
History Dependent Automata: a
Co-Algebraic definition, a

Partitioning Algorithm and its
Implementation

Roberto Raggi & Emilio Tuosto

joint work with

Gianluigi Ferrari, Ugo Montanari and Marco Pistore

COMETA - Udine, – p.1/29

Plan of the talk

Motivations

HD approach

Co-algebraic definition of HD

HD-automata for -agents

The partitioning algorithm

Principal data structures

The main cicle

An example

Final considerations

COMETA - Udine, – p.2/29

Plan of the talk

Motivations

HD approach

Co-algebraic definition of HD

HD-automata for -agents

The partitioning algorithm

Principal data structures

The main cicle

An example

Final considerations

COMETA - Udine, – p.2/29

Plan of the talk

Motivations

HD approach

Co-algebraic definition of HD

HD-automata for -agents

The partitioning algorithm

Principal data structures

The main cicle

An example

Final considerations

COMETA - Udine, – p.2/29

Plan of the talk

Motivations

HD approach

Co-algebraic definition of HD

HD-automata for -agents

The partitioning algorithm

Principal data structures

The main cicle

An example

Final considerations

COMETA - Udine, – p.2/29

Plan of the talk

Motivations

HD approach

Co-algebraic definition of HD

HD-automata for �-agents

The partitioning algorithm

Principal data structures

The main cicle

An example

Final considerations

COMETA - Udine, – p.2/29

Plan of the talk

Motivations

HD approach

Co-algebraic definition of HD

HD-automata for �-agents

The partitioning algorithm

Principal data structures

The main cicle

An example

Final considerations

COMETA - Udine, – p.2/29

Plan of the talk

Motivations

HD approach

Co-algebraic definition of HD

HD-automata for �-agents

The partitioning algorithm

Principal data structures

The main cicle

An example

Final considerations

COMETA - Udine, – p.2/29

Plan of the talk

Motivations

HD approach

Co-algebraic definition of HD

HD-automata for �-agents

The partitioning algorithm

Principal data structures

The main cicle

An example

Final considerations

COMETA - Udine, – p.2/29

Plan of the talk

Motivations

HD approach

Co-algebraic definition of HD

HD-automata for �-agents

The partitioning algorithm

Principal data structures

The main cicle

An example

Final considerations

COMETA - Udine, – p.2/29

Plan of the talk

Motivations

HD approach

Co-algebraic definition of HD

HD-automata for �-agents

The partitioning algorithm

Principal data structures

The main cicle

An example

Final considerations

COMETA - Udine, – p.2/29

Motivations

CAV98: �-spec of Handover protocol

Using HAL:
37199 states and 47958 Transitions
Verification takes 15 min.

�-spec //

�-automaton //

Finite state
automaton

COMETA - Udine, – p.3/29

The approach

HD as a model for name passing Calculi [Montanari &
Pistore]

Specifically designed for verification purposes
Dynamic name allocation
Garbage collection of non-active names
Name symmetries

Finite state representation of finite control �-agents

Verification Techniques for HD-automata

Semantic Minimization via Partition Refinement

COMETA - Udine, – p.4/29

HD: graphically

lab

σ

ds

COMETA - Udine, – p.5/29

Basic Definitions
Transition System

� � �� � � � � � � � � 	 � 	 �

Notation
 ��
 � �� �
�� ��
 ���� �

Set

collection of bundles

HD-automata are co-algebras defined on top of a permutation
algebra [MFCS2000]

is a HD-automata and is minimal

COMETA - Udine, – p.6/29

Basic Definitions
Transition System

� � �� � � � � � � � � 	 � 	 �

Notation
 ��
 � �� �
�� ��
 ���� �

�

co-algebraically:

��� � �� � � 	 � �

��� �� � � �� � � � � � � � � � � 	

Set

collection of bundles

HD-automata are co-algebras defined on top of a permutation
algebra [MFCS2000]

is a HD-automata and is minimal

COMETA - Udine, – p.6/29

Basic Definitions
Transition System

� � �� � � � � � � � � 	 � 	 �

Notation
 ��
 � �� �
�� ��
 ���� �

�

co-algebraically:

��� � �� � � 	 � �

��� �� � � �� � � � � � � � � � � 	

(step of a) bundle

Set

collection of bundles

HD-automata are co-algebras defined on top of a permutation
algebra [MFCS2000]

is a HD-automata and is minimal

COMETA - Udine, – p.6/29

Basic Definitions
Transition System

� � �� � � � � � � � � 	 � 	 �

Notation
 ��
 � �� �
�� ��
 ���� �

�

co-algebraically:

��� � �� � � 	 � �

��� �� � � �� � � � � � � � � � � 	

(step of a) bundle

� � � � � Set � ���� � � � � � 	 � ��

	

collection of bundles

HD-automata are co-algebras defined on top of a permutation
algebra [MFCS2000]

is a HD-automata and is minimal

COMETA - Udine, – p.6/29

Basic Definitions
Transition System

� � �� � � � � � � � � 	 � 	 �

Notation
 ��
 � �� �
�� ��
 ���� �

�

co-algebraically:

��� � �� � � 	 � �

��� �� � � �� � � � � � � � � � � 	

(step of a) bundle

� � � � � Set � ���� � � � � � 	 � ��

	

collection of bundles

HD-automata are co-algebras defined on top of a permutation
algebra [MFCS2000]

is a HD-automata and is minimal

COMETA - Udine, – p.6/29

Basic Definitions
Transition System

� � �� � � � � � � � � 	 � 	 �

Notation
 ��
 � �� �
�� ��
 ���� �

�

co-algebraically:

��� � �� � � 	 � �

��� �� � � �� � � � � � � � � � � 	

(step of a) bundle

� � � � � Set � ���� � � � � � 	 � ��

	

collection of bundles

HD-automata are co-algebras defined on top of a permutation
algebra [MFCS2000]

�

is a HD-automata � � � � � ��� � �

and

� �

is minimal

COMETA - Udine, – p.6/29

Some notations

Set collection of sets

� �
� �

Fun collection of arrows

� � �� � Set � � � Set � �� � � ��

� �

�
� � � � �

�
� � � � �

�
� �

��� �

composition of

� � �� Fun

� ��� 	 � � � � ��� 	 � � 	 � ��� 	 � � 	
 � �

where

� � � � 	

COMETA - Udine, – p.7/29

A functor for transition systems

� �� � � � � � 	 � ��� � � 	

Let

�� Fun we define

� � � � � Fun s.t.

� � � � � � � �� � �

� � � � � � � � � � �

� �� � � � � �� � � �� � � �

COMETA - Udine, – p.8/29

HD definitions: Named Sets

NSet

� � �� � Set �

� � � � � � �

�� � 	 � � ��� � � �

��

� 	

� � � � 	�
 � �� � � � 	
 �

where

� � 	�
 � ��� �� � � � ���
 �

Let be a -agent

,

a total order

COMETA - Udine, – p.9/29

HD definitions: Named Sets

NSet

� � �� � Set �

� � � � � � �

�� � 	 � � ��� � � �

��

� 	

� � � � 	�
 � �� � � � 	
 �

where

� � 	�
 � ��� �� � � � ���
 �

Let � � �� �� � � � ���
�

be a �-agent

�
 � � �� � � ��� �� � � � ���
� ����� � � �	�� � 	

� � � ��� �� � � � ���
� �
 �
,

a total order
�
 � � � � ��� � � � 	�
 � � � 	
 	

COMETA - Udine, – p.9/29

HD definitions: Named Functions
NFun

� � �� � NSet �

� � NSet �

�� �
� � � � �

� �

� 	��

� � � � � � � 	
�

 � � � � � 	
�

��

Properties:

composition is trivially
defined

COMETA - Udine, – p.10/29

HD definitions: Named Functions
NFun

� � �� � NSet �

� � NSet �

�� �
� � � � �

� �

� 	��

� � � � � � � 	
�

 � � � � � 	
�

��

Properties:

��� � ��� � � �

�
���

� �� � � � � � � � ��� � � �

� � �
��

� � � � � � � � �

composition is trivially
defined

COMETA - Udine, – p.10/29

HD definitions: Named Functions
NFun

� � �� � NSet �

� � NSet �

�� �
� � � � �

� �

� 	��

� � � � � � � 	
�

 � � � � � 	
�

��

Properties:

��� � ��� � � �

�
���

� �� � � � � � � � ��� � � �

� � �
��

� � � � � � � � �

composition is trivially
defined

lab

σ

ds

COMETA - Udine, – p.10/29

HD definitions: Named Functions
NFun

� � �� � NSet �

� � NSet �

�� �
� � � � �

� �

� 	��

� � � � � � � 	
�

 � � � � � 	
�

��

Properties:

��� � ��� � � �

�
���

� �� � � � � � � � ��� � � �

� � �
��

� � � � � � � � �

composition is trivially
defined

lab

σ

ds

COMETA - Udine, – p.10/29

HD-automata for -agents

� � � � � � � � 	 � � 	 � � �

� � � � �� � � 	 �� � � 	 �� 	 �� 	

COMETA - Udine, – p.11/29

HD-automata for -agents

Bundle

� � � � � NSet � � �� � � � ��� � � ��

� �� � � �
� � � � � � � � � � � �� �� � � 	

COMETA - Udine, – p.11/29

HD-automata for -agents

Bundle

� � � � � NSet � � �� � � � ��� � � ��

� �� � � �
� � � � � � � � � � � �� �� � � 	

�-calculus label

COMETA - Udine, – p.11/29

HD-automata for -agents

Bundle

� � � � � NSet � � �� � � � ��� � � ��

� �� � � �
� � � � � � � � � � � �� �� � � 	

� � � � � �

observable names of the transition

COMETA - Udine, – p.11/29

HD-automata for -agents

Bundle

� � � � � NSet � � �� � � � ��� � � ��

� �� � � �
� � � � � � � � � � � �� �� � � 	

� � � 	�
� � �

meaning of the names of �

COMETA - Udine, – p.11/29

HD-automata for -agents

Bundle

� � � � � NSet � � �� � � � ��� � � ��

� �� � � �
� � � � � � � � � � � �� �� � � 	

destination state

COMETA - Udine, – p.11/29

HD-automata for -agents

Bundle

� � � � � NSet � � �� � � � ��� � � ��

� �� � � �
� � � � � � � � � � � �� �� � � 	

�
� � � � � � � � � � �� � � �� �� 	

�
���

� � � � �
� � � �

� � � � � � � � � �� � � � � � � � � � � ��

OUT

G = id, exch(,)

TAU

OUT

COMETA - Udine, – p.11/29

HD-automata for -agents

Bundle

� � � � � NSet � � �� � � � ��� � � ��

� �� � � �
� � � � � � � � � � � �� �� � � 	

�
� � � � � � � � � � �� � � �� �� 	

�
���

� � � � �
� � � �

� � � � � � � � � �� � � � � � � � � � � ��

OUT

G = id, exch(,)

TAU

OUT

COMETA - Udine, – p.11/29

HD-automata and name creation

� �� � � � � � � � ��� �
� � ��
 � � � � ��
 � �

COMETA - Udine, – p.12/29

HD-automata and name creation

� �� � � � � � � � ��� �
� � ��
 � � � � ��
 � �

x y

IN

u v

w

OUT

IN BIN * IN

OUT

COMETA - Udine, – p.12/29

HD-automata and name creation

� �� � � � � � � � ��� �
� � ��
 � � � � ��
 � �

x y

IN

u v

w

OUT

IN BIN * IN

OUT

�
 � �
���� �� �� � �	� �

� � �
� � � � � � � � 	

COMETA - Udine, – p.12/29

HD-automata and name creation

� �� � � � � � � � ��� �
� � ��
 � � � � ��
 � �

x y

u v

w

OUT

ININ BIN * IN

OUT

�
 � �
���� �� �� � �	� �

� � �
� � � � � � � � 	

COMETA - Udine, – p.12/29

Bundle normalization

compute the redundant transitions

compute the active names of a bundle

remove dominated transitions

select the canonical bundle according to the order
relation

COMETA - Udine, – p.13/29

Bundle normalization

compute the redundant transitions

compute the active names of a bundle

remove dominated transitions

select the canonical bundle according to the order
relation

COMETA - Udine, – p.13/29

Bundle normalization

compute the redundant transitions

compute the active names of a bundle

remove dominated transitions

select the canonical bundle according to the order
relation

COMETA - Udine, – p.13/29

Bundle normalization

compute the redundant transitions

compute the active names of a bundle

remove dominated transitions

select the canonical bundle according to the order
relation

COMETA - Udine, – p.13/29

Bundle normalization

compute the redundant transitions

compute the active names of a bundle

remove dominated transitions

select the canonical bundle according to the order
relation

COMETA - Udine, – p.13/29

The functor on NSet

�

is an endo-functor on NSet:

� � �� � � � � � �� � � � �

normalized

	

� � � � �� � � number of names of

�

��� � � �� � ��� iff

� �� � � �

� � ��� � � �

� � �� � � � � � group of

�

COMETA - Udine, – p.14/29

The functor on NFun

...while on named functions:

� � � � � � � �� � �

� � � � � � � � � � �

� � � � � � � � � � �
 � � � � �

� � � � � � � � � � � � � �
� � � � � � � � �� � � � � � � � � �� � � �� � � � � � � � � � � � 	�

� � � � � � � � � ��� � �
 � � � � � � ��
 � � � � � � �

A transition system over NSet and -actions is a named func-

tion such that

COMETA - Udine, – p.15/29

The functor on NFun

...while on named functions:

� � � � � � � �� � �

� � � � � � � � � � �

� � � � � � � � � � �
 � � � � �

� � � � � � � � � � � � � �
� � � � � � � � �� � � � � � � � � �� � � �� � � � � � � � � � � � 	�

� � � � � � � � � ��� � �
 � � � � � � ��
 � � � � � � �

A transition system over NSet and �-actions is a named func-

tion

�

such that

� 	 � � �� 	 �

COMETA - Udine, – p.15/29

HD-automata as -coalgebras

Let � � � � �� � � � ���
�

be a �-agent

� � � � �� � � � � �� � � � � �
� � � � � �

� �� � 	

� � � � � �� � � � � �
� � � �
,

�� � � � � � � �� � � 	 � � � � 	 � 	

COMETA - Udine, – p.16/29

HD-automata as -coalgebras

Let � � � � �� � � � ���
�

be a �-agent

� � � � �� � � � � �� � � � � �
� � � � � �

� �� � 	

� � � � � �� � � � � �
� � � �
,

�� � � � � � � �� � � 	 � � � � 	 � 	

�� � � � � � � �� � � 	

COMETA - Udine, – p.16/29

HD-automata as -coalgebras

Let � � � � �� � � � ���
�

be a �-agent

� � � � �� � � � � �� � � � � �
� � � � � �

� �� � 	

� � � � � �� � � � � �
� � � �
,

�� � � � � � � �� � � 	 � � � � 	 � 	

�� � � � � � � �� � � 	

� � � � � � � � � � ��

, where

� � � � � ��� � � 	 � � � � � ��
 � � � �
�

� � � �

COMETA - Udine, – p.16/29

Partition Refinement Algorithm

Initial approximation

��� :

� ��� � � 	

� ��� � �

,

� � � ��� 	

,

� � � � � 	

� � � � �

� ��
� � � � �

� �� � � � � 	

COMETA - Udine, – p.17/29

Partition Refinement Algorithm

Initial approximation

��� :

� ��� � � 	

� ��� � �

,

� � � ��� 	

,

� � � � � 	

� � � � �

� ��
� � � � �

� �� � � � � 	

�
� � � � � � � � �
�

�

COMETA - Udine, – p.17/29

Partition Refinement Algorithm

Initial approximation

��� :

� ��� � � 	

� ��� � �

,

� � � ��� 	

,

� � � � � 	

� � � � �

� ��
� � � � �

� �� � � � � 	

�
� � � � � � � � �
�

�

Theorem If

�

is a finite HD,

���
� � ���� � � � � ��� �
The isomorphism

�� � ��� �

� � ���� � � yields the minimal
realization of

�
up to strong early bisimilarity

COMETA - Udine, – p.17/29

Partition Refinement Algorithm (2)

At each step:

a block is splitted:

� � �
� � � � � � �
� � � � and

� � � � �
� � � � � � � � � �
� � � �

new names may be introduced

COMETA - Udine, – p.18/29

Partition Refinement Algorithm (2)

At each step:

a block is splitted:

� � �
� � � � � � �
� � � � and

� � � � �
� � � � � � � � � �
� � � �

new names may be introduced

The iteration step:

�� � � � � � �
 � � �� � � � � � � � � �
� � � � �� �
� � � �� � � �� �� �

� � � � � � � � � ��� �
� � � � 	

COMETA - Udine, – p.18/29

States, labels & arrows

labσ

s

d

type � state =
| Star
| State of � � � � � �� �� 	

id

 � � � � �� � � 	

names

 �

� � � � � � � � � �

� �� 	

group

type � label =
| Tau of � � � � �

| BIn of � � � � �
 � � � � �

| BOut of � � � � �
 � � � � �

| In of � � � � �
 � � � � �

| Out of � � � � �� � � 	�

 � � � � �� � � 	

type � arrow =
Arrow of � � ��� ���� � � 	

source

 � � �� ��� � � 	

dest

 � �� � � �� �� 	

lab
COMETA - Udine, – p.19/29

Bundle & Automata

bundle :

�
� � � � � � � � � � �

� � � 	

with the same source

type � automaton =
HDAutoma of � � ��� ���� �� 	

start

 �

� � ��� ��� � � � � �

� �� 	

states

 �
� � � � � � � � � � �

� � � 	

arrows

COMETA - Udine, – p.20/29

Blocks

Bundle

block

label arrow automatonstate

st
at

es

norm

COMETA - Udine, – p.21/29

Blocks

Bundle

block

label arrow automatonstate

st
at

es

norm

At the end of each iteration,

blocks represent the states of the

-th approximation of the minimal
automaton while

their norm components are the ar-
rows of the approximation

COMETA - Udine, – p.21/29

Blocks (2)

type � blocks =
Block of

states : � state list

norm : � arrow list

active_names : � list

group : � list list

�

: (� state � (�
 �) list list)

� � � : (� state � (�
 �) list)

x

q

q

θ

COMETA - Udine, – p.22/29

Blocks (2)

type � blocks =
Block of

states : � state list

norm : � arrow list

active_names : � list

group : � list list

�

: (� state � (�
 �) list list)

� � � : (� state � (�
 �) list)

x

q

q

θ

COMETA - Udine, – p.22/29

Initially...

q

All the states are (considered)
bisimilar

No norm, group or

�

is given

This corresponds to map each
transition in ’unit’

[Block(states, [], [], [], (fun q � [[]]), (fun q � []))]

COMETA - Udine, – p.23/29

Generic step

�
��
��
�

x

q

; ;
x

q

; ;
x

q

�
��
��
�

split

; ; ; ;(,)
x

q

x

q (,)
x

q

x

q (,)
x

q

x

q

COMETA - Udine, – p.24/29

Generic step

�
��
��
�

x

q

; ;
x

q

; ;
x

q

�
��
��
�

�

split

; ; ; ;(,)
x

q

x

q (,)
x

q

x

q (,)
x

q

x

q

COMETA - Udine, – p.24/29

Generic step

�
��
��
�

x

q

; ;
x

q

; ;
x

q

�
��
��
�

�

split

; ; ; ;(,)
x

q

x

q (,)
x

q

x

q (,)
x

q

x

q

COMETA - Udine, – p.24/29

Splitting: a closer look

x

q

q

θ

x

qq

BIN x q2;s [*/y]

x y sIN
q BIN x s [*/y]

q3;s3Tau

q3

q2

Tau s3

x

COMETA - Udine, – p.25/29

Splitting: a closer look

x

q1

q2

q3

q1

q2

q3

q

x yIN σ

xBIN σ [*/y]

Tau σ3

BIN x q2;s [*/y]

qq

Tau q3;s3

q2

q3

x

x

x

let bundle hd q =
List.sort compare

(List.filter (funh � (Arrow.source h) = q) (arrows hd))

COMETA - Udine, – p.25/29

Splitting: a closer look

x

q1

q2

q3

q1

q2

q3

x

q

x yIN σ

xBIN σ [*/y]

Tau σ3

x

qq

Tau q3;s3

BIN q2;s [*/y]

q2

q3

x

x

List.map

�
� bundle

COMETA - Udine, – p.25/29

Splitting: a closer look

x

x

q1

q2

q3

q1

q2

q3

Tau σ3

x

x

q

x yIN σ

xBIN

xBIN σ [*/y]

Tau θ3;σ3

θ2

θ3

θ2;σ [*/y]

�
� � � � � �
 � � � �� �� � � � �� � � � �
�

� � � � � � � � � � � � � � �

� � � � � � � � � � �
�

� � � � 	�

let red bl =
let bl_in = List.filter covered_inbl
in list_diff bl bl_in

COMETA - Udine, – p.25/29

Splitting: a closer look

x

x

q1

q2

q3

q1

q2

q3

Tau σ3

x

x

q
θ

q

x yIN σ

xBIN

xBIN σ [*/y]

Tau θ3;σ3

θ2

θ3

θ2;σ [*/y]

let an = active_names_bundle (red bundle) in
let remove_in ar = match ar with

| Arrow(_,_,In(_,_)) � not (List.mem (obj ar) an)
| _ � false in

list_diff bundle (List.filter remove_in bundle)

COMETA - Udine, – p.25/29

Splitting: a closer look

x

x

q1

q2

q3

q1

q2

q3

Tau σ3

x

x

q
θ

q

x yIN σ

xBIN

xBIN σ [*/y]

Tau θ3;σ3

θ2

θ3

θ2;σ [*/y]

�
� � � � � � � ��� � �� � ��� _ � � � � � � � � � � bundle

� � � � � �
�

COMETA - Udine, – p.25/29

Termination

...informally, when

�
� � � is isomorph to

�
�

�
��
��
�

x

q

; ;
x

q

; ;
x

q

�
��
��
�

COMETA - Udine, – p.26/29

Termination

...informally, when

�
� � � is isomorph to

�
�

�
��
��
�

x

q

; ;
x

q

; ;
x

q

�
��
��
�

; ; ; ;(,)
x

q (,)
x

q (,)
x

q

COMETA - Udine, – p.26/29

Termination

...informally, when

�
� � � is isomorph to

�
�

�
��
��
�

x

q

; ;
x

q

; ;
x

q

�
��
��
�

; ; ; ;(,)
x

q (,)
x

q (,)
x

q

�

COMETA - Udine, – p.26/29

Termination

...informally, when

�
� � � is isomorph to

�
�

�
��
��
�

x

q

; ;
x

q

; ;
x

q

�
��
��
�

; ; ; ;(,)
x

q (,)
x

q (,)
x

q

�

no further names are added

COMETA - Udine, – p.26/29

An example

� ��� � � � � � � � � ��
� ��� � � � � � � � � � �
� ��� � � � � �

� ��� � � � � � � � � � � �� � ��� � � � � � � � � � � �� � � � � � � � �

COMETA - Udine, – p.27/29

An example

� ��� � � � � � � � � ��
� ��� � � � � � � � � � �
� ��� � � � � �

� ��� � � � � � � � � � � �� � ��� � � � � � � � � � � �� � � � � � � � �

+(x!y.R(x, y, z), y!x.R(x, y, z))+(x!y.R(x, y, z), y!x.R(x, y, z))+(x!y.R(x, y, z), y!x.R(x, y, z))+(x!y.R(x, y, z), y!x.R(x, y, z))+(x!y.R(x, y, z), y!x.R(x, y, z))+(x!y.R(x, y, z), y!x.R(x, y, z))+(x!y.R(x, y, z), y!x.R(x, y, z))+(x!y.R(x, y, z), y!x.R(x, y, z))+(x!y.R(x, y, z), y!x.R(x, y, z))+(x!y.R(x, y, z), y!x.R(x, y, z))+(x!y.R(x, y, z), y!x.R(x, y, z))+(x!y.R(x, y, z), y!x.R(x, y, z))+(x!y.R(x, y, z), y!x.R(x, y, z))+(x!y.R(x, y, z), y!x.R(x, y, z))+(x!y.R(x, y, z), y!x.R(x, y, z))+(x!y.R(x, y, z), y!x.R(x, y, z))+(x!y.R(x, y, z), y!x.R(x, y, z))

x!yx!yx!yx!yx!yx!yx!yx!yx!yx!yx!yx!yx!yx!yx!yx!yx!y

y!xy!xy!xy!xy!xy!xy!xy!xy!xy!xy!xy!xy!xy!xy!xy!xy!x

R(#0, #1, #2)R(#0, #1, #2)R(#0, #1, #2)R(#0, #1, #2)R(#0, #1, #2)R(#0, #1, #2)R(#0, #1, #2)R(#0, #1, #2)R(#0, #1, #2)R(#0, #1, #2)R(#0, #1, #2)R(#0, #1, #2)R(#0, #1, #2)R(#0, #1, #2)R(#0, #1, #2)R(#0, #1, #2)R(#0, #1, #2)

#0?#0#0?#0#0?#0#0?#0#0?#0#0?#0#0?#0#0?#0#0?#0#0?#0#0?#0#0?#0#0?#0#0?#0#0?#0#0?#0#0?#0

#0?#1#0?#1#0?#1#0?#1#0?#1#0?#1#0?#1#0?#1#0?#1#0?#1#0?#1#0?#1#0?#1#0?#1#0?#1#0?#1#0?#1

#0?#2#0?#2#0?#2#0?#2#0?#2#0?#2#0?#2#0?#2#0?#2#0?#2#0?#2#0?#2#0?#2#0?#2#0?#2#0?#2#0?#2

#0?(#3)#0?(#3)#0?(#3)#0?(#3)#0?(#3)#0?(#3)#0?(#3)#0?(#3)#0?(#3)#0?(#3)#0?(#3)#0?(#3)#0?(#3)#0?(#3)#0?(#3)#0?(#3)#0?(#3)

#1?#0#1?#0#1?#0#1?#0#1?#0#1?#0#1?#0#1?#0#1?#0#1?#0#1?#0#1?#0#1?#0#1?#0#1?#0#1?#0#1?#0

#1?#1#1?#1#1?#1#1?#1#1?#1#1?#1#1?#1#1?#1#1?#1#1?#1#1?#1#1?#1#1?#1#1?#1#1?#1#1?#1#1?#1

#1?#2#1?#2#1?#2#1?#2#1?#2#1?#2#1?#2#1?#2#1?#2#1?#2#1?#2#1?#2#1?#2#1?#2#1?#2#1?#2#1?#2

#1?(#3)#1?(#3)#1?(#3)#1?(#3)#1?(#3)#1?(#3)#1?(#3)#1?(#3)#1?(#3)#1?(#3)#1?(#3)#1?(#3)#1?(#3)#1?(#3)#1?(#3)#1?(#3)#1?(#3)

S(#0, #1, #0)S(#0, #1, #0)S(#0, #1, #0)S(#0, #1, #0)S(#0, #1, #0)S(#0, #1, #0)S(#0, #1, #0)S(#0, #1, #0)S(#0, #1, #0)S(#0, #1, #0)S(#0, #1, #0)S(#0, #1, #0)S(#0, #1, #0)S(#0, #1, #0)S(#0, #1, #0)S(#0, #1, #0)S(#0, #1, #0)

#0!#1#0!#1#0!#1#0!#1#0!#1#0!#1#0!#1#0!#1#0!#1#0!#1#0!#1#0!#1#0!#1#0!#1#0!#1#0!#1#0!#1

#1!#0#1!#0#1!#0#1!#0#1!#0#1!#0#1!#0#1!#0#1!#0#1!#0#1!#0#1!#0#1!#0#1!#0#1!#0#1!#0#1!#0

S(#0, #1, #1)S(#0, #1, #1)S(#0, #1, #1)S(#0, #1, #1)S(#0, #1, #1)S(#0, #1, #1)S(#0, #1, #1)S(#0, #1, #1)S(#0, #1, #1)S(#0, #1, #1)S(#0, #1, #1)S(#0, #1, #1)S(#0, #1, #1)S(#0, #1, #1)S(#0, #1, #1)S(#0, #1, #1)S(#0, #1, #1)

#0!#1#0!#1#0!#1#0!#1#0!#1#0!#1#0!#1#0!#1#0!#1#0!#1#0!#1#0!#1#0!#1#0!#1#0!#1#0!#1#0!#1

#1!#0#1!#0#1!#0#1!#0#1!#0#1!#0#1!#0#1!#0#1!#0#1!#0#1!#0#1!#0#1!#0#1!#0#1!#0#1!#0#1!#0

S(#0, #1, #2)S(#0, #1, #2)S(#0, #1, #2)S(#0, #1, #2)S(#0, #1, #2)S(#0, #1, #2)S(#0, #1, #2)S(#0, #1, #2)S(#0, #1, #2)S(#0, #1, #2)S(#0, #1, #2)S(#0, #1, #2)S(#0, #1, #2)S(#0, #1, #2)S(#0, #1, #2)S(#0, #1, #2)S(#0, #1, #2)

#0!#1#0!#1#0!#1#0!#1#0!#1#0!#1#0!#1#0!#1#0!#1#0!#1#0!#1#0!#1#0!#1#0!#1#0!#1#0!#1#0!#1

#1!#0#1!#0#1!#0#1!#0#1!#0#1!#0#1!#0#1!#0#1!#0#1!#0#1!#0#1!#0#1!#0#1!#0#1!#0#1!#0#1!#0

R(#0, #1, #1)R(#0, #1, #1)R(#0, #1, #1)R(#0, #1, #1)R(#0, #1, #1)R(#0, #1, #1)R(#0, #1, #1)R(#0, #1, #1)R(#0, #1, #1)R(#0, #1, #1)R(#0, #1, #1)R(#0, #1, #1)R(#0, #1, #1)R(#0, #1, #1)R(#0, #1, #1)R(#0, #1, #1)R(#0, #1, #1)

#0?#0#0?#0#0?#0#0?#0#0?#0#0?#0#0?#0#0?#0#0?#0#0?#0#0?#0#0?#0#0?#0#0?#0#0?#0#0?#0#0?#0

#0?#1#0?#1#0?#1#0?#1#0?#1#0?#1#0?#1#0?#1#0?#1#0?#1#0?#1#0?#1#0?#1#0?#1#0?#1#0?#1#0?#1

#0?(#2)#0?(#2)#0?(#2)#0?(#2)#0?(#2)#0?(#2)#0?(#2)#0?(#2)#0?(#2)#0?(#2)#0?(#2)#0?(#2)#0?(#2)#0?(#2)#0?(#2)#0?(#2)#0?(#2)

#1?#0#1?#0#1?#0#1?#0#1?#0#1?#0#1?#0#1?#0#1?#0#1?#0#1?#0#1?#0#1?#0#1?#0#1?#0#1?#0#1?#0

#1?#1#1?#1#1?#1#1?#1#1?#1#1?#1#1?#1#1?#1#1?#1#1?#1#1?#1#1?#1#1?#1#1?#1#1?#1#1?#1#1?#1

#1?(#2)#1?(#2)#1?(#2)#1?(#2)#1?(#2)#1?(#2)#1?(#2)#1?(#2)#1?(#2)#1?(#2)#1?(#2)#1?(#2)#1?(#2)#1?(#2)#1?(#2)#1?(#2)#1?(#2)

R(#0, #1, #0)R(#0, #1, #0)R(#0, #1, #0)R(#0, #1, #0)R(#0, #1, #0)R(#0, #1, #0)R(#0, #1, #0)R(#0, #1, #0)R(#0, #1, #0)R(#0, #1, #0)R(#0, #1, #0)R(#0, #1, #0)R(#0, #1, #0)R(#0, #1, #0)R(#0, #1, #0)R(#0, #1, #0)R(#0, #1, #0)

#0?#0#0?#0#0?#0#0?#0#0?#0#0?#0#0?#0#0?#0#0?#0#0?#0#0?#0#0?#0#0?#0#0?#0#0?#0#0?#0#0?#0

#0?#1#0?#1#0?#1#0?#1#0?#1#0?#1#0?#1#0?#1#0?#1#0?#1#0?#1#0?#1#0?#1#0?#1#0?#1#0?#1#0?#1

#0?(#2)#0?(#2)#0?(#2)#0?(#2)#0?(#2)#0?(#2)#0?(#2)#0?(#2)#0?(#2)#0?(#2)#0?(#2)#0?(#2)#0?(#2)#0?(#2)#0?(#2)#0?(#2)#0?(#2)

#1?#0#1?#0#1?#0#1?#0#1?#0#1?#0#1?#0#1?#0#1?#0#1?#0#1?#0#1?#0#1?#0#1?#0#1?#0#1?#0#1?#0 #1?#1#1?#1#1?#1#1?#1#1?#1#1?#1#1?#1#1?#1#1?#1#1?#1#1?#1#1?#1#1?#1#1?#1#1?#1#1?#1#1?#1
#1?(#2)#1?(#2)#1?(#2)#1?(#2)#1?(#2)#1?(#2)#1?(#2)#1?(#2)#1?(#2)#1?(#2)#1?(#2)#1?(#2)#1?(#2)#1?(#2)#1?(#2)#1?(#2)#1?(#2)

COMETA - Udine, – p.27/29

Minimal representation

state b0 2 [[1 ; 2] ; [2 ; 1]]
state b1 2 [[1 ; 2] ; [2 ; 1]]
b0 � b1 out[1 ; 2] [1 ; 2]
b0 � b1 out[1 ; 2] [2 ; 1]
b0 � b1 out[2 ; 1] [1 ; 2]
b0 � b1 out[2 ; 1] [2 ; 1]
b1 � b0 bin[1] [1 ; 2]
b1 � b0 bin[1] [2 ; 1]
b1 � b0 bin[2] [2 ; 1]
b1 � b0 bin[2] [1 ; 2]
b1 � b0 in[1 ; 1] [1 ; 2]
b1 � b0 in[1 ; 1] [2 ; 1]
b1 � b0 in[1 ; 2] [1 ; 2]
b1 � b0 in[1 ; 2] [2 ; 1]
b1 � b0 in[2 ; 1] [1 ; 2]
b1 � b0 in[2 ; 1] [2 ; 1]
b1 � b0 in[2 ; 2] [1 ; 2]
b1 � b0 in[2 ; 2] [2 ; 1]

COMETA - Udine, – p.28/29

Final remarks

Handhover benchmarks are encouraging

Extend to
open bisimilarity
asynchronous �-calculus
complex terms: application to verification of security
protocols

More experimental results

Optimization: handling of permutations

Integrations (HAL and Mobility workbench)

Ocaml compiler

Tool re-engineering (on-going work)

COMETA - Udine, – p.29/29

	Plan of the talk
	Motivations
	The approach
	HD: graphically
	Basic Definitions
	Some notations
	A functor for transition systems
	HD definitions: Named Sets
	HD definitions: Named Functions
	HD-automata for $pi $-agents
	HD-automata and name creation
	Bundle normalization
	The functor on NSet
	The functor on NFun
	HD-automata as T-coalgebras
	Partition Refinement Algorithm
	Partition Refinement Algorithm (2)
	States, labels & arrows
	Bundle & Automata
	Blocks
	Blocks (2)
	Initially...
	Generic step
	Splitting: a closer look
	Termination
	An example
	Minimal representation
	Final remarks

