
r

(
e′
)

e '1 e
′ ⇐⇒ (∃R ∈ domφ :e ∼R e

′) ∨
(∃R,R′ ∈ domφ :e ∈ R, e′ ∈ R′ ∧

[
e
]
∼R
∩
[
e′
]
∼R′
6= ∅)

e '2 e
′ ⇐⇒ (∃R ∈ codφ :e ∼R e

′) ∨
(∃R,R′ ∈ codφ :e ∈ R, e′ ∈ R′ ∧

[
e
]
∼R
∩
[
e′
]
∼R′
6= ∅)

Note that if e '1 e
′ then there is r ∈ [[[G1]]] such that e, e′ ∈ Er ⇐⇒ e = e′; in

fact, e and e′ could be on the same pomset only if e ∼R e
′ for some R ∈ domφ

and πR
r

(
e
)

= πR
r

(
e′
)
⇐⇒ e = e′ by the injectivity of πR

r . (The same holds for
'2.) It is also easy to verify that ∼R, '1, and '2 are equivalence relations and
that, for h ∈ {1, 2},

Vh =
⋃
e∈Eh

{v ∈
{
|Gh|
} ∣∣ ∃e′ ∈ [e]'h :e′ corresponds to v}

is a partition (induced by 'h) of the vertices of
{
|Gh|
}

corresponding to the events
in Eh. Note that V1 and V2 have the same cardinality; in fact, E1/'1

bijectively
corresponds to E2/'2

because φ is a bijection and, for all R ∈ domφ, ψ(R) is a
prefix of each pomset in R and in φ(R). Therefore,

∀e ∈ πR
r (Eψ(R)) : ĕ ∈ πφ(R)

r′
(
Eψ(R)

)
and ∀e′ ∈ πφ(R)

r′
(
Eψ(R)

)
: ĕ′ ∈ πR

r (Eψ(R)) (B.1)

Hence, ∀R,R′ ∈ domφ :R ∩ R′ 6= ∅ ⇐⇒ φ(R) ∩ φ(R′) 6= ∅.
We now show that V2 A-reflects V1. Let f : V1 → V2 such that f : ṽ1 7→ ṽ2 iff,

for h ∈ {1, 2} there are vh ∈ ṽh and eh ∈ Eh such that eh corresponds to vh and
∀R ∈ domφ :e1 ∈ R ⇐⇒ e2 ∈ φ(R). Then f is a bijection because of (B.1) and
of the bijective correspondence between E1/'1

and E2/'2
. Also, for each ṽ ∈ V1,

both ṽ and f(ṽ) are A-uniform, in fact: ṽ ∩ K = f(ṽ) ∩ K = ∅ (since each vertex
in ṽ ∪ f(ṽ) corresponds to an event in [[[G]]]�A) which implies that

• sbj(ṽ) = sbj(f(ṽ)) = {A} as well as act(ṽ) = act(f(ṽ)) are singletons, and

APPENDIX B PROOF OF EQUIVALENCE OF THE SEMANTICS 60

• each v 6= v′ ∈ ṽ (resp. v 6= v′ ∈ f(ṽ)) are not independent (because their
corresponding events, say e and e′, belong to different pomsets, hence v
and v′ must be on different resolutions due to the bijective correspondence
between [[[G1]]] and <G1

(resp. [[[G2]]] and <G2
) and therefore v 6vG1

v′ and
v′ 6vG1

v (resp. v 6vG2
v′ and v′ 6vG2

v).

Let ṽ2 ∈ V1 and v2 ∈ ṽ2 be such that v1 vG1
v2 for a vertex v1 ∈

{
|G1|
}

with
sbj(v1) = A. Then, observing that domφ partitions [[[G1]]]�A, there are R ∈ domφ
and e1 ∈ R such that e1 corresponds to v1; this implies that ∃ṽ1 ∈ V1 : v1 ∈
ṽ1. Additionally, ∀v ∈ ṽ2, v

′ ∈ v1 : v 6vG1
v′ (otherwise we would have the

corresponding events to be ordered according to ≤G1
) and that ∀v′2 ∈ f(ṽ2) ∃v′1 ∈

f(ṽ1) :v′1 vG1 v
′
2 by definition of f.

The proof of the last condition of reflectivity is omitted because it is similar
to the proof of the second condition.

The following theorem establishes the equivalence of our semantics.

Theorem 3 (Correctness and completeness). For each G ∈ G,
{
|G|
}
6=⊥ iff

[[[G]]] 6=⊥. Moreover, for each ρ ∈ <G there is a pomset r ∈ [[[G]]] equivalent to ρ
and vice versa.

Proof. By induction on the syntax of G.
Case G = 0. The thesis holds vacuously.
Case G = i : A

m−→ B. By inspection of the proof for the same case of Theorem 4.
Case G = i :(G1|G2). We have G(ρ) = G1(ρ1)|G2(ρ2) with ρ1 = ρ|cp(G1) and
ρ2 = ρ|cp(G2) (by Definition 20) and since

{
|G|
}

=
{
|G1|
}
∪
{
|G2|
}
∪H is defined by

hypothesis, (
{
|G1|
}
u
{
|G2|
}

) ∩ L? = ∅ and both
{
|G1|
}
6=⊥ and

{
|G2|
}
6=⊥ (here H

is an hypergraph on the vertices of
{
|G1|
}

and
{
|G2|
}

as in Eq. (5) on page 29
and it is immaterial here). Hence, both [[[G1]]] 6=⊥ and [[[G2]]] 6=⊥ and, for each
h ∈ {1, 2} there is a pomset rh ∈ [[[Gh]]] equivalent to ρh via some ηh (by the
inductive hypothesis). Since the control points of G1 and G2 are disjoint, the
function

η : e 7→

{
η1(e) if e ∈ r1

η2(e) if e ∈ r2

shows that ρ is equivalent to par(r1, r2) ∈ [[[G]]]. Also, wf (r1, r2) otherwise
condition (

{
|G1|
}
u
{
|G2|
}

) ∩ L? = ∅ would be violated.

Case G = G1;G2. We first prove the =⇒ direction. If
{
|G|
}
6=⊥ then,

{
|Gh|
}
6=⊥,

for h ∈ {1, 2}, and therefore by the inductive hypothesis, [[[Gh]]] 6=⊥ and there
is rh equivalent to ρ|cp(Gh) via some ηh. Let e ∈ [[[G1]]] be an (i, s)-event and

e′ ∈ [[[G2]]] be an (j, r)-event. By Lemma 14, there are v =
(
λr1(e)

)
[i]
∈
{
|G1|
}

and

v′ =
(
λr2(e′)

)
[i]
∈
{
|G2|
}

that correspond to e and e′ respectively. Hence, we can

find two resolutions ρ1 and ρ2 such that v ∈ G1(ρ1) and v′ ∈ G2(ρ2). Then there
are v1 ∈ lst

{
|G1(ρ1)|

}
, v2 ∈ fst

{
|G2(ρ2)|

}
, and for h ∈ {1, 2}, v̆h ∈

{
|G1(ρh)|

}
with

sbj(v̆1) = sbj(v̆2) such that

v vG1(ρ1) v̆1 vG1(ρ1) v1 and v2 vG2(ρ2) v̆2 vG2(ρ2) v
′

APPENDIX B PROOF OF EQUIVALENCE OF THE SEMANTICS 61

otherwise the condition for
{
|G|
}

to be defined could not hold, contradicting our
hypothesis. Therefore, for h ∈ {1, 2}, the events eh ∈ rh corresponding to eh
(which exist by inductive hypothesis) we have

e ≤r1 e1 and (e1, 1) ≤seq(r1,r2) (e2, 2) and e2 ≤r1 e′

in fact, the relation in the middle holds by construction (since e1 and e2 have
the same subject) and the other relations hold by inductive hypothesis. This
proves that

≤seq(r1,r2) ⊇ {(e, 1) ∈ Er1
∣∣ λr1(e) ∈ L!} × {(e, 2) ∈ Er2

∣∣ λr2(e) ∈ L?}

namely, that [[[G]]] 6=⊥.
We now show that each ρ ∈ <G has a correspondent equivalent r ∈ [[[G]]]. By

Definition 20, G(ρ) = G1(ρ1);G2(ρ2) where for h ∈ {1, 2} ρh = ρ|cp(Gh); hence,
by the inductive hypothesis, there are r1 ∈ [[[G1]]] and r2 ∈ [[[G2]]] respectively
equivalent to ρ1 and ρ2. Finally, the function η defined as in the previous case
shows that seq(r1, r2) is equivalent to ρ.

We now show the ⇐= direction. If [[[G]]] 6=⊥ then, for [[[Gh]]] 6=⊥, for
h ∈ {1, 2}, and therefore by the inductive hypothesis,

{
|Gh|
}
6=⊥ and for each

rh ∈ [[[Gh]]] there is ρ|cp(Gh)∈
{
|Gh|
}

equivalent to rh via some ηh. To show that
ws(G1,G2) consider (v, v′) ∈ cs(lst G1)×ef(fst G2), let e ∈ [[[G1]]] and e′ ∈ [[[G2]]] be
the events that correspond to v and v′ respectively (which exist by the inductive
hypothesis) and assume e ∈ r and e′ ∈ r′. Also, the inductive hypothesis ensures
the existence of ρ ∈

{
|G1|
}

and ρ′ ∈
{
|G2|
}

equivalent to r and r′ respectively. By
construction, v ∈ L! ×K and v′ ∈ L? ×K (the proof is easy by induction of the
structure of the graph). Since ws(r, r′) holds, we have that

e ≤r e1 and (e1, 1) ≤seq(r,r′) (e2, 2) and e2 ≤r′ e′

for some e1 ∈ r and e2 ∈ r′ with sbj(λr(e)) = sbj(λr′(e)). Hence, v vG1(ρ) v1

and v2 vG2(ρ′) v
′ by the inductive hypothesis, and the proof ends by noting that

(v1, v2) ∈ seq(
{
|G|
}
,
{
|G′|
}

) by the definition of seq(,).

Case G = i :(G1 + G2). We first show the =⇒ direction. Since,
{
|G|
}
6=⊥

for h ∈ {1, 2} we have that
{
|Gh|
}
6=⊥ and, applying the inductive hypothesis,

[[[Gh]]] 6=⊥ and there is bijective correspondence between [[[Gh]]] an <Gh
. To show

that [[[G]]] 6=⊥, we have to prove that wb(G1,G2) holds. By hypothesis, wb(G1,G2)
holds, hence for each participant A of G there are there are V1 and V2 partitions
of subsets of vertices of G1 and G2, respectively, such that V2 A-reflects V1 and
the A-branching pair (ṽ1, ṽ2) = div

V1,V2
A (G1,G2) witnesses that A is either active

or passive according to Definitions 15 and 16. By definition,

ṽ1 =
⋃

cs(fst (
{
|G1|
}

@A)) \
⋃
V1 and ṽ2 =

⋃
cs(fst (

{
|G2|
}

@A)) \
⋃
V2

We show that the A-prefix map (φ, ψ) built in the proof of Lemma 19 yields a
bijective correspondence between div

V1,V2
A (G1,G2) and divφ,ψA (G1,G2) = (̃l1, l̃2).

APPENDIX B PROOF OF EQUIVALENCE OF THE SEMANTICS 62

We have (cf. Definition 12)

l̃1 =
⋃

R ∈ domφ,
r ∈ R

λr
(
min

(
r − ψ(R)

))
and l̃2 =

⋃
R ∈ codφ,
r ∈ R

λr
(
min

(
r − ψ(φ−1(R))

))

Given R =
[
r
]
∼1
∈ domφ, let VR = {v ∈

⋃
V1

∣∣ ∃e ∈ Eψ(R) :v corresponds to e}.
Then

⋃
R∈domφ

VR =
⋃
V1; in fact, if v ∈

⋃
V1 then v ∈ ṽ for some ṽ ∈ V1,

therefore, for each ρ ∈ <G1
such that v ∈

{
|G1(ρ)|

}
and we have v ∈

[
ρ̆
]
∼1

, hence

v ∈
⋃

R∈domφ VR (and trivially
⋃

R∈domφ VR ⊆
⋃
V1 because each VR ⊆ V1 for

each R ∈ domφ). Finally, we exhibit a bijective label-preserving correspondence
between ṽ1 and l̃1. For v ∈ ṽ1 there must be a resolution ρ ∈ <G1

such that
v ∈

{
|G1(ρ)|

}
\
⋃
V1 and no other vertex with a communication of A preceding v.

Therefore there is e ∈ ρ̆ that corresponds to v; moreover, by inductive hypothesis,
e 6∈ ψ(

[
ρ̆
]
∼1

), hence by Theorem 4, λe ∈ l̃1. For the converse, let r ∈ [[[G1]]] and

e ∈ Er such that λr(e) ∈ l̃1 and let v be the vertex of
{
|G1(r̆)|

}
that corresponds

to e then, v 6∈
⋃
V1 since e 6∈ ψ(

[
ρ̆
]
∼1

) and again by Theorem 4, it must be

v ∈ v1. By the bijectivity of φ and using a similar argument, we can find a
label-preserving bijection between ṽ2 and l̃2.

If A is active in the sense of Definition 15 then

ṽ1 ∪ ṽ2 ⊆ (L! ×K) ṽ1 u ṽ2 = ∅ ṽ1 6= ∅ ṽ2 6= ∅

hence, by the bijective correspondences shown above, we have

l̃1 ∪ l̃2 ⊆ L! l̃1 ∩ l̃2 = ∅ l̃1 6= ∅ l̃2 6= ∅

proving that A is active in the sense of Definition 13. If A is passive in the sense
of Definition 16 then

ṽ1 u {v ∈ G′
∣∣ 6 ∃v′ ∈ ṽ2 :v vG′ v

′} = ∅ ṽ1 ∪ ṽ2 ⊆ (L? ×K)
ṽ2 u {v ∈ G

∣∣ 6 ∃v′ ∈ ṽ1 :v vG v
′} = ∅ ṽ1 = ∅ ⇐⇒ ṽ2 = ∅

and to show that A is passive in the sense of Definition 14) we have to show that

• l̃1 ∪ l̃2 ⊆ L? and l̃1 = ∅ ⇐⇒ l̃2 = ∅

• ∀R ∈ domφ, r ∈ R : l̃2 ∩ λr(Er−ψ(R)) = ∅

• ∀R ∈ codφ, r ∈ R : l̃1 ∩ λr(Er−ψ(φ−1(R))) = ∅

The first condition above immediately follow from the bijective correspondence
between div

V1,V2
A (G1,G2) and divφ,ψA (G1,G2). For the second condition, we pro-

ceed by contradiction; assume there are R̂ ∈ domφ and r̂ ∈ R̂ such that

l̃2 ∩ λr̂(Er̂−ψ(R̂)) 6= ∅, then there are e ∈
⋃

R ∈ codφ,
r ∈ R

λr
(
min

(
r − ψ(φ−1(R))

))
and e′ ∈ Er̂−ψ(R̂) with the same label. Then the vertices v ∈ ṽ2 and v′ ∈ ṽ1

APPENDIX B PROOF OF EQUIVALENCE OF THE SEMANTICS 63

respectively corresponding to e and e′ should have the same label, contrary to
the fact that ṽ1u ṽ2 = ∅. The proof of the third condition is similar and therefore
omitted.

We now show the ⇐= direction. Since, [[[G]]] 6=⊥ for h ∈ {1, 2} we have
that [[[Gh]]] 6=⊥; hence, applying the inductive hypothesis,

{
|Gh|
}
6=⊥ and there

is bijective correspondence between [[[Gh]]] an <Gh
. To show that

{
|G|
}
6=⊥, we

have to prove that wb(G1,G2) holds. By hypothesis, wb(G1,G2) holds, hence for
each participant A of G there is an A-prefix map (φ, ψ) such that the point of
divergence divφ,ψA (G1,G2) = (̃l1, l̃2) witnesses that A is either active or passive
according to Definitions 13 and 14. By definition

l̃1 =
⋃

R ∈ domφ,
r ∈ R

λr
(
min

(
r − ψ(R)

))
and l̃2 =

⋃
R ∈ codφ,
r ∈ R

λr
(
min

(
r − ψ(φ−1(R))

))

Let V1 and V2 partitions of subsets of vertexes of G1 and G2 as in the proof of
Lemma 20 and div

V1,V2
A (G1,G2) = (ṽ1, ṽ2). We show that ṽh is in a bijective

label-preserving correspondence with l̃h for h ∈ {1, 2}. (Recall that, by definition
of A-reflectivity, V1 ∩ K = ∅.) By definition

ṽ1 =
⋃

cs(fst (
{
|G1|
}

@A)) \
⋃
V1 and ṽ2 =

⋃
cs(fst (

{
|G2|
}

@A)) \
⋃
V2

For each l ∈ l̃1 there must be R ∈ domφ, r ∈ R, and e ∈ r − ψ(R) such that
λr(e) = l and no other event preceding e in r − ψ(R) is a communication of A.
Therefore, there is a vertex v in

{
|r̆|
}

that corresponds to e; moreover, V1 is dijoint

from
{
|G1(r̆)|

}
, hence by Theorem 4, v ∈ ṽ1. For the converse, let ρ ∈ <G1

be such

that v ∈
{
|G1(ρ)|

}
and v ∈ ṽ1. Also let R ∈ domφ be such that ρ̆ ∈ R and let e be

the vertex of ρ̆ that corresponds to v. Then, e 6∈ ψ(R) since v 6∈
⋃
V1 and again

by Theorem 4, it must be λr(e) ∈ l̃1. By the bijectivity of φ and A-reflectivity
and using a similar argument, we can find a label-preserving bijection between
ṽ2 and l̃2. The proof that if A is active in the sense of Definition 13 then A is
active in the sense of Definition 15 uses the bijection correspondence and follows
the same strategy of the =⇒ directions. By Definition 14, A is passive iff

1. l̃1 ∪ l̃2 ⊆ L? and l̃1 = ∅ ⇐⇒ l̃2 = ∅
2. ∀R ∈ domφ, r ∈ R : l̃2 ∩ λr(Er−ψ(R)) = ∅
3. ∀R ∈ codφ, r ∈ R : l̃1 ∩ λr(Er−ψ(φ−1(R))) = ∅

while A is passive in the sense of Definition 16 iff

(a) ṽ1 u {v ∈ G′
∣∣ 6 ∃v′ ∈ ṽ2 :v vG′ v

′} = ∅ (c) ṽ1 ∪ ṽ2 ⊆ (L? ×K)
(b) ṽ2 u {v ∈ G

∣∣ 6 ∃v′ ∈ ṽ1 :v vG v
′} = ∅ (d) ṽ1 = ∅ ⇐⇒ ṽ2 = ∅

Conditions (c) and (d) immediately follow from (1) bijective correspondence
between div

V1,V2
A (G1,G2) and divφ,ψA (G1,G2). The proof of condition (a) proceed

by contradiction. If (a) is false then there is ρ̂ ∈ <G1
such that ṽ2 u {v ∈

ρ̂
∣∣ @v′ ∈ ṽ1 : v vG1

v′} 6= ∅. Then there are v ∈
⋃
cs(fst (

{
|G2|
}

@A)) \
⋃
V2 and

APPENDIX B PROOF OF EQUIVALENCE OF THE SEMANTICS 64

v′ ∈ {v ∈ G1

∣∣ @v′ ∈ ṽ1 : v vG1
v′} with the same label. By construction, the

events e and e′ that corresponds to v and v′ have labels in l̃2 and l̃1. This
contradict to the fact that l̃1 ∩ l̃2 = ∅. The proof of (b) is similar and therefore
omitted.

	Introduction
	Why going abstract?
	Global views as graphs
	Pomset-based semantics of choreographies
	Preliminaries: pomsets for global graphs
	Semantics of choreographies
	Languages of choreographies

	Projecting on communicating machines
	An alternative semantics of global graphs
	Preliminaries
	Semantics of choreographies
	Languages of choreographies from hypergraphs

	Conclusions
	Proofs of consistency of resolutions
	Proof of equivalence of the semantics

