"Think global, act local!”
or
the other way around?

A (gentle?) introduction to distributed choreographies
Emilio Tuosto

University of Leicester

MGS@B’ham, 11 - 15 April 2016

April 15, 2016



Distribution
(prelude)



Motivations

Distributed applications are (becoming) ubiquitous...

OEAE e s Nows Wosther  Player TV Radio

NEWS BusINEss I Microsoft Research |:

Ourresearch ~ Connections  Careers  About us

Market Data | Your Money | Economy | Companies

A Dowoats  Bems  Gows  News  eople o  Publcatons  Videos
1 danuary 2012 Last pdted 10812 noss o
- Singularity: Rethinking the Software Stack
Google persuades Spanish bank BBVA to 9 Y 9
use the cloud ) ovnc s s v
v 1 By Tim Weber - .
Bukiness ador G News webse
\\ ue Abstract Publication files
o
] Mory of e dectionsbehind e —
Spanish banking giant BBVA s switching ts )
110,000 staf to use Google's range of rave v
entarprise software. Fe o s . 0 bitmesin
rifcaton

The deal s the biggest that the search giant has o0k, Related people
igned with one company fors coud-computing o M
Savics, where sowar s flered s & senice - « Galen e
via the intemet and sketch the ongoing research in experimental systems that build upon it. @ Jm Larus.
The bank ol he BBG t would use Google's
100 oy forintemal communication. BBYA W Laop Googe apliationssoparts o



Motivations

... but designing, developing, maintaining, and
verifying distributed applications is a tough job

Implementation
The failure of the CAD system which came to live operation from
26 October 1992 was as a result of cumulative consequences of
associated problems (identified above) that joined together to
produce a chain of decline in its performance. The absence of near-
H perfect information upon which the system relied to allocate the
guardlan required resource to an incident was a key factor to this decline
[24]. The problems experienced during the implementation/live
News Sport Comment Culture | Business  Money | Life & sty operation are summarized below: [23] [24]

e Incomplete software.
e Inability of the CAD software to identify and allocate the

Abandoned NHS IT system has cost nearest available resource.

e The AVLS not being able to identify all the ambulances
£10bn so far in the fleet.
Bill for abortive plan, described as 'the biggest IT failure ever » Communication problems among the CAD system,
seen', was originally estimated to be £6.4bn AVLS and Mobile data system.

*  Slow operation of the system.
s Locking up of workstations.

Rajeev Syal e Inaccurate status reporting by ambulance crew when

The Guardian, Wednesday 18 September 2013 wrong buttons were pressed.

(E] Jump to comments (1153) * Use of different vehicle by the crew from the one
assigned by the system.

( cf. “London Ambulance Service Software
Failure”, Adamu et al.)



Motivations

Why are such applications hard?



Motivations

Why are such applications hard?
Because they

» dynamically (dis)appears

» dynamically combine

» dynamically form “ensembles”

» dynamically reconfigure

» dynamically engage in “conversations”
» and are often developed independently



Choreography-based approaches
(act )



Quoting W3C...

“Using the Web Services Choreography specification, a
containing a global definition of the common

, is produced that describes, from a
[...] observable behaviour of all the parties
involved. Each party can then use the global definition to
build and test solutions that conform to it. The global
specification is in turn realised by combination of the
resulting local systems [...]"



A “top-down” approach

Choreography
global viewpoint



A “top-down” approach

Choreography
global viewpoint

Project

N

Local viewpoint; - Local viewpoint; |- Local viewpoint,



A “top-down” approach

Choreography
global viewpoint

Project

Local viewpointy f«-..o..{ Local viewpoint; fe- - voeveeen

ValidateI VahdateI

Component; Component; Component,

Local viewpoint,




A “top-down” approach

Choreography
global viewpoint

Project

N

Local viewpoint; - Local viewpoint; |- Local viewpoint,

Component; Component; Component,

» The process can be iterated
» google for Testable Architectures




An intuitive account...

Buyer Seller Warehouse

items : Int
instock : Int
| —————————
available : int
quote : Price

Global viewpoint



An intuitive account...

Available : int
Quote : Price

Projecting on buyer



An intuitive account...

Seller

Instock : Int

Projecting on seller



Some considerations

» recursion/iteration

» not all global viewpoints “make sense”
(e.g., constraints on values passing)

» interactions are “atomic” at global level, but not at local level

» progress (graceful termination or no-deadlock)
» no orphan messages

» no unspecified reception



Quest for precision

To check properties of choreographies, we need more precision

» Type based approaches:
global and local points of view = behavioural types

‘[...] no conflict (racing) at session channels. To ensure this, the
necessary and sufficient condition is that, when a common channel
is used in two communications, their sending actions and their
receiving actions should respectively be ordered temporally”

[Honda, Yoshida, Carbone: POPL 2008]

This yields a typing-principle, hence
safety = type checking



Distributed execution
(intermezzo)



Communicating finite state machines

cf. Brand & Zafiropulo 1983



Communicating finite state machines

EEEEED
IRERRENE

cf. Brand & Zafiropulo 1983



Communicating finite state machines

cf. Brand & Zafiropulo 1983



Communicating finite state machines

cf. Brand & Zafiropulo 1983



Communicating finite state machines

cf. Brand & Zafiropulo 1983



Communicating finite state machines

cf. Brand & Zafiropulo 1983



Communicating finite state machines

cf. Brand & Zafiropulo 1983



Communicating finite state machines

cf. Brand & Zafiropulo 1983



Choreographies with data
(act I1)



Choreographies as types + data

A flavour of a behavioural type:

G p—q: (x: S){A}.G
p—a ({A} G ) jes
ut(x=e: §){A}. G
t(e)

end

where
» Aand A; are predicates expressing conditions on variables

» eis an expression denoting values of ‘'normal’ data types S (eg
integer, lists, bool, etc)

» note that recursions come with an initialization of recursion
parameters x = e

[Honda, Bocchi, Tuosto, Yoshida: CONCUR 2010]



Expressiveness of choreographies with data (intuitively)

Buyer Seller Warehouse
m

items :Int "~

™

- instock : Int____

;
/ available : int !

quote : Price

utv = Quote : Price) —--|
predicates

AQ = items > 0

Al & items = instock

A2 < (available = 0 = quote > 0) A available = instock
A =v>0

A3 < available > 0

A4 = v = offer

woffer -~



Data yield troubles

Besides some technical issues (relatively easy to sort out), data make
the previous typing principle not enough anymore.

Exercise

Design an ATM choreography that allows customers to withdraw
money.



Data yield troubles

Besides some technical issues (relatively easy to sort out), data make
the previous typing principle not enough anymore.

Exercise
Design an ATM choreography that allows customers to withdraw
money.
Customer Bank ATM
A0 credentials : string,
amount : money s oredicates
< 2 money Al < amount > 0
A2 < c = credentials A amount = a check(c)
PO DU N o), I— » | Wl A3 = balance(©) = a
A4 < cash = amount
L : cash : money -~ AS < a > balance(c)
&)
:
,,,,,,,,,, T
— msg : string




Data yield troubles

Besides some technical issues (relatively easy to sort out), data make
the previous typing principle not enough anymore.

Exercise
Design an ATM choreography that allows customers to withdraw
money.
(AL credentials : string,
amount : money
¢ : string, (_?_‘, predicates
< 2 money Al = amount > 0
A2 < ¢ = credentials A amount = a check(c)
O b — OK -eeeseeeneeeas » | Wl A3 = balance(c) = a
A4 & cash = amount
L cash : money -~ AS < a > balance(c)
(e
e QUIL e
- msg : string

...what if the ATM hasn’t enough cash?



Data yield troubles

Besides some technical issues (relatively easy to sort out), data make
the previous typing principle not enough anymore.

Exercise
Design an ATM choreography that allows customers to withdraw
money.

D) credentials : string,
amount : money

¢ string, m predicates
- A money Al < amount > 0
A2 < ¢ = credentials A amount = a check(c)
© ok oo | M A3 < balance(c) = a
A4 & cash = amount / avail = amount
o cash : money .-~ AS < a > balance(c)

A

T J
— -

msg : string

©




Data yield troubles

Besides some technical issues (relatively easy to sort out), data make
the previous typing principle not enough anymore.

Exercise
Design an ATM choreography that allows customers to withdraw
money.
Customer Bank ATM
G0 credentials : string,
amount : money
¢ string, @ predicates
- 2 money Al < amount > 0
A2 < ¢ = credentials A amount = a check(c)
o - »| B A3 & balance(© = a
A4 < cash = amount A avail = amount
L cash : money .-~ AS < a > balance(c)
. QE
:
—— I . P >
< msg : string

easy to “fix”, but...

[Bocchi, Lange, Tuosto: Sci. Ann. Comp. Sci. 22(1) 2012 & ICE2011]



From designs to programs

A key problem is:

Choreographies (or more generally non-deterministic designs) can be
interpreted either

as constraints: in all executions, at least one of the non-deterministic
branches has to be executed

as obligations: in all executions, each branch has to occur at least
once.

Depending on the applications, the former could be a too weak
requirement while the latter a too strong one.



WSI by example

Customer

credentials : string

and
S0
forth

Bank

ATM
>
»
"
«_ C:string, _
a: money =

assume
authentication
goes ok

}

predicates

Al < amount > 0
A2 < c = credentials A amount = a A check(c)
A3 & check_credentials(c)

A4 < not check_credentials(c)

You would like to reject an implementation where check_credentials(c)

returns false for all ¢!

[Bocchi, Melgratti, Tuosto: ESOP 2014]



Choreographies umop-spisdn
(finale)



A glimpse of Erlang

ping (N, Pong_PID) ->
Pong_PID ! {ping, self()},
receive
pong —>
io:format ("Ping received pong™n", [])
end,
ping(N - 1, Pong_PID).

ping (0, Pong_PID) ->
Pong_PID ! finished,
io:format ("ping finished™n", []);

pong () —>
receive
finished ->
io:format ("Pong finished™n", [1);
{ping, Ping_PID} ->
io:format ("Pong received ping~n", []),
Ping_PID ! pong,
pong ()
end.

start() —>
Pong_PID = spawn(example, pong, []),
spawn (example, ping, [3, Pong_PID]).

Semantics

> Message passing

> FIFO buffers [[mailboxes in Erlang’s
jargon]]

> Spawn of threads



A glimpse of Erlang

ping (N, Pong_PID) ->
Pong_PID ! {ping, self()},
receive
pong —>
io:format ("Ping received pong™n", [])
end,
ping(N - 1, Pong_PID).

ping (0, Pong_PID) ->
Pong_PID ! finished,
io:format ("ping finished™n", [1);

pong () —>
receive
finished ->
io:format ("Pong finished™n", [1);
{ping, Ping_PID} ->
io:format ("Pong received ping™n", []),
Ping_PID ! pong,
pong ()
end.

start() —>
Pong_PID = spawn(example, pong, []),
spawn (example, ping, [3, Pong_PID]).

> Message passing

> FIFO buffers [[mailboxes in Erlang’s

jargon]]

> Spawn of threads

Asynchrony by design
Erlang is an incarnation of the

well-known actor model of Hewitt and

Agha...dates back to '73!



Friendlier representations

Local behaviour: communicating machines

Ping Pong

PongPing?pong . PingPong!finished . PongPingpong . PingPong inished :
PingPong!ping : PingPong ?pin; :

CFSMs (Brand & Zafiropulo 1983!): FIFO buffers as well

ChoSyn

...this is also amenable to tool supported analysis...:
https://bitbucket.org/emlio_tuosto/gmc-synthesis-v0.2

4

Choregraphy: global graph
O

| Ping->Pong:ping ‘ | Ping->Pong:finished ‘

..."synchronous” distributed workflow (Deniélou and Yoshida 2012)


https://bitbucket.org/emlio_tuosto/gmc-synthesis-v0.2

A glimpse of Erlang
Q:

ping (N, Pong_PID) ->

Pong_PID ! {ping, self()}, Is there anyone familiar with Erlang?
receive
pong —>
io:format ("Ping received pong™n", [])
end,

ping(N - 1, Pong_PID).

ping (0, Pong_PID) ->
Pong_PID ! finished,
io:format ("ping finished™n", []);

pong () —>
receive
finished ->
io:format ("Pong finished™n", []);
{ping, Ping_PID} ->
io:format ("Pong received ping™n", []),
Ping_PID ! pong,
pong ()
end.

start() —>
Pong_PID = spawn(example, pong, []),
spawn (example, ping, [3, Pong_PID]),
spawn (example, ping, [2, Pong_PID]).



A glimpse of Erlang

ping (N, Pong_PID) ->
Pong_PID ! {ping, self()},
receive
pong —>
io:format ("Ping received pong™n", [])
end,
ping(N - 1, Pong_PID).

ping (0, Pong_PID) ->
Pong_PID ! finished,
io:format ("ping finished™n", []);

pong () —>
receive
finished ->
io:format ("Pong finished™n", []);
{ping, Ping_PID} ->
io:format ("Pong received ping™n", []),
Ping_PID ! pong,
pong ()
end.

start () —>
Pong_PID = spawn(example, pong, []),
spawn (example, ping, [3, Pong_PID]),
spawn (example, ping, [2, Pong_PID]).

Q:

Is there anyone familiar with Erlang?

Q:

Is this program correct?



A glimpse of Erlang

ping (N, Pong_PID) ->
Pong_PID ! {ping, self()},
receive
pong —>
io:format ("Ping received pong™n", [])
end,
ping(N - 1, Pong_PID).

ping (0, Pong_PID) ->
Pong_PID ! finished,
io:format ("ping finished™n", []);

pong () —>
receive
finished —>
io:format ("Pong finished™n", []);
{ping, Ping_PID} ->
io:format ("Pong received ping~n", []),
Ping_PID ! pong,
pong ()
end.

start() —>
Pong_PID = spawn(example, pong, []),
spawn (example, ping, [3, Pong_PID]),
spawn (example, ping, [2, Pong_PID]).

Q:
Is there anyone familiar with Erlang?
Q:

Is this program correct?

A:
No!

Exercise:
find the bug in 15 seconds, if you
know Erlang

Not versed in Erlang? No worries if
you don’t see it



| mean, use ChoSyn

Send ping-pong to shell !l ...

G

=

=
.

e

‘w




Amended gen server models

Machines, TS, & Global Graph




From programs to designs

Componenty

Component;

Component,




From programs to designs

Local viewpoint; Local viewpoint; Local viewpoint,
AN AN AN
extract extract extract
h h h

Componenty Component; Component,




From programs to designs

Synthesise

Local viewpoint;

Choreography

N

‘ Local viewpoint; ‘ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Local viewpoint,

AN AN AN
extract extract extract
h - h - h
Componenty Component; Component,

[Lange, Tuosto: CONCUR 2012]



Synthesis: problem statement

Given a set of CFSMs, do they “form” a choreography?

Dave



Synthesis: problem statement

Given a set of CFSMs, do they “form” a choreography?

©) CD7busy. ®

©)
Carol Dave

Not always...so let’s refine the statement



Synthesis: problem statement

Given a set of CFSMs, do they “form” a choreography?

©)
Carol Dave

Not always...so let’s refine the statement

Is there a class of (finite subsets of) CFSMs that “form”
choreographies?

[Lange, Tuosto, Yoshida: POPL 2015]



Checking Compatibility: Representability

Representability
» The projected TS = original machine
» Each branching in each machine must be represented in TS

C—D:busy A—C:cuin
(Ao,Bo.C2,D1) (A1,B1,Go. Do) (A+1,Bo,C1.Do)

A—C:cwin B—C:close C—B:blose

(A1,B1,C2.D1)

C—B:blose

A—C:score

A—C:score

(A1,Bz,C3,Do)

C—D:busy B—A:sig

C—D:busy

(A4,B3,C6.D1)



Checking Compatibility: Representability

Representability
» The projected TS = original machine
» Each branching in each machine must be represented in TS

C—D:busy

A—B:bwin

(Ao, Bo,C2,D1) (A1,B1,Co.Do (A+1,Bo,C1.Do)

)
A—C:cwin B—G:close G—>Biblose

(A1,B1,C2,D1) (A1,Bo.Ca,D1) (A+,B2,C3,Do)

B—Ciclose | C—B:blose C—Dbusy B—A:sig
(A1,B2,Cs,D1) (Az,B5,Cs, Do)

A—Ciscore C—Dibusy

A—C:score

(A—B:bwin)|g =AB?bwin
(B—A:sig)lg =BAlsig
(C—D:busy)|g=¢

(As,B3,Ce,D1)



Checking Compatibility: Branching Property
Branching Property:
m
each branching ,V \e(’ in TS must be either



Checking Compatibility: Branching Property
Branching Property:
m
each branching y \\e: in TS must be either

mn

2
N

» commuting: n,



Checking Compatibility: Branching Property

m
each branching ,7 g in TS must be either

m

s
e

» or, each last node ny

€1 €k—1 Last node reachable
> n2 from ny, from which e

/ \ / \ / \ and ¢’ can be fired.

must be a “well-formed” choice, i.e.,
» each participant
> receives a different message in each branch, or
> is not involved in the choice
» there is a unique sender

» commuting: n,




Transformation Workflow

CFSMs Build TS GMC Petri Net One- Joined Pre-
Check Source Net Gilobal
Net Graph

Gilobal
Graph

We use the work of Cortadella et al. (IEEE TC’98), based on the
theory of regions, to synthesise a safe and extended free-choice
Petri net from the Synchronous Transition System.




Transformation Workflow

CFSMs Build TS GMC Petri Net One- Joined Pre- Gilobal
Check Source Net Gilobal Graph
Net Graph

We use the work of Cortadella et al. (IEEE TC’98), based on the
theory of regions, to synthesise a safe and extended free-choice
Petri net from the Synchronous Transition System.




Step 1: TS »~ PN

P1

[A—C:cwin]

P3 Pa

[B—C:close] [C—B:blose]

Ps Pe

[BHA:sig] [A=C:score]

(cf. Algorithm of Cortadella et al.)




Step 2: PN v~ 1-source PN

[ e W = )
(A=t (=Ebm)
(©=Biiom) @=Cielezd

j
(=)
— [A=C:score

h]

[A—»B bwin] [A—»C cwin]

[C—D:busy|[B—C:close

[B—>C close] [C—»B blose]
pg é
[B~>A 51g] [A~>C score]

A—C:score




Step 3: 1-source PN v~ Joined PN

Q

(€=Dowsy)

——
(A=C o) (A=Bihuls)
(€= blose) @=C:closd
T?T

E]

se

[e]

p

Po

y
O fo
i

P4('p
O pe

A—C:score

Po
P1
o
O P2 [A>B:bwin|] [A—C:cwin]
p3 P4 (vp
[C—D:busy]B—C:close] [C—B:blose]

Pg

e
ps ?‘/T\‘ps

B—A:sig

v
A—C:score

O p2




Step 4: Joined PN v~ Pre-Interaction Graph

(C=pmm)

(c=Bibtes0) E=Cic139

(=)

(A=Ciscord

P2
in _A~>C:cwin T géP_) A—C:cwin
(A—B:bwin —Ciowin :
4 : v v - ;
v 5 @

AﬂC score)




Step 5: Pre-Interaction Graph > Interaction Graph

[AHC : cwinj [AH B:bwinj

¥ ¥ (C—>B:blosej (B—>C:closej

[5C:close pa
@
P1o
M
2]

t

(A—C:scorg

-3




Conclusions



Ouir tool

Check out ChoSyn at
https://bitbucket.org/emlio_tuosto/gmc-synthesis-v0.2

-XX:) julien-lange / gmc-synthesis / wiki / Home — Bitbucket o

. gme-synthesis

2 jutendange

Home. Conewin- | | Hstory

Synthesis of Graphical Choreographies

The ool alows to:

oraphicaloutputs; all the systems n this archive ar0 GC.

Updted 2014.03:21


https://bitbucket.org/emlio_tuosto/gmc-synthesis-v0.2

Thanks to...



Vasco & Kohei

for writing the paper | used for teaching me choreographies



of course

YOU & MGS!



my friends/colleagues




Questions?



