Synchronised Hyperedge Replacement
and
Service Oriented Computing

Notes for BPESO: PhD School on Theory and Practice of
Business Process Execution and Service Orientation

Emilio Tuosto

Computer Science Department,
University of Leicester, UK
et52@mcs. | e. ac. uk

Abstract These notes are rather technical and only aims to give a written, formal
account of a subset of the concepts that will be illustated more intuitivelly and
informally during the lectures.

Definitions and examples are borrowed and adapted from [5] the authors of which
deserve credit.

1 Hypergraphs

Notation 1.1 Let V be a set, V* is the set of tuples on V. We denote a tuple as v =
(V1,...,Vn), the empty tuple as (), the i-th element of v as V[i], and write |v| for the length
of v.

Given a function f, dom(f) is its domain, and function f|s is the restriction of f to
S namely fls(x) = f(x) if x€ S, fls(X) is undefined otherwise. As usual fog is the
composition of f and g befined by (f o g)(x) = f(g(X)).

For a syntactic structure S with names and binders, fn(s) is the set of its free names.

Let A be a countable infinite set of (names of) nodes and L be the set of edge labels.
A label L € L is assigned a rank, i.e., a natural number (denoted as rank(L)). An edge
labelled by L connects rankL) nodes and a node connected to an edge is said to be an
attachment node of that edge.

A syntactic judgment specifies a graph along with its interface, i.e., its free nodes.

Definition 1.1 (Graphs as judgements). A judgment has form I' = G where:

1. T C AL is a finite set of names (the free nodes of the graph);
2. G is a graph term generated by the grammar

G:=L(Xx) | GG | vwG | nil
where X € N[* is a tuple of names, L € L, rankL) = |x| and y € AL.

In vy G, restriction operator v bindsy in G, fn(G) and bn(()G) are defined as per Table 1.
We demand that fn(G) CT.

IL(X1,...,%n)] GG | VG |nil
fn()| {x,---, x| fInGUIMG [InG\{y}| O

bn(()_) 0 bn(G)ubn(G)|[InGU{y}| 0
Table 1. Free and bound nodes

~—

Graph nil is the empty graph, | is the parallel composition operator of graphs (merging
nodes with the same name) and vy is the restriction operator of nodes; free/bound nodes
correspond to free/bound names. Edges are terms of the form L(X1,...,X), where the X;
are arbitrary names and rank(L) = n.

Exercise 1.2. Why Definition 1.1 requires ffG) C I'? Give the judgment for the graph con-
sisting only of node. o

We assume that restriction has lower priority than parallel composition. For concise-
ness, curly brackets are dropped from interfaces ' in judgements and 1,2 denotes
M1Ul2, provided that F1NT2=0 (e.g., I,x=TU{x}, if x¢T).

2 Tuosto

Example 1.3. Consider the judgment
ukvz,...,zy Ba(u,ze,...,z0)|S1(z1)] - - - |Sh(zn)

which describes a system where many sergease connected to the network via a manager
B, and can be graphically represented as:

205
u : Z :
. o~}
e {51
Edges are drawn as rectangles and nodes are bullets (empiguiod nodes and solid for
free nodes). A connection between a node and an edge iseeprddy a line, calletenta-
cle; an arrowed tentacle indicates the first attachment nodeeoétige. The other nodes are

determined by numbering tentacles clockwise (e.g.Bfgw is the first attachment node,
is the second and so on). O

Exercise 1.4. Draw a graph for

1. xEL(X) | vyM(x,Y)
2. Xk L(X) | vxM(X,X)
3. X,y L(X) | vXM (X, X)

<

Definition 1.5 (Structural congruence on graph judgements). Graph terms are con-
sidered up to axioms (AG1=-7) below:

(AG].) (G1|G2)|G3 = G1|(G2|G3) (AGQ) Gl|G2 = Gz|Gl (AGS) G|ni| =G
(AG4) vx vy G=Vvy vx G (AG5) vx G=Gifx¢ n(G)
(AG6) vXx G=vy G{y/x}, ify¢fn(G) (AGT7) vx G1|Gz = G1|vXx Gy, if x ¢ fn(G1)

For judgments, we define T1F G1=T2F Gy iffT1 =12 and G1 = G».

We consider judgements for graphs up to structural congruence which amounts to con-
sider graphs up to graph isomorphisms that preserve free nodes, labels of edges, and
tentacles [6].

2 Basic Milner SHR

In a synchronisation a-/a Milner only two-parties interact: synchronisation actions are such
that

— they are partitioned into “normal” actions a and co-actions @

- a=a

— there is a special action € standing for “not taking part to the synchronisation”
— there is an action T representing a complete synchronisation.

Edges attached to a node of an hypergraphs can be synchronised with a Milner synchro-
nisation if two of them “exhibit” two complementary actions while all the others stay idle
(i.e., they all exhibit action €). The result of the synchronisation is T.

Notation 2.1 A renaming is a function 0 : N. — N, X0 is the application of 0 to X €
dom(o) and yields a(x). Moreover,

— ifoo0 =0, the renaming is said idempotent

— a renaming O is injective when O is injective

— renaming {x/y} is defined such that {x/y}(y) =X and {x/y}(2) =z for all z+y in the
domain of {X/y}

— as usual, {(x,y) | xedom(f) A y=f(X)} is the graph of a function f.

Definition 2.1 (SHR transitions and productions). A relation [- G ArreGisan
SHR transition if T =G and '+ G’ are judgments for graphs, and \: T — 2 is a total
function, where 2l is a set of actions.

A production is an SHR transition of the form:

xl,...,xnl—L(xl,...,xn)Lxl,...,xnl—G (1)

where rank(L) = n and X1,...,%y are all distinct. Production (1) is idle iff N(X) = € for
eachi and G is L(Xq,...,%n).

SHR for SOC 3

A transition is obtained by composing productions in a set P that contains any idle
production and is closed under all injective renamings (that is, the application of an
injective renaming to a productions in P yields productions in P).

Composition is performed by merging nodes and thus connecting the edges. Synchro-
nisation conditions as specified in productions must be satisfied.

Definition 2.2 (Inference rules for bMSHR). The admissible behaviours of bBMSHR

are defined by the following inference rules.

reGorec, regSree, rar=o
MGG, 2% T+ GolGl

(par-b)

-G ArEG,

ok Gio LN fok Goo

where 0 : I — [is an idempotent renaming and:

(merge-b)

1. for all X,y € T such that x#£Yy, if xa =yao, \(X) # € and \(y) # € then
(VzeT\{xy}.zo=x0=A(2)=¢) AN AX)=a A Aly)=a A a#T
T ifxo=yo=z A x#y AN NAX)#E AN Ny) #¢€
2 N@2=< ANx)ifxa=z A N(x) £¢
€ otherwise

FxFGL AT xEG, AX) =eVAX) =T

(res-b) Al
M-vx G —5 T Hux Gy

TFGATEG, xér
AU{(x£)}
MxFG ————=T,xHG

Rule (par-b) deals with the composition of transitions which have disjoint sets of nodes
and rule (merge-b) allows to merge nodes. Condition 1 requires that at most two non
€ actions are performed on nodes to be merged. If they are exactly two then they have
to be complementary, and the resulting action is T (condition 2). Since 0 is required
to be idempotent, it yields an equivalence relation on ' and a choice of a standard
representative. In fact, X,y € [are equivalent under 0 iff X0 = yo; the representative
element of the equivalence class of X is x0. Rule (res-b) binds node x. This is allowed only
if either T or € actions are performed on X, forcing either a complete synchronisation (1)
or no synchronisation (€). Rule (new-b) allows to add to the source graph an isolated free
node where an action € is performed.

(new-b)

Example 2.3. Consider an instance of the system in Example 1.3 where Bglgez;,z)
takes requests on nodand broadcasts them 8(z;) andS;(z2) by synchronising on nodes
z; andz, respectively. The productions fBp andS (i € {1,2}) are:

U.2),2) - By(u,Z,,) (Lo AT (2%

uz,zt B(u,7,2) (2)

2+ Sz) 2% 21 5(a) (3)
The inference rules for bMSHR can be used to derive tramsitio

U212 b Bo(U,21,2)[1(22)|92(22) 2% Uk va1, 2 B(u, 21, 2)|S(z1)|Sy(z2)

Exercise 2.4. Give a derivation of the transition of Example 2.3. o

3 Action Signatures

Mobility is added to SHR transitions (Definition 2.1), according to the approach of [4],
which allows existing and newly created nodes to be merged.

Definition 3.1 (Action signature). An action signature is a triple (2(,ar,€) where 2 is
the set of actions, € € 2, and ar :2 — N is the arity function satisfying ar(€) = 0.

Mobility is modelled by letting function A in transitions to carry tuples of nodes.
Hereafter, A : T — 20 x A’* is a total function assigning, to each node x € ', an action
ac€ A and a tuple y of nodes such that ar(a) = |y|. We let aci(X) = a and np(x) =y
when A(X) = (a,y). Finally, the set of communicated (resp. fresh) names of N\ is n(A) =
{z| Ixzenp(X)} (resp. Ao =n(A)\T).

4 Tuosto

Definition 3.2 (SHR transitions with mobility). Given an action signature (,ar,€),
an SHR transition with mobility is a relation of the form:

r-c2lorg
where .. T — I is an idempotent renaming accounting for node merging such that ¥Yx €
N(A). xrt=X. Finally, ® =TTUl .

Condition Vx € n(A). xTt= X states that only representatives nodes can be communicated
while ® =T TIUI A states that free nodes are never erased (2) and new nodes are bound
unless communicated (C).

Remark 3.3. @ is fully determined by\ andmt (sincel’ = dom(A\)) and, unlike in bMSHR,
it mightbed® #£T. °

The definition of productions is extended as follows.

Definition 3.4 (Productions). A production is now an SHR transition of the form:

x1,...,anL(x1,...,xn)MHDFG (4)

where rankL) = n and Xq,...,X are all distinct. Production (4) is idle if A(X%) = (&,())
for each i, m=id and D+ G =xXy,..., X0 F L(X1,...,Xn)-

As before, sets of productions include all the idle productions and are closed under injective
renamings.

4 Milner SHR

Milner SHR is presented below and extends bMSHR with the machinery to deal with
mobility. The action signature (with mobility) (2(on,ar,€) for Milner synchronisation has
further structure wrt Definition 3.1.

Definition 4.1. An action signature for Milner synchronisation is an action signature
Am = AU AU{1,€} where

~ A is the set of (input) actions and A= {a | ac€ A} is the set of co-actions;
- a=ga,
— T is a special action such that an(t) =0;

— for each ac 4, ar(a) = ar(a).

MSHR semantics (and the other SHR extensions) exploits a most general unifier (mgu)
accounting for name fusions. The result of the application of the mgu is the fusion of nodes
(new and old ones) changing the topology of graph (i.e. mobility).

Definition 4.2 (Inference rules for MSHR). The admissible behaviours of MSHR are
defined by the following inference rules.
AT / ¢ N / / /
NGy —okG; NG, —— o'+ G, rueoyN(fued’)=0
MGy G, AN ¢ o - GylGY

(par-M)

MG 2L ok G,
FoF Gio 2% o' U Gyop

where 0 : I — [is an idempotent renaming and:

(merge-M)

1. for all X,y € T such that x#£Y, ifxa=y0 A A(X) #€ A A(y) #¢€ then
(VzeT\{xy}.zo0=x0=A(z)=¢) A A(X)=a A Aly)=a N a#T

2. S={x=y | xt=ymU{m(x) = m(y) | xo = yo}

3. p=mguS)c and p maps names to representatives in G whenever possible

(1,{()) ifxo=yo=z A x#£y A acih(X) Z€ A acin(y) #¢
4. N(2) =< (AX))opifxa=z A ach(x) #¢

(g,()) otherwise
5 = erd
6. U = (dop) \ &/

rxkGi 2L ok G,

FEux Gy M0 g vz Gy

(res-M)

where:

SHR for SOC 5

- (Byelrxm=ymn = xm#£x
—ach(x)=evacih(x) =1
- Z={x}ifx¢n(A|r),Z=0otherwise

MFG M orG, x¢ruo

(new-M)
Foxk Gy AUOEUIT 4 1,

Rules (par-M) and (new-M) are essentially as before. In rule (merge-M) now mo-
bility must be handled; indeed, when actions and co-actions synchronise, parameters in
corresponding positions are merged. This set of merges is computed in S (condition 2).
Condition 3 updates the equations with 0 and then chooses a representative for each
equivalence class using an mgu; among the possible equivalent mgus we choose one of
those where nodes in [0 are chosen as representatives (if they are in the equivalence
class). This is necessary to avoid unexpected renamings of nodes because of fusions with
new nodes which may then disappear.

Remark 4.3. N\ is updated with the merges specifieddgcondition 4) andrt is p restricted
to the nodes of the graph which is the source of the transjdondition 5). .

Restrictions should be reintroduced (condition 6) when nodes are extruded by the syn-
chronised actions, since they will no more appear in the label. In rule (res-M) the bound
node X must not be a representative if it belongs to a non trivial equivalence class.

Example 4.4. Consider the system in Example 2.3 with two sen@randS;, but where a
clientC must be first authenticated by an authoAtyThe graph representing the system is as

follows:
Z1 0 e@
X
. °o<{B
2t <[5

We can model the fact th&t is allowed to access the services by letting it move from node
x to nodeu, namely by extruding the private nodeo C. The productions fo€ andA are as
follows:

(xauth(y))

XFC(x) ——— x,y - C/(y) x,uFA(x,u)M»

X, uk A(x,u)

where, in the first production the client becomes attachetiéareceived nodg after the
transition. In fact, when synchronisation is performedy modey and nodeu are merged,
with u as representative. Note that the restrictionwis reintroduced. Starting from
vu C(x) | A(x,u) we will obtainx - vu C’(u) | A(x,u). O

Exercise 4.5. Derive the transition fromx - vu C(x) | A(x,u) to xvu C'(u) | A(x,u) using
the productions of Example 4.4 and the rules of Definition 4.2 o

5 Synchronisation Algebras

Synchronisation Algebras with Mobility (SAMs) allow us to parameterise SHR with respect
to different synchronisation models. For example, MSHR will come out as just an instance
of the general framework.

SHR can be parameterised with respect to the synchronisation policy by using SAMs
Also, SHR for heterogeneous systems where different subsystems exploit different syn-
chronisation protocols can be modelled through SAMs [9,8]; heterogeneity is introduced
by labelling nodes with SAMs that specify the synchronisation policy used on them. SAMs
labelling can dynamically change as a result of synchronisation among different parties.

Example 5.1. The system of Example 4.4 can be now more accurately modejlesimul-
taneously using a SAM for Milner synchronisation on actifersauthorisation, and one for
broadcast of requests. Thus on each node only the desiiedsare available. This avoids
undesired executions caused by malicious clients. Aviailapnchronisations are exploited
by the authority to ensure that clients can issue only aighdrequests. Also, actions can
specify the synchronisation policy (e.g, Milner or broagtcaynchronisation) so that clients
dynamically choose what protocol to use. O

See [9,5,8] for details.

6 Tuosto

6 SHReQ: Coordinating Application Level QoS

Awareness of Quality of Service (QoS) is an emergent exigency in SOC which is no
longer considered only as a low-level aspect of systems. The ability of formally specify-
ing and programming QoS requirements may represent a significant added-value of the
SOC paradigm. Moreover, QoS information can drive the design and development of pro-
gramming interfaces and languages for QoS-aware middlewares as well as to drive the
search-bind cycle of SOC.

In SHReQ, a calculus based on SHR, abstract high-level QoS requirements are ex-
pressed as constraint-semiring [1] and embedded in the rewriting mechanism which is
parameterised with respect to a given c-semiring. Basically, values of c-semirings are
synchronisation actions so that synchronising corresponds to the product operation of c-
semirings that can be regarded as the simultaneous satisfaction of the QoS requirements
of the participants to the synchronisation.

Definition 6.1 (C-semiring). An algebraic structure (S,+,-,0,1) is a constraint semiring
if Sis a set with 0,1 € S, and + and - are binary operations on S such that:

— + is commutative, associative, idempotent, O is its unit element and 1 is its absorbing
element (i.e., a+1=1, for any ac),

— - is commutative, associative, distributes over +, 1 is its unit element, and O is its
absorbing element (i.e., a-0=0, for any a€ S).

The additive operation (+) of a c-semiring induces a partial order on S defined as a <s
b < dJc:a+c=b. The minimum is thus O and the maximum is 1. C-semirings have
two distinguished features that result very useful for modelling abstract QoS. First, the
cartesian product of c-semirings is still a c-semiring, hence we can uniformly deal with
many different quantities simultaneously. Second, partial order <g provides a mechanism
of choice. These features make c-semirings suitable for reasoning about multi-criteria QoS
issues [2,3]. The fact that c-semiring structure is preserved by cartesian product is here
exploited to compose synchronisation policies.

Example 6.2. The following examples introduce some c-semirings togettith their in-
tended application to model QoS attributes. A more compisttean be found in [1].

The boolean c-semiring{true, false},V, A, false true) can be used to model network
and service availability.

The optimisation c-semiringReal min, 4+, +o,0) applies to a wide range of cases, like
prices or propagation delay.

The max/min c-semiringReal max,min,0,+) can be used to formalise bandwidth,
while the corresponding c-semiring over the natu¢Blamax, min, 0, +) can be applied

for resource availability.

— Performance can be represented by the probabilistic crsen|0, 1], max, -,0,1).

— Security degrees are modelled via the c-semit{fgL, .. ., n],max,min, 0, n), wheren is
the maximal security level (unknown) and 0 is the minimal ¢meblic).

O
Exercise 6.3. Prove that the structures listed in the Example 6.2 are drseys. o

Hereafter, given a c-semiring (S,+,-,0,1), ars: S— N is an arity function assigning
arities to values in S. Graphs in SHReQ are called weighted graphs because values is Sare
used as weights and record quantitative information on the computation of the system.
We write X1 : S1,...,%n : Sn = G for the weighted graph whose weighting function maps X;
tos, forie{l,...,n}.

SHReQ rewriting mechanism relies on c-semirings where additional structure is defined.
More precisely, we assume sets Sync, Fin and NoSync such that

- YncCFNCS 1e Syncand arg(s) =0 if s€ Sync;
— NoSync C S\ Fin, 0 € NoSync and Vs e SVt € NoSync.s-t € NoSync.

The intuition is that Fin contains those values of S representing events of complete syn-
chronisations. Among the actions in Fin we can select a subset of “pure” synchronisation
actions, namely complete synchronisations that do not expose nodes. Set NoSync, on the
contrary, contains the values that represent “impossible” synchronisations.

SHReQ productions follow the lines of Definition 3.4 and 4.2, but have a slightly
different interpretation.

Remark 6.4. For simplicity, we avoid that component in SHReQ transitions and require
that free nodes cannot be merged. Technically, this is bdbby considering undefined the
most general unifier operation when it yields the fusion af free nodes. In [7] the general
unification is defined for SHReQ. °

SHR for SOC 7

Definition 6.5 (SHReQ productions). Let S be a c-semiring (S,+,-,0,1). A SHReQ
production is a production

MEL(X,... %) 2 O F G (5)
built on top of the action signature (S,ars,1) where I maps nodes in {X1,...,Xn} to S.

Production (5) states that, in order to replace L with G in a graph H, applicability con-
ditions expressed by the function I' on the attachment nodes of L must be satisfied in
H and, henceforth, L “contributes” to the rewriting by offering A in the synchronisation
with adjacent edges. Function I" expresses the minimal QoS requirements on the environ-
ment in order to apply the production, i.e., given X € dom(I"), the weight w on the node
corresponding to X must satisfy ['(x) <w. As before, function @ is fully determined by I
and A\, where the weight of new nodes is set to 1 (i.e., P(y) =1 if y € ['p), while for old
nodes it traces the result of the synchronisation performed on them.

In production (5), c-semiring values play different roles in I and A: in I, they are
interpreted as the minimal requirements to be fulfilled by the environment; in A they are
the “contribution” that L yields to the synchronisation with the surrounding edges.

We only give the inference rule (merge-s)or merging nodes, the other rules being a
simple rephrasing of those seen in previous sections. Rule (merge-s)is defined as:

r,x:ry:skGy ALCos V) (s v)} Gy

Mx:r+sk Glo/\—/wb’kvu Goop

(merge-s)

with 0 = {x/y} and
1. S={x=y}U{vi[l] =v2[1],...,vi[n] =v2[n] | n=|v1| = |v2|}
2. p=mguSo) and p maps names to representatives in I',X whenever possible
1o (s1-%,w) if z=X
3. N(2)= {/\(z)crp foreachze I
4. T = Plrx
5. U=dop\

In order to ensure applicability of productions also when there are more resources available
than required, the following rule is introduced.

FxrFG LNorG, r<t
Fx:tFG S oG,

(order-s)

The other rules are similar to the ones in Definition 4.2.

Example 6.6. Let us consider Example 4.4. We can model the authority chgdke server

that offers the cheapest service. To this aim, we use thestant product of two c-semirings.
The first c-semiring is{R™, max, min, 0, o), for the price of the service. The second c-semiring
is used for synchronisation. In this way, we are able to dedirgeneral synchronisation
policy as a unique c-semiring combining a classical syneisadion algebra with QoS re-
quirements. The second c-semiring corresponds to multsgaehronisation. Assumé&' =

{req autheg auth 1y, Ow, L }. Setw can be equipped with a c-semiring struct(hé +, -, Ow, 1w),
where:

req-feq=Teq auth-auth=auth reg-req=req auth auth=auth
abeW\{Ow,w}ra#bAb#a = a-b=1
plus rules obtained by commutativity and the oneXgrandlyy.

The operationt- is obtained by extending the c-semiring axioms for the adsibperation
witha+a=aanda,b¢ {Ow,lw} Na#b = a+b=1,forallabeW.

Below we show a graphical representation of a two steps at@iv. Instead of reporting
productions for each rewriting step, tentacles are deedraiith actions. For the sake of
clarity, in each step we only write actions and weights ofrédevant nodes.

C @ C]
? (maqthw}
Xe Xe ey Xe
(maal?@(y)
A = [,‘A\;\ =
(oo’i’iq) (m,@ﬂy)
/oi\ /oUZ(DlaTP_Q) ou
(pyreq) (pz;req (P1rea)(y)
s [= Fsﬁ S SIEE]

8 Tuosto

The first step selects the server with the lowest price wheigthe price for§ (in this step
no names are communicated). This is obtained as the reghlé afynchronisation im, i.e.,
((reg- req) - req, min(e, p1, p2)). Assumingp; less tharp, the new weight ofi is (req, p1).
The second step shows the client connecting to the cheagrestr §; (informed byA) by
connecting to a new nodge After the first synchronisation, the cheapest server igtified
by the authority using the new weight on nadeThis guides the behaviour & and of the
authority to produce the new connection to the client. Inipalar, the applicability condition
of server rule requires its price to be less than or equaldgtfite on the node, and this can
be satisfied only by the cheapest one (we suppose for sityghecit server costs are unique).
%

Exercise 6.7. Show how the transitions above are derived. o

References

1. S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint satisfaction and optimiza-
tion. Journal of the ACM, 44(2):201-236, 1997.

2. R. De Nicola, G. Ferrari, U. Montanari, R. Pugliese, and E. Tuosto. A Formal Basis for
Reasoning on Programmable QoS. In International Symposium on Verification — Theory and
Practice, volume 2772 of LNCS, pages 436-479. Springer, 2003.

3. R. De Nicola, G. Ferrari, U. Montanari, R. Pugliese, and E. Tuosto. A process calculus for
qos-aware applications. In Proc. of Coordination’05, volume 3454 of LNCS, pages 33-48.
Springer, 2003.

4. G. Ferrari, U. Montanari, and E. Tuosto. A LTS semantics of ambients via graph synchro-
nization with mobility. In ICTCS'01, volume 2202 of LNCS, pages 1-16. Springer, 2001.

5. Gianluigi Ferrari, Dan Hirsch, Ivan Lanese, Ugo Montanari, and Emilio Tuosto.
IATEXSynchronised Hyperedge Replacement as a Model for Service Oriented Computing. In
Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem P. de Roever, editors,
Formal Methods for Components and Objects: 4th International Symposium, FMCO, vol-
ume 4111 of LNCS, Amsterdam, The Netherlands, November 2006. Springer-Verlag. Revised
Lectures.

6. D. Hirsch. Graph Transformation Models for Software Architecture Styles. PhD thesis, De-
partamento de Computacién, Facultad de Ciencias Exactas y Naturales, U.B.A., 2003.

7. D. Hirsch and E. Tuosto. Coordinating Application Level QoS with SHReQ. Journal of
Software and Systems Modelling, 2006. Submitted.

8. |. Lanese. Synchronization Strategies for Global Computing Models. PhD thesis, Computer
Science Department, University of Pisa, Pisa, Italy, 2006. Forthcoming.

9. I. Lanese and E. Tuosto. Synchronized hyperedge replacement for heterogeneous systems. In
Proc. of Coordination’05, volume 3454 of LNCS, pages 220-235. Springer, 2005.

