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Abstract

We present a reconstruction of session types in a linear pi calculus where types
are qualified as linear or unrestricted. Linearly qualified communication chan-
nels are guaranteed to occur in exactly one thread, possibly multiple times; un-
restricted (or shared) channels may appear in an unbounded number of threads.
In our language each channel is characterised by two distinct variables, one used
for reading, the other for writing; scope restriction binds together two variables,
thus establishing the correspondence between the two ends of a same channel.
This mechanism allows a precise control of resources via a conventional linear
type system. Furthermore, the uniform treatment of linear and shared channels
leads to a surprisingly simply theory which, in addition, extends typability when
compared to traditional systems for session types. We build the language gradu-
ally, starting from simple input/output, then adding recursive types, replication
and finally choice. We also present an algorithmic type checking system.

1. Introduction

In complex concurrent interactions partners often exchange a large num-
ber of messages as part of a pre-established scheme. The nature and order of
these messages constitute a natural candidate for structuring the interactions
themselves. It is in this context that session types make their contribution by
allowing a concise description of the continuous interactions among partners in
a concurrent computation.

Central to the theory of session types is the distinction between linear and
shared (or unrestricted) communication channels: linear channels are supposed
to be known to two interacting parties alone, shared channels can be shared
by zero or more partners. Session types were first introduced in a variant of
the pi calculus [I0], featuring bound output and a syntactic distinction between
linear and shared channels. Later, together with a new notion of subtyping, the
theory was adapted to a conventional pi calculus with free output [5]. Yet, all
the hitherto formulations of the calculus syntactically distinguish two classes of
channels—linear and shared—and the type theory stratifies types in two distinct
categories—linear and shared—leading to the duplication of syntactic concepts,
reduction rules and typing rules.
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This paper introduces a reconstruction of session types based on the ideas of
a linear type system for the lambda calculus [22]. Rather than using two distinct
syntactic categories for linear/shared types, we qualify pre-types with a lin/un
annotation. This simple move allows in turn to abolish the syntactic distinction
between linear and shared channels. Instead we work with undifferentiated
channels, leaving the linear/shared characterization for the type system. The
benefit is an extremely simple theory, with no concept/rule duplication, that,
somewhat unexpectedly, extends typability by allowing channels governed by a
linear type to become shared while still allowing interaction.

A previous version of this paper appeared as lecture notes for a summer
school [19]; we have kept the gradual introduction of the various concepts usu-
ally associated to the pi calculus and to session types, thus motivating the
dependencies between the various concepts involved. We start by studying a
language with input, output, parallel composition, and scope restriction (Sec-
tions |2[ and . Even though the required syntactic and operational semantics
machinery are in place, the particular form of types does not allow to type useful
unrestricted channels—recursive types provide for such a facility (Section. Up
to this point the language does not allow to describe unbounded computation—
we introduce replication for the effect (Section [5)). We then incorporate choice
in the form of branching and selection (Section, and prove the soundness of
the type system with respect to the operational semantics (Section @ The last
step in the development of our language introduces an algorithmic type checking
system and proves its correctness with respect to the type system introduced
in Sections [3] to [6] (Section [§). The closing section discusses related work and
concludes the paper.

2. The pi Calculus

Figure [I] presents the syntax of our language. There is one base set only:
variables. When writing processes, any lower case roman-letter except v and
v represents a variable. Depending on the context we also use the expression
“channel end” to mean a variable.

In interactive behavior, variables come in pairs, called co-variables. The
best way to understand co-variables is to think of them as representing the two
ends of a communication channel-—some parties write on the first end, others
read from the second. In order to communicate, threads do not need to share
variables; since a channel is represented as a pair of co-variables, each thread
may hold one variable allowing it to read or to write on the channel. This
mechanism allows a precise control of resources via a rather conventional linear
type system.

The constructors of the language are those of the pi calculus with boolean
values, except for a small difference in scope restriction. The output process
Tov.P writes value v on channel z and continues as P. Conversely, the input
process y(z).P reads from channel y a value it uses to replace the bound vari-
able z before continuing with the execution of process P. The parallel compo-
sition P | @ allows processes P and @ to proceed concurrently. The conditional



P = Processes:
zTv.P output
x(x).P input
P|P parallel composition
if v then P else P conditional
0 inaction
(vax)P scope restriction

v on= Values:
T variable

true | false

boolean values

Figure 1: Syntax of processes

process if v then P else ) executes P or ) depending on the boolean value v.
The terminated process, or inaction, is denoted by 0. The particular form of
scope restriction (vzy)P is the novelty with respect to the pi calculus—not only
it simultaneously hides (or binds) two variables, but it also establishes = and y
as two co-variables, allowing communication to happen in process P, between a
thread writing on x and another thread reading from y (or vice-versa). It should
be stressed that (vay)P is not a short form for (vz)(vy)P; instead it binds two
co-variables together.

In our language parenthesis represent bindings—variable y occurs bound in
z(y).P and in (vazy)P; variable 2 occurs bound in (vzy)P. A variable that
occurs in a non-bound position within a process is said to be free. The set of
free variables in a process P, denoted by fv(P), is defined accordingly, and so is
alpha-conversion, as well as the capture-free substitution of variable x by value v
in process P, denoted by Plv/z]. Notice that substitution is not a total function;
it is not defined, e.g., for (7 false)[true/y]. When writing P[v/x] we assume that
the substitution operation involved is defined. We work up to alpha-conversion
and follow Barendregt’s variable convention, whereby all variables in binding
occurrences in any mathematical context are pairwise distinct and distinct from
the free variables.

To evaluate processes we use a small step operational semantics. As usual
in the pi calculus, we factor out a structural congruence relation on processes
allowing the syntactic rearrangement of these, thus contributing for a more
concise presentation of the reduction relation.

Structural congruence is the smallest congruence relation on processes that
satisfies the axioms in Figure 2] The axioms are standard in pi calculus. The
first three say that parallel composition is commutative, associative and has the
terminated process 0 for neutral. The first axiom on the second line is called
scope extrusion, and allows the scope of a v-binder to extend to a new process



Structural congruence, P = P

P|Q=Q|P (P|Q)|R=P|(Q|R) Plo=P
(ay)P | Q= (way)(P| Q)  (vay)0=0  (vwa)(vyz)P = (vyz)(vwe)P

Reduction rules, P — P

(vay)(To.P |y(2).Q | R) — (vay)(P | Qv/2] | R) [R-Com]
if true then P else Q — P if false then P else @ — Q  [R-IFT] [R-IFF]
P =@ P =@ [R-REs| [R-PAR]

(vey)P — (voy)Q P|IR—Q|R
P=P P 5Q Q=Q
P —Q

[R-STRUCT]

Figure 2: Operational semantics

Q or to retract from this, as needed. Notice that the proviso “z,y not free in Q”
is redundant in face of the variable convention, for = occurring bound in (vay)P
cannot occur free in ). The last two axioms allow to collect unused restrictions
and to exchange the order of bindings.

The operational semantics is also defined in Figure [2] as a binary relation
on processes. In rule [R-CoM|, a process willing to send a value v on variable
x, in parallel with another process ready to receive on variable y, engages in
communication only if z,y are two co-variables, that is if the two processes are
underneath a restriction (vay). In that case, both prefixes are consumed and v
replaces the bound variable z in the receiving party. The binding (vay) persists,
in order to potentiate further interactions in the resulting process. Process R
collects all other threads that may share z and y. A direct consequence of this
rule is that communication cannot happen on free variables for there is no way
to tell what the co-variables are.

Rules [R-IFT] and [R-IFF] replace a conditional process with the then branch
or with the else branch, depending on the value of the condition. Rules [R-RES]
and [R-PAR] allow reduction to happen underneath scope restriction and paral-
lel composition, respectively. Finally, rule [R-STRUCT] incorporates structural
congruence in the reduction relation.

To lighten the syntax in examples, we omit the trailing “.0” in processes. As
an example we have:

(vaix2)(T1 true.xy (y).ay | x2(2).T22) — (vaix2)(x1(y).ay | Tztrue) — Gtrue

If the process above is well behaved according to our semantics, we would



not like to consider as well formed the processes below.

(vayzo) (77 true | x2(y).7 false) X
(va129)if 21 then O else O

Ttrue | z(y) X

In the first, substitution is not defined, as discussed above, in the second the
conditional process tests a channel end rather than a boolean value, and in the
last the two threads are both trying to write and to read on a same channel
end. The type system introduced in the next section rules out such processes.

3. Typing

The syntax of types is described in Figure [3] We have bool, the type of the
boolean values, end, used to type a channel end on which no further interaction
is possible, and lin/un annotated pretypes. Pretypes !T.U and ?T.U describe
channel ends ready to send or to receive a value of type T and then continuing
their interaction as prescribed by type U.

Intuitively, linearly qualified types describe channel ends that occur in ex-
actly one thread, a thread being any process not comprising parallel composition.
The unrestricted qualifier indicates that the value can occur in multiple threads.
In this way, a type lin!T'.U represents a channel that can be used once for send-
ing a value of type T, and un!T.U a channel that can be used from multiple
threads to send values of type T'. In either case, type U describes the subsequent
behavior of the channel. Typing contexts, also introduced in Figure [3] gather
type information on variables. We require the various variables that appear in a
context to be pairwise distinct, and treat contexts up to the exchange of entries,
not distinguishing, e.g., x: bool,y: end from y: end, x: bool.

To lighten the syntax in examples involving types, we adopt a few extra
abbreviations: we omit all linear type qualifiers and only annotate unrestricted
types, and we omit the trailing “.end” in types. Further, in examples involving
communication we assume that co-variables are annotated with subscripts 1 and
2, for example (z1,22) and (y1,ys2), even if not explicitely under a v binding.
We also use z (subscripted or not) for a variable of an arbitrarily qualified type,
a for a variable of an unrestricted type and c for a variable of a linear type.
Under these assumptions, the first process is well formed, whereas the last one
is not.

Gtrue | atrue | afalse

Ctrue | Cfalse X

Type duality plays a central role in the theory, ensuring that communication
on co-variables proceeds smoothly. Intuitively, the dual of output is input and
the dual of input is output. In particular if U is dual of T, then ¢7S.U is dual
of ¢!S.T. Type end is dual of itself; duality is not defined for the bool type. The
definition is in Figure [4



q = Qualifiers:

lin linear
un unrestricted
p = Pretypes:
mT.T receive
T send
T == Types:
bool boolean
end termination
qp qualified pretype
I == Contexts:
) empty context
Ta:T assumption

Figure 3: The syntax of types

q?T.U =qT.U q'T.U =q?T.U end = end
Figure 4: The dual function on types

Based on duality, we would like to accept the first two processes, but not
the last two.

T true | 22(2)
¢y true.cy (w) | ca(2).¢3 false
T7 true | T3 false X
¢y true.cy(w) | c2(2).ca(t)
One might expect duality to affect the parameter of the sent and the received

type, e.g., ¢?T.U = ¢!T.U. That would be unsound as the example below
shows. Suppose that we would like to type process

T1 Yo | w2(2).Z true | 77 false %

at context z7: !(!bool), z5: ?(?bool), y1 : !bool,ya: !bool, where the type of argu-
ment y, in the send operation on x; is dual to that of the parameter z in the
receive operation on xs, that is !bool is dual to ?bool. It should be easy to see
that the process reduces to an illegal process, where y; and y, cannot interact.

7o true | 77 false X



Context split, ' =T o

I'ol'y =T un(T)

0=000 Fe: T=(Ty,2:T)o(Te,z: T)
F:FIOFQ F:FIOFQ
[,z:linp = (T'y,2: linp) oy [,z:linp=T40 (g, z: linp)

Context update, ' +x: T =T

x:U¢T un(T)
F+z:T=T,z:T T,z:T)+a: T={D,x:T)

Figure 5: Context split and context update

The dual function is not total: it is not defined on bool, nor on any type
“terminating” in bool, such as 7bool.bool. Had we incorporated other base types
in our language (integers for example), duality would not be defined on them
as well. Duality is a function defined on session types only: input, output, and
the terminated session end. Imagine that we set bool = bool; we would be able
to type the process

(vzy)if  then O else O X

or any process reducing to it.
Our type system maintains the following invariants.

e References to linear channel ends occur in exactly one thread;
e Co-variables have dual types.

The first invariant is maintained via a context split operation which relies on a
un(T') predicate, both introduced below. The second invariant is managed by
the typing rule for scope restriction also described below.

For each qualifier ¢ we define a predicate ¢(T') and its extension to contexts
q(T") as follows.

e un(7T) if and only if T'= bool or T'=end or T = unp.
e lin(T) if and only if true
e ¢(T) if and only if (x: T') € T implies ¢(T")

We maintain the linearity invariant through the standard linear context split
operation. When type checking processes with two sub-processes we pass the
unrestricted part of the context to both processes, while splitting the linear part
in two and passing a different part to each process. In this way, if x is a linear
variable then the process T true | T true is not typable, since x can only occur in
one of the parts, allowing to type one but not both processes. Figure [5| defines



Typing rules for values, I' - v: T

un(T") un(T") un(T")
T' F true: bool I' F false: bool Nx:Tkrax:T
[T-TRUE]| [T-FALSE| [T-VAR]

Typing rules for processes, I' = P
un(T") nLEP o -@

[T-INacT| [T-PAR|

I'o0 ol FP|Q

Ie:T,y:THP I'y Fv: bool I';-P I'o-@Q
T- T-1
'+ (vay)P I'yo's Fif v then P else Q |T-Res] [T-Ir]

Fa:q?T. : :TH
Iy Fa:q?TU Te+2:U),y:THP T-In]
TyoTle bk a(y).P

I'yFax:q!T. Iobkov: T r :URP

1Fx:qT.U o Fo s+x: U (T-OuT]

Fl OFQ OF3 Fzov.P

Figure 6: Typing rules

the context split relation I' = I'y o I'y. Notice that in the third rule, x is not in
I’y since it is not in I', hence not in I'y o I'y, and similarly for the last rule and
I';. We often write I'; o I's to denote a context I' such that (I',T'y,T'2) is in the
context split relation.

We also need an operation to update a context with the new type for a
variable used for input or output. The rules are in Figure [f] and require linear
variables not to be in the context, and unrestricted variables to have their types
unchanged.

Equipped with the notions of context split, context update and type duality
we are ready to introduce the typing rules. We distinguish the typing rules
for values with judgments of the form I' - v: T, from those for processes with
judgments I' = P. The rules are in Figure [6]

We want to make sure that linear variables are not discarded without being
used; the base cases of the type system check that there is no linear variable in
the context. In particular, in rules [T-VAR], [T-FALSE| and [T-TRUE] for values
and [T-INACT] for processes, we check that I' is unrestricted. Notice that this
does not preclude type T itself from being linear in rule [T-VAR]. The typing
rules for values are conventional—boolean values have type bool, variables have
the type prescribed by the context.

Rule [T-PAR] uses context splitting to partition linear variables between the
two processes: the incoming context is split into I'; and I'y, and we use the
former to type check process P and the latter to type check process @, so that
each process will have access to all unrestricted channels but only to a disjoint
part of the linear ones. For rule [T-RES|] we add to the context two extra
hypotheses for the newly introduced variables, one at some type T', the other



at a dual type T. The rule captures the essence of co-variables: they must have
dual types.

Similarly to parallel composition, rule [T-IF] for the conditional process
splits the incoming context in two parts, one to type the value to be tested,
the other to type the two branches, P and (. Context I'; is used to type
the condition; context I'y is used for the two branches since only one of P or
Q@ will be executed (contrary to parallel composition). Given that type bool is
unrestricted, 'y must be unrestricted as well (this follows from a simple analysis
of the various typing rules for values). Then I'y contains all unrestricted types
in the incoming context and T's is the incoming context itself (this and other
properties of context split are the object of Lemma 7 meaning that each
branch has access to all variables in the incoming context.

Similarly to the rule for the conditional process, rule [T-IN] splits the context
into two parts: one to type check variable x, the other to type check continu-
ation P. If = is of type ¢ ?T.U, we know that the bound variable y is of type
T, and we type check P under the extra assumption y: T. Equally important
is the fact that the continuation uses variable x at continuation type U, that
is, process x(y).P uses variable x at type ¢ ?T.U whereas P may use the same
variable this time at type U. If x is a linear variable then it is certainly not
in I's because it is in I';. If, on the other hand, x is unrestricted then context
update is only defined when U is equal to ¢?T.U, which will become possible
with recursive types, introduced in Section [4]

The rule for sending a value, [T-OUT], splits the context in three parts, one to
check z, another to check v and the last to check continuation P. Similarly to the
rule for reception, the continuation process uses variable x at the continuation
type, that is, Tv.P uses x at type ¢!T.U, whereas P uses the same variable at
type U.

There are many interesting pi calculus processes that our type system fails
to check, including 7 true | Z true. In order to type this process we seek a context
associating an unrestricted type to x, as in z: un!bool.T. Then the third premise
of rule [T-OuT| reads (x: unlbool.T) + (x: T') which cannot be fulfilled by any
type T built from the syntax in Figure[3] Clearly, so far, we are dealing with a
language of linear channels only.

Unlike other languages equipped with linear type systems, our type system
offers no guarantee of progress. If fact processes can deadlock quite easily, it
suffices to create two threads that read and write in the “wrong” order.

T7 true.7q false | yo(x).22(w)

Even though one finds processes prefixed at any of the four linear variables, and
the types are dual, the order by which the two threads order these prefixes is
not conducting to reduction. An even more crafty process, uses channel passing
to end up with a cycle including a single thread.

Z1y1 | 22(2) Ztrue.yz (w)



4. Recursive Types

The typing rule for output processes (rule [T-OuT| in Figure |§[) does not
allow to type check a process Tv.P with x unrestricted, for it requires the
continuation U of type un!T.U to be equal to un!T.U itself. We would like to
consider as a type the solution to the equation U = un!T.U. Such a type may
take the form of a regular infinite tree (a tree composed of finitely many distinct
subtrees), for which a finite, y, notation is introduced. Our type is then (the
regular tree associated with) pa.un!T.a.

Figure [7] includes recursive types in the syntax of types, where we rely on
one more base set, that of type variables. Recursive types are required to be
contractive, i.e., containing no subexpression of the form pas ... pa,.a1. The p
operator is a binder, giving rise, in the standard way, to notions of bound and
free variables and alpha-equivalence. We denote by T'[U/a] the capture-avoiding
substitution of @ by U in T

When moving to recursive types we use a notion of type equality based
on regular infinite trees rather than the syntactic equality used in the previous
section. To decide whether two types are equal we compare the infinite unfolding
of the two types, a property known to be decidable. The formal definition, which
we omit, is co-inductive. This allows us never to consider, in any mathematical
context, a type pa.T explicitly (or a for that matter). Instead, we pick another
type in the same equivalence class, namely T'[pa.T'/a]. If the result of the process
turns out to start with a u, we repeat the procedure. Unfolding is bound
to terminate due to contractiveness. For example, types pa.!bool.?bool.a and
Ibool.sb.?bool.lbool.b are equivalent. In other words, we take an equi-recursive
view of types [14].

The dual function, extended in Figure [7] to the new type constructs, de-
scends a u-type and leaves type variables unchanged. To check that a given
type T is dual of another type U, we first build the type T and then use the
definition above to determine whether T is equal to U. For example, to show
that pa.?bool.!bool.a is dual of !bool.ub.?bool.!bool.b, we build pa.?bool.!bool.a =
pa.!bool.?bool.a, and then show that pa.!bool.?bool.a = !bool.ub.?bool.!bool.b.

The new type constructors are not qualified, instead pa.T takes the qualifier
of the enclosed type T. Contractivity ensures that types can be interpreted
as regular infinite trees; it also ensures that we can always find out what the
qualifier of a type is. Given that types pa.T and T[ua.T/T] can be used inter-
changeably, we do not have to touch the definitions of the lin and un predicates.
For example, in order to determine whether type pa.ub.'bool.a is unrestricted,
we take another type in the same equivalence class that does not start with a g,
for example, !bool.pa.!bool.a. Equipped with the equi-recursive notion of types,
typing rules (in Figure @ remain unchanged.

Consider the type un?(!bool).T" of an unrestricted channel that receives a
linear channel end capable of outputting a boolean value. The following sequent
is easy to establish,

x9: un?(Ibool). T F z5(z).Z true | zo(w).w false

10



New syntactic forms

T = ... Types:
a type variable
pa.T recursive type

New duality rules, T =T

Q|
Il
o

pa.T = paT
Figure 7: Recursive types

but only for an appropriate type T. Rule [T-IN| dictates that it must be equiv-
alent to un?(!bool).T’, so that T' can be, e.g., of the form pa.un?(!bool).a. This
form of types is so common that we introduce a short form for them, simply
writing *7(!bool).

Our language does not include tuple passing as a primitive construct, rather
it can only send or receive a single value at a time. Fortunately, tuple passing
is easy to encode. To send a pair of values u,v of types T,U over a linear
channel x, we just send the values, one at a time; no interference is possible due
to the linear nature of the carrier channel.

T {u,v).P abbreviates T u.T v.P

However, if the tuple is to be passed on a unrestricted channel, then we must
protect the two (separate) receive operations from unwanted interference, cre-
ating a new ?7T.7U channel to carry the values. The standard encoding for the
binary sending and receiving operations are as follow.

77 (u, v).P abbreviates (vy;y2)T1 y2.71 w71 v.P
2o(w, t).P abbreviates xo(2).z(w).z(t).P

The encodings are typable in our language, if we choose variable y; of appropri-
ate linear type, !T.!U, and dually for ys. Variable x; is then of type *!(?T.7U),
and dually for x5. We abbreviate the type of channel that sends a pair of values
of types T and U to (T, U), and dually for a channel that receives a pair of
values, «?(T,U).

Here is another example on passing linear tuples on unrestricted channels.
Suppose that we own a channel of type !bool.!bool.”bool and want to delegate
the writing part (the initial !bool.lbool part) to another process, but intend to
locally perform the read operation (the final part ?bool). If we simply “pass’
the channel, then we cannot further use it, unless we provide a means to get it
back. Below is a process that writes two boolean values on a given channel z
and then returns the channel (on a given channel w).

p1(z, w).Z true.z true.w z

11



A process that calls p; in order to write two boolean values on a given channel c,
and then reads from the channel again, can be written as

P2 (¢, 1).w2(2).2(y)

where p; is typed at *?(!bool.Ibool.?bool, !(?bool)).

New to this work, a once linear channel can become unrestricted and still be
used for communication, we just have to get the right types. For example, type
T =!bool.x7bool describes a channel that behaves linearly in the first interaction
and unrestricted thereafter. Suppose that z; is of type 7" and x5 of type T.

Ty true.(21(y) | 21(2)) | z2(z).(Tz true | T3 false | T3 true)

77 true.x1(y).21(y) | z2(2)
T1 true.x1(y) | 22(y). T3 true | zo(w). T3 true X

So now we know that a traditional pi calculus channel that can be used an
unbounded number of times for outputting boolean values is of type *!bool, that
is, pa.'bool.a. Conversely, a channel that can be used for reading an unbounded
number of boolean values is of type *!bool, i.e., ub.7bool.b. What about a channel
that can be used both for reading and for writing? There is no such thing in
this theory; the channel is represented by a pair of co-variables, one to read,
the other to write. If a given process needs to gain access to the read and the
write capability of a channel, then both ends must be passed, possibly using the
encoding for pairs above.

a1 : *!{!bool, 7bool), as: *7(!bool, 7bool) -

az(y1,y2)- (U1 false | y2(2)) | (ve122) @1 (21, 2)

5. Replication

Up until now our language is strongly normalizing—each reduction step
strictly decreases the number of symbols that compose the processes involved.
To provide for unbounded behavior we introduce a special form of receptor that
remains after reduction, called replication. The details are in Figure

Rather than introducing a new process constructor we annotate input pro-
cesses with the lin/un qualifiers used in types. We then have linz(y).P and
unz(y).P. The input process we have seen so far, z(y).P, is now taken as an
abbreviation for linz(y).P (we stick to our convention of omiting the lin quali-
fier). Processes of the form unz(y).P are shared (following the intuition of the
un qualifier), and thus survive reduction so that they can be used by multiple
clients. The reduction rule for linear input is that of Figure [2} all we have done
was to add the lin qualifier and to rename it to [R-LINCOM], in order to stress
the similarity with the unrestricted case. The rule for replicated processes,
[R-UNCom], is similar to [R-LINCoM] in all respects except that the replicated
process un x(y).P persists in the resulting process.

With the introduction of replication we can mention a third invariant of our
type system.

12



New syntactic forms

P = ... Processes:

qx(z).P input
New reduction rules, P — P

(vay)(@Tv.P|liny(2).Q | R) — (vzy)(P | Qv/z] | R) [R-LInCoM]
(vay)(@v.P | uny(2).Q [ R) = (vay)(P | Q[v/z] |uny(2).Q | R) [R-UNCoM]
New typing rules, T' - P

q1(T10Ts) IykFa:g?T.U (Te42:U),y: THP
Iioly F qra(y).P

[T-IN]

Figure 8: Replication

e Unrestricted input processes may not contain (free) linear variables.

To check the invariant we make use of the ¢(I") predicate introduced in Section

The previous typing rule for the input process, [T-IN] in Figure @ is adapted
to take into consideration the new lin/un qualifier. The new rule, [T-IN] in
Figure[8] when applied to a linear process, becomes the rule with the same name
in Figure @ since lin(T") is true for all typing contexts I' (see Section . When
in presence of a replicated process, the rule requires the process to be typable
under an unrestricted context. Qualifiers ¢; and ¢, are not necessarily equal;
in particular if ¢; is un then so is g2, but ¢; = lin tells us nothing about ¢». To
understand what would happen if we relax this restriction, consider the following
process

un o (2).Ctrue | Ty true | 7 false X

where we would like ¢ to be typed at linlbool. The process reduces in two steps
to unxo(z).Ctrue | Ctrue | CTtrue, invalid given the sought linearity for channel c.
Instead, procedures that use linear values must receive them arguments, thus al-
lowing the type system to check possible value duplications. If we pass channel ¢
as parameter,

un xo(z).Z true

then the procedure can no longer be used by process Ty ¢ | T1 ¢, because rule
[T-PAR| precludes splitting any context in two parts both containing a channel ¢
of a linear type.

Replication, as firstly introduced in the pi-calculus (by Milner [12]) takes
a more general form, !P, standing for P | P | ---. The more general form of
replication can be simulated by the following process,

(vz1z2)(TT 21 | Uun22(y).(P | T1Y))
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where x1,x2 and y do not occur free in P. An admissible rule for the new
construct is quite intuitive.

un(l) TFHP
THIP

Notice that the encoding uses no primitive value; the types for channel z, x5
cannot however be written with our “x” abbreviation, instead we choose pa.unla.a
for 1 and pb.un?b.b for x5. We selected for our language a more controlled, lazily
evaluated, form of replication, suitable to be incorporated in programming lan-
guages, as for example, in Pict [15].

6. Choice

Choice allows processes to offer a fixed range of alternatives and clients to
select among the variety offered. We extend the syntax of our language with
support for offering alternatives, called branching, and to choose among the
alternatives, called selection. The details are in Figure [9] where we add to
our repertoire another base set—Ilabels. Lower case letters [ and m are used to
denote labels.

A process of the form x <11.P selects one of the options offered by a process
prefixed at the co-variable. Conversely, a process x1>{l;: P;};cs offers a range of
options, each labelled with a different label in the set {l;};c, for I some index
set. Such a process handles a selection at label /; by executing process P;, if
j € I. The operational semantics is extended with rule [R-CASE]. The rule
follows the pattern of [R-CoM| in Figure [2] (or [R-LINCoM] in Figure [§): the
two processes engaging in reduction must be underneath a prefix that puts the
two co-variables in correspondence. The selecting party continues with process
P, the branching party with the body of the selected choice, P;.

Types for the new constructors are &{1;: T; }ier and &{l;: T;};c1, represent-
ing channels ready to select or to offer /; options. In either case type T} describes
the continuation once label /; has been chosen.The new type structures are in-
terpreted as non-ordered records; we do not distinguish &{l: T,m: U} from
&{m: U,1: T}. The two new pretypes are dual to each other as described in
Figure [9]

To type check a branching process prefixed by x at type &{l;: T;}icr, rule
[T-BRANCH]| checks each of the possible continuations P; at z: T;. We use the
exact same 'y in all cases for only one of the P; will be executed, similarly to rule
for the conditional process, [T-IF] in Figure [6} If rule [T-BRANCH] introduces
an external choice type &{l;: T;}icr, rule [T-SEL] eliminates the dual, internal
choice type &{l;: T;}icr. To type check a process selecting label [; on channel
x at type ®&{;: T;}icr, we have to type check the continuation process at the
correspondent type x: 7. In both cases, and similarly to the rules for output
and input in Figure [6] context update I' + z: 7' must be defined.

Below are some examples. The first two illustrate the case when the selected
label [ is in the corresponding branching process. The third requires a type of a
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New syntactic forms

P = ... Processes:
<P selection
x> {l;: Pilier branching

p o= ... Pretypes:
®{l;: Ti}ier select
&{l;: T }ier branch

New reduction rules, P — P
jel
(voy)(x <l;.Ply>{li: Qitier | R) = (vazy)(P| Q| R)

New duality rules, T =T

[R-CASE]|

q®{li: Ti}icr = q&{li: Ti}ier q&{l;: Ti}Yier = q®{li: T, }ier
New typing rules, I' = P
Flqu&{l,T,}ZE[ FQ‘FIT;FP, Viel
Fyoly b2 {li: Pilier

le_ifq@{lzﬂ}lej F2+£L’T]|_P ]EI
Iy OF2|—$<]lj.P

[T-BRANCH]

[T-SEL|

Figure 9: Choice

peculiar form. Given that z; occurs in three different threads, its type must be
unrestricted. Since we have [- and m-labeled messages, we know that the type
T for z1 must be of the form un®{l: T1,m: T»}. Looking at the context update
operation in both rules [T-SEL] and [T-BRANCH]|, we realize that both T} and
T5 must be equal to T', hence T must be equal to pa.un®{l: a,m: a}. Similarly,
the type for variable x2 must be equal to pb.un&{l: b,m: b}. Following the
short form proposed in Section [3] for unrestricted input and output types, these
two choice types can be abbreviated to *@®{l,m} and *&{l, m}, respectively.
Unrestricted choice types are not known in the literature of session types. They
are however present in a variant of the pi calculus where choice and output
(and branch and input) form an atomic operation [3| 2I]. The last three cases
represent obvious violations to the expectations of the two threads involved.

x1 <] z2 > {l: 0}
x1 <l| a2 {l: 0,m: 0}
1<l |z <m |z <Am |z > {l: 0,m: 0}
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Ty true | o > {I: O}
x1 <Al | z2(2) X

x1 <l | x> {m: 0} X

For a more concrete example, imagine a data structure mapping elements
from some type key to a type value. Among its various operations one finds put
and get. To put key k and its associated value v on a x1-map one writes:

1 <put.Ti k. Zyv

To get a value from a map one sends a key and expects a value back, but
only if the key is in the data structure. If not then one should be notified of the
fact. We use labels some and none to annotate the result of the get operation.
Further, in case the key is in the map, we expect a value as well. Here is a client
that runs process P if the key is in the map, and runs @) otherwise.

x1 < get. 1 k. x1 > {some: x1(y).P, none: Q}

The type of the map, as seen from the side of the client, that is the type of
variable x1, is as follows.

@ put: lkey.lvalue.end, get: lkey.&{some: ?value.end, none: end}}

We take the opportunity to discuss session initiation [5]. Looking at the
type above, it should be obvious that the map can only be used once, either
to read or to write. Useful maps are to be used multiple times, possibly by
different clients. As such maps must answer on shared channels. A shared
channel, known to all clients, is used to establish individual sessions as follows.
Each client creates a channel, x1x5, passes one end, x2, to the map server, and
retains the other end, x1, for interaction. The code for a writing client is then
as follows.

(vrixe)(Mapy x2 | ©1 < put.T1 k. T2 v)

The map server is a replicated process that receives a linear channel end on
which it conducts the session.

un mapy(y).y > {get: y(k)...,put: y(k).y(v)...}

If we denote by T the type of variable x; above, then the type for the map is
«|T for the client (variable map,) and *?T for the server (variable map,), as
expected.

For an example with a recursive linear type, consider an iterator of boolean
values—a process that offers operations hasNext and next repeatedly until has-
Next returns “no”. Further suppose that the iterator accepts requests at x5, so
that clients write at x1, the other channel end. A client that reads and discards
every value from the iterator can be written as follows,

un loop,(y).y < hasNext.y > {yes: y < next.y(z).loopy, no: 0} | loop; x2
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but not as

un loop, (y).x2 < hasNext.xo > {yes: xo < next.xz(z).loopy, no: 0} | loop, true
X

for x5 is a linear variable, hence cannot occur free underneath replication (cf. rule
[T-IN] in Figure[8). Clearly, the communication pattern of the iterator, as seen
by the client at variable x5, is of the form

®{hasNext: &{no: end, yes: @& {next: bool.®{hasNext: &{...}}}}}
which can be written in finite form as follows.
pad{hasNext: &{no: end, yes: ®{next: !bool.a}}}
Notice that the type in the equation above is equivalent to the following,
®{hasNext: pb.&{no: end, yes: ®{next: \bool®{hasNext: b}}}}

and that the two types can never be made syntactically equal by finite expansion
alone. Yet we would not like to distinguish them, for they have the same infinite
expansion; this is another reason to use an equi-recursive view of types.

The pi-calculus is known by its flexibility to describe computational idioms.
While in possession of branching and recursive types, we can get away without
primitive boolean values altogether; if fact we do not need any primitive type. If
we fix two variables tq, to for the truth value true and fy, fo for false, by taking
advantage of the encoding of generic replication, !P, introduced at the end of
Section [p| and by introducing the following abbreviations,

True abbreviates ({1 < true)
Fualse abbreviates !(f1 < false)
if « then P else Q abbreviates x > {true: P, false: Q}

then we can easily see that
True | False | if t then P else Q — — True | False | P

and similarly for the false case. Milner [I3] introduced an alternative encoding
that does not rely on choice. In a reduction similar to the above, a residual,
inert, process (not structurally equivalent to 0) for the false case is left in the
contractum, which must be “removed” via a process equivalence, which we man-
age to avoid in our proposal. Milner’s encoding would nevertheless be typeable
in our system.

7. Main Results

This section looks at the guarantees offered by typable processes.
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Many examples of ill-formed processes are presented in the previous sections;
we now try to systematize them. Our ill formed processes fall in three categories.
For boolean values we have conditional processes whose value in the test is
neither true nor false. For the communication primitives we have two threads
sharing a variable but using it with distinct interaction patterns (input, output,
select or branch), and two threads each possessing a co-variable, but using them
in non-dual patterns.

if  then P else QQ X
atrue | a(2) X

(vay) (@ true | y > {li: Plier)

We say that processes of the form Zv.P, gx(y).P, x<1l.P, and x> {l;: P, }ier
are prefived at variable x. We call redezes to processes of the form Tv.P |
qy(2).Q and © < l;.P | y > {l;: Pi}ier with j € I. We then say that a pro-
cess is well-formed if, for each of its structural congruent processes of the form
(vaiyr) ... (venyn)(P | Q | R) with n > 0, the following conditions hold.

e If P is of the form if v then P; else Py, then v is either true or false, and

e If P and @) are processes prefixed at the same variable, then they are of
the same nature (input, output, branch, selection), and

o If P is prefixed at z; and @ is prefixed at y; then P | @ is a redex.

Typable processes are not necessarily well-formed. Process if x then O else 0
is typable under context x: bool, yet we consider it an error for x is not a
boolean value. But if P is closed (hence typable under the empty context, by
strengthening, Lemma and z is bound by a (vxy) binder, then rule [T-RES]
introduces two dual types in the context, x: T,y: T, where T is necessarily
different from bool, for duality would not be defined otherwise. For the second
case Tv.0 and x < [.P are not typeable under any context, and similarly for
T1v.0 and y; < 1. P since the scope restriction (vz1y;) requires x; and y; to be
used in dual mode.

The main result of our system says that typable closed processes do not
reduce to ill formed processes.

Theorem 7.1 (Main result). If- P and P reduces to Q in zero or more steps,
then Q is well formed.

As usual this result follows from two other results: type preservation and
type safety.

Theorem 7.2 (Preservation). IfT'F P and P — @ then T+ Q.
Theorem 7.3 (Safety). If - P then P is well formed.

The proof of the main theorem follows by induction on the length of re-
duction. For the base case we use type safety; for the induction step we use
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preservation. The rest of this section is dedicated to the proof of Theorems
and [7.3]

We start by introducing some basic properties of context split. Let dom(T")
denote the set of variables x such that : T is in I", and let U(T") denote the
typing context containing exactly the entries z: T in I' such that un(T), and
similarly for £(I') and the lin predicate.

Lemma 7.1 (Properties of context split). Let ' =T oT's.

1. UT) =UT) =UTs).

2. If z: linp € T then either z: linp € Ty and x ¢ domTs, or z: linp € T'y
and x ¢ domT.

3. '=T50TI}.

4. If Ty =A10Ag then A =Ago0l'y and ' = A1 0 A.

Proof. A straightforward induction on the structure of context I'. O

From the above properties many other facts can be derived, including I" =
Fl; ,C(FQ), I'=r OZ/{(F), and I' = FQ when un(Fl).

We now present two basic properties of our type system: weakening and
strengthening. Weakening allows introducing new unrestricted entries in a typ-
ing context. The result becomes useful in situations where we need context
entries for variables not free in the process. Obviously the result does not hold
for linear types; for example, - 0 but x: lin 7bool I 0.

Lemma 7.2 (Unrestricted weakening). If T'+ P and un(T) then T'yz: T+ P.

Proof. The proof follows by induction on the structure of the derivation. We
need to establish a similar result for values, whose proof is a simple case anal-
ysis on the three value typing rules. The hypothesis un(T") in rule [T-INACT]
establishes the base case; the others follow by a straightforward induction. O

Strengthening allows to remove extraneous entries from the context, but only
when the variable does not occur free in the process. We use the result when
we need to remove context entries for variables not free in the process, usually
introduced by a context split operation on an unrestricted type, as for example,
when showing that if I' b (vay)(P | Q) and = ¢ fv(Q) and x is typed at an
unrestricted type, then I' - (vzy)P | Q. Clearly strengthening applies to entries
x: T where x is not free in the process and T is unrestricted. If x is free in the
process, then an entry for x is certainly required in the typing context: F x(y); if
on the other hand T is linear then x must be free in the process: z: lin?bool I/ 0.

Lemma 7.3 (Strengthening). Let T'+ P and = ¢ fv(P).

1. z: linp ¢ T.
2. IfT =T 2: T thenT" + P.

Proof. The proof is by induction on the structure of the derivation. Again
we have to establish a similar result for values. The hypothesis un(I") in rule
[T-INACT] establishes the base case; the other cases follow by a straightforward
induction. O
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The next lemma states that structural equivalent processes can be typed
under the same contexts, and is used in the the proof of type preservation.

Lemma 7.4 (Preservation for =). IfTF P and P=Q then T F Q.

Proof. The proof is by a simple analysis of derivations for each member of each
axiom. We use weakening and strengthening (Lemmas and , and check
both directions of each axiom.

The most elaborate case is scope restriction. To show that, if T' + (vzy)P |
Q then I' - (vzy)(P | Q), we start by building the only derivation for I" I
(vay)P | @, to conclude that T =Ty oy, T'y,2: T,y: T+ P, and T'y - Q. To
build a derivation for the conclusion we start with I's - @ and distinguish two
cases. If T is linear, then (I'y,2: T,y: T) o'y = 'y oIy, x: T,y: T; otherwise
use weakening to conclude that I'p,z: T,y: T F Q and Iy oy, z: T,y: T =
(Ty,2: Tyy: T) o (T'y,z: T,y: T). In either case complete the proof with rules
[T-RES| and [T-PAR].

In the reverse direction, to show that if I' b (vay)(P | Q) then '+ (vzy)P |
@, we start by building the only derivation for T' - (vay)(P | @) to conclude
that T,z: T,y: T =T1 009, Iy F P and I's - Q. To build a derivation for
the conclusion we distinguish two cases. If T is linear, then x: T is either in I'y
or in I'y, but not in both (properties of context split). Given that = ¢ fv(Q),
strengthening gives us that 2: T ¢ T'a, hence x: T € T';, and similarly for y and
T. Hence I'y =T, z: T,y: T. If, on the other hand T is unrestricted, we know
that I'y =", 2: T,y: T and 'y = 'y, 2: T,y: T, and we apply strengthening
to obtain I', F Q. In either case we conclude the proof with rule [T-RES| and
[T-PaR|. O

Inversion of the value typing relation is a simple result that we use often
in the proofs of the substitution lemma (below) and type preservation. Even
though we could establish a similar result for processes, we do that ‘on the fly’
within proofs, when required.

Lemma 7.5 (Inversion of the value typing relation).

1. If T+ true: T then T = bool and un(T).
2. If '+ false: T then T = bool and un(T").
3. IfTFa: T thenT =T1,2: T and un(T'y).

Proof. A simple analysis of the typing axioms involved. O

The substitution lemma plays a central role in proof of type preservation
(Theorem|[7.2)). The result is not applicable when 2 = v and un(T’) since there is
no I' such that T' =T'; o'y given that x: T € T’y but x: U ¢ T's, for all type U.

Lemma 7.6 (Substitution). If Ty Fv: T and Ty,z: TH P and T =T1 0Ty
then T+ Plv/x].
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Proof. The proof is by induction on the structure of P and uses the properties
of context split strengthening and weakening (Lemmas and . This
is the most elaborate proof in this section.

For the base case (process 0), we know that un(I'z) and un(T). Given un(T),
by inversion of the value typing relation, we know that un(I';). From the basic
properties of context split we obtain un(T'), hence I' - 0 = 0[v/z].

For each inductive case there are a few cases to consider. For parallel com-
position we distinguish un(7) and lin(T); for the conditional we distinguish pro-
cesses of the form if x then P else @ from if u then P else (Q with u # x; for the
output process we distinguish four cases: T u.P with un(T') and with lin(T"), and
Zu.P (z # z) with un(T") and with lin(T"); and similarly for selection and branch-
ing. Finally, for input processes we distinguish six cases: unx(y).P, unz(y).P
(z # ), linz(y).P with un(T) and with lin(T), and lin z2(y).P (z # «) with un(T)
and with lin(T).

All the inductive cases follow the same pattern; we detail one: linz(y).p and
lin(T). From I'y,xz: T F linz(y).p and rule [T-IN], we know that 'y = T, o Ty
and I'y,2: T+ 2: T and T = lin!Ty. T, and T'Y + 2: T5 + P. Inversion of the
value typing relation gives us that un(T'2) and the properties of context split
that T'j = TI'y. Since z is not in I's we have that T') + z: T = I'y, 2: To, hence
(To,y: T1),z: To b P. Inversion of the value typing relation also gives us that
Iy =T, z: T and un(TY).

We now distinguish four cases depending on the linear/unrestricted nature
of Ty and T,. One extreme is when both types are linear. Rule [T-VAR] gives
us that T'j,v: T b v: Ty and we have that IV = ('}, v: Tz) o (Ty,y: T1) =
Iy oy, v: To,y: T1. The induction hypothesis is I'" F Plv/z]. Since v is not in
Il o'y, we have I'] o'y + v: T, y: T1 + Plv/x]. It should be easy to see that
' =T; 0 (I} oT'y), hence rule [T-IN] gives T' k- linv(y).Pv/z] = (linx(y).P)[v/x]
as needed.

The other extreme is when both types are unrestricted. In this case, since
v: T € T'y we know that v: T € 'y as well. Rule [T-VAR] gives I'1,y: Ty Fo: T
and we have IV = (T'y,y: T1)o(T's,y: T1) =T, y: T1. The induction hypothesis is
I+ Plv/z], hence (I'+wv: T),y: Ty + P[v/x]. Basic facts on context split gives
us that I' = T'; oT', hence rule [T-IN] gives ' - linv(y).Plv/z] = (linx(y).P)[v/x]
as needed. The remaining two cases—lin/un and un/lin—are similar. O

We are finally in a position to prove the main results, type preservation and
type safety.

Proof of Theorem [7.2. The proof is by induction on the reduction derivation,
and uses weakening and substitution (Lemmas and. The inductive cases
are straightforward; we use Lemma in case [R-STRUCT].

The most interesting cases are when the derivation of the reduction step
ends with rule [R-LINCoM]| or [R-UNCoMm|. We sketch the first. Suppose
that |T-REs| introduces z: ¢!T.U,y: ¢?T.U. Building the only tree for the hy-
pothesis, we know that I' = I'y o'y 0 I'3 0o I’y where I's = R. At this point
we distinguish two cases depending on the nature of qualifier ¢q. If linear
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then we have I',z: U F P and I'g,2: T,y: U F Q and I'y + v: T. From
Iy Fv:T and Ty, 2: T,y: U - Q we use the substitution lemma to obtain
['yol9,y: U F Q[v/z]. We then conclude the proof with rules [T-PAR], [T-PAR],
[T-RES].

If g is unrestricted, we know that (I'v,z: ¢!T.U) + 2: U + P, and (s,
y: ?T.U,2: T)+y: U Qand 'y, x: ¢!T.U - v: T. The first context split oper-
ation is defined only when ¢!T.U is U, and the second when ¢?7.U is U. Then we
use weakening four times: to go from I'y,z: U - P to I'y,z: U,y: U - P, from
Io,z:T,y: UFQtoTly,2:T,x: Uyy: UFQ, from T3+ Rtols,z: U,y: Uk
R, and from I'y,2: U F v: T to Iy, z: U,y: U F v: T. Using substitution, we
conclude the proof as in the case of ¢ linear. O

Proof of Theorem[7.3 The proof is by contradiction. We build the only deriva-
tion for - (va1y1) ... (Vonyn) (P | Q | R) to obtain that @y : Ty, y1: T4, ... 2n: Ty,
Yn: T, =T 0903 and 'y - P and I'y - Q. For each case in the definition of
well formed process, a simple analysis of the hypothesis shows that the process
is not typable.

For example, suppose P is z1(z).P’ and @ is z1 <11.Q’. In order to have both
I' H P and I's - @, we know that 77 is unrestricted and that z;: 77 is both
in T’y and in 'y, But rule [T-IN] requires 77 to be of the form ¢?U.V, whereas
[T-SEL| asks for a type of the form &{l;: T }ier.

For an example of a redex, suppose that P is z1(z).P’ and Q is y; < 1.Q".
Rule [T-IN] requires T; to be of the form ¢?U.V, whereas [T-SEL| asks for a
type T of the form ®{l;: T;}ic7, which cannot possibly be fulfilled. O

8. Algorithmic Type Checking

The typing rules provided in the previous sections give a concise specification
of what we understand by well formed programs. They cannot however be
implemented directly for two main reasons. One is the difficulty of implementing
the non-deterministic splitting operation, I' = I'; o', for we must guess how to
split an incoming context I' in two parts. The other is the problem of guessing
the types to include in the context when in presence of scope restriction (rule
[T-REs] in Figure [6).

To solve the first problem, we restructure the type checking rules to avoid
having to guess context splitting. To address the second difficulty we seek the
help of programmers by requiring explicit annotations in the scope restriction
constructor. We now write (vay: T)P, where x is supposed to be typed at T
and y at type T in process P. Changes are in Figure We assume that type
equivalence is decidable, and use letter L to denote a set of variables.

The central idea of the new type checking system is that, rather than splitting
the input context into two (or three) parts before checking a complex process,
we pass the entire context to the first subprocess (or value) and have it return
the unused part. This output is then passed to the second subprocess, which in
turn returns the unused portion of the context, and so on. The output of the
last subprocess is then the output of the process under consideration. Sequents
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New syntactic forms

P = ... Processes:

(vey: T)P annotated scope restriction
Context difference, I' + L =T

N +~L=Ty,z:T un(T) I'=L=T0, x ¢ dom(T')

'-¢=r
@ I'y *(L,l‘) =15 I'y *(L,‘I) =15

Typing rules for values, ' Fv :T;T

I' F true : bool; T’ I' F false : bool; T' [A-TRUE| [A-FALSE]
un(T)
I,z: T\Ty b2 :T;(Ty,2: T,Ty)

Iy,z: linp,To b a : linp; (T, T9)
[A-UNVAR| [A-LINVARJ

Typing rules for processes, ' = P :T'; L

I'HP: Ty L4 Po+L1HQ:T3; Lo

'co:I; A-1 A-P

;0 T FP|Q:Tsls [A-INACT] [A-PAR]
Iy,z:T,y:T+P:Ty: L

A-REs
Ty F (vay: VP : T3 + {o.yh L\ (0.9} (A
I'y Fv:gbool; T I's-P:T's; L I'o-Q:T's; L [A-IF]

I'y Fifvthen Pelse Q:1T'3; L )

I'y+z:q¢T.U;T I'okov:T;T r :URP:Ty; L

1 riq Ua 2 2 v 43 3+ U 4, [A—OUT]

Iy FTo.P:Ty; LU(GE g = lin then {z} else 0)
I Fa:qgp?T.U;Ty (To,y: T)+2:UFP:T3 L gi=un=L=10
't Fqa(y).P:Ts = {y}; L\{y} U (if g2 = lin then {x} else 0)

[A-IN]

Fll_xq&{lle}Zel,FQ Is+ax:T;, P :T's; L Viel
A-BRANCH
Iy Fax{li: Plier: Ts; LU ¢ = lin then {z} else () [ |
Fgl—x:q@{li:Ti}ieI;I’g FQ-‘r.’EZT’j"P?Fg;L jEI [A—SEL]

I''Fa<l;.P:T3; LU (if ¢ = lin then {z} else )
Figure 10: Algorithmic type checking

are now of forms I'y - v : T; Ty for values and I'y - P : I's; L for processes,
with the understanding that I'y, v and P form the input to the algorithm and
T, I'y, and L is the output. Set L collects linear (free) variables in P that occur
in subject position, and plays its role in the rule for parallel composition. A
variable = occurs in subject position in processes Tv.P, z(y).P, x < [.P and
x> {ll Pi}iEL

The base cases for variables and constants allow any context to pass through
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the judgement, even when containing linear types. Two rules, [A-UNVAR]| and
[A-LINVAR], replace the single rule for variables [T-VAR| in Figure @ The
former keeps the entry z: T in the returned context, the latter removes the
entry.

The assumptions for unrestricted types are never consumed, as the following
example shows.

x: *!bool - Ttrue : (x: *!bool); )

For linear assumptions three things can happen: they may remain (used or not),
they may disappear altogether or they may become unrestricted.

x: bool.lbool - T true : (z: !bool); {z}
x: bool - 0 : (z: 'bool); B
x: lbool, y: *!(!bool) F G : (y: *!(!bool)); {y}
x: lbool - Ztrue : (z: end); {z}

The above examples motivate rule [A-PAR|. The output of the first sub-
process P cannot be directly passed to the second subprocess Q; a rule of the
form

Fll_P:FQ FQ"QIFg
F1|_P|QIF3

would allow to derive

x: bool.lbool - T true | Z false : (z: end) X

x: lbool, y: *lend - Ttrue | T : (x: end, y: *lend)

but we know that z: !bool.!bool. I/ Ttrue | Tfalse and that z: !bool,y: *lend I/
Ttrue | gz. Instead, we collect in set L; all linear (free) subjects in process P
and use context difference to ensure that they do not remain linear in context I's.
The context difference operator, <, defined in Figure [I0] both checks that linear
variables do not appear in contexts and removes unrestricted variables. In the
figure, notation (L,z) denotes the set L U {x} where x ¢ L. Notice that this
operator is undefined when we try to remove a variable of a linear type from
a context. Type checking continues with process @ in a context where the
assumptions for the (unrestricted) names in Ly have been removed.

Using the context difference operation we can quickly check that the algo-
rithm does not succeed on the two processes above. In the first case, we have
x: 'bool.lbool - T true : (z: !bool),{z}, but (z: !bool) + {z} is not defined since
the type of x is linear. In the second case, we have x: lbool,y: *lend F T true :
(z: end,y: *lend), {z} and (z: end,y: xlend) + {x} = (y: *lend), but the goal
y: *lend F gz : ; does not succeed, for x is not in the domain of the input
context.

Rule [A-RES] ensures that newly introduced linear variables are used to the
end. The premise I'y,2z: T,y: T + P : I'y; Ly introduces variables « and y in the
context. If T is linear, then x must be used in P and should not appear in I's in
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linear form (it may however still show in unrestricted form). If T is unrestricted,
then x certainly appears in I'y. The case for y is similar. Unrestricted types
for x,y must be deleted from the rule’s outgoing context. Using the context
difference operator, the outgoing context is 'y + {x,y}. Because x and y are
bound, the rule also removes variables x,y from the set L of (free) variables in
subject position.

Rule [A-OuT] searches the incoming context I'y for the type of . Then
uses I's, the remaining portion of I'y, to type check value v, thus obtaining a
type T' (which must match the input part of the type for z) and a new context
I's. This context is then updated with the new type for x at the continuation
type U, and passed to the subprocess P. Similarly to rule [T-OuT]| in Figure @,
when ¢ = lin then z is not in I's and a new assumption for z is introduced in
the context; else when ¢ = un we must have ¢!T.U = U. The rule outputs a
context I'y resulting from type checking the continuation P as well as the set of
variables L4 thus obtained, enriched with subject x if linear.

Rule [A-IN] should be easy to understand based on the description of rules
[A-REs] and [A-OuT]|. Similarly to [A-OuUT| we look in the input context the
type of xz. We then pass to subprocess P the unused portion of the context
together with two new assumptions, for # and for y. In the end, if y remains
in the context then it must be unrestricted. Once again, the context difference
operator both checks that the type of y is not linear and removes it from the
outgoing context. Because y is bound, the rule removes it from the set L of free
variables in subject position, and adds subject x if linear (as in rule [A-OuUT]).
The case of replication, ¢; = un, ensures that there are no (free) subjects on
linear channels in process P by requiring an empty set L of free subjects.

Each rule in the algorithm is syntax directed. Furthermore all auxiliary
functions, including type equality, context membership, context difference, and
context restriction are computable. We still need to check that this system is
equivalent to the more elegant system introduced in the previous sections.

The algorithmic type system in Figure [10] is equivalent to the type system
introduced gradually in Sections [3] to [f] Notice however that the two type
systems talk about different languages, languages that differ in the annotation
in the scope restriction constructor. To obtain a non-annotated process from
an annotated one, we use function erase(P) that removes all types from an
annotated process P. Function erase is a homomorphism everywhere, except
at scope restriction where erase((vxy: T)P) = (vay)(erase(P)). Algorithmic
correctuess says that if the algorithm succeeds on input (I', P) then I' - P, but
only if the output of the call contains no linear type. For example z: linp F O :
(z: linp); @ but we know that x: linp I/ 0.

Theorem 8.1 (Algorithmic correctness). T'y F P : Ty;  and un(T's) if and only
if T'1 F erase(P).

The rest of this section is dedicated to the proof of the above theorem. We
start with a few properties of the context difference operation. Let I'\ L denote
context I' with entries z: T removed, for € L. Recall that £(I') is the typing
context containing exactly the entries 2: T in T such that lin(T).
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Lemma 8.1 (Properties of context difference). Let T+ L =T".
1. I'=T\L.
2. L(T) = L(T).
3. Ifx: T €T and x € L then un(T) and = ¢ dom(T").

Proof. A simple induction on the size of set L in the first two cases. We detail
the second. When L = ), we have I' = T”, hence £(T') = L(I'). When L is
(L', x), by definition we know that I' =+ L’ is TV, z: T and un(T), or is I and
x ¢ dom(I"”). By induction, £(T") is L(TV,z: T) in the former case, and is L(T")
in the latter. Conclude the case by noting that L(I",z: T') = L(I") since un(T).

For the third case, if L is (L', z), we know by definition that T+ L’ is T, z: T
and un(T'), or is IV and = ¢ dom(I"), as above. The former case follows directly
from the definition; for the latter we know that z € dom(T") and x ¢ dom(I"),
hence z € dom(U(T")) since L(T") = L(TV). O

From the above properties, many others can be derived, including, L N
dom(L(T)) = 0, I\ L' = ("'\ L)+ L, and (I',z: T) + L = T’,x: T when
x & L.

Algorithmic monotonicity relates the output context to the input context in
a call to the algorithm and is used extensively in the remaining results.

Lemma 8.2 (Algorithmic monotonicity).

1. IfF1 Fo: T;FQ then FQ g Fl andU(Fl) :U(Fg)
2. IfTy + P :Ty; L then L C dom(T'y), o\ L C Ty, and U(T) \ L = U(Ty).

Proof. The case for values follows by a simple inspection of the four axioms
involved. The case for processes follows by induction on the structure of the
typing derivation and uses basic set theory as well as the properties of context
difference above. For example, if the derivation ends with rule [A-IN] we dis-
tinguish four cases depending on the un/lin nature of ¢; and go. Take the case
when both are linear. To show that dom(I's+{z}) C dom(T';), we start with the
induction hypotheses dom(I's) C dom((I'z,y: T) + «: U) and I'y C I";. Then
we know dom(T'3) + {y} C dom((T2,y: T) + z: U) + {y} = dom(T'2,z: U) =
dom(T'y) U {z} C dom(I'y) U{z} = dom(T';). The remaining cases are similar
in nature. U

The proof of the main result can be broken in two standard parts, soundness
and completeness of the algorithm with respect to the declarative system. We
attack each result in turn, soundness first.

The following lemma, algorithmic linear strengthening, is used when the
type system splits an input context I" in two parts and passes each to a different
process (rule [T-PAR]). In this case the algorithm passes the whole context to
the first process and receives back the unused part. In order to prove soundness
we need to show that the first process is algorithmically typable in a context
not containing the unused linear entries in I', for these are used to type the
second process. The proviso that = is not in L is important. Take for T the
type po.!bool.a. We have x: T+ ZTtrue : (z: T);{z} where the type T of z is
invariant, but we know that 0 I/ Ttrue : 0; .
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Lemma 8.3 (Algorithmic linear strengthening).

1. IfTyFo:T;(Tq,x: linp), then Ty =Tg,z: linp and Ts - v : T;Ts.
2. IfT1y E P:(Do,z: linp); L and x ¢ L, thenT'y =Tz, x: linp and T3 - P :
FQ;L.

Proof. The case for values follows by a simple inspection of the four axioms
involved. The case for processes follows by induction on the structure of the
derivation and uses the properties of context difference and monotonicity. We
detail two cases.

When the derivation ends with the [A-PAR] rule, suppose that I'y - P |
Q: (T3, x: linp); Ly. Induction (on Q) tells us that I'y +~ L1 = T'y,x: linp and
Iy FQ:Ts;Ly (1). Since x ¢ Ly and I'y + Ly = Ty, z: linp we conclude that
Iy =T%,2: linp, that I'y =T + Ly (2), and that = ¢ Ly. Induction (on P this
time) tells us that I’y = T}, z: linp and that Ty = P : T%; Ly (3). The result
follows from (1)—(3) and rule [A-PAR].

When the derivation ends with rule [A-OuT], suppose that I'y - Zv.P: T'y; LU
(if ¢ = lin then {z} else ()). The case when z = z does not apply. Assume that
Iy =T),z:linp and x ¢ LU (if ¢ = lin then {x} else #). We know that © ¢ L
since 2 = z. The induction hypothesis tells us that I's + z: T =T%, z: linp and
I' B P: Ty, L. We then know that z: linp is in T's; let T's = T}, z: linp, hence
I'Y +z:UF P:Ty4 L (1). Strengthening for values gives I's = T'), z: linp and
I, wv: U;TY (2). The same lemma also gives T’y =Ty, z: linpand I} - z: T; T
(3). The result follows from (1)—(3) and rule [A-OuT]. O

We are now in a position to prove the first half of the correctness result. In
the result below, dropping the proviso that U(T's) would mean that the type
system would not consume all linear variables; something we know not possible.
For example, if ' is the context x: lin !bool, then we have I' - 0 : T'; (), but " I/ 0.

Lemma 8.4 (Algorithmic soundness).

1. IfTWFov:T;Tg, thenT'skFv:T and 'y =T'5 03, for some I's.
2. If Ty F P:Ty;  and un(Ty) then I'y F erase(P).

Proof. The proof for values follows from a simple analysis of the four axioms in-
volved. The case for processes follows by induction on the structure of derivation
of the hypothesis. Cases other than [A-PAR] follow by a straightforward induc-
tion; we detail [A-SEL|. Suppose that I'1 - z <l;.P : I's; L. By induction we
know that I's+x: Tj |- erase(P); soundness for values gives 'y - z: ¢®{l;: T;}ier
and T'; = I'y o T'y. We apply rule [T-SEL] to these three results to obtain
I'y k2 <lj.erase(P) = erase(z < [;.P).

The most interesting case happens when the derivation ends with the [A-PAR|
rule. We know that I'y - P: T'y; Ly and o + Ly - Q: T's; La. Let o + Ly = T'%;
the properties of context difference gives L1 N dom(L(Ts)) = 0. Let I'; =
I}, L(T'2); applying strengthening to the hypothesis we have I} - P : U(T'3); L1.
Obviously un(U(T'2)); the induction hypothesis yields I'{ + erase(P). The
same hypothesis also yields T, F erase(Q). In order to conclude the proof
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via rule [T-PAR| we need to establish that I'y = T} o T',. Monotonicity yields
UTL) =U(T1); given that T'y =T, L(T'y) we also know that U (T'y) = U(T)). As
for the linear entries we know, again from I'y = I'}, £(I'3), that £(T'))NL(T2) =
(), and from the properties of context difference that L£(I'y) = L(I'3), hence
L(T1) = £(T), £(T). .

The following lemma is used in the proof of completeness, the reverse direc-
tion of the correctness theorem.

Lemma 8.5 (Algorithmic weakening).

1. IfTyFo:Ty; Ty thenTyyx: To b v Ty (Do, z: T).
2. IfTy P :To; L thenTy,2: THP:(Ty,x:T); L and x ¢ L.

Proof. Once again, the case for values follows from a simple analysis of the
axioms involved. The case for processes follows by a straightforward induction
on the typing derivation, using the properties of context difference. We detail
two cases.

When the derivation ends with rule [A-REs], assume I'y F (vzy: T)P : Ty +
{x,y}; I\{z,y}. Take z # z,y; by induction we know that 'y, z: T,y: T, z: U I
P:(T9,2: U);Land z ¢ L. The properties of context splitting yield (T'y, z: U)+
{z,y} =Ty +{z,y},2: U. Conclude the case with rule [A-RES]; that z ¢
L\{z,y} follows from z ¢ L and z # z,y.

When the derivation ends with rule [A-PAR], the induction hypothesis gives
I',2: TEP:To,x:T); Ly withae ¢ Ly and Ty + Ly, 2: THQ: (Ts,2: T); Lo
with « ¢ Ly. The properties of context splitting guarantee that Ty + Ly, z: T =
(T'g,z: T) + L1, and the result follows by rule [A-PAR]. O

We are finally in a position to address the second half of the correctness
result and conclude the section.

Lemma 8.6 (Algorithmic completeness).

1. fT’'=T100l% and Ty Fo:T thenT'Fo:T;Ts.
2. IfT'y Ferase(P) then 'y - P : T'y;  and un(T'y).

Proof. The proof for values follows from a simple analysis of the axioms involved.
The case for processes follows by induction on the structure of derivations for
the hypothesis. We detail two cases.

When the derivation ends with rule [T-IN], we know that ¢;(I'; o I'2) and
I'yFa:g?T.Uand (To+z: U),y: T F erase(P). By induction we have I'y o' -
z:q?T.U;Ty (1) and Ty +2: U),y: TF P :T'3; L (2) with un(I'3). In order to
apply [A-IN|, we still have to show that g = un = L = (). When ¢; is un, the
properties of context splitting tell that un(T'y) and un(T'z) and T’y = I'y. Also
monotonicity implies that I's \ L C I';. Since I'y = I's we have dom(T's)NL = (),
but the same properties say that L C dom(I';), hence L = 0 (3). We then
apply rule [A-IN] to (1)—(3) to obtain the resulting sequent. That I's + L is
unrestricted follows from un(I's).
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When the derivation ends with rule [T-PAR]|, by induction we know that
'y = P:T3; Ly and un(T'3). Since I'1, £L(T'y) = T’y o'y, we weaken the derivation
to obtain I'y o T's = P : T'3, £(T'2); L1 (1). Again by induction we know that
I's - Q : F4; Lo (2) and un(F4). We now show that (F37£(F2)) + Ly =T5. The
properties of context difference tell us that £L((T's, £L(I'2))+L1) = L(T's, L(T')) =
L(T'3), L(T'2) = L(T'y), since un(I'3). From the properties of context splitting we
know that U((T's, L(T3)) +~ L1) = U1 o Tg) = U(T3). We then apply rule
[A-PAR] to (1)—(2) to obtain the result, 'y oo - P | Q : T'y; Ly and un(Ty). O

9. Related work and conclusions

Work on session types goes back to Honda, Kubo, Takeuchi, and Vascon-
celos, first centering on the type structure [9], then introducing the notion of
channel [I7], and finally extending the ideas to a more general setting with
channel passing [I0]. The original work introduces session types, describing
chained continuous interactions composed of communication (input and out-
put) and binary choice. The central notion of session types, duality, is also
introduced in this work. The subsequent work proposes, at the language level,
the concept of channels distinct from pi calculus conventional names—channels
(linear variables in our terminology) conduct a pattern of interaction between
exactly two partners, names (unrestricted variables in this paper) are used by
multiple participants to create channels. The language is constructed around
a pair of operations, accept and request, synchronizing on a shared name and
establishing a new channel. Channels are endowed with operations to send and
receive base values (including names) and to perform choices based on labels,
as opposed to the binary choice in [9]. The language in reference [I0] takes the
idea further, allowing channels to be passed on channels—often called session
delegation—thus including two more operations on channels: to send and to
receive a channel.

In reference [I0], channel passing embodies a technique similar to internal
mobility [I6] whereby the sender and the receiver must agree on the exact chan-
nel being handed over, prior to communication itself. Forgoing the variable
convention, and using a same variable x to denote the two ends of a channel,
the rule for communicating a linear channel y can be written in the conventional
pi-calculus notation as

Ty Plz(y)Q = P[Q

where y is both free in Ty.P and bound z(y).Q, with the understanding that if
the receiving process happens to look like z(z).Q then the bound variable z is
renamed to y prior to reduction, if possible (that is, if y is not free in Q).

Gay and Hole proposed a variant of [10] by introducing free session pass-
ing [5]. Their language is similar to the one in this paper, except for one small
detail: it annotates variables with polarities +, —. Rather than using distinct
identifiers x, y that are made co-variables at binding time, (vzy)P, they use one
identifier only, x, that is annotated with polarities (becoming #,x~) and that
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is bound as a single variable in processes of the form (va)P. The new reduction
rule for session passing looks as follows.

2t 2.P |2 (y).Q — P|Qlz/y]

In either case, our work and that of Gay and Hole, the reason behind the
need for syntactically distinguishing the two ends of a same channel comes from
free session passing: the same thread may end up possessing the two ends of
a channel, as in ot true.x™(2). After typing x7(2) we are left with a context
where the types for 7 and 2~ are not dual. They will eventually become dual
after typing the output process, and should be dual when the derivation reaches
scope restriction for z. In other words, duality of channel ends’ types is not
invariant in typing derivation trees.

Instead, we work with two completely unrelated variables x,y that are made
co-variables at binding time only. But there is a fundamental difference between
the polarity notation and the co-variable technique used in this paper. In [5],
polarity annotated variables are associated to linear channels; unrestricted chan-
nels use non-annotated variables. As such, there are two communication rules:
for linear channels (on processes of the form x+ 2.P | 7 (y).Q), and for unre-
stricted channels (on processes T z.P | z(y).Q). We work with co-variables in all
cases, using a single communication rule for processes of the form Z z.P | w(y).Q
where x and w are co-variables. If needed, the distinction between linear and
unrestricted channels is made by the type qualifiers associated to variables x
and w.

Yoshida and Vasconcelos use the polarity technique to endow the language
in [I0] with free session passing [23]. All the aforementioned works carefully
manage the typing context in order to maintain the invariant where each chan-
nel is used exactly in one or two threads, with a technique similar to context
splitting.

The technique of binding the two ends of a channel together is due to Gay
and Vasconcelos [4], working on a buffered semantics where it makes all the
sense to distinguish the two ends of a channel, for each has its own queue for
incoming messages.

Recently Giunti and Vasconcelos proposed a type system for the pi-calculus
with session types that dispenses both polarities and co-variables [6]. Instead,
the type system uses pair-types to denote the type of a channel in a thread
that possesses the two ends of a same channel; it still uses single types when
threads possess one only end. The work has then been extended to a scenario
where only pair-types are allowed, meaning that threads will always know the
two ends of a channel, one or more possibly at type end [7].

Subtyping for session types was first introduced by Gay and Hole [5], co-
inductively given the presence of recursive types. The idea can be straightfor-
wardly incorporated in our language; a previous version of this paper shows
how [6]. Given that Gay and Hole present an algorithm for checking the sub-
typing relation, we still have algorithmic type checking.

A linear type system for the pi calculus was studied by Kobayashi, Pierce
and Turner [I1]. There, as in the lambda calculus, a linear channel is understood
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as resource that should be used only once. The exactly-once nature of linear
values is at odds with the idea of session types capturing continuous sequences
of interactions, and therefore of describing channels naturally occurring more
than once in a thread. Instead, a linear channel end in this work is understood
as occurring in a single thread, possibly multiple times. The machinery used
in this paper, linear and unrestricted type qualifiers and context splitting, is
inspired by Walker’s substructural type systems [22].

The type language of this paper describes the interaction between two threads
(each in possession of a channel end); sessions types to describe interaction
among multiple partners are the object of several works in the literature, in-
cluding, for example, the line of work originating with the work of Honda,
Yoshida and Carbone [8], and the Caires and Vieira’s conversation calculus [2].

Session types have also been interpreted within intuitionistic linear logic by
Caires and Pfenning [I], and later extended in order to obtain a dependent
session type system for the pi calculus [I§].

Conclusion. We presented a formulation of session types for a pi calculus that
syntactically distinguishes the two ends of a same channel, and where types
for linear channels are distinguished from those describing shared channels by
means of a lin/un qualifier. The formulation allows in particular for a linear
channel to evolve into a shared channel. We hope that the simplified theory
may lead to further developments, including its incorporation in programming
languages (cf. [20]).
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