
Choreography-Based Analysis of Distributed Message Passing Programs

Ramsay Taylor
Dept. of Computer Science,

University of Sheffield

Emilio Tuosto
Dept. of Computer Science,

University of Leicester

Neil Walkinshaw
Dept. of Computer Science,

University of Leicester

John Derrick
Dept. of Computer Science,

University of Sheffield

Abstract—We report on the analysis of gen_server, a pop-
ular Erlang library to build client-server applications. Our
analysis uses a tool based on choreographic models. We discuss
how, once the library has been modelled in terms of communi-
cating finite state machines, an automated analysis can be used
to detect potential communication errors. The results of our
analysis suggest how to properly use gen_server in order
to guarantee the absence of communication errors.

1. Introduction

The emergence of concurrent and distributed architec-
tures, from multi-core processors to web-services, has had
a substantial impact on software development. Languages
with core support for concurrency and distribution such as
Erlang, Elixir, Scala, and Go have all gained increasing
prominence beyond their traditional domains of telecoms
and finance. For example Erlang (which we focus on in
this paper) now powers WhatsApp1, Facebook2, and Basho
Riak3 - a distributed database that was recently chosen to
underpin the UK National Health Service IT infrastructure.

This raises significant challenges from a verification
perspective. Aside from ensuring that individual processes
within the system behave correctly, it also becomes nec-
essary to ensure that the macroscopic behaviour of multi-
ple processes does not lead to ‘distributed’ communication
faults, such as loss of messages, messages being sent to
processes that are not expecting them, or deadlocks due to
miscommunications.

Recently choreographies have been advocated as a suit-
able basis for the analysis of distributed applications [1], [2],
[3], [4]. A choreography models interactions among pro-
cesses from a global point of view and provides a tractable
basis for detecting the presence (or conversely guaranteeing
the absence) of communication faults.

Our contributions are:

• A methodology to model communication behaviour
in Erlang systems as communicating finite state ma-
chines (CFSMs) [5].

• A choreography-based analysis to detect communi-
cation faults or to guarantee their absence.

1. http://goo.gl/6ldR5z
2. https://goo.gl/Z1tpgA
3. http://goo.gl/GK9lI3

A B

C

a

b

c a d

A B

C

a

b

c a d

?c

!a

?d

!a
!b

!a
!a

?b

?a

!d

!b

Identify
participants

Determine
communication events

Specify individual
interaction rules

Deadlocks Orphan messages

Unspecified
receptions

ChoSyn
!a

!b

!a
!a

?b

?a

!d

!b

?c

!a

?d

Original
System

CFSMs
Global
graphTransition System

Figure 1. The process of extracting and analysing choreographies. The top-
half shows the essential, high-level process. The bottom half provides an
outline for our process of extracting CFSMs.

• We show an application of our methodology to
analyse the popular Erlang gen_server library.

• A few important vulnerabilities of gen_server
that can undermine the communication behaviour
and lead to deadlocks and loss of information.

Our methodology consists of the two phases shown in
Figure 1. The first phase is a manual process 4 and may
requires some ingenuity; in the second phase a completely
automatic analysis is performed using the ChoSyn tool.

We consider Erlang in this paper, however the method-
ology is suitable to any language featuring the basic char-
acteristics of the actor-model [6] such as Go and Scala.

2. Background

2.1. Erlang by Examples

Figure 2 illustrates our first simple running example, and
shows the core concepts of Erlang relevant to this paper. It
uses a simple, self-contained module containing the imple-
mentation of client and server of the ping-pong protocol.
Erlang processes communicate via message passing, and
each process has a mailbox – a FIFO queue where messages
sent by other processes are kept.

4. We are currently working on its (partial) automatization.

1 -module(example).
2 -export([start/0, ping/2, pong/0]).
3

4 ping(0, Pong_PID) ->
5 Pong_PID ! finished,
6 io:format("ping finished˜n", []);
7

8 ping(N, Pong_PID) ->
9 Pong_PID ! {ping, self()},

10 receive
11 pong ->
12 io:format("Ping received pong˜n", [])
13 end,
14 ping(N - 1, Pong_PID).
15

16 pong() ->
17 receive
18 finished ->
19 io:format("Pong finished˜n", []);
20 {ping, Ping_PID} ->
21 io:format("Pong received ping˜n", []),
22 Ping_PID ! pong,
23 pong()
24 end.
25

26 start() ->
27 Pong_PID = spawn(example, pong, []),
28 spawn(example, ping, [3, Pong_PID]).

Figure 2. Erlang ping-pong message-passing example.

Erlang has an extensive built-in mechanisms for con-
currency. New processes can be executed using the spawn
command, which returns a process ID (PID) correspond-
ing to the spawned process. For example, lines 27 and
28 of Figure 2 spawn processes that execute the pong
and ping functions. In its receive statement, pong
inspects its mailbox for a message, which can either be
the atom ‘finished’ (line 18), or be the tuple ’{ping,
Ping_PID}’ (line 20). If finished is received it will
terminate, but if the tuple {ping, Ping_PID} is received
it will send the atom pong back to the process identified
by Ping_PID and then recurse. This recursion allows the
process executing the pong function to receive as many
pings as are sent before a finished message.

Variables are bound to values by ‘pattern-matching’.
For example, ping is defined with two clauses and takes
two parameters. If the first parameter matches the value 0
then the first clause is executed with variable Pong_PID
bound to the second actual parameter. Otherwise the second
clause is executed, with N and Pond_PID assigned to
the first and second actual parameters respectively. Process
ping is parametrised on N: If N=0, ping sends pong a
’finished’ message (line 5) and terminates, otherwise it
sends pong a ’ping’ message, waits for a ‘pong’ message
(lines 10-13), and recurses with N-1 (line 14).

2.2. Motivation: Communication Errors

In languages such as Erlang, message-passing makes
programs vulnerable to communication errors. We use the
characterisation of such errors given in [7], building on a
similar characterisation in [5], as follows:

• Deadlocks: A process (or collection of processes)
end up waiting for a message that will never arrive.

• Orphaned messages: A process sends a message,
but this message is never consumed (perhaps be-
cause the target process has terminated).

• Unspecified receptions: A process receives a mes-
sage, but is not in a state suitable to process it.

We show how communication errors can be easily intro-
duced using the example in Figure 2.
Deadlock If the programmer types
Ping_PID ! poong,

instead of line 22 in Figure 2, a deadlock occurs because
ping will not consume the misspelt message and wait
indefinitely for a response.
Orphan messages Replacing the start function with
start() ->
Pong_PID = spawn(example, pong, []),
spawn(example, ping, [3, Pong_PID]),
spawn(example, ping, [5, Pong_PID]).

triggers three processes: Two pings and one pong;
one ping will finish before the other and send a
finished message terminating pong, so leaving the
messages of the other process in pong’s mailbox.
Unspecified reception If the programmers omits the
finished case from the receive clause of pong
receive
{ping, Ping_PID} ->
io:format("Pong received ping˜n", []),
Ping_PID ! pong,
pong()

end.
the finished message will never be consumed preventing
the program from ever terminating.

Crucially such faults are impossible to detect by looking
at processes in isolation. They emerge from interactions,
which demands a macroscopic overview of the system.

Attempts to detect specific errors in Erlang programs
have been made, albeit with limited success. Modelling
asynchronous Erlang programs as CCS or CSP, which pre-
sume synchronous communication, is impractical due to the
explicit modelling of associated buffer and carrier processes
[8]. Several static source code analysis approaches have
been devised to detect deadlocks [9], [10], however these
can be highly inaccurate. More recently, testing approaches
have emerged [11], [12], however these can only reveal the
presence of error not guarantee their absence.

2.3. Choreographies

Recently advocated as a promising basis for modelling
distributed behaviour (see e.g., [1], [2], [3], [4]), choreogra-
phies model distributed interactions of several participants
from a global point of view (cf. [2]). We formalise the
participants as communicating finite state machines [5]:

Definition 1 (CFSM) Fix sets P of participants (ranged
over by p, q) and Σ of messages, and let Act be a set
of actions, where an action ` ∈ Act is a sending (resp.
receiving) action ` = pq!a (resp. ` = qp?a), namely p
writes (resp. consumes) message a ∈ Σ in (resp. from)
the buffer to (resp. from) q). A communicating finite state

(a) (b)
Figure 3. Global graph (a) and global transition system (b) for the Ping Pong example.

machine (CFSM) is a finite transition system given by a
4-tuple M = (Q, q0,Σ,→) where

• Q is a finite set of states,
• q0 ∈ Q is the initial state, and
• → ⊆ Q×Act ×Q is a set of transitions; we write

q
`−→ q′ for (q, `, q′) ∈→.

Given a CFSM Mp = (Qp, q0p,Σ,→p) for each p ∈P,
the tuple S := (Mp)p∈P is a communicating system.

The semantics of communicating systems is defined in
terms of transition systems, which keeps track of the state
of each machine and the content of each buffer.

Definition 2 (Transition systems) Let S = (Mp)p∈P be a
communicating system. A configuration of S is a pair s =
〈q ; w〉 where q = (qp)p∈P with qp ∈ Qp and where w =
(wpq)pq∈C with wpq ∈ Σ∗; q is initial when qp is the initial
state of the corresponding CFSM and all buffers are empty.

A configuration s′ = (q′;w′) is reachable from another
configuration s = (q;w) by firing transition `, written s `=⇒s′
if there is a ∈ Σ such that either (1) or (2) below hold:

1. ` = sr!a and (qs, `, q
′
s) ∈ δs

and

a. q′p = qp for all p 6= s
b. and w′

sr = wsr.a and
w′

pq = wpq for all
pq 6= sr

2. ` = sr?a and (qr, `, q
′
r) ∈

δr and

a. q′p = qp for all p 6= r
b. and wsr = a.w′

sr and
w′

pq = wpq for all
pq 6= sr.

The reflexo-transitive closure of → is →∗. A sequence
of transitions is k-bounded if no channel of any interme-
diate configuration on the sequence contains more than
k messages. The set of reachable configurations of S is
RS(S) = {s

∣∣ s0 →∗ s}. The k-reachability set of S is the
largest subset RSk(S) of RS(S) within where configurations
can be reached by a k-bounded execution from s0.

Condition (1) in Definition 2 puts a on channel sr, while
(2) gets a from channel sr. Note that RSk(S) is finite.

Definition 3 (Synchronous transition system) Let N :=
{q

∣∣ 〈q ; ε〉 ∈ RS1(S)} be the set of stable configurations
of a system S = (Mp)p∈P; N is ranged over by n. Define

δ̂ :={(n, e, n′)
∣∣ (n; ε)

sr!a−−→ sr?a−−→(n′; ε) ∧
e = (n[s], n[r], s_ r :a)}

where E := {e
∣∣ ∃n, n′ ∈ N : (n, e, n′) ∈ δ̂} ⊆ E . The

synchronous transition system of S is TS(S) = (N,q0, δ̂).

The global graphs of a communicating system S is a “work-
flow” presentation of TS(S) pinpointing distributed choices
and causal dependencies among the interactions of S. In
[7] a condition on TS(S) is given to guarantee the absence
of communication errors. In fact, the analysis of S relies on
mismatches between TS(S) and its asynchronous behaviour:
When no errors arise, the global graph of S is a faithful yet
compact representation of its behaviour; otherwise, RS1(S)
singles out error traces. Both models are automatically
computed by ChoSyn [13], the tool we will us here for
the analysis of gen_server. For instance, Figure 3(a)
gives the global graph of the ping-pong protocol whose
asynchronous behaviour is in Figure 3(b) (more details are
given in Section 3): Following the path from the initial
node, the ping process chooses whether to send ping or
finished; in the former case the protocol loops after the
participants exchange the pong message.

3. Modelling and Analysis

The process of modelling Erlang programs as choreogra-
phies is illustrated in the top half of Figure 1. There are
two basic phases: (1) build CFSMs from the program under
analysis and (2) apply the global graph construction and
analysis (cf. [7]) to identify communication errors.

Ideally, automatic model extraction approaches should
be applied in phase (1); however, we note that it is not
always possible to do so. For instance, (i) for the analysis
of gen_server the code of clients or servers may not
be available, (ii) in some application domains it could
be readily available from informal specifications, or (iii)
it could be hard to identify the right level of abstraction
at which a choreography faithfully represents the commu-
nication pattern of the program. Phase (1) requires some
ingenuity due to function calls and scoping issues.
Function calls: In Erlang, the behaviour of a process can
be contingent upon the outcome of internal function calls as
well as incoming and outgoing messages. This means that, in
order to fully model communication behaviour, such internal
events must be explicitly represented within the model.
Scoping: A model incorporating every atomic process
would be cluttered. The behaviour of individual runtime
processes is often very simple, with meaningful components

consisting of a selection of simple processes. Additionally,
library modules can spawn processes for various tasks that
are deliberately hidden from the client of the library’s API.
Accordingly, it can be preferable to aggregate the overall
behaviour of collections of processes into single CFSMs.

Rather than modelling every Erlang process in the CFSM
model, we segment the system into participants – the key
abstract components of the system. The decision as to what
forms a participant will depend on the analysis objectives
(as discussed in Section 3), and there may be some iteration
if a particular choice of participants results in an analysis
that is too cluttered or vague.

Producing models of an Erlang system goes as follows:

1) The participants of the choreography are identified
according to the analysis objectives. These may be
entire processes, or code (e.g. library modules) that
can influence the behaviour of the process.

2) Communication events are identified that constitute
the communication among participants. These may
be explicit sends or receives, function calls, or
returns from (synchronous) function calls. These
form the alphabet of the CFSMs.

3) For each participant a CFSM is constructed in terms
of the communication events.

4) The CFSMs are analysed using ChoSyn to iden-
tify communication errors. In the absence of these
errors the global graph constructed by the tool
provides a succinct specification of the system that
can be guaranteed to be free of deadlocks, orphan
messages, or unspecified receptions. In presence of
errors, the global graph reflects only the “good”
executions while disregarding the error traces.

We now illustrate steps 1-4 on the ping-pong example.

1. IDENTIFYING PARTICIPANTS of a choreography could be
a non-trivial task, as it often depends upon both the structure
of the system and the goals of the analysis. The complexity
of typical applications includes the use of a mixture of li-
braries, third-party code, off-the-shelf components (the code
of which may not be available for analysis). The analysis
in Section 4 involves library code that might contain many
individual processes internally, but the developer is only able
to control their interaction through the library’s API.

Participants are therefore identified in two steps:

1) Consider each ‘principal’ process belonging to the
source code under analysis as a participant.

2) Identify calls from these processes to external (e.g.
library) modules. For each process that calls an
external module, add a separate participant repre-
senting that external module and repeat this step
for the newly identified participants.

This procedure may be iterative. Participants can initially
be chosen from well-defined Erlang components such as
processes. However, if this fails to fully capture the problem
then some participants can be split further (as will be
illustrated in Section 4 for our case study). Alternately, if

the analysis is obscured by excessive details of irrelevant
communication some participants can be merged and only
their external interfaces considered.

Ultimately, the choice of participants identifies the
boundaries across which communication events will take
place. This informs the process of identifying the commu-
nication alphabet, which is the next step in building a model.

2. IDENTIFYING THE COMMUNICATION EVENTS amounts
to determine the set of actions Act of the CFSMs (see
Definition 1) once participants have been determined (i.e.
across the previously defined boundaries). Communication
events fall under the following categories:

1) A message sent to an identified participant.
2) The receipt of a message from a participant.
3) A call to a library / third-party participant that could

affect the interactions with or among participants.
4) A return of control from synchronous calls to li-

brary / third-party participants.
Events can be ascertained from the source code; in Er-
lang this would be achieved by inspecting any send or
receive statements. If source code is unavailable, events
can be derived from any available API documentation, or by
inspecting the interaction with other processes in the system.

In the ping-pong example, the pong function is defined
with a single receive statement that either receives the atom
finished and terminates, or receives a pair containing
the atom ping and a process ID of the ping process, which
it responds to with a pong. Accordingly, its alphabet is:
{pingpong?ping, pingpong?finished, pongping!pong}
The communications of the ping process are the
complement of the pong process, since it initiates
either the ping-pong exchange, or sends finished to
terminate both processes. Accordingly, its alphabet is:
{pingpong!ping, pingpong!finished, pongping?pong}.
Whereas this example is (deliberately) simple5, using only
the first two types of communication events, our case study
will involve examples of other communication events that
include function calls and returns.

As with the choice of participants, the process of iden-
tifying communication events can be iterative. If the com-
munications are not sufficiently detailed the CFSM system
can be non-deterministic or allow patterns of communication
that are excluded by the real system. Conversely, excessive
detail may exclude actual executions, or it may simply re-
quire intractably large state machines to model the multiple
variations of essentially the same message.

3. MODELLING COMMUNICATIONS AS CFSMS is done fol-
lowing Definition 1. Conceptually, the process of construct-
ing a state machine for a participant Mp, a state machine
(Q, q0,Σ,→) can proceed as follows:

5. The ping-pong example only contains two communicating compo-
nents: The ping and the pong processes, with the boundary between them
being the sending and receiving of messages into their respective mailboxes.
This captures the essential communication events that are perturbed by the
faulty examples in Section 2.2, but it abstracts away the implementation
details of their spawning, and their debugging outputs.

Figure 4. CFSMs corresponding to the Erlang code in Figure 2.

1) The alphabet Σ is defined as the set of communi-
cation events Actp

2) Identify a set of states Q (and the initial state
q0 ∈ Q). Each state represents the set of possible
sequences of communications that can occur at a
given point during the execution of a participant.

3) For each state q ∈ Q, identify the set of communi-
cations C ⊆ Σ that can occur from that state.

4) For each communication c ∈ C, a destination state
q′ ∈ Qp is identified, and a transition q

c−→ q′ is
added to the set of transitions →p.

Depending on the complexity of the process, and the
information available about its behaviour, identifying the
states can rely on a degree of intuition and prior knowledge.
If available, the source code can be inspected to follow the
control-flow between source code statements that correspond
to communication events. It is also possible to resort to prior
knowledge – API documentation, or general sequencing
rules (e.g. that a synchronous method call must be followed
by a return of control from that call).

The ping-pong example is straightforward enough for
both participants to be derived entirely from the source code
(in Figure 2). Process pong is spawned on line 27 with a
function call to the pong function (line 16). The CFSMs of
are in Figure 4; for pong, state p and f are the initial and
the terminal state respectively, while state po represents the
state where message ping has been received and message
pong is about to be sent (for ping – spawned on line 28
with a call to the ping function – the CFSM is similar).

4. DIAGNOSING ERRORS happens through the generation
and analysis of the transition system (and the corresponding
global graph [14]) derived from the CFSMs. In the transi-
tion system of our running example (cf. Figure 3), each
state represents a unique combination of states of ping
and pong. As shown below, this can be used to highlight
communication errors.

A deadlock state shows up clearly in the transition
system as a state with no outgoing edges, but where some
participants could still interact. These are highlighted in
orange by the tool. For example, the synchronous transition
system for the modified version of ping-pong from Sec-
tion 2.2 computed by ChoSyn is

where in the state po|po there is a deadlock due to the wrong
message poong in the buffer of ping. The analyst can use
global graphs to identify where changes have to be made
when communication errors occur; for instance, the above
transition system yields a global graph (different from the

expected one of Figure 3) where the pong is not exchanged;
this suggests that either the send of the receive operation
fail. The actual error on the send operation is highlighted
by ChoSyn on the asynchronous transition system of ping-
pong (which is not reported here for the lack of space).

Orphan messages are illustrated by the example with
two instances of the ping client. One ping process can send
finished, which then terminates the pong process. Any
messages from the other ping process cannot be received.
The tool identifies the two deadlock states (one for each of
the ping processes) but it also identifies the intrinsic conflict
between the processes with this output:
gmc: Branching Property:
[Rp [p,p,p] (p,p,0,1,finished) (p,p,2,1,finished)

Not unique selector No choice awareness,
Rp [p,p,p] (p,p,0,1,finished) (p,p,2,1,ping)

Not unique selector No choice awareness,
Rp [p,p,p] (p,p,0,1,ping) (p,p,2,1,finished)

Not unique selector No choice awareness,
Rp [p,p,p] (p,p,0,1,ping) (p,p,2,1,ping) Not unique selector]

Finally, the issue of unspecified reception is illustrated
by removing the clause in the pong process that would
receive a finished message. This is identified by the
message of ChoSyn:
gmc: Branching representability: [Bp 0 "f",Bp 0 "p"]
...
chosyn: Is machine Ping representable? false

which flags the violation of the branching representibility
requirement of [7] imposing that in each distributed choice is
determined by a unique machine (unique selector) while any
other participant is either made aware of the chosen branch
or does not participate in the choice (choices awareness).

This error declares that there is no transition in the
transition system that represents the successful transfer of
the finished message.

4. Case Study: Erlang/OTP gen_server

We now apply this methodology to gen_server, a
component of the Erlang OTP standard library. We refer to
the API documentation6 as a guide. Notably, gen_server
is used in most substantive Erlang projects7 and pro-
vides a library of basic functionality for the develop-
ment of client/server applications. The basic structure is of
gen_server can be depicted as

gen_server process

Client
processes

Library

(built-in)

Call-back
module

 (provided
by

developer)

API
calls

internal
calls

returnsreturns

messages

The library contains an API that enables client processes
to start new gen_server instances (for which it returns

6. See http://www.erlang.org/doc/man/gen server.html and http://www.
erlang.org/doc/design principles/gen server concepts.html

7. At the time of writing there were 60,155 uses of gen_server in
Erlang GitHub projects.

a process ID). Importantly for us, client/server interactions
are mediated by appropriate functions in the gen_server
API, passing the process ID of the server in question as
an argument. This is an example of an application gov-
erned by combining the use of a library with some specific
code. In fact, developers can customise the behaviour of
a gen_server by providing their own call-back module,
which contains functions with specific signatures that are
invoked by the gen_server library.

We focus on the core functionalities of gen_server:
Starting a new server, stopping the server, handling syn-
chronous / asynchronous calls8. The goal of our analysis is
to establish whether, given the API description, any of the
communication errors described in Section 2.2 can arise.

4.1. Building the CFSMs

Identifying participants: As discussed in Section 3, we
have to identify (1) the main participants and (2) the inter-
actions with the library.

We start by designating two (obvious) main participants:
The server S and the client C. The specific gen_server
behaviour is defined in a call-back module. This requires to
reconsider the participants since C does not send messages
directly to S, rather it invokes the gen_server library.
We therefore create a participant L to represent the library.
Identifying communication events: As detailed above, we

identify (1) the messages that each participant possibly sends
to other participants, (2) those received from other partici-
pants, (3) function calls to other participants, and (4) returns
of these calls. We start with the gen_server API as de-
scribed at http://www.erlang.org/doc/man/gen server.html,
where it is also given a small specification of what expected
from the call-back module, thus detailing all of the expected
interactions between S and both L and C. The interactions
expected between client C and the library L are: Client C
can call the start, call, or cast functions, and L can
respond with ok, error, or reply. Furthermore, from
the call-back module API (which captures the behaviour of
S), we note that S can also send direct reply messages
to C without going through L. From this we derive the
communication events ActC for C as shown in Figure 5.
Participant L takes messages from C and forwards them to
the appropriate handler functions in S; this yields the first
set of the union constituting ActL in Figure 5; the second set
in the union yields the events for the subsequent interactions
between L and S. Finally, set ActS in Figure 5 corresponds
to the responses of S to L and those directly sent to C.

Building CFSMs: Figure 6 shows the machines produced
for the participants using the actions defined previously.
Individual machines are reasonably straightforward to in-
terpret; sequences of ingoing and outgoing interactions cor-
respond to paths through the machine. Such machines are
the ones given in input to ChoSyn for our analysis.

8. In Erlang’s jargon, a call is synchronous when a return message is
expected and asynchronous otherwise.

4.2. Identifying Communication Errors

Once the CFSMs are identified, ChoSyn computes the
transition system reported in Figure 7 (according to Defini-
tion 2). The shaded states are those highlighted by ChoSyn
and are either deadlock states or states that instigate the
deadlocks (in lighter shade).
Deadlock 1: S does not reply
The problem occurs when, in state calling|calling|calling,
S has returned a noreply. This is allowed by the API;
indeed, the documentation of handleCall does state that
any reply to C “must be given explicitly” using a separate
API function. However, this language is ambiguous because
it does not imply that a reply must be sent. However, in
the event that no direct reply is sent by the server, and the
handleCall function returns noreply, C will remain
blocked waiting for a response indefinitely.
Deadlock 2: direct reply from S to C
followed by a stop) – In state running|calling|calling
S has returned a stop after sending a reply to C. This
causes C to continue as though S was still running. However,
the stop reply to L will cause it to terminate S. Client C
will subsequently attempt a call operation, thinking that the
server is still running, but it will never be consumed or
receive a response.
Deadlock 3: S stopping upon receipt of a cast or a
call message
The problem occurs when a cast or call message
from C is handled by L invoking handle_call or
handle_cast in S (states running|calling|calling or
running|casting|casting respectively). If now S decides
to stop, it notifies the library accordingly but neither
L nor S notify C. This leads to the erroneous state
(running|start|start). Client C is still running as normal
and is assuming that L and S are still able to receive
messages. However, this will not be the case since S has
terminated. As a result, cast messages would be orphaned,
and the client will deadlock on a call message.

4.3. Fixing the deadlocks

These deadlocks can all be avoided by introducing three
design requirements.

• Deadlock 1 can be avoided by ensuring that S either
returns reply to L or sends a direct reply to C and
returns noreply to L.

• Deadlock 2 can be avoided by ensuring that S is
required to never return stop to L after sending a
direct reply to C.

• Finally, deadlock 3 can be avoided by introducing
the requirement that S never responds to a cast by
stopping, and that any decision to stop in response
to a call is communicated to C.

With these changes in place, ChoSyn confirms that the
resulting system can be guaranteed to be deadlock free.

ActC = {CL!start, CL!call, CL!cast, LC?ok, LC?error, LC?reply, SC?reply}
ActL = {CL?start, CL?call, CL?cast, LC!ok, LC!error, LC!reply}

∪ {LS!handleInit, LS!handleCall, LS!handleCast, LS!terminate, SL?ok, SL?error, SL?reply, SL?noreply, SL?stop}
ActS = {LS?handleInit, LS?handleCall, LS?handleCast, LS?terminate, SL!ok, SL!error, SL!reply, SL!noreply, SL!stop, SC!reply}

Figure 5. Events for C, L, and S

Figure 6. The CFSMs of gen_server: C (leftmost), S (middle), and L (rightmost)

The tool also produces the following global graph

capturing the possible sequences of interactions between the
components that are guaranteed to be free of deadlocks,
orphan messages, and unspecified receptions.

5. Conclusions
We applied a tool-supported methodology based on

choreographies for the analysis of Erlang’s gen_server.

We first modelled participants as CFSMs, and then ap-
plied the analysis technique formalised in [7] using the
ChoSyn [13] tool. The analysis highlighted possible com-
munication errors. We have also shown how ChoSyn helps
in refining design guidelines to avoid such errors.

The coordination of distributed interactions has been
studied in many contexts. In OO-programming synchronis-
ers are proposed in [15], [16] as a mechanism to monitor
execution while controlling the access to objects. Actor-
based systems have been verified using model-based tech-
niques [17], [18], [19], static analysis [20], and test-driven
analysis [21], [22], [11], [12]. An added value of our
methodology with respect to such approaches is the use of
global graphs to support the analysis. In [23] an extension
of LTL is proposed to specify views of social states in agent
systems reducing verification to validity or satisfiability
problems in such logic. The properties of interest in [23]
(e.g., compliance with social contracts) are not concerned
with communication errors (albeit reminiscent of choreogra-
phies, social states do not explicitly model interaction).

The automatic extraction of models may be problematic
(cf. Sections 3 and 4). For instance, the extraction of models
for gen_server can hardly be fully automated since the
library specifications are informal. Our future work will
focus on applying model-inference techniques building upon
our work on inferring finite state machines from Erlang
code [24], and on inferring extended finite state machines
that are able to take account of the underlying data state [25].
Automatic inference of models will mitigate a disadvantage
of our approach yielding two main repercussions (as typical
in most model-based analysis techniques). On the one hand,
manual extraction of models could make it difficult to pro-

Figure 7. The transition system of gen_server computed by ChoSyn

vide convincing arguments that the models faithfully reflect
the actual behaviour of the system under study. On the other
hand, the manual generation of models is a potential obstacle
for the widespread use of a verification methodology.

Acknowledgements

The authors thanks the reviewers of 4PAD for their
valuable comments.

References

[1] “SAVARA Testable Architecture,” http://www.jboss.org/savara.

[2] W. W. W. Consortium, “Web services choreography description lan-
guage version 1.0,” http://www.w3.org/TR/ws-cdl-10/, 2005.

[3] S. Basu, T. Bultan, and M. Ouederni, “Deciding choreography real-
izability,” in POPL12, 2012.

[4] S. McIlvenna, M. Dumas, and M. T. Wynn, “Synthesis of orchestra-
tors from service choreographies,” in APCCM, 2009.

[5] D. Brand and P. Zafiropulo, “On communicating finite-state ma-
chines,” JACM, vol. 30, no. 2, 1983.

[6] G. Agha, “Actors: a model of concurrent computation in distributed
systems,” Ph.D. dissertation, MIT, 1986.

[7] J. Lange, E. Tuosto, and N. Yoshida, “From communicating machines
to graphical choreographies,” in POPL15, 2015.

[8] R. Carlsson, “Towards a deadlock analysis for erlang programs,”
Master’s Thesis in Computing Science, Uppsala University, 1997.

[9] M. Christakis and K. F. Sagonas, “Static detection of race conditions
in erlang,” in PADL 2010, ser. LNCS, vol. 5937, 2010.

[10] ——, “Detection of asynchronous message passing errors using static
analysis,” in PADL 2011, ser. LNCS, vol. 6539, 2011.

[11] K. Claessen, M. Palka, N. Smallbone, J. Hughes, H. Svensson,
T. Arts, and U. Wiger, “Finding race conditions in erlang with
quickcheck and pulse,” ACM Sigplan Notices, vol. 44, no. 9, 2009.

[12] A. Gotovos, M. Christakis, and K. Sagonas, “Test-driven develop-
ment of concurrent programs using concuerror,” in Proc. 10th ACM
SIGPLAN workshop on Erlang, 2011, pp. 51–61.

[13] “ChoSyn,” https://bitbucket.org/emlio tuosto/gmc-synthesis-v0.2/.

[14] P. Deniélou and N. Yoshida, “Multiparty session types meet commu-
nicating automata,” in ESOP, 2012.

[15] S. Frølund and G. Agha, “A language framework for multi-object
coordination,” in In Proceedings of ECOOP. Springer Verlag, 1993.

[16] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and A. Yonezawa, “Ab-
stracting object interactions using composition filters,” in ECOOP’93,
ser. LNCS, vol. 791. Springer, 1993.

[17] M. Sirjani, F. S. D. Boer, and A. Movaghar, “Modular verification
of a component-based actor language,” JOURNAL OF UNIVERSAL
COMPUTER SCIENCE, vol. 11, no. 10, pp. 1695–1717, 2005.

[18] F. Huch, “Verification of erlang programs using abstract interpretation
and model checking,” in ICFP ’99. ACM, 1999.

[19] M. Neuhäußer and T. Noll, “Abstraction and model checking of core
erlang programs in maude,” ENTCS, vol. 176, no. 4, 2007.

[20] E. Albert, P. Arenas, A. Flores-Montoya, S. Genaim, M. Gómez-
Zamalloa, E. Martin-Martin, G. Puebla, and G. Román-Dı́ez, “SACO:
Static Analyzer for Concurrent Objects,” in TACAS, ser. LNCS.
Springer, 2014, vol. 8413.

[21] S. Tasharofi, R. Karmani, S. Lauterburg, A. Legay, D. Marinov, and
G. Agha, “TransDPOR: A Novel Dynamic Partial-Order Reduction
Technique for Testing Actor Programs,” in FORTE, ser. LNCS.
Springer, 2012, vol. 7273.

[22] K. Sen and G. Agha, “Automated systematic testing of open dis-
tributed programs,” in FASE, ser. LNCS. Springer, 2006, vol. 3922.

[23] L. Giordano, A. Martelli, and C. Schwind, “Specifying and verifying
interaction protocols in a temporal action logic,” J. of Applied Logic,
vol. 5, no. 2, 2007.

[24] R. Taylor, K. Bogdanov, and J. Derrick, “Automatic inference of
erlang module behaviour,” in IFM, 2013, pp. 253–267.

[25] N. Walkinshaw, R. Taylor, and J. Derrick, “Inferring extended finite
state machine models from software executions,” Empirical Software
Engineering, 2015.

