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Abstract. We investigate some subtle issues that arise when programming dis-
tributed computations over infinite data structures. To do this, we formalise a
calculus that combines a call-by-name functional core with session-based com-
munication primitives and that allows session operations to be performed “on
demand”. We develop a typing discipline that guarantees both normalisation of
expressions and progress of processes and that uncovers an unexpected interplay
between evaluation and communication.

1 Introduction

Infinite computations have long lost their negative connotation. Two paradigmatic con-
texts in which they appear naturally are reactive systems [18] and lazy functional pro-
gramming. The former contemplate the use of infinite computations in order to capture
non-transformational computations, that is computations that cannot be expressed in
terms of transformations from inputs to outputs; rather, computations of reactive sys-
tems are naturally modelled in terms of ongoing interactions with the environment. Lazy
functional programming is acknowledged as a paradigm that fosters software modular-
ity [14] and enables programmers to specify computations over possibly infinite data
structures in elegant and concise ways. Nowadays, the synergy between these two con-
texts has a wide range of potential applications, including stream-processing networks,
real-time sensor monitoring, and internet-based media services.

Nonetheless, not all diverging programs – those engaged in an infinite sequence of
possibly intertwined computations and communications – are necessarily useful. There
exist degenerate forms of divergence where programs do not produce results, in terms of
observable data or performed communications. In this paper we investigate the issue by
proposing a calculus for expressing computations over possibly infinite data types and
involving message passing. The calculus – called SID after Sessions with Infinite Data
– combines a call-by-name functional core (inspired by Haskell) with multi-threading
and session-based communication primitives.

In the remainder of this section we provide an informal introduction to SID and its
key features by means of a few examples. The formal definition of the calculus, of the
type system, and its properties are given in the remaining sections. A simple instance
of computation producing an infinite data structure is given by

from x = 〈x,from (x+1)〉
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where the function from applied to a number n produces the stream (infinite list)
〈n,〈n+ 1,〈n+ 2, · · · 〉〉〉 of integers starting from n. We can think of this list as ab-
stracting the frames of a video stream, or the samples taken from a sensor.

The key issue we want to address is how infinite data can be exchanged between
communicating threads. The most straightforward way of doing this in SID is to take
advantage of lazy evaluation. For instance, the SID process

x⇐
(
send c+ (from 0)

)
>>= f | y⇐ recv c− >>= g

represents two threads x and y running in parallel and connected by a session c, of which
thread x owns one endpoint c+ and thread y the corresponding peer c−. Thread x sends
a stream of natural numbers on c+ and continues as f c+, where f is left unspecified.
Thread y receives the stream from c− and continues as (g 〈from 0,c−〉). The bind
operator _ >>= _ models sequential composition and has the exact same semantics as in
Haskell. In particular, it applies the rhs to the result of the action on its lhs. The result of
sending a message on the endpoint a+ is the endpoint itself, while the result of receiving
a message from the endpoint a− is a pair consisting of the message and the endpoint.
In this example, the whole stream is sent at once in a single interaction between x and
y. This behaviour is made possible by the fact that SID evaluates expressions lazily: the
message (from 0) is not evaluated until it is used by the receiver.

In principle, exchanging “infinite” messages such as (from 0) between different
threads is no big deal. In the real world, though, this interaction poses non-trivial chal-
lenges: the message consists in fact of a mixture of data (the parts of the messages
that have already been evaluated, like the constant 0) and code (which lazily computes
the remaining parts when necessary, like from). This observation suggests an alterna-
tive, more viable modelling of this interaction whereby the sender unpacks the stream
element-wise, sends each element of the stream as a separate message, and the receiver
gradually reconstructs the stream as each element arrives at destination. This modelling
is intuitively simpler to realise (especially in a distributed setting) because the messages
exchanged at each communication are ground values rather than a mixture of data and
code. In SID we can model this as a process

prod⇐ stream c+ (from 0) | cons⇐ display0 c−

where the functions stream and display0 are defined as:

stream y 〈x,xs〉 = send y x >>= λy′.stream y′ xs
display0 y = recv y >>= λ 〈z,y′〉.display0 y′ >>= λ zs.g 〈z,zs〉 (1.1)

The syntax λ 〈_,_〉.e is just syntactic sugar for a function that performs pattern
matching on the argument, which must be a pair, in order to access its components. In
stream, pattern matching is used for accessing and sending each element of the stream
separately. In display0, the pair 〈z,y′〉 contains the received head z of the stream along
with the continuation y′ of the session endpoint from which the element has been re-
ceived. The recursive call display0 y′ retrieves the tail of the stream zs, which is then
combined with the head z and passed as an argument to g.

The code of display0 looks reasonable at first, but conceals a subtle and catas-
trophic pitfall: the recursive call display0 y′ is in charge of receiving the whole tail zs,
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which is an infinite stream itself, and therefore it involves an infinite number of synchro-
nisations with the producing thread! This means that display0 will hopelessly diverge
striving to receive the whole stream before releasing control to g. This is a known prob-
lem which has led to the development of primitives (such as unsafeInterleaveIO in
Haskell or delayIO in [24]) that allow the execution of I/O actions to interleave with
their continuation. In this paper, we call such primitive future, since its semantics is
also akin to that of future variables [26]. Intuitively, an expression future e >>= λx.(g x)
allows g to reduce even if e, which typically involves I/O, has not been completely per-
formed. The variable x acts as a placeholder for the result of e; if g needs to inspect the
structure of x, its evaluation is suspended until e produces enough data. Using future

we can amend the definition of display0 thus

display y = recv y >>= λ 〈z,y′〉.future (display y′) >>= λ zs.g 〈z,zs〉 (1.2)

and obtain one that allows g to start processing the stream as its elements come through
the connection with the producer thread. The type system that we develop in this paper
allows us to reason on sessions involving the exchange of infinite data and when such
exchanges can be done “productively”. In particular, our type system flags display0
in (1.1) as ill typed, while it accepts display in (1.2) as well typed. To do so, the type
system uses a modal operator • related to the normalisability of expressions. As hinted
by the examples (1.1) and (1.2), this operator plays a major role in the type of future.

Related Work. To the best of our knowledge, SID is the first calculus that combines
session-based communication primitives [13,30] with a call-by-need operational se-
mantics [31,1,19] guaranteeing progress of processes exchanging infinite data. The op-
erational semantics of related session calculi that appear in the literature is call-by-
value, e.g. [12,10,29] making them unsuitable for handling potentially infinite data,
such as streams. In the context of communication-centric calculi, SSCC [8] offers an
explicit primitive to deal with streams. Our language enables the modelling of more
intricate interactions between infinite data structures and infinite communications. Be-
sides, the type system of SSCC considers only finite sessions types and does not guar-
antee progress of processes.

Following [20], we use a modal operator • to restrict the application of the fixed
point operator and exclude degenerate forms of divergence. This paper is an improve-
ment over past typed lambda calculi with a temporal modal operator in two respects.
Firstly, we do not need any subtyping relation as in [20] and secondly SID programs are
not cluttered with constructs for the introduction and elimination of individuals of type
• as in [15,27,4,16,15]. A weak criterion to ensure productivity of infinite data is the
guardedness condition [6]. We do not need such condition because we can type more
normalising expressions (such as display in (1.2)) using the modal operator •.

Futures originated in functional programming and related paradigms for parallelis-
ing a program [11]. The call-by-need λ -calculus with futures in [26] is used for studying
contextual equivalence and has no type system.

In the session calculi literature, the word “progress” has two different meanings.
Sometimes it is synonym of deadlock freedom [2], at other times it means lock freedom,
i.e. that each offered communication in an open session eventually happens [9,21,5].
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Table 1. Syntax of expressions and processes.

e ::= Expression
k (constant)

| u (name)
| λx.e (abstraction)
| ee (application)
| split e as x,y in e (pair splitting)

P ::= Process
0 (idle process)

| x⇐ e (thread)
| server a e (server)
| P|P (parallel)
| (νX)P (restriction)

where k ∈ {unit,return,open,send,recv,future,pair,bind}

Typed SID processes cannot be stuck, and if they do not terminate they communicate
and/or generate new threads infinitely often. This means that the property of progress
satisfied by our calculus is stronger than that of [2] and weaker than that of [9,21,5].

Contribution and Outline. The SID calculus, defined in Section 2, combines in an orig-
inal way standard constructs from the λ -calculus and process algebras in the spirit
of [13,12]. The type system, given in Section 3, has the novelty of using the modal
operator • to control the recursion of programs that perform communications. It was
challenging to assign the right type to future for filtering those programs having a
degenerate form of divergence. The properties of our framework, presented in Sec-
tion 4, include subject reduction (Theorem 1), normalisation of expressions (Theo-
rem 2), progress and confluence of processes (Theorems 4, 5). Further examples, tech-
nical material, and proofs can be found in the Appendix, beyond the page limit.

2 The SID Calculus

We use an infinite set of channels a, b, c and a disjoint, infinite set of variables x,
y. We distinguish between two kinds of channels: shared channels are public service
identifiers that can only be used to initiate sessions; session channels represent private
sessions on which the actual communications take place. We distinguish the two end-
points of a session channel c by means of a polarity p ∈ {+,−} and write them as c+

and c−. We write p for the dual polarity of p, where +=− and−=+, and we say that
cp is the peer endpoint of cp. A bindable name X is either a channel or a variable and a
name u is either a bindable name or an endpoint.

The syntax of expressions and processes is given in Table 1. In addition to the
usual constructs of the λ -calculus, expressions include constants, ranged over by k,
and pair splitting. Constant are the unitary value unit, the pair constructor pair, the
primitives for session initiation and communication open, send, and recv [13,12], the
monadic operations return and bind [24], and a primitive future to defer compu-
tations [23,22]. We do not need a primitive constant for the fixed point operator be-
cause it can be expressed and typed inside the language. For simplicity, we do not
include primitives for branching and selection typically found in session calculi. They
are straightforward to add and do not invalidate any of the results. Expressions are sub-
ject to the usual conventions of the λ -calculus. In particular, we assume that the bodies
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Table 2. Reduction semantics of expressions and processes.

Reduction of expressions

[R-BETA]

(λx.e) f −→ e{ f/x}
[R-BIND]

return f >>= e−→ e f

[R-SPLIT]

split 〈e1,e2〉 as x,y in e−→ e{e1,e2/x,y}

[R-CTXT]
e−→ f

E [e]−→ E [ f ]

Reduction of processes

[R-OPEN]

server a e| x⇐ C [open a]−→ server a e| (νcy)(x⇐ C [return c+]| y⇐ e c−)

[R-COMM]

x⇐ C [send ap e]| y⇐ C ′[recv ap]−→ x⇐ C [return ap]| y⇐ C ′[return 〈e,ap〉]

[R-FUTURE]
x⇐ C [future e]−→ (νy)(x⇐ C [return y]| y⇐ e)

[R-RETURN]
(νx)(x⇐ return e|P)−→ P{e/x}

[R-THREAD]
e−→ f

x⇐ e−→ x⇐ f

[R-NEW]
P−→ Q

(νX)P−→ (νX)Q

[R-PAR]
P−→ Q

P|R−→ Q|R

[R-CONG]
P≡ P′ −→ Q′ ≡ Q

P−→ Q

of abstractions extend as much as possible to the right, that applications associate to
the left, and we use parentheses to disambiguate the notation when necessary. Follow-
ing established notation, we write 〈e, f 〉 in place of pair e f , λ 〈x1,x2〉.e in place of
λx.split x as x1,x2 in e, and e >>= f in place of bind e f .

A process can be either the idle process 0 that performs no action, a thread x⇐ e
with name x and body e that evaluates the body and binds the result to x in the rest
of the system, a server a e that waits for session initiations on the shared channel a
and spawns a new thread computing e at each connection, the parallel composition of
processes, and the restriction of a bindable name. In processes, restrictions bind tighter
than parallel composition and we may abbreviate (νX1) · · ·(νXn)P with (νX1 · · ·Xn)P.

We have that split f as x,y in e binds both x and y in e and (νa)P binds a+

and a− within P in addition to a. The definitions of free and bound names follow as
expected. We identify expressions and processes up to renaming of bound names.

The operational semantics of expressions is defined in the upper half of Table 2. Ex-
pressions reduce according to a standard call-by-name semantics, for which we define
the evaluation contexts for expressions below:

E ::= [ ] | E e | split E as x,y in e | open E | send E | recv E | bind E
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Note that evaluation contexts do not allow to reduce pair components or an expression
e in bind f e, return e, future e, send ap e. We say that e is in normal form if there
is no f such that e−→ f .

The operational semantics of processes is given by a structural congruence relation
≡, which we leave undetailed since it is essentially the same as that of the π-calculus,
and a reduction relation, defined in the bottom half of Table 2. The evaluation contexts
for processes are defined as

C ::= [ ] | C >>= e

and force the left-to-right execution of monadic actions, as usual.
Rules [R-OPEN] and [R-COMM] model session initiation and communication, respectively.

According to [R-OPEN], a client thread opens a connection with a server a. In the reduct,
a fresh session channel c is created, the open in the client reduces to the return of c+

and a copy of the server is spawned into a new thread that has a fresh name y and a
body obtained from that of the server applied to c−. According to [R-COMM], two threads
communicate if one is ready to send some message e on a session endpoint ap and the
other is waiting for a message from the peer endpoint ap. As in [12], the communication
primitives return the session endpoint being used, with the difference that in our case the
results are monadic actions. In particular, the result for the sender is the same session
endpoint and the result for the receiver is a pair consisting of the received message and
the session endpoint.

Rules [R-FUTURE] and [R-RETURN] deal with futures. The former spawns an I/O action e
in a separate thread y, so that the spawner is able to reduce (using [R-BIND]) even if e has
not been executed yet. The name y of the spawned thread can be used as a placeholder
for the value yielded by e. Rule [R-RETURN] deals with a future variable x that has been
evaluated to return e. In this case, x is replaced by e everywhere within its scope.

Rule [R-THREAD] lifts reduction of expressions to reduction of threads. The remaining
rules close reduction under restrictions, parallel compositions, and structural congru-
ence, as expected.

3 Typing SID

We now develop a typing discipline for SID. The challenge comes from the fact that the
calculus allows a mixture of pure computations (handling data) and impure computa-
tions (doing I/O). In particular, SID programs can manipulate potentially infinite data
while performing I/O operations that produce/consume pieces of such data as shown
by the examples of Section 1. Some ingredients of the type system are easily identi-
fied from the syntax of the calculus. We have a core type language with unit, products,
and arrows. As in [12], we distinguish between unlimited and linear arrows for there
sometimes is the need to specify that certain functions must be applied exactly once.
As in Haskell [24,22], we use the IO type constructor to denote monadic I/O actions.
For shared and session channels we respectively introduce channel types and session
types [13]. Finally, following [20], we introduce the delay type constructor •, so that an
expression of type •t denotes a value of type t that is available “at the next moment in
time”. This constructor is key to control recursion and attain normalisation of expres-
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Table 3. Syntax of Pseudo-types and Pseudo-session types.

t ::=coind Pseudo-type
B (basic type)

| T (session type)
| 〈T 〉 (shared channel type)
| t× t (product)
| t→ t (arrow)
| t ( t (linear arrow)
| IO t (input/output)
| •t (delay)

T ::=coind Pseudo-session type
end (end)

| ?t.T (input)
| !t.T (output)
| •T (delay)

sions. Moreover, the type constructors • and IO interact in non-trivial ways as shown
later by the type of future.

3.1 Types

The syntax of pseudo-types and pseudo-session types is given by the grammar in Ta-
ble 3, whose productions are meant to be interpreted coinductively. A pseudo (session)
type is a possibly infinite tree, where each internal node is labelled by a type construc-
tor and has as many children as the arity of the constructor. The leaves of the tree (if
any) are labelled by either basic types or end. We use a coinductive syntax to describe
infinite data structures (such as streams) and arbitrarily long protocols, such as the one
betwen sender and receiver in Section 1.

We distinguish between unlimited pseudo-types (those denoting expressions that
can be used any number of times) from linear pseudo-types (those denoting expressions
that must be used exactly once). Let lin be the smallest predicate defined by

lin(?t.T ) lin(!t.T ) lin(t ( s) lin(IO t)
lin(t)

lin(t× s)
lin(s)

lin(t× s)
lin(t)
lin(•t)

The word “smallest” in the above definition is crucial. For example lin does not hold for
the type •∞, because •∞ does not belong to the smallest set satisfying the above clauses.
We say that t is linear if lin(t) holds and that t is unlimited, written un(t), otherwise.
Note that all I/O actions are linear, since they may involve communications on session
channels which are linear resources.

Definition 1 (Types). A pseudo (session) type t is a (session) type if:

1. For each sub-term t1→ t2 of t such that un(t2) we have un(t1).
2. For each sub-term t1 ( t2 of t we have lin(t2).
3. The tree representation of t is regular, namely it has finitely many distinct sub-trees.
4. Every infinite path in the tree representation of t has infinitely many •’s.

All conditions except possibly 4 are natural. Condition 1 essentially says that un-
limited functions are pure, namely they do not have side effects. Indeed, an unlim-
ited function (one that does not contain linear names) that accepts a linear argument
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should return a linear result. Condition 2 states that a linear function (one that may
contain linear names) always yields a linear result. This is necessary to keep track of
the presence of linear names in the function, even when the function is applied and
its linear arrow type eliminated. For example, consider z of type Nat( Nat and both
y and w of type Nat, then without Condition 2 we could type (λx.y)(z w) with Nat.
This would be incorrect, because it discharges the expression (z w) involving the linear
name z. Condition 3 implies that we only consider types admitting a finite represen-
tation, for example using the well-known “µ notation” for expressing recursive types
(for the relation between regular trees and recursive types we refer to [25, Ch. 20]).
We define infinite types as trees satisfying a given recursive equation, for which the
existence and uniqueness of a solution follow from known results [7]. For example,
there are unique pseudo-types S′Nat, SNat, and •∞ that respectively satisfy the equations
S′Nat = Nat×S′Nat, SNat = Nat×•SNat, and •∞ = ••∞. En passant, note that linearity is
decidable on types due to Condition 3.

Condition 4 intuitively means that not all parts of an infinite data structure can
be available at once: those whose type is prefixed by a • are necessarily “delayed”
in the sense that recursive calls on them must be deeper. For example, SNat is a type
that denotes streams of natural numbers where each subsequent element of the stream
is delayed by one • compared to its predecessor. Instead S′Nat is not a type: it would
denote an infinite stream of natural numbers, whose elements are all available right
away. Similarly, OutNat and InNat defined by OutNat = !Nat. • OutNat and InNat =
?Nat.•InNat are session types, while O′Nat and I′Nat defined by O′Nat = !Nat.OutNat and
I′Nat = ?Nat.I′Nat are not. The type •∞ is somehow degenerate in that it contains no
actual data constructors. Unsurprisingly, we will see that non-normalising terms such
as Ω = (λx.x x)(λx.x x) can only be typed with •∞. Without Condition 4, Ω could be
given any type.

We adopt the usual conventions regarding arrow types (which associate to the right)
and assume the following precedence among constructors: →, (, ×, IO, • with IO

and • having the highest precedence. We also need a notion of duality to relate the
session types associated with peer endpoints. Our definition extends the one of [13] in
the obvious way to delayed types. More precisely, the dual of a session type T is the
session type T coinductively defined by the equations:

end= end ?t.T = !t.T !t.T = ?t.T •T = •T

Sometimes we will write •nt in place of •· · ·•︸ ︷︷ ︸
n-times

t.

3.2 Typing Rules

We show the typing of expressions and processes. First we assign types to constants:

unit : Unit
return : t→ IO t
open : 〈T 〉 → IO T

send : !t.T → t ( IO T
recv : ?t.T → IO (t×T )
future : •n(IO t)→ IO •n t

pair : t→ s ( t× s if lin(t)
pair : t→ s→ t× s if un(t)
bind : IO t→ (t ( IO s)( IO s

Each constant k 6= unit is polymorphic and we use types(k) to denote the set of types
assigned to k, e.g. types(return) = ∪t{t→ IO t}.
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Table 4. Typing rules for expressions.

[•I]
Γ ` e : t

Γ ` e : •t

[CONST]

Γ ` k : t
un(Γ)
t ∈ types(k)

[AXIOM]

Γ ,u : t ` u : t
un(Γ)

[→I]
Γ ,x : •nt ` e : •ns

Γ ` λx.e : •n(t→ s)
un(Γ)

[→E]
Γ1 ` e1 : •n(t→ s) Γ2 ` e2 : •nt

Γ1 + Γ2 ` e1e2 : •ns

[(I]
Γ ,x : •nt ` e : •ns

Γ ` λx.e : •n(t ( s)

[(E]

Γ1 ` e1 : •n(t ( s) Γ2 ` e2 : •nt

Γ1 + Γ2 ` e1e2 : •ns

[×E]

Γ1 ` e : •n(t1× t2) Γ2,x : •nt1,y : •nt2 ` f : •ns

Γ1 + Γ2 ` split e as x,y in f : •ns

The types of unit and return are as expected. The type schema of bind is similar
to the type it has in Haskell, except for the two linear arrows. The leftmost linear arrow
allows linear functions as the second argument of bind. The rightmost linear arrow is
needed to satisfy Condition 1 of Definition 1, being IO t linear. The type of pair is
also familiar, except that the second arrow is linear or unlimited depending on the first
element of the pair. If the first element of the pair is a linear expression, then it can
(and actually must) be used for creating exactly one pair. The types of send and recv

are almost the same as in [12], except that these primitives return I/O actions instead of
performing them as side effects. The type of open is standard and obviously justified by
its operational semantics. The most interesting type is that of future, which commutes
delays and the IO type constructor. Intuitively, future applied to a delayed I/O action
returns an immediate I/O that yields a delayed expression. This fits with the semantics
of future, since its argument is evaluated in a separate thread and the one invoking
future can proceed immediately with a placeholder for the delayed expression. If the
body of the new thread reduces to return e, then e substitutes the placeholder.

The typing judgements for expressions have the shape Γ ` e : t, where typing en-
vironments (for used resources) Γ are mappings from variables to types, from shared
channels to shared channel types, and from endpoints to session types:

Γ ::= /0 | Γ ,x : t | Γ ,a : 〈T 〉 | Γ ,ap : T

A typing environment Γ is linear, notation lin(Γ), if there is u : t ∈ Γ such that lin(t);
otherwise Γ is unlimited, notation un(Γ). As in [12], we use a (partial) combination op-
erator + for environments, that prevents names with linear types from being duplicated.
Formally the environment Γ + Γ ′ is defined inductively on Γ ′ by

Γ + /0 = Γ
Γ +(Γ ′,u : t) = (Γ + Γ ′)+u : t where Γ+u : t =


Γ ,u : t if u 6∈ dom(Γ),

Γ if u : t ∈ Γ and un(t),
undefined otherwise.

The typing axioms and rules for expressions are given in Table 4. They are essen-
tially the same as those found in [12], except for two crucial details. First of all, each
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rule allows for an arbitrary delay in front of the types of the entities involved. Intu-
itively, the number of •’s represents the delay at which a value becomes available. So
for example, rule [→I] says that a function which accepts an argument x of type t delayed
by n and produces a result of type s delayed by the same n has type •n(t→ s), that is a
function delayed by n that maps elements of t into elements of s. The second difference
with respect to the type system in [12] is the presence of rule [•I], which allows to further
delay a value of type t. Crucially, it is not possible to anticipate a delayed value: if it
is known that a value will only be available with delay n, then it will also be available
with any delay m≥ n, but not earlier. Using rule [•I], we can derive that the fixed point
combinator fix = λy.(λx.y (x x))(λx.y (x x)) has type (•t → t)→ t, by assigning to
the variable x the type s such that s = •s→ t [20]. The side condition un(Γ) in [CONST],
[AXIOM], and [→I] is standard [12].

It is possible to derive the following types for the functions in Section 1:

from : Nat→ SNat stream : OutNat→ SNat→ IO •∞ display : InNat→ IO SNat

where, in the derivation for display, we assume type SNat→ IO SNat for g. We show
the most interesting parts of this derivation. We use the following rules, which are easily
derived from those in Table 4 and the types of the constants.

[FIX]

Γ ,x : •t ` e : t
Γ ` fix λx.e : t

un(Γ)

[BIND]

Γ1 ` e1 : •n(IO t) Γ2 ` e2 : •n(t ( IO s)
Γ1 + Γ2 ` e1 >>= e2 : •nIO s

[FUTURE]

Γ ` e : •n+mIO t
Γ ` future e : •nIO •m t

[×→ I]

Γ ,x1 : •nt1,x2 : •nt2 ` e : •ns
Γ ` λ 〈x1,x2〉.e : •n(t1× t2→ s)

un(Γ)

In order to derive the type of display we desugar its recursive definition in Sec-
tion 1 as display= fix (λx.λy.e), where

e = e1 >>= e2
e1 = recv y
e2 = λ 〈z,y′〉.e3 >>= e4

e3 = future
(
x y′
)

e4 = λ zs.g〈z,zs〉

Now we derive

...
Γ1 ` e1 : IO (Nat×•InNat)

∇

Γ ,Γ2,Γ3 ` e3 >>= e4 : IO SNat
[×→ I]

Γ ` e2 : (Nat×•InNat)→ IO SNat
[BIND]

Γ ,y : InNat ` e : IO SNat
[→I]

Γ ` λy.e : InNat→ IO SNat
[FIX]

` display : InNat→ IO SNat

where Γ = x : •(InNat→ IO SNat), Γ1 = y : InNat, Γ2 = y′ : •InNat and Γ3 = z : Nat,g :
SNat→ IO SNat. The derivation ∇ is as follows.

Γ ` x : •(InNat→ IO SNat) Γ2 ` y′ : •InNat
[→E]

Γ ,Γ2 ` x y′ : •IO SNat
[FUTURE]

Γ ,Γ2 ` e3 : IO •SNat

...
Γ3 ` e4 : •SNat→ IO SNat

[BIND]
Γ ,Γ2,Γ3 ` e3 >>= e4 : IO SNat
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Table 5. Typing rules for processes.

[THREAD]
Γ ` e : •n(IO t)

Γ ` x⇐ e . x : •nt
x 6∈ dom(Γ)

[SERVER]
Γ ` e : T → IO t

Γ +a : 〈T 〉 ` server a e . a : 〈T 〉
shared(Γ)
un(t)

[PAR]

Γ1 ` P1 . ∆1 Γ2 ` P2 . ∆2

Γ1 + Γ2 ` P1 |P2 . ∆1,∆2

[SESSION]

Γ ,ap : T,ap : T ` P . ∆

Γ ` (νa)P . ∆

[NEW]

Γ ,X : t ` P . ∆,X : t

Γ ` (νX)P . ∆

Note that the types of the premises of [→E] in the above derivation have a • constructor
in front. Moreover, future has a type that pushes the • inside the IO; this is crucial
for typing e4 with (•SNat→ IO SNat). We can assign the type •SNat→ IO SNat to e4 by
guarding the argument z of type •SNat under the constructor pair. Without future, the
expression e3 >>= e4 would have type •(IO SNat) and display would be untypeable.

The typing judgements for processes have the shape Γ ` P . ∆, where Γ is a typ-
ing environment as before, while ∆ is a resource environment, keeping track of the
resources defined in P. In particular, ∆ maps the names of threads and servers in P to
their types and it is defined by

∆ ::= /0 | ∆,x : t | ∆,a : 〈T 〉

Table 5 gives the typing rules for processes. A thread is well typed if so is its body,
which must be an I/O action. The type of a thread is that of the result of its body, where
the delay moves from the I/O action to the result. The side condition makes sure that
the thread is unable to use the very value that it is supposed to produce. The resulting
environment for defined resources associates the name of the thread with the type of the
action of its body. A server is well typed if so is its body e, which must be a function
from the dual of T to an I/O action. This agrees with the reduction rule of the server,
where the application of e to an endpoint becomes the body of a new thread each time
the server is invoked. It is natural to forbid occurrences of free variables and shared
channels in server bodies. This is assured by the condition shared(Γ), which requires Γ
to contain only shared channels. Clearly shared(Γ) implies un(Γ), and then we can type
the body e with a non linear arrow. The type of the new thread (which will be t if e has
type T → IO t) must be unlimited, since a server can be invoked an arbitrary number
of times. The environment Γ +a : 〈T 〉 in the conclusion of the rule makes sure that the
type of the server as seen by its clients is consistent with its definition.

The remaining rules are conventional. In a parallel composition we require that the
sets of entities (threads and servers) defined by P1 and P2 are disjoint. This is enforced
by the fact that the respective resource environments ∆1 and ∆2 are combined using
the operator _,_ which (as usual) implicitly requires that dom(∆1)∩ dom(∆2) = /0.
The restriction of a session channel a introduces associations for both its endpoints
a+ and a− in the typing environment with dual session types, as usual. Finally, the
restriction of a bindable name X introduces associations in both the typing and the
resource environment with the same type t. This makes sure that in P there is exactly
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one definition for X , which can be either a variable which names a thread or a shared
channel which names a server, and that every usage of X is consistent with its definition.

4 Main Results

In this section we state the main properties enjoyed by typed SID programs. The first
expected property is that reduction of expressions preserves their types.

Theorem 1 (Subject Reduction for Expressions). If Γ ` e : t and e−→ e′, then Γ ` e′ : t.

Besides the usual substitution lemma, the proof of the above theorem needs the
delay lemma, which states that if an expression e has type t from Γ , then it has type •t
from •Γ . This property reflects the fact that we can only move forward in time.

As informally motivated in Section 3, the type constructor • controls recursion and
guarantees normalisation of any expression that has a type different from •∞.

Theorem 2 (Normalisation of Typeable Expressions). If Γ ` e : t and t 6= •∞, then e
reduces (in zero or more steps) to a normal form.

The proof of Theorem 2 makes use of a type interpretation indexed on the set of nat-
ural numbers, similar to the one given in [20]. Note that, since SID is lazy, expressions
such as return e and 〈e, f 〉 are in normal form for all e and f .

An initial process models the beginning of a computation and it is formally defined
as a a closed, well-typed process P such that

P≡ (νxa1 · · ·am)(x⇐ e|server a1 e1 | · · ·|server am em)

The above means that an initial process does not contain undefined names and con-
sists of only one thread x – usually called “main” in most programming languages –
and an arbitrary number of servers. In particular, typeability guarantees that all bodies
normalise and all open’s refer to existing servers. Clearly, an initial process is typeable
from the empty environment.
A process is called reachable if it is the reduct of an initial process. A reachable process
may have several threads running in parallel, resulting from either service invocation or
future.

Theorem 3 (Subject Reduction for Processes). All reachable processes are typeable.

The most original and critical aspect of the proof is to check that reachable processes
do not have circular dependencies on session channels and variables. The absence of
circularities can be properly formalized by means of a judgement that characterises the
sharing of names among threads. This formal judgement is inspired by the typing of
the parallel composition given in [17]. Intuitively, it captures the following properties
of reachable processes and makes them suitable for proving both subject reduction and
progress:

1. two threads can share at most one session channel;
2. distinct endpoints of a session channel always occur in different threads;
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3. if the name of one thread occurs in the body of another thread, then these threads
cannot share session channels nor can the first thread mention the second.

Next, we show several examples of processes that are irrelevant to us because, in spite
of being typeable, they are not reachable. Examples (4.1) and (4.2) violate condition (3),
(4.3) violates condition (1), and (4.4) violates condition (2).

The first example is given by the process

(νxy)(x⇐ return y| y⇐ return x) (4.1)

is well typed by assigning both x and y any unlimited type, whereas (νx)(x⇐ return x),
which is its reduct, is ill typed, because the thread name x occurs free in its body (cf. the
side condition of [THREAD]). Another paradigmatic example is

x⇐ send a+y| y⇐ recv a− (4.2)

which is well typed in the environment a+ : !t.end,a− : ?t.end, y : t, where t = •(t×
end), and which reduces to x⇐ return a+ |y⇐ return 〈y,a−〉. Again, the reduct is
ill typed because the name y of the thread occurs free in its body.

Another source of problems is the fact that, as in many session calculi [2,5], there
exist well-typed processes that are (or reduce to) configurations where mutual depen-
dencies between sessions and/or thread names prevent progress. For instance, both

(νxyab)(x⇐ send a+ 4 >>= λx.recv b− | y⇐ send b+ 2 >>= λx.recv a−) (4.3)
(νxa)(x⇐ recv a− >>= λ 〈y,z〉.send a+ y) (4.4)

are well typed but also deadlocked.
We now turn our attention to the progress property. A computation stops when there

are no threads left. Recall that the reduction rule [R-RETURN] (cf. Table 2) erases threads.
Since servers are permanent we say that a process P is final if

P≡ (νa1 . . .am)(server a1 e1 | . . .|server am em)

In particular, the idle process is final, since m can be 0.
We can state the progress property as follows:

Theorem 4 (Progress of Reachable Processes). A reachable process either reduces or
it is final. Moreover a non-terminating reachable process reduces in a finite number of
steps to a process to which one of the rules [R-OPEN], [R-COMM] or [R-FUTURE] can be applied.

In other words, every infinite reduction of a reachable process performs infinitely
many communications and/or spawns infinitely many threads. The proof of Theorem 4
requires to define a precedence between threads and prove that this relation is acyclic.

As an example, let

Q = (νprod consac)(P|server a λy.display y)

where
P = prod⇐ stream c+ (from 0)| cons⇐ display c−
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is the process discussed in the Introduction. It is easy to verify that

P0 = (ν prod a)(prod⇐ open a >>= λy.stream y (from 0)|server a λy.display y)

reduces to process Q. Note that P0 is typeable, and indeed an initial process. Hence, by
Theorems 3 and 4, process Q is typeable and has progress.

The last property of SID we discuss is the diamond property [25, §30.3].

Theorem 5 (Confluence of Reachable Processes). Let P be a reachable process. If
P−→ P1 and P−→ P2, then there is P3 such that P1 −→ P3 and P2 −→ P3.

The proof is trivial for expressions, since there is only one redex at each reduction step.
However, for processes we may have several redexes to contract at a time and the proof
requires to analyse these possibilities. The fact that we can mix pure evaluations and
communications and still preserve determinism is of practical interest.

We conclude this section discussing two initial processes whose progress is some-
what degenerate. The first one realises an infinite sequence of delegations (the act of
sending an endpoint as a message), thereby postponing the use of the endpoint forever:

badserver
def
= (νxab)(x⇐ open a >>= loop1|

server a λy.open b >>= loop2 y|server b recv)

where

loop1
def
= fix λ f .λx.recv x >>= λy.split y as y1,y2 in send y2 y1 >>=

λ z.future ( f z)

loop2
def
= fix λg.λyx.send x y >>= λ z.recv z >>=

λu.split u as u1,u2 in future (gu1u2)

We have that loop1 : RSt → IO •∞ and loop2 : t→ SRt ( IO •∞ where RSt = ?t.!t.•
RSt and SRt = !t.?t. • SRt . Since no communication ever takes place on the session
created with server b, badserver violates the progress property as defined in [9].

The second example is the initial process (νx)(x ⇐ Ωfuture), where Ωfuture =
fix future. This process only creates new threads.

5 Conclusions

This work addresses the problem of studying the interaction between communications
and infinite data structures by means of a calculus that combines sessions with lazy
evaluation. A distinguished feature of SID is the possibility of modelling computations
in which infinite communications interleave with the production and consumption of
infinite data (cf. the examples in Section 1). Our examples considered infinite streams
for simplicity. However, more general infinite data structures can be handled in SID. An
evaluation of the expressiveness of SID in dealing with (distributed) algorithms based
on such structures is scope for future investigations.

The typing discipline we have developed for SID guarantees normalisation of ex-
pressions with a type other than •∞ and progress of (reachable) processes, besides the
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standard properties of sessions (communication safety, protocol fidelity, determinism).
The type system crucially relies on a modal operator •which has been used in a number
of previous works [20,15,27,4] to ensure productivity of well-typed expressions. In this
paper, we have uncovered for the first time some intriguing interactions between this
operator and the typing of impure expressions with the monadic IO type constructor.
Conventionally, the type of future primitive is simply IO t → IO t and says nothing
about the semantics of the primitive itself. In our type system, the type of future re-
veals its effect as an operator that turns a delayed computation into another that can be
performed immediately, but which produces a delayed result.

As observed at the end of Section 1 and formalised in Theorem 4, our notion of
progress sits somehow in between deadlock and lock freedom. It would be desirable
to strengthen the type system so as to guarantee the (eventual) execution of all pend-
ing communications and exclude, for instance, the degenerate examples discussed at
the end of Section 4. This is relatively easy to achieve in conventional process calculi,
where expressions only consist of names or ground values [2,5,21], but it is far more
challenging in the case of SID, where expressions embed the λ -calculus. We conjecture
that one critical condition to be imposed is to forbid postponing linear computations,
namely restricting the application of [•I] to non-linear types. Investigations in this direc-
tion are left for future work.

Another obvious development, which is key to the practical applicability of our
theory, is the definition of a type inference algorithm for our type system. In this respect,
the modal operator • is challenging to deal with because it is intrinsically non-structural,
not corresponding to any expression form in the calculus.
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A More Examples

Some Examples of Pseudo-Types. Figure 1 depicts (part of) the tree representation of
the pseudo-types S′Nat = Nat×S′Nat, SNat = Nat×•SNat, and •∞ = ••∞.

×

Nat ×

Nat ×

Nat ...

×

Nat •

×

Nat •

...

•

•

•

...

S′Nat SNat •∞

Fig. 1. Tree representation of some pseudo-types

SNat is a type because the only infinite path in its tree representation (the right spine
of SNat in Fig. 1) has infinitely many •’s. Instead S′Nat is not a type because its tree
representation has an infinite path without any •’s.

Use of Many Bullets. Controlling guardedness of recursion is subtle as it could require
types with several bullets. For example, let e = split ys as y,zs in (s zs) and consider
the function

skip= fix λ s.λ 〈x,ys〉.〈x,e〉

that deletes the elements at even positions of a stream. Function skip has type SNat→
S2Nat, where S2Nat = Nat×••S2Nat.

Γ ` x : Nat
∇

Γ ` e : ••S2Nat[×I]
Γ ` 〈x,e〉 : S2Nat

[→I]
s : •(SNat→ S2Nat) ` λ 〈x,ys〉.〈x,e〉 : SNat→ S2Nat

[FIX]
` skip : SNat→ S2Nat

where Γ = s : •(SNat→ S2Nat),x : Nat,ys : •SNat, rule [×I] is

[×I]

Γ1 ` e1 : •nt Γ2 ` e2 : •ns
Γ1 + Γ2 ` 〈e1,e2〉 : •n(t× s)

and the type derivation ∇ is as follows.
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Γ ` ys : •(Nat×•SNat)

Γ ′ ` s : •(SNat→ S2Nat)
[•I]

Γ ′ ` s : •• (SNat→ S2Nat) Γ ′ ` zs : ••SNat
[→E]

Γ ′ ` s zs : ••S2Nat
[×E]

Γ ` e : ••S2Nat

where Γ ′= s : •t,y : •Nat,zs : ••SNat. Note that in the above derivation, the first premise
of [→E] has two •’s in front of the arrow type.

Yet Another Programming Example. The following example shows as future modifies
the strict sequence of evaluation imposed by the bind operator, a crucial feature when
dealing with infinite data. Let inc : Nat→ Nat be the increment function on natural
numbers, and consider

incStream x = recv x >>=
λ 〈y,x〉.future

(
incStream x

)
>>=

λ z.return 〈inc y,z〉
(A.1)

which receives natural numbers in a channel x, increments them by one and stores
them in a stream. Note that the function incStream in Equation (A.1) is the function
display in Equation (1.2) once g is instantiated with λ 〈x1,x2〉.return 〈inc x1,x2〉.

Then the system

x⇐ stream c+ (from 0) | y⇐ (incStream c−) >>= send b + | z⇐ recv b−

(A.2)
sends on channel b a stream of ones. This is due to the semantics of future formalised
by the following reduction rule:

x⇐ C [future e]−→ (νy)(x⇐ C [return y]| y⇐ e)

where C is an evaluation context (defined on page 6) and y is a fresh thread computing
e, while thread x continues its execution (until the actual result of the computation of e
is required). Hence, the construct future in incStream spawns a thread performing
the increments on the rest of the stream allowing thread y to perform the send action.
Note that, without using the construct future, the thread y would continuously receive
on channel c and never outputs on channel b, making the receiver z stuck.

Besides being of theoretical interest, computations on infinite data also have prac-
tical relevance, e.g. continuous data streams are ubiquitous in mining algorithms [28].
We note that the computation in (A.2) can be envisaged as an abstraction of a stream
processing application once (from 0) and incStream are replaced by appropriate func-
tions. For instance, if we replace (from 0) with an online television channel (contin-
uously sending image frames on c) and incStream with a function adding subtitles
to each frame, then the threads z and y in (A.2) become the client and server of a dis-
tributed application: client z uses the service y to subtitle programs from x, an on online
television.
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We show part of a type derivation for the thread named y in Eq. (A.2).

c− : InNat ` incStream c− : IO SNat
b+ : !SNat.end ` send b + : IO SNat→ IO end

c− : InNat,b+ : !SNat.end ` (incStream c−) >>= send b + : IO end
[BIND]

c− : InNat,b+ : !SNat.end ` y⇐ (incStream c−) >>= send b + . y : end
[THREAD]

B Subject Reduction for Expressions

The proof of subject reduction for expressions (Theorem 1) is standard except for the
fact that we are using the modal operator •. For this, we need the following lemma,
which expresses the fact that the type of an expression should be delayed as much as
the types in the environment. For example, from x : t ` λy.x : s→ t we can deduce that
x : •t ` λy.x : •(s→ t), but we cannot deduce x : •t ` λy.x : s→ t.

Lemma 1 (Delay). If Γ ` e : t, then Γ1,•Γ2 ` e : •t for Γ1,Γ2 = Γ .

The proof is by induction on the derivation.

Lemma 2 (Inversion).
1. If Γ ` k : t, then t = •nt ′ and t ′ ∈ types(k) and un(Γ).
2. If Γ ` u : t, then t = •nt ′ and Γ = Γ ′,u : t ′ with un(Γ ′).
3. If Γ ` λx.e : t and un(Γ), then either t = •n(t1 ( t2) or t = •n(t1 → t2) and Γ ,x :
•nt1 ` e : •nt2,

4. If Γ ` λx.e : t and lin(Γ), then t = •n(t1 ( t2) and Γ ,x : •nt1 ` e : •nt2.
5. If Γ ` e1e2 : t, then t = •nt2 and Γ = Γ1 + Γ2 with Γ2 ` e2 : •nt1 and either Γ1 ` e1 :
•n(t1→ t2) or Γ1 ` e1 : •n(t1 ( t2).

6. If Γ ` split e as x,y in f : t, then Γ = Γ1 + Γ2 and t = •nt ′ with Γ1 ` e : •n(t1× t2)
and Γ2,x : •nt1,y : •nt2 ` f : •nt ′.

7. If Γ ` x⇐ e . ∆, then ∆= x : •nt with Γ ` e : •n(IO t).
8. If Γ ` server a e . ∆, then Γ = Γ ′,a : 〈T 〉 and ∆= a : 〈T 〉 with Γ ` e : (T → IO t)

and shared(Γ) and un(t).
9. If Γ ` P1 |P2 . ∆, then Γ = Γ1 + Γ2 and ∆ = ∆1,∆2 with Γ1 ` P1 . ∆1 and Γ2 `

P2 . ∆2.
10. If Γ ` (νa)P . ∆, then either Γ ,ap : T,ap : T ` P . ∆ or Γ ,a : 〈T 〉 ` P . ∆,a : 〈T 〉.
11. If Γ ` (νx)P . ∆, then Γ ,x : t ` P . ∆,x : t.

Proof. By case analysis and induction on the derivation. We only show Item 3 which
is interesting because we need to shift the environment in time and apply Lemma 1. A
derivation of Γ ` λx.e : t ends with an application of either [→I] or [•I]. For the former
case, the proof is immediate. If the last applied rule is [•I], then t = •t ′ and we have

Γ ` λx.e : t ′

Γ ` λx.e : •t ′

By induction, t ′ = •n(t1→ t2) and Γ ,x : •nt1 ` e : •nt2. Hence,

t = •t ′ = •n(t1→ t2)

By Lemma 1, we have that Γ ,x : •n+1t1 ` e : •n+1t2.
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The following property expresses the fact that, if an expression contains an end-
point or a variable with a linear type, then the type of that expression should be linear.
For example, it is not possible to assign the unlimited type Nat→ !Nat.end to f =
λx.send apx. Otherwise, f could be erased in (λx.unit)f or duplicated in (λx.〈x,x〉)f.

Lemma 3. If Γ ` e : t and un(t), then un(Γ).

The proof is by induction on the derivation of Γ ` e : t. The first two conditions
imposed in the definition of types (Definition 1) play an important role in the proof of
this lemma. The case of [→E] uses Condition 1 and the case of [(E] uses Condition 2.

Lemma 4 (Substitution).

1. If Γ1,x : s ` e : t and Γ2 ` f : s and Γ1 + Γ2 is defined, then Γ1 + Γ2 ` e{ f/x} : t.
2. Let dom(Γ2)∩dom(∆) = /0. If Γ1,x : t ` P . ∆ with x 6∈ dom(∆) and Γ2 ` e : t and

Γ1 + Γ2 be defined. Then Γ1 + Γ2 ` P{e/x} . ∆.

Proof. By induction on the structure of expressions and processes.
For Item 1, we only show the case e= k, to show the crucial application of Lemma 3.

It follows from Item 1 of Lemma 2 that un(Γ1,x : s) and t = •nt ′ with t ′ = types(k) and
un(t). From un(s), Γ2 ` f : s and Lemma 3, we derive un(Γ2), and therefore Γ1+Γ2 ` k : t
by [CONST] and k{ f/x}= k.

For Item 2, we only show the case of [THREAD]. The interesting observation in this
case is that we need to use the hypothesis dom(Γ2)∩ dom(∆) = /0 to ensure that the
name of a thread does not belong to its own body. We also use Item 1 to type the body
of the thread itself.

Lemma 5 (Expressions in Contexts).

1. If Γ ` E [e] : t, then Γ = Γ1 + Γ2 and Γ1,x : s ` E [x] : t and Γ2 ` e : s.
2. If Γ ` C [e] : •n(IO s), then Γ = Γ1 + Γ2 and Γ1,x : •n(IO t) ` C [x] : •n(IO s) and

Γ2 ` e : •n(IO t).

Proof. By induction on the structure of contexts.

Proof of Theorem 1. By induction on the definition of −→. We only do the case
(λx.e) f −→ e{ f/x}. Suppose Γ ` (λx.e) f : t. By Item 5 of Lemma 2, t = •nt2 and
Γ = Γ1 + Γ2 and

Γ2 ` f : •nt1 and either Γ1 ` (λx.e) : •n(t1→ t2) or Γ1 ` (λx.e) : •n(t1 ( t2)

In both cases, it follows from Item 3 of Lemma 2 that

Γ1,x : •nt1 ` e : •nt2 (B.1)

By applying Lemma 4 to (B.1), we get Γ ` e{ f/x} : •nt2.
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C Normalisation of Typeable Expressions

In this section we prove that any typeable expression whose type is different from •∞

reduces to a normal form (Theorem 2). For this, we define a type interpretation indexed
on the set of natural numbers for dealing with the temporal operator •. The time is
discrete and represented using the set of natural numbers. The semantics reflects the
fact that one • corresponds to one unit of time by shifting the interpretation from i to
i+1. A similar interpretation of the modal operator with indexed sets is given in [20].
A more general setting based on category theory is presented in [3].

Before defining the type interpretation, we give a few definitions. Let E be the set
of expressions. Hereafter, we write −→∗ for the reflexive, transitive closure of −→. We
define the following subsets of E:

WN = {e | e−→∗ f & f is a normal form}
WNx = {e | e−→∗ E [x] & x is a variable}
WNIO = {e | e−→∗ C [e0] & e0 ∈ {send ap e1,recv ap,open a,future e1}}

We will do induction on the rank of a type. Intuitively, the rank measures the depth
of all what we can observe at time 0. We could also compute it by taking the maximal
0-length of all the paths in the tree representation of the type, where the 0-length of a
path is the number of type constructors different from • from the root to a leaf or to a •.

Definition 2 (Rank of a Type). The rank of a type t (notation rank(t)) is defined as
follows.

rank(Unit) = rank(T ) = rank(〈T 〉) = rank(•t) = 0
rank(IO t) = rank(t)+1
rank(t× s) = max(rank(t),rank(s))+1
rank(t→ s) = max(rank(t),rank(s))+1
rank(t ( s) = max(rank(t),rank(s))+1

The rank is well defined (and finite) because the tree representation of a type cannot
have an infinite branch with no •’s at all (Condition 4 in Definition 1) and rank(•t) is
set to 0.

We now define the type interpretation [[t]] ∈ N→P(E), which is an indexed set,
where N is the set of natural numbers and P is the power set constructor.

Definition 3 (Type Interpretation). Table 6 defines [[t]]i⊆E by induction on (i,rank(t)).

Note that [[•∞]]i = E for all i ∈ N.

Lemma 6.

1. [[•nt]]i = E if i < n.
2. [[•nt]]i = [[t]]i−n if i≥ n.

Proof. Both parts are proved by induction on n.

Lemma 7. 1. For all types t and i ∈ N, we have WNx ⊆ [[t]]i.
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Table 6. Type interpretation.

[[Unit]]i = WNx∪{e | e−→∗ unit}
[[T ]]i = WNx∪{e | e−→∗ ap}
[[〈T 〉]]i = WNx∪{e | e−→∗ a}
[[t× s]]i = WNx∪{e | e−→∗ (〈e1,e2〉),e1 ∈ [[t]]i and e2 ∈ [[s]]i}
[[t→ s]]i = [[t ( s]]i

= WNx∪{e | e−→∗ λx.e′ and ee′′ ∈ [[s]] j ∀e′′ ∈ [[t]] j, i≥ j}∪
{e | e−→∗ E [k] and ee′′ ∈ [[s]] j ∀e′′ ∈ [[t]] j, i≥ j}

[[IO t]]i = WNx∪WNIO∪{e | e−→∗ (return e′) and e′ ∈ [[t]]i}
[[•t]]0 = E
[[•t]]i+1 = [[t]]i

2. If t 6= •s, then [[•n+1t]]n+1 ⊆WN.
3. If t 6= •∞, then

⋂
i∈N [[t]]i ⊆WN.

4. For all i ∈ N, [[t]]i+1 ⊆ [[t]]i.

Proof. (Item 1). By induction on i and doing case analysis on the shape of the type.
(Item 2). Using Lemma 6 Item 2.
(Item 3). All the cases are trivial except for a type starting by •. Since t 6= •∞, we

have that t = •n+1s and s 6= •s′. By part (Item 2) [[•n+1s]]n+1 ⊆WN and then⋂
i∈N

[[t]]i ⊆ [[t]]n+1 = [[•n+1s]]n+1 ⊆WN

(Item 4). By induction on (i,rank(t)). The interesting cases are the arrow and the
bullet types.

Lemma 8. 1. Let e−→ e′. Then, e ∈ [[t]]i iff e′ ∈ [[t]]i for all i ∈ N and type t.
2. If k : t and t ∈ types(k) then k ∈

⋂
i∈N [[t]]i.

Proof. (Item 1). By induction on (i,rank(t)).
(Item 2). We only consider the case k= bind and prove that

bind ∈ [[IO t→ (t→ IO s)( IO s]]i

For this, suppose e1 ∈ [[IO t]] j and e2 ∈ [[t ( IO s]] j for j≤ i. We show that bind e1 e2[[IO s]]i.
By definition of [[IO t]] j, we have three cases:

1. Case e1 ∈WNx. Hence bind e1 e2−→∗ bind E [x] e2. Taking E ′[x] = bind E [x] e2,
we have that bind e1 e2 ∈WNx and WNx ⊆ [[IO s]] j by Item 1 of Lemma 7.

2. Case e1 −→∗ (return e′1) and e′1 ∈ [[t]] j. This gives e2e′1 ∈ [[IO s]] j. Since

bind e1 e2 −→∗ bind (return e′1) e2 −→ e2e′1

we conclude that bind e1 e2 ∈ [[IO s]] j by Item 1.
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3. Case e1 ∈WNIO. Hence e1 −→∗ e′1 and e′1 is in normal form. Then,

bind e1 e2 −→∗ bind e′1 e2 ∈WNIO

We conclude that bind e1 e2 ∈ [[IO s]] j by definition of [[IO s]] j.

In order to deal with open expressions we resort to substitution functions, as usual.
A substitution function is a mapping from (a finite set of) variables to E. We use ρ

to range over substitution functions. Substitution functions allows us to define indexed
semantic typing (notation Γ |=i e : t).

Definition 4. Let ρ be a substitution function.

1. ρ |=i Γ if ρ(x) ∈ [[t]]i for all x : t ∈ Γ .
2. Γ |=i e : t if ρ(e) ∈ [[t]]i for all ρ |= Γ .

Lemma 9. 1. If ρ |=i Γ1 + Γ2, then ρ |=i Γ1 and ρ |=i Γ2.
2. If ρ |=i Γ , s then ρ |= j Γ for all j ≤ i.

Proof. (Item 1) is an easy consequence of Definition 4.
(Item 2) follows from Item 4 of Lemma 7.

Theorem 6 (Soundness). If Γ ` e : t, then Γ |=i e : t for all i ∈ N.

Proof. We prove that Γ |=i e : t for all i ∈ N by induction on Γ ` e : t. We only show
some interesting cases.

− Rule [CONST]. It follows from Item 2 of Lemma 8.
− Rule [•I]. Suppose i = 0. Then,

ρ(e) ∈ [[t]]0 = E

Suppose i > 0 and ρ |=i Γ . It follows from Item 2 of Lemma 9 that ρ |=i−1 Γ . By
induction hypothesis, Γ |=i e : t for all i ∈ N. In particular, Γ |=i−1 e : t. Hence,
ρ(e) ∈ [[t]]i−1 and

ρ(e) ∈ [[t]]i−1 = [[•t]]i
− Rule [→E]. The derivations ends as

Γ1 ` e1 : •n(s→ t) Γ2 ` e2 : •ns
Γ1 + Γ2 ` e1e2 : •nt

with Γ = Γ1 + Γ2 and e = e1e2. By induction hypothesis, we have that for all i ∈ N,

Γ1 |=i e1 : •n(s→ t) (C.1)

Γ2 |=i e2 : •ns (C.2)

We have two cases:
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1. Case i < n. By Item 1 of Lemma 6, [[•nt]]i = E. We trivially have that

ρ(e1e2) ∈ [[•nt]]i

2. Case i≥ n. Suppose that ρ |=i Γ . It follows from Item 1 of Lemma 9 that ρ |=i Γ1
and ρ |=i Γ2.

ρ(e1) ∈ [[•n(s→ t)]]i by (C.1)
= [[(s→ t)]]i−n by Lemma 6 (C.3)

ρ(e2) ∈ [[•ns]]i by (C.2)
= [[s]]i−n by Lemma 6 (C.4)

By Definition of [[(s→ t)]]i−n and (C.3), we have two possibilities:
(a) Case ρ(e1) ∈WNx. Then,

ρ(e1e2) = ρ(e1)ρ(e2)−→∗ E [x]ρ(e2) (C.5)

Hence,
ρ(e1e2) ∈WNx by (C.5)

⊆ [[•nt]]i by Item 1 of Lemma 7.

(b) Case ρ(e1)−→∗ λx.e′ or ρ(e1)−→∗ E [k]. We also have that

ρ(e1)e′′ ∈ [[t]]i−n ∀e
′′ ∈ [[s]]i−n

In particular from (C.4), we have that

ρ(e1e2) = ρ(e1)ρ(e2) ∈ [[t]]i−n

Since [[t]]i−n = [[•nt]]i by Lemma 6, we are done.
− Rule [→I]. The derivation ends as

Γ ,x : •nt ` e : •ns
Γ ` λx.e : •n(t→ s)

By induction hypothesis, we have that

Γ ,x : •nt |=i e : •ns (C.6)

for all i ∈ N. We have two cases:
1. Case i < n. Then,

ρ(λx.e) ∈ E
= [[•n(t→ s)]]i by Lemma 6

2. Case i≥ n. Suppose that ρ |=i Γ . By Lemma 6, we have to prove that

ρ(λx.e) ∈ [[t→ s]]i−n

For this, suppose f ∈ [[t]] j for j ≤ i−n. We consider the substitution function
defined as ρ0 = ρ ∪{(x, f )}. We have that

ρ0 |= j+n Γ ,x : •nt (C.7)

because
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∗ ρ0(x) = f ∈ [[t]] j = [[•nt]] j+n by Lemma 6.
∗ ρ0 |= j+n Γ by Item 2 of 9 and the fact that ρ0 |=i Γ .

It follows from (C.6) and (C.7) that

Γ |= j+n e : •ns

Therefore, we have that

(λx.e) f −→ ρ(e){x/ f}= ρ0(e) ∈ [[•ns]] j+n by induction hypothesis
= [[s]] j by Lemma 6

By Item 1 of Lemma 8, we conclude

(λx.e) f ∈ [[s]] j.

Proof of Theorem 2 It follows from Theorem 6 that

Γ |=i e : t (C.8)

for all i ∈ N. Let id be the identity substitution and suppose x : s ∈ Γ . Then

id(x) = x ∈WNx
⊆ [[s]]i by Item 1 of Lemma 7.

This means that id |=i Γ for all i ∈ N. From (C.8), we have that id(e) = e ∈ [[t]]i for all
i. Hence,

e ∈
⋂
i∈N

[[t]]i

It follows from Item 3 of Lemma 7 that e ∈WN.

D Subject Reduction for Reachable Processes

Subject reduction for processes (Theorem 3) holds for the set of well-polarised pro-
cesses, which includes the reachable ones (Corollary 1). As we mentioned before, this
restriction is necessary, because applying the reduction rules [R-RETURN] and [R-COMM] can
break the condition in [THREAD] that the body of a thread must not contain the name of
the thread. For this, we characterise how threads in reducible processes can share names
by means of a judgement relating sets of polarised names with processes. We consider
sets of polarised variables and endpoints. We use A ,B to range over these sets. We say
that A and B are independent, notation A #B, if for every X p ∈ A and Xq ∈B we
have p = q. Then A #A implies that A cannot contain the same name with opposite
polarities.

Definition 5 (Well-polarised Processes).

1. We define N (e) = {ap | ap ∈ fn(e)}∪{x+ | x ∈ fn(e)}.
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2. We write A |= P if it is derivable using the following rules:

[WP-THREAD]

x+ 6∈N (e)
N (e)∪{x−} |= x⇐ e

N (e)#N (e)

[WP-PAR1]

A |= P B |= Q
A ∪B |= P|Q

A #B

[WP-PAR2]

A ∪{X p} |= P B∪{X p} |= Q

A ∪B∪{X p,X p} |= P|Q
A #B

3. We say that P is well polarised if P≡ (νX1 . . .Xn)(Q|R) and Q|R does not contain
restrictions, Q is a parallel composition of threads, R is a parallel composition of
servers and either Q≡ 0 or A |= Q holds.

It is easy to prove that A |= P implies N (P) = A , where

N (P) = {ap | ap ∈ fn(P)}∪{x+ | P≡ y⇐ e|Q & x ∈ fn(e)}∪{x− | P≡ x⇐ e|Q}

The definition of A |= P is inspired by the typing of the parallel composition given
in [17]. Note that A |= e holds even if e cannot be typed. Similarly A |= P holds even
if P cannot be typed. More interestingly, A |= P and P≡ P′ do not imply A |= P′. Take
for example,

P = (x1⇐ return 1| y2⇐ return x1)|(x2⇐ return y1 | y1⇐ return 2)
P′ = (x1⇐ return 1| x2⇐ return y1)| (y1⇐ return 2| y2⇐ return x1)

Another example that uses several occurrences of the same variable shows that not even
associativity holds:

P = (x⇐ return 〈y,z〉| y⇐ return z)| z⇐ return 1
P′ = x⇐ return 〈y,z〉| (y⇐ return z| z⇐ return 1)

We say that P is a (syntactic) sub-process of Q, denoted as P ⊆ Q, if P ∈ S (Q),
where S (Q) is defined inductively by:

S (x⇐ e) = {x⇐ e}
S (P|Q) = S (P)∪S (Q)∪{P|Q}.

We write P⊂Q if P⊆Q and P 6=Q. Note that, if P⊂Q, then all threads of P respect the
syntactic structure of Q. This is important, because |= is not invariant under structural
equivalence and the parenthesis of P should be in the same position as they are Q.

The proof that well-polarisation is preserved by reduction is a bit tricky, because
A |= P does not really imply that A |= Q for an arbitrary Q without restrictions such
that (νX1 . . .Xn)P−→ (νY1 . . .Ym)Q.

We will prove a subtle variant of the above property, which is if A |= P and

(νX1 . . .Xn)P−→ (νY1 . . .Ym)Q

and Q is without restrictions, then there exists Q′ ≡ Q such that A |= Q′.
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The problem lies on the rules [R-COMM] and [R-RETURN]. For example, using the rule
[R-COMM] we can obtain Q from P such that A |= P, but A 6|= Q, as follows.

P = (x⇐ send a+ 1| z⇐ return x)| (y⇐ recv a− |u⇐ return y)
Q = (x⇐ return a+ | z⇐ return x)| (y⇐ return 〈1,a−〉|u⇐ return y)

By re-arranging the threads of Q, we get a process Q′ such that A |= Q′:

Q′ = (x⇐ return a+ | (y⇐ return 〈1,a−〉|u⇐ return y)| z⇐ return x)

We show a second interesting example that also uses the rule [R-COMM]:

P = (x⇐ send a+ z| z⇐ return 1)| y⇐ recv a−

Q = (x⇐ return a+ | z⇐ return 1)| y⇐ return 〈z,a−〉

Similarly, A |= P but A 6|= Q. By re-arranging the threads of Q, we get a process Q′

such that A |= Q′:

Q′ = (x⇐ return a+ | y⇐ return 〈z,a−〉)| z⇐ return 1

The rule [R-RETURN] has the same problem. Take for example, P = (νx)P0 and

P0 = ((x⇐ return 〈z1,z2〉| z1⇐ return z2)| z2⇐ return 1)|
(y⇐ send a+x|u⇐ recv a−)

Q = (z1⇐ return z2 | z2⇐ return 1)|
(y⇐ send a+ 〈z1,z2〉|u⇐ recv a−)

Then, A |= P0 but A 6|= Q. We have that A |= Q′ and Q≡ Q′ where

Q′ = (y⇐ send a+ 〈z1,z2〉| (z1⇐ return z2 | z2⇐ return 1))|u⇐ recv a−

How do we find Q′≡Q such that A |=Q′ for any Q such that A |=P and (νX1 . . .Xn)P−→
(νY1 . . .Yn)Q? The following lemmas solve this puzzle on the rules [R-COMM] and [R-RETURN].

Lemma 10. 1. If A |= P|Q, then
(a) A = A1∪A2 and A1 |= P and A2 |= Q.
(b) Let X 6= Y . If X p,Y q ∈ A1 and X p ∈ A2, then Y q 6∈ A2. Similarly, if X p ∈ A1

and X p,Y q ∈A2, then Y q 6∈A1.
2. If A |= P and Q⊆ P, then B |= Q, where B ⊆A .
3. If A |= P and x⇐ e and y⇐ f are sub-processes of P and x occurs in f , then y

cannot occur in e.
4. If A |= P and x⇐ e and y⇐ f are sub-processes of P and ap occurs in e and ap

occurs in f , then y cannot occur in e.

Proof. (Item 1). A derivation of A |= P | Q ends by the application of either rule
[WP-PAR1] or rule [WP-PAR2]. In both cases we have that A1 |= P and A2 |= Q. Item 1b
is easy to verify.

(Item 2). The proof is by induction on the derivation of A |= P. Since the names
and variables of Q are included in the ones of P, we have that B ⊆A .
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(Item 3). There exists a point in the derivation of A |= P where we split the two
threads x⇐ e and y⇐ f . This means that there is a subprocess P1 |P2 of P such that
x⇐ e⊂ P1 and y⇐ f ⊂ P2 (or vice versa). We also have that B |= P1 |P2. By Item 1a,
B = B1∪B2 and B1 |= P1 and B2 |= P2. Hence, x− ∈B1 and y−,x+ ∈B2, because
we assume that x occurs in f . By Item 1b, y+ 6∈B1, which means that y cannot occur
in e.

(Item 4). Similar to the previous part.

The replacement of an occurrence of a thread x⇐ e by a process Q in process P is
denoted by P[Q/x⇐ e].

Lemma 11. Let x⇐ e occur once in P and A ,x− |= P. If D |= Q and A #D , N (e)⊆
D , then A ∪D |= P[Q/x⇐ e].

Proof. By induction on the derivation of A ,x− |= P. Suppose the last rule in the deriva-
tion is

[WP-THREAD]

x+ 6∈N (e)
N (e),x− |= x⇐ e

N (e)#N (e)

In this case A = N (e) and A ∪D = D . We have that A ∪D |= P[Q/x⇐ e], since
P[Q/x⇐ e] = Q.

Suppose now that the last rule in the derivation is

[WP-PAR1]

A1 |= P1 A2 |= P2

A1∪A2 |= P1 |P2
A1#A2

Suppose that x⇐ e occurs once in P1. By induction hypothesis, A1∪D |= P1[Q/x⇐ e]
since A1 ⊆A #D . Now we apply [WP-PAR1] using this new premise:

[WP-PAR1]

A1∪D |= P1[Q/x⇐ e] A2 |= P2

A1∪D ∪A2 |= P1 |P2
(A1∪D)#A2

The side condition (A1∪D)#A2 holds because D#A2, being A2 ⊆A .
The case for [WP-PAR2] is similar to the previous one.

Lemma 12. Let A |= P and all threads of P have different names.

1. If x− 6∈A and N (e)#N (e) and A #N (e), then A \{x+}∪N (e) |= P{e/x}.
2. If x⇐ e⊆ P, then A \{x+,x−} |= R{e/x} for some R such that R| x⇐ e≡ P.

Proof. Item 1 and Item 2 are proved by induction on the derivation of A |= P. From
the proof of Item 1, we show only the case of [WP-THREAD]. Suppose that

[WP-THREAD]

y+ 6∈N ( f )
N ( f )∪{y−} |= y⇐ f

N ( f )#N ( f )
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We can do the following inference:

[WP-THREAD]

y+ 6∈N ( f{e/x})
N ( f{e/x})∪{y−} |= y⇐ f{e/x}

N ( f{e/x})#N ( f{e/x})

The side condition N ( f{e/x})#N ( f{e/x}) holds because N ( f )∪{y−}#N (e) and
N (e)#N (e). The premise y+ 6∈N ( f{e/x}) holds because y+ 6∈N ( f ) and N ( f )∪
{y−}#N (e). Clearly,

N ( f{e/x})∪{y−}= N ( f )\{x+}∪{y−}∪N (e)

The proof of Item 2 makes use of Item 1. Suppose the last rule of the derivation is:

[WP-PAR2]

A1∪{X p} |= P1 A2∪{X p} |= P2

A1∪A2∪{X p,X p} |= P1 |P2
A1#A2

Then A = A1∪A2∪{X p,X p} and Q = P1 |P2.
Case x⇐ e⊆ P1 and x+ ∈A1∪{X p} and x+ 6∈A2∪{X p}. By induction on Item 2

B ⊆A1∪{X p} and A1∪{X p}\{x+,x−} |= R1{e/x} for some R1 such that R1 | x⇐
e≡ P1. Applying rule [WP-PAR2] to A1∪{X p}\{x+,x−} |= R1{e/x} and A2∪{X p} |= P2
we conclude A \{x+,x−} |= R1{e/x}|P2.

Case x⇐ e⊆ P1 and x+ 6∈A1∪{X p} and x+ ∈A2∪{X p}. The key observation is
that X p = x− and X p = x+. We have that A2#N (e) because A2#A1 and A1 ⊇N (e).
By Item 1, A2 \{x+}∪N (e) |= P2{e/x}. It follows from Lemma 11 that

A1∪D |= P1[P2{e/x}/x⇐ e]

where D = A2 \{x+}∪N (e). It is not difficult to check that

x⇐ e|P1[P2/x⇐ e]≡ P1 |P2

and that
A1∪D = (A1∪A2∪N (e))\{x+,x−}.

The replacement of an expression e by another expression f in P is denoted by
P[ f/e]. We consider two special replacements:

ρe,ap
recv = [return 〈e,ap〉/recv ap]

ρ
e,ap

send = [return ap/send ap e]

Lemma 13. Let recv ap occur once in P in the thread named x and x+ 6∈N (e). If
A |= P and N (e)#N (e), A #N (e), then A ∪N (e) |= P ρe,ap

recv.

Proof. The proof is similar and simpler to that of Item 1 of Lemma 12.

Lemma 14. Let x⇐ C [send ap e] ⊆ P and y⇐ C ′[recv ap] ⊆ Q. Suppose also that
A #B and the channels ap and ap appear only once in P |Q. If A ∪ ap |= P and
B∪ap |= Q, then there exists R≡ P ρ

e,ap

send |Q ρe,ap
recv such that A ∪B∪{ap,ap} |= R.
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Proof. We do induction on A ,ap |=P. Suppose the last rule in the derivation is [WP-THREAD].
Then,

[WP-THREAD]

x+ 6∈N (C [send ap e])
N (C [send ap e]),x− |= x⇐ C [send ap e]

N (C [send ap e])#N (C [send ap e])

Then, A ∪{ap} = N (C [send ap e]),x−. From this, it is easy to obtain the following
derivation of the thread obtained from applying the replacement ρ

e,ap

send as follows.

[WP-THREAD]

x+ 6∈N (C [return ap])

N (C [return ap]),x− |= x⇐ C [return ap]
N (C [return ap])#N (C [return ap])

It follows from Lemma 13 that

B∪{ap}∪N (e) |= Q ρ
e,ap

recv

We have that N (C [return ap])\{ap}#B∪N (e), because A #B and N (C [return ap])#N (e).
We can now apply [WP-PAR2], and, since A ∪B∪{ap,ap}=B∪N (e)∪N (C [return ap])∪
{ap,ap}, we obtain that:

A ∪B∪{ap,ap} |= x⇐ C [return ap]|Q ρ
e,ap

recv

Suppose the last rule in the derivation is

[WP-PAR2]

A1∪{ap,Xq} |= P1 A2∪{Xq} |= P2

A1∪A2∪{ap,Xq,Xq} |= P1 |P2
A1#A2

By induction hypothesis, A1∪B∪{ap,ap,Xq} |= R1 for some R1 ≡ P1 ρ
e,ap

send |Q ρe,ap
recv.

We apply [WP-PAR2] and get

A1∪B∪A2∪{ap,ap,Xq,Xq} |= R1 |P2

We have that A1∪B∪{ap,ap} and A2 are independent, because B#A and A ⊇A2.
Moreover, {ap,ap}#A2, because the channels ap,ap occur only once in P|Q. Clearly,

R1 |P2 ≡ (P1 |P2)ρ
e,ap

send |Q ρ
e,ap

recv.

Lemma 15. Let x ⇐ C [send ap e] and y ⇐ C ′[recv ap] occur only once in P. If
A |= P, then there exists P′ such that A |= P′ and P′ ≡ P ρ

e,ap

sendρe,ap
recv.

Proof. This is proved by induction on A |= P. We only show the most interesting case:

[WP-PAR2]

A1∪{ap} |= P1 A2∪{ap} |= P2

A1∪A2∪{ap,ap} |= P1 |P2
A1#A2

By Lemma 14, we have that there exists P′ ≡ P ρ
e,ap

send |Q ρe,ap
recv = P|Q ρ

e,ap

sendρe,ap
recv such

that A1∪A2∪{ap,ap} |= P′.
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Since the definition of |= is not invariant under≡, we cannot prove that the reduction
preserves well-polarisation by induction on −→. Instead, we use the following lemma:

Lemma 16 (Inversion of−→). If P−→P′ then P≡ (νX1 . . .Xn)P0 and P′≡ (νX1 . . .Xn)P′0
and one of the following cases hold:

1. P0 = server a e|x⇐C [open a]|Q and P′0 = server a e||(νcy)(x⇐C [return c+]|
y⇐ e c− |Q.

2. P0 = x⇐ C [send ap e]| y⇐ C ′[recv ap]|Q and P′0 = x⇐ C [return ap]| y⇐
C ′[return 〈e,ap〉]|Q.

3. P0 = x⇐ C [future e]|Q and P′ ≡ (νy)(x⇐ C [return y]| y⇐ e)|Q′.
4. P0 = (νx)(x⇐ return e|Q) and P′0 = Q{e/x}.
5. P0 = x⇐ e|Q and P′0 = x⇐ e′ |Q with e−→ e′.

Theorem 7. If P−→ P′ and P is typeable and well polarised, then P′ is well polarised
too.

Proof. Well-polarisation of P implies that

P≡ (νX1 . . .Xn)(Q|R)

where Q|R does not contain restrictions and the process Q is a parallel composition of
threads, the process R is a parallel composition of servers and A |=Q. Using Lemma 16,
we analyse cases according to the shapes of P, Q and R. We only show some cases.

1. Case x⇐ C [open a]⊆ Q and server a e⊆ R. Hence,

P′ ≡ (νX1 . . .Xny)(Q[return c+/open a]| ec− |R)

It is easy to show that

A ∪{c+} |= Q[return c+/open a]

Since P is typeable, N (e) = /0 and

{c−,y−} |= y⇐ ec−

Using [WP-THREAD], we obtain that

A ∪{c+,c−,y−} |= Q[return c+/open a]| y⇐ ec−

Hence, P′ is well polarised.
2. Case Q = x⇐ C [send ap e]| y⇐ C ′[recv ap]|Q0. Then,

P′ ≡ (νX1 . . .Xn)(Q′ |R)

where Q′ = x⇐C [return ap]|y⇐C ′[return 〈e,ap〉]|Q0. By Lemma 15, there
exists Q′′ such that Q′′ ≡ Q′ and A |= Q′′. Then, P′ is well polarised.
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3. Case Xn = x and Q≡ x⇐ return e|Q0. Then,

P′ ≡ (νX1 . . .Xn−1)(Q0{e/x}|R)

If x does not occur in Q0 it follows from Item 2 of Lemma 10 that A ′ |= Q0 for
A ′ ⊆ A . Hence P′ is well polarised. If x occurs in Q0, it follows from Item 2 of
Lemma 12 that A \{x+,x−} |= Q′0{x/e} for some Q′0 ≡ Q0 and hence in this case
P′{x/e} is well polarised too.

As an immediate consequence we have that reachable processes are well polarised,
since an initial process is trivially well polarised.

Corollary 1. Each reachable process is well polarised.

We say that an environment Γ is well dual if ap : T ∈ Γ and ap : S ∈ Γ imply T =
S. Communication consumes the session types of the endpoints. Therefore, reducing
processes requires environments to be reduced too. Following [13], the reduction −→
on environments is the smallest reflexive relation closed under the following axiom:

Γ ,ap : •n(?t.T ),ap : •n(!t.S) −→ Γ ,ap : •nT,ap : •nS

A key property of environments’ reduction is the preservation of well-duality.

Theorem 8 (Subject Reduction for Well-polarised Processes). Let Γ be well dual
and P be well polarised. If P −→ P′ and Γ ` P . ∆, then there is an environment Γ ′

such that Γ −→ Γ ′ and Γ ′ ` P′ . ∆.

Proof. The proof is by induction on the definition of −→. We only show the most
interesting cases.

(νx)(x⇐ return e|P)−→ P{e/x}

From Γ ` (νx)(x⇐ return e |P) . ∆ and Item 11 of Lemma 2 it follows that
Γ ,x : t ` x⇐ return e|P . ∆,x : t. By Item 9 of Lemma 2 we get Γ ,x : t = Γ1+Γ2
and ∆,x : t = ∆1 +∆2 with

Γ1 ` x⇐ return e . ∆1 (D.1)

Γ2 ` P . ∆2 (D.2)

Applying Item 7 of Lemma 2 to (Eq. (D.1)) we have that t = •nt ′ and

∆1 = x : •nt ′ Γ1 ` return e : •n(IO t ′) (D.3)

Hence, ∆= ∆2 and Γ2 = Γ ′2,x : •nt ′. This means that Eq. (D.2) can be rewritten as

Γ ′2,x : •nt ′ ` P . ∆

Applying Item 5 of Lemma 2 to the judgement in (Eq. (D.3)), we have that

Γ1 ` e : •nt ′
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using the type of return. Since (νx)(x⇐ return e|P) is well polarised, if y⇐ f
is in P and x occurs in f , then y cannot occur in e by Item 3 of Lemma 10. We can
split P into two processes P1 and P2, where P1 contains all and only those threads
in whose bodies the variable x occur, and apply Substitution Lemma (Item 2 of
Lemma 4) only to P1. In that case, we have that dom(Γ1)∩dom(∆) = /0. Then,

Γ ` P{e/x} . ∆

since Γ = Γ1 + Γ ′2 and Γ −→ Γ , being −→ reflexive by definition.

server a e| x⇐ C [open a]−→ server a e| (νc)(νy)(x⇐ C [return c+]| y⇐ e c−)

From Γ ` server a e | x⇐ C [open a] . ∆ and Item 9 of Lemma 2, we have
Γ = Γ1 + Γ2 and ∆= ∆1,∆2 with

Γ1 ` server a e . ∆1 (D.4)

Γ2 ` x⇐ C [open a] . ∆2 (D.5)

Applying Item 8 of Lemma 2to (D.4) and Item 7 of Lemma 2 to (D.5) it follows
that

∆1 = a : 〈T 〉
Γ1 ` e : (T → IO t) (D.6)

with a : 〈T 〉 ∈ Γ1, un(Γ1), and un(t)

∆2 = x : •ns

Γ2 ` C [open a] : •n(IO s) (D.7)

By applying Item 2 of Lemma 5 to (Eq. (D.7)), the type of open and a : 〈T 〉 ∈ Γ we
get Γ2 = Γ ′2 + Γ ′′2 with

Γ ′′2 ` open a : •n(IO T ) (D.8)

By using rules [CONST], [AXIOM], [→E], and [•I] we derive

c+ : •nT ` return c+ : •n(IO T ) (D.9)

By applying Item 2 of Lemma 5 and Item 2 of Lemma 4 to (D.7), (D.8), and (D.9)
we get

Γ2,c+ : •nT ` C [return c+] : •n(IO s) (D.10)

By rule [THREAD], we derive Γ2,c+ : •nT ` x⇐ C [return c+] . ∆2. From (D.6) and
using rules [AXIOM], [→E] we derive

Γ1,c− : •nT ` e c− : •nIO t

Applying rule [THREAD] to the above, we have

Γ1,c− : •nT ` y⇐ e c− . y : •nt (D.11)

Applying rules [PAR], [NEW] and [SESSION] to (D.10) and (D.11) we conclude

Γ ` server a e| (νc)(νy)(x⇐ C [return c+]| y⇐ e c−) . ∆
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x⇐ C [future e]−→ (νy)(x⇐ C [return y]| y⇐ e)

From Γ ` x⇐ C [future e] . ∆ and Item 7 of Lemma 2 we have that ∆= x : •nt
and

Γ ` C [future e] : •n(IO t) (D.12)

By Item 2 of Lemma 5, we have Γ = Γ1 + Γ2 with

Γ2 ` future e : •n(IO •m s) (D.13)

It follows from Item 5 of Lemma 2 and (Item 1) and the type of future that

Γ2 ` e : •n+m(IO s). (D.14)

Applying rule [THREAD] to (D.14), we derive

Γ2 ` y⇐ e . y : •n+ms (D.15)

Using rules [CONST], [AXIOM], [→E] we derive

y : •n+ms ` return y : •nIO (•ms) (D.16)

Applying Item 2 of Lemma 5 and Item 2 of Lemma 4 to (D.12), (D.13) and (D.16),
we get

Γ1,y : •n+ms ` C [return y] : •n(IO t) (D.17)

Applying rule [THREAD] to (D.17), we get

Γ1,y : •n+ms ` x⇐ C [return y] . x : •nt (D.18)

Applying rules [PAR] and [NEW] to (D.15) and (D.18), we conclude

Γ ` (νy)(x⇐ C [return y]| y⇐ e) . ∆

x⇐ C [send ap e]| y⇐ C ′[recv ap]−→ x⇐ C [return ap]| y⇐ C ′[return (〈e,ap〉)]

From Γ ` x⇐ C [send ap e] | y⇐ C ′[recv ap] . ∆ and Item 9 of Lemma 2 it
follows that Γ = Γ1 + Γ2 and ∆= ∆1,∆2 where

Γ1 ` x⇐ C [send ap e] . ∆1 (D.19)

Γ2 ` y⇐ C ′[recv ap] . ∆2 (D.20)

By applying Item 7 of 2 to (D.19) and to (D.20) we obtain

Γ1 ` C [send ap e] : •n(IO t) (D.21)

with ∆1 = x : •nt

Γ2 ` C ′[recv ap] : •m(IO s) (D.22)
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with ∆2 = y : •ms

By applying Item 2 of Lemma 5 to (D.21), we have Γ1 = Γ3 + Γ4 with

Γ4 ` send ap e : •nIO s′ (D.23)

Recalling that the type of send is !t ′.T → t ′( IO T , it follows from (5), (2), and
(1) of Lemma 2 that

s′ = T Γ4 = Γ ′4,a
p : •n!t ′.T and Γ ′4 ` e : t ′

Using rules [CONST], [AXIOM], [→E] we derive

ap : •nT ` return ap : •nIO T (D.24)

By applying Item 2 of Lemma 5 and Item 2 of Lemma 4 to (D.21), (D.23) and
(D.24) we get Γ3,ap : •nT ` C [return ap] : •n(IO t); hence by [THREAD]

Γ3,ap : T ` x⇐ C [return ap] . x : •nt (D.25)

By applying Item 2 of Lemma 5 to (D.22) we have Γ2 = Γ5 + Γ6 and Γ6 ` recv ap :
•nIO s.
Recalling that the type of recv is ?s′.S → IO (s′ × S) and by applying (5) of
Lemma 2 and (1) and the fact that Γ is well dual, we deduce that n = m and

ap : •n?t ′.T ` recv ap : •nIO (t ′×T ) (D.26)

Using rules [CONST], [AXIOM], [→E] we derive

Γ ′4 + Γ5,ap : •nT ` return (〈e,ap〉) : •nIO (t ′×T ) (D.27)

Applying Item 2 of Lemma 5 and Item 2 of Lemma 4 to (D.22), (D.26) and (D.27)
it follows that

Γ ′4 + Γ5,ap : •nT ` C ′[return (〈e,ap〉)] : •n(IO s) (D.28)

Since x⇐ C [send ap e]| y⇐ C ′[recv ap] is well polarised, y cannot occur in e
by Item 4 of Lemma 10. Then we can apply rule [THREAD] to (Eq. (D.28)) getting

Γ ′4 + Γ5,ap : •nT ` y⇐ C ′[return (〈e,ap〉)] . y : •ns (D.29)

By applying rule [PAR] to (D.25) and (D.29) we conclude

Γ3+Γ ′4+Γ5,ap : •nT,ap : •nT ` x⇐C [return ap]|y⇐C ′[return (〈e,ap〉)] . ∆

Finally, notice that

Γ = Γ1 + Γ2

= Γ3 +(Γ ′4,a
p : •n!t ′.T )+(Γ5,ap : •n?t ′.T )

= (Γ3 + Γ ′4 + Γ5),ap : •n!t ′.T,ap : •n?t ′.T

−→ (Γ3 + Γ ′4 + Γ5),ap : •nT,ap : •nT

Proof of Theorem 3. This follows from Corollary 1 and Theorem 8.
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E Progress of Reachable Processes

The following lemma gives fundamental features of linear types, which play an impor-
tant role in the proof of progress.

Lemma 17 (Linearity).

1. If Γ ,u : t ` e : s and lin(t), then u occurs exactly once in e.
2. If Γ ,u : t ` P . ∆ and lin(t), then u occurs exactly once in P, i.e. there exists

exactly once thread y⇐ e of P where u occurs only once in e and it does not occur
anywhere else.

Both items are proved by induction on derivations.

The following properties of typeable processes are handy in the proof of progress.

Lemma 18. Let P≡ (νY1 . . .Yn)(νX)P′ be typeable, where P′ does not contain restric-
tions.

1. If (νX)P′ ≡ (νx)(E [x]|Q), then Q≡ x⇐ e|Q′.
2. If (νX)P′ ≡ (νa)(C [open a]|Q), then Q≡ server a e|Q′.
3. If (νX)P′≡ (νa)(x⇐C [send ap e]|Q), then Q≡ y⇐ f |Q′, where ap only occurs

in expression f and the typing environment x⇐ C [send ap e] | y⇐ f contains
ap : !t.T and ap : ?t.T .

4. If (νX)P′ ≡ (νa)(x⇐C [recv ap]|Q), then Q≡ y⇐ f |Q′, where ap only occurs
in expression f and typing environment x⇐ C [recv ap]|y⇐ f contains ap : ?t.T
and ap : !t.T .

Proof. Tybeability of P implies typeability of (νX)P′.
(Item 1) and (Item 2). In both cases to type (νX)P′ we need to use rule [NEW], which

requires X to occur in the resource environment. Rule [THREAD] is the only rule that puts
the name of a thread in the resource environment. Rule [SERVER] is the only rule that puts
the name of a server in the resource context.

(Item 3). To type (νX)P′ we need to use rule [SESSION], which requires the environ-
ment to contain dual session types for ap and ap. Since ap is an argument of send, its
type is of the form !t.T and hence, ap should have type ?t.T . The fact that the polarised
channel ap occurs in only one thread follows from Item 2 of Lemma 17.

(Item 4). The proof is similar to Item 3.

We discuss now precedence between threads. Informally a thread precedes another
one if the first thread must be evaluated before the second one. The simpler case is when
the body of one thread is an evaluation context containing the name of another thread,
i.e. x⇐ e precedes y⇐ E [x]. In the other cases the bodies of the threads are normal
forms requiring other threads to reduce. This happens when the bodies are expressions
of the shapes C [send ap e], C [recv ap] and E [x]. This thread has to wait if ap is inside
an evaluation context E ′. This is formalised in the following definition.
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Definition 6 (Precedence).

1. The expression e precedes the expression f (notation e ≺≺≺ f ) if
f ∈ {C [send ap f ′],C [recv ap]}

and at least one of the following conditions holds:
− e = C ′[send bq e′] and a 6= b and ap occurs in C ′ or in e′;
− e = C ′[recv bq] and a 6= b and ap occurs in C ′;
− e = E [x] and ap occurs in E .

2. The thread x⇐ e precedes the thread y⇐ f (notation x⇐ e ≺≺≺ y⇐ f ) if either
e ≺≺≺ f or f = E [x].

A process is acyclic if the precedence between its threads has no cycles. As we will
see in the proof of Theorem 4 weak acyclicity is a crucial property to assure progress.
Luckily it is easy to show that each reachable process is weakly acyclic.

Lemma 19. Each reachable process is acyclic.

Proof. Suppose the precedence between the threads of P has a cycle, i.e.

x1⇐ e1 ≺≺≺ x2⇐ e2 ≺≺≺ . . . ≺≺≺ xn⇐ en ≺≺≺ x1⇐ e1 (E.1)

By Corollary 1 each reachable process P is well polarised. By Item 2 of Lemma 10,
we can derive A |=Q, where Q is some parallel composition of the threads in Eq. (E.1).
By definition of ≺≺≺ , each consecutive pair of expressions share either a polarised chan-
nel or a variable. This means that X pi

i is in xi⇐ ei and X pi
i is in xi+1⇐ ei+1 for 1≤ i < n

and X pn
n is in en and X pn

n is in e1 ( in the case of a variable, x− is in xi⇐ ei means that
x is xi and x+ is in xi⇐ ei means that x occurs free in ei). There is no way to partition
the set A in two independent sets as required by the rules [WP-PAR1] and [WP-PAR2]. Sup-
pose we can partition it at j and Q is Q1 |Q2 where Q1 ≡ x1 ⇐ e1 | . . .| x j ⇐ e j and
Q2 ≡ x j+1⇐ e j+1 | . . .| xn⇐ en. By Item 1a of Lemma 10, A = A1 ∪A2, A1 |= Q1

and A2 |= Q2. Since X
p j
j and X pn

n belongs to Q1 and X
p j
j and X pn

n belongs to Q2, A1

should contain X
p j
j and X pn

n , while A2 should contain X
p j
j and X pn

n . This contradicts
Item 1b of Lemma 10.

Proof of Theorem 4 If a process has no thread, then it is final. In discussing the other
cases we omit to mention the application of rules [R-NEW], [R-PAR] and [R-CONG].

If a process has a thread whose body is a reducible expression, then the process
is reducible by rule [R-THREAD]. If a process has a thread whose body is C [future e],
then the process is reducible by rule [R-FUTURE]. If a process has a thread whose body
is return e, then the process is reducible by rule [R-RETURN]. If a process has a thread
whose body is C [open a], then by Item 2 of Lemma 18 the process has a server named
a. Therefore the process is reducible by rule [R-OPEN].

Otherwise all the bodies of the threads of the process are of the shapes C [send ap e],
C [recv ap] and E [x]. Lemma 19 assures that there is at least one minimal thread in the
precedence order, let it be x⇐ e. The expression e cannot be E [y], since 1 of Lemma 18
implies that the process should have one tread in y⇐ f . By definition of precedence
y⇐ f ≺≺≺ x⇐ e, which contradicts the minimality of x⇐ e. Let e = C [send ap e′].
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Item 3 of Lemma 18 implies that the process should have one tread y⇐ f and ap occurs
in f . The expression f cannot be C ′[send bq f ′] with b 6= a and ap occurring in C ′ or
f ′, C ′[recv bq] with b 6= a and ap occurring in C ′, or E [z] with ap occurring in E ,
since we would get y⇐ f ≺≺≺ x⇐ e. Then f can only be either C ′[send ap f ′] or
C ′[recv ap]. 3 of Lemma 18 gives type ?t.T for ap, so we have f = C ′[recv ap]. The
process can then be reduced using rule [R-COMM]. The proof for the case e = C [recv ap]
uses 4 of Lemma 18 and it is similar.

F Confluence of Reachable Processes

In this section we prove that the reduction is confluent. For expressions, this is trivial,
since there is only one redex at each reduction step. However, for processes is not so
obvious, because we may have several redexes to contract at a time. The fact that we can
mix pure evaluation and communication and still preserve determinism is quite neat.

Proof of Theorem 5 The proof proceeds by case analysis.

− Suppose rule [R-RETURN] is not applied. Hence, the redexes are non-overlapping and
it is easy to see that there is a common reduct, since all cases follow the pattern:

Q1 |Q2

yy %%

Q′1 |Q2

$$

Q1 |Q′2

zz

Q′1 |Q′2

− Let P ≡ (νxy)(x ⇐ return e | y ⇐ return f | R) and suppose we apply rule
[R-RETURN] in both directions. Since P is reachable, and then well polarised by Corol-
lary 1, we cannot have that y ∈ fv(e) and x ∈ fv( f ) by Item 3 of Lemma 10. If
y 6∈ fv(e) the diamond is:

P

ww ''
P1

''

P2

ww

R{e/x}{ f{e/x}/y}

where

P1≡ (νx)(x⇐ return e|R{ f/y}) and P2≡ (νy)(y⇐ return ( f{e/x})|R{e/x}).
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− Let P≡ (νz)(x⇐C [send ap e]|y⇐C ′[recv ap]|z⇐ return f |R) and suppose
that in one direction we apply [R-RETURN] and in the other direction we apply [R-COMM].
By applying [R-RETURN], we obtain

x⇐ C { f/z}[send ap e{ f/z}]| y⇐ C ′{ f/z}[recv ap]|R{ f/z} (F.1)

In the other direction, we apply [R-COMM] and obtain:

(νz)(x⇐ C [return ap]| y⇐ C ′[return 〈e,ap〉]| z⇐ return f |R) (F.2)

It is easy to see that (F.1) and (F.2) have the common reduct:

x⇐ C { f/z}[return ap]| y⇐ C ′{ f/z}[return (〈e{ f/z},ap〉)]|R{ f/z}

− The remaining cases are similar to the last one.
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