History Dependent Automata: a Co-Algebraic definition, a Partitioning Algorithm and its Implementation

Roberto Raggi & Emilio Tuosto

joint work with

Gianluigi Ferrari, Ugo Montanari and Marco Pistore

- Motivations
- HD approach

- Motivations
- HD approach
- Co-algebraic definition of HD

- Motivations
- HD approach
- Co-algebraic definition of HD
- HD-automata for π -agents

- Motivations
- HD approach
- Co-algebraic definition of HD
- **•** HD-automata for π -agents
- The partitioning algorithm

- Motivations
- HD approach
- Co-algebraic definition of HD
- HD-automata for π -agents
- The partitioning algorithm
- Principal data structures

- Motivations
- HD approach
- Co-algebraic definition of HD
- HD-automata for π -agents
- The partitioning algorithm
- Principal data structures
- The main cicle

- Motivations
- HD approach
- Co-algebraic definition of HD
- HD-automata for π -agents
- The partitioning algorithm
- Principal data structures
- The main cicle
- An example

- Motivations
- HD approach
- Co-algebraic definition of HD
- HD-automata for π -agents
- The partitioning algorithm
- Principal data structures
- The main cicle
- An example
- Final considerations

Motivations

CAV98: π -spec of Handover protocol

Using HAL:

- 37199 states and 47958 Transitions
- Verification takes 15 min.

The approach

- HD as a model for name passing Calculi [Montanari & Pistore]
 - Specifically designed for verification purposes
 - Dynamic name allocation
 - Garbage collection of non-active names
 - Name symmetries
- Finite state representation of finite control π -agents
- Verification Techniques for HD-automata
- Semantic Minimization via Partition Refinement

HD: graphically

Transition System

 $T = (S, L, \rightarrow) \quad \rightarrow \subseteq S \times L \times S$

Notation $q \xrightarrow{l} q' \iff (q, l, q') \in \rightarrow$

Transition SystemNotation $T = (S, L, \rightarrow)$ $\rightarrow \subseteq S \times L \times S$ $\stackrel{l}{q \rightarrow q'} \iff (q, l, q') \in \rightarrow$ T co-algebraically: $K : S \rightarrow \wp(L \times S)$ $K : q \mapsto \{(l, q') : q \rightarrow q'\}$

 Transition System
 Notation

 $T = (S, L, \rightarrow)$ $\rightarrow \subseteq S \times L \times S$ $q \stackrel{l}{\rightarrow} q' \iff (q, l, q') \in \rightarrow$

 T co-algebraically:
 $K : S \rightarrow \wp(L \times S)$
 $K : q \mapsto \{(l, q') : q \stackrel{l}{\rightarrow} q'\}$

 \sim (step of a) bundle

 Transition System
 Notation

 $T = (S, L, \rightarrow)$ $\rightarrow \subseteq S \times L \times S$ $q \stackrel{l}{\rightarrow} q' \iff (q, l, q') \in \rightarrow$

 T co-algebraically:
 $K : S \rightarrow \wp(L \times S)$
 $K : q \mapsto \{(l, q') : q \stackrel{l}{\rightarrow} q'\}$

(step of a) bundle

$$\beta = \langle D : \mathbf{Set}, Step : \wp(L \times D) \rangle$$

B collection of bundles

Transition SystemNotation $T = (S, L, \rightarrow)$ $\rightarrow \subseteq S \times L \times S$ T co-algebraically: $K : S \rightarrow \wp(L \times S)$ $K : q \mapsto \{(l, q') : q \stackrel{l}{\rightarrow} q'\}$ (step of a) bundle $\beta = \langle D : \mathbf{Set}, Step : \wp(L \times D) \rangle$ B collection of bundles

HD-automata are co-algebras defined on top of a permutation algebra [MFCS2000]

Transition SystemNotation $T = (S, L, \rightarrow)$ $\rightarrow \subseteq S \times L \times S$ T co-algebraically: $K : S \rightarrow \wp(L \times S)$ $K : q \mapsto \{(l, q') : q \stackrel{l}{\rightarrow} q'\}$ $K : q \mapsto \{(l, q') : q \stackrel{l}{\rightarrow} q'\}$ $\beta = \langle D : \mathbf{Set}, Step : \wp(L \times D) \rangle$ B collection of bundles

HD-automata are co-algebras defined on top of a permutation algebra [MFCS2000] \mathcal{H} is a HD-automata $\Rightarrow \exists \hat{\mathcal{H}} : \mathcal{H} \sim \hat{\mathcal{H}}$ and $\hat{\mathcal{H}}$ is minimal

Some notations

Set collection of setsFun collection of arrows $: \stackrel{\triangle}{=} \in$ $H = \langle S : \text{Set}, D : \text{Set}, h : S \to D \rangle$ $S_H \stackrel{\triangle}{=} S, D_H \stackrel{\triangle}{=} D, h_H \stackrel{\triangle}{=} h$

H; K composition of H, K: Fun $S_{H;K} = S_H$ $D_{H;K} = D_K$ $h_{H;K} = h_K \circ h_H$ where $D_H = S_K$

A functor for transition systems

 $T(Q) = \{\beta : B | D_{\beta} = Q\}$ Let H : Fun we define T(H) : Fun S.t.

$$S_{T(H)} = T(S_H)$$

$$D_{T(H)} = T(D_H)$$

•
$$h_{T(H)}: \beta \mapsto \langle D_H, \{ \langle l, h_H(q) \rangle | \langle l, q \rangle \in Step_\beta \rangle$$

HD definitions: Named Sets

NSet

$$\begin{split} A &= \langle Q : \mathbf{Set}, \\ &\mid \mid : Q \to \omega, \\ &\leq : Q \times Q \to Bool, \\ &G : \prod_{q:Q} \wp(\{q\}_A) \xrightarrow{bij} \{q\}_A \rangle \\ \end{split}$$
 where $\{q\}_A = v_1, ..., v_{|q|}$

HD definitions: Named Sets

NSet

$$\begin{split} A &= \langle Q : \mathbf{Set}, \\ &\mid \mid : Q \to \omega, \\ &\leq : Q \times Q \to Bool, \\ &G : \prod_{q:Q} \wp(\{q\}_A) \xrightarrow{bij} \{q\}_A \rangle \\ \end{split}$$
 where $\{q\}_A = v_1, ..., v_{|q|}$

Let
$$p(v_1, ..., v_n)$$
 be a π -agent
 $Q_A = \{q : p(v_1, ..., v_n) \xrightarrow{l_1...l_t} q\}$

•
$$|p(v_1, ..., v_n)|_A = n$$
,

•
$$G_A(q) = \{\rho : \{q\}_A \to \{q\}_A\}$$

HD definitions: Named Functions

NFun

- $H = \langle S : \mathsf{NSet},$
 - $D: \mathbf{NSet},$ $h: Q_S \to Q_D,$
 - $\Sigma: \prod_{q:Q_S} \wp(\{h(q)\}_D \xrightarrow{inj} \{q\}_S))$

HD definitions: Named Functions Properties: NFun $\forall \sigma : \Sigma_H(q)$ $H = \langle S : \mathsf{NSet}, \rangle$ $G_{D_H}(h_H(q)); \sigma = \Sigma_H(q)$ D : **NSet**, $h: Q_S \to Q_D,$ $\Sigma: \prod \wp(\{h(q)\}_D \xrightarrow{inj} \{q\}_S))$ composition is trivially $q:Q_S$ defi ned

	TAU	IN	OUT	BIN	BOUT
l	Ø	$\{1, 2\}$	$\{1, 2\}$	$\{1\}$	{1}

Bundle $\beta = \langle D : NSet, Step : \wp(qd D) \rangle$ Step = {..., $\langle l, \pi, \sigma, q \rangle, ...$ }

Bundle $\beta = \langle D : \mathsf{NSet}, Step : \wp(qd D) \rangle$

$$Step = \{..., \langle l, \pi, \sigma, q \rangle, ...\}$$

 π -calculus label

Bundle $\beta = \langle D : \mathsf{NSet}, Step : \wp(qd D) \rangle$

$$Step = \{..., \langle l, \pi, \sigma, q \rangle, ...\}$$

 $|l| \rightarrow N$ observable names of the transition

Bundle $\beta = \langle D : \mathsf{NSet}, Step : \wp(qd D) \rangle$

$$Step = \{..., \langle l, \pi, \sigma, q \rangle, ...\}$$

 $: \{q\}_{\bullet} \to N$ meaning of the names of q

Bundle $\beta = \langle D : \mathsf{NSet}, Step : \wp(qd D) \rangle$

$$Step = \{..., \langle l, \pi, \sigma, q \rangle, ...\}$$

destination state

Bundle
$$\beta = \langle D : \mathsf{NSet}, Step : \wp(qd D) \rangle$$

Step = {..., $\langle l, \pi, \sigma, q \rangle, ...$ }

$$S_{q} = \{ \langle l, \pi, \sigma, q \rangle \in Step_{\beta} \}$$
$$\boxed{G_{D_{\beta}}(q); S_{q} = S_{q}}$$
$$\rho; \langle l, \pi, \sigma, q \rangle = \langle l, \pi, \rho; \sigma, q \rangle$$

 $G = id, exch(\blacksquare, \blacksquare)$
$A(u, v, w) = u(x).\overline{x}v.nil + \overline{w}w.nil$

compute the redundant transitions

- compute the redundant transitions
- compute the active names of a bundle

- compute the redundant transitions
- compute the active names of a bundle
- remove dominated transitions

- compute the redundant transitions
- compute the active names of a bundle
- remove dominated transitions
- select the canonical bundle according to the order relation

The functor on NSet

T is an endo-functor on **NSet**:

•
$$Q_{T(A)} = \{\beta | D_{\beta} = A \land \beta \text{ normalized}\}$$

- $|\beta|_{T(A)} =$ number of names of β
- $\beta_1 \leq_{T(A)} \beta_2 \text{ iff } Step_{\beta_1} \leq Step_{\beta_2}$
- $G_{T(A)}(\beta) = \text{group of } \beta$

The functor on NFun

...while on named functions:

$$S_{T(H)} = T(S_H)$$

- $D_{T(H)} = T(D_H)$
- $h_{T(H)}(\beta) = norm(\beta')$ $\beta' = \langle D_H, \{ \langle l, \pi, \sigma'; \sigma, h_H(q) \rangle | \langle l, \pi, \sigma, q \rangle : Step_\beta \land \sigma' : \Sigma_H(q) \} \rangle$
- $\Sigma_{T(H)}(\beta) = Gr \ norm(\beta'); perm^{-1}(\beta')$

The functor on NFun

...while on named functions:

$$S_{T(H)} = T(S_H)$$

- $D_{T(H)} = T(D_H)$
- $h_{T(H)}(\beta) = norm(\beta')$ $\beta' = \langle D_H, \{ \langle l, \pi, \sigma'; \sigma, h_H(q) \rangle | \langle l, \pi, \sigma, q \rangle : Step_\beta \land \sigma' : \Sigma_H(q) \} \rangle$

•
$$\Sigma_{T(H)}(\beta) = Gr \ norm(\beta'); perm^{-1}(\beta')$$

A transition system over **NSet** and π -actions is a named function *K* such that $D_K = T(S_K)$

HD-automata as *T***-coalgebras**

Let $p(v_1, ..., v_n)$ be a π -agent

$$Q_A = \{ q : p(v_1, ..., v_n) \stackrel{l_1...l_t}{\to} q \}$$

●
$$|p(v_1, ..., v_n)|_A = n$$
,

•
$$G_A(q) = \{id : \{q\}_A \to \{q\}_A\}$$

HD-automata as *T***-coalgebras**

Let
$$p(v_1, ..., v_n)$$
 be a π -agent
• $Q_A = \{q : p(v_1, ..., v_n) \xrightarrow{l_1...l_t} q\}$
• $|p(v_1, ..., v_n)|_A = n$,
• $G_A(q) = \{id : \{q\}_A \to \{q\}_A\}$

$$\alpha: Q_A \to \{\beta | D_\beta = A\}$$

HD-automata as *T***-coalgebras**

Let
$$p(v_1, ..., v_n)$$
 be a π -agent
 $Q_A = \{q : p(v_1, ..., v_n) \xrightarrow{l_1...l_t} q\}$
 $|p(v_1, ..., v_n)|_A = n,$
 $G_A(q) = \{id : \{q\}_A \to \{q\}_A\}$

$$\alpha: Q_A \to \{\beta | D_\beta = A\}$$

 $K = \langle A, T(A), \Sigma \rangle$, where $\Sigma(q) = Gr(h_K(q)); perm^{-1}(\alpha(q))$

Partition Refinement Algorithm

Initial approximation H_0 :

\$S_{H_0} = S_K\$
\$D_{H_0} = \perp., \$Q_\perp = \{*\}, \$|*|_\perp = 0\$
\$G_\perp * = \(\eta\)
\$h_{H_0}(q) = *\$

•
$$\Sigma_{H_0} q = \{\emptyset\}$$

Partition Refinement Algorithm

Initial approximation H_0 :

$$H_{n+1} = K; T(H_n)$$

•
$$h_{H_0}(q) = \star$$

$$\, \boldsymbol{\Sigma}_{H_0} \ q = \{ \emptyset \}$$

Partition Refinement Algorithm

Initial approximation H_0 :

$$H_{n+1} = K; T(H_n)$$

Theorem If K is a finite HD,

$$\exists \bar{n} : D_{H_{\bar{n}+1}} \equiv D_{H_{\bar{n}}}$$

• The isomorphism $F: D_{H_{\bar{n}}} \to D_{H_{\bar{n}+1}}$ yields the minimal realization of K up to strong early bisimilarity

Partition Refinement Algorithm (2)

At each step:

- a block is splitted: $h_{H_n}(q) = h_{H_n}(q')$ and $h_{H_{n+1}}(q) \neq h_{H_{n+1}}(q')$
- new names may be introduced

Partition Refinement Algorithm (2)

At each step:

- a block is splitted: $h_{H_n}(q) = h_{H_n}(q')$ and $h_{H_{n+1}}(q) \neq h_{H_{n+1}}(q')$
- new names may be introduced

The iteration step:

$$h_{H_{n+1}} = norm\langle D_{H_n}, \{ \langle l, \pi, \sigma'; \sigma, h_{H_n}(q') \rangle \mid q \xrightarrow{l, \pi, \sigma} q' \land \sigma' : \Sigma_{H_n}(q') \rangle$$

States, labels & arrows

Bundle & Automata

Blocks

Blocks

At the end of each iteration,

- blocks represent the states of the n-th approximation of the minimal automaton while
- their norm components are the arrows of the approximation

Blocks (2)

type α blocks =			
Block Of			
states	: α state list *		
norm	: α arrow list *		
active_names	: α list *		
group	: α list list *		
\sum	: (α state \rightarrow (α *	α) list list)	*
Θ^{-1}	: (α state \rightarrow (α *	α) list)	

Blocks (2)

type α blocks =			
Block Of			
states	: α state list *		
norm	: α arrow list *		
active_names	: α list *		
group	: α list list *		
\sum	: (α state \rightarrow (α *	α (α) list list)	*
Θ^{-1}	: (α state \rightarrow (α *	$< \alpha$) list)	

q

x

 θ_{q}

Initially...

- All the states are (considered) bisimilar
- No norm, group or θ is given

$[\textbf{Block}(\text{states}, [], [], [], (fun q \rightarrow [[]]), (fun q \rightarrow []))]$

Generic step

Generic step

↓ split

Generic step

↓ split

let bundle hd q =

List.sort compare

(List.fi lter (funh \rightarrow (Arrow.source h) = q) (arrows hd))

List.map h_n bundle

 $h_{n+1} = norm \langle \text{states}, \{ \langle \ell, \pi, h_n(q'), \sigma'; \sigma \rangle | q \xrightarrow{\ell \pi \sigma} q' \land \sigma' \in \Sigma_n(q') \} \rangle$

let red bl =
let bl_in = List.fi lter covered_inbl
in list_diff bl bl_in

let an = active_names_bundle (red bundle) in
let remove_in ar = match ar with

| Arrow(_,_,In(_,_)) \rightarrow not (List.mem (obj ar) an) | _ \rightarrow false in

list_diff bundle (List.filter remove_in bundle)

 $\Sigma_{n+1}(q) = (\text{compute_group} (\text{norm bundle})) ; \theta_q^{-1}$
...informally, when H_{n+1} is isomorph to H_n

...informally, when H_{n+1} is isomorph to H_n

...informally, when H_{n+1} is isomorph to H_n

 \wedge

...informally, when H_{n+1} is isomorph to H_n

 \wedge

no further names are added

An example

$$S(x, y, z) = x!y.R(x, y, z) + y!x.R(x, y, z)$$

$$R(x, y, z) = x?(w).S(x, y, w) + y?(w).S(y, x, z)$$

An example

Minimal representation

state state b0	b0 b1 →	b1	2 2 out[1 ; 2]	[[1;2];[2;1] [[1;2];[2;1] [1;2]]
b0	\rightarrow	b1	out[1,2]	2;1	
DU	\rightarrow	DI		[1; 2]	
b0	\rightarrow	b1	out[2 ; 1]	[2;1]	
b1	\rightarrow	b0	bin[1]	[1;2]	
b1	\rightarrow	b0	bin[1]	[2;1]	
b1	\rightarrow	b0	bin[2]	[2;1]	
b1	\rightarrow	b0	bin[2]	[1;2]	
b1	\rightarrow	b0	in[1;1]	[1;2]	
b1	\rightarrow	b0	in[1;1]	[2;1]	
b1	\rightarrow	b0	in[1;2]	[1;2]	
b1	\rightarrow	b0	in[1;2]	[2;1]	
b1	\rightarrow	b0	in[2 ; 1]	[1;2]	
b1	\rightarrow	b0	in[2;1]	[2;1]	
b1	\rightarrow	b0	in[2;2]	[1;2]	
b1	\rightarrow	b0	in[2 ; 2]	[2;1]	

Final remarks

- Handhover benchmarks are encouraging
- Extend to
 - open bisimilarity
 - asynchronous π -calculus
 - complex terms: application to verification of security protocols
- More experimental results
- Optimization: handling of permutations
- Integrations (HAL and Mobility workbench)
- Ocaml compiler
- Tool re-engineering (on-going work)