History Dependent Automata: a Co-Algebraic definition, a Partitioning Algorithm and its Implementation

Roberto Raggi \& Emilio Tuosto

joint work with

Gianluigi Ferrari, Ugo Montanari and Marco Pistore

Plan of the talk

Plan of the talk

- Motivations

Plan of the talk

- Motivations
- HD approach

Plan of the talk

- Motivations
- HD approach
- Co-algebraic definition of HD

Plan of the talk

- Motivations
- HD approach
- Co-algebraic definition of HD
- HD-automata for π-agents

Plan of the talk

- Motivations
- HD approach
- Co-algebraic definition of HD
- HD-automata for π-agents
- The partitioning algorithm

Plan of the talk

- Motivations
- HD approach
- Co-algebraic definition of HD
- HD-automata for π-agents
- The partitioning algorithm
- Principal data structures

Plan of the talk

- Motivations
- HD approach
- Co-algebraic definition of HD
- HD-automata for π-agents
- The partitioning algorithm
- Principal data structures
- The main cicle

Plan of the talk

- Motivations
- HD approach
- Co-algebraic definition of HD
- HD-automata for π-agents
- The partitioning algorithm
- Principal data structures
- The main cicle
- An example

Plan of the talk

- Motivations
- HD approach
- Co-algebraic definition of HD
- HD-automata for π-agents
- The partitioning algorithm
- Principal data structures
- The main cicle
- An example
- Final considerations

Motivations

CAV98: π-spec of Handover protocol
Using HAL:

- 37199 states and 47958 Transitions
- Verification takes 15 min .

The approach

- HD as a model for name passing Calculi [Montanari \& Pistore]
- Specifically designed for verification purposes
- Dynamic name allocation
- Garbage collection of non-active names
- Name symmetries
- Finite state representation of finite control π-agents
- Verification Techniques for HD-automata
- Semantic Minimization via Partition Refinement

HD: graphically

Basic Definitions

Transition System
 $T=(S, L, \rightarrow) \quad \rightarrow \subseteq S \times L \times S$

Notation
$q \xrightarrow{l} q^{\prime} \Longleftrightarrow\left(q, l, q^{\prime}\right) \in \rightarrow$

Basic Definitions

Transition System

$T=(S, L, \rightarrow) \quad \rightarrow \subseteq S \times L \times S$

> Notation
> $q \xrightarrow{l} q^{\prime} \Longleftrightarrow\left(q, l, q^{\prime}\right) \in \rightarrow$
T co-algebraically: $K: S \rightarrow \wp(L \times S)$

$$
K: q \mapsto\left\{\left(l, q^{\prime}\right): q \xrightarrow{l} q^{\prime}\right\}
$$

Basic Definitions

Transition System

$T=(S, L, \rightarrow) \quad \rightarrow \subseteq S \times L \times S$

Notation
$q \xrightarrow{l} q^{\prime} \Longleftrightarrow\left(q, l, q^{\prime}\right) \in \rightarrow$
T co-algebraically: $K: S \rightarrow \wp(L \times S)$

$$
K: q \longmapsto\left\{\left(l, q^{\prime}\right): q \xrightarrow{l} q^{\prime}\right\}
$$

(step of a) bundle

Basic Definitions

Transition System
 $T=(S, L, \rightarrow) \quad \rightarrow \subseteq S \times L \times S$

Notation
${ }^{l} \xrightarrow{l} q^{\prime} \Longleftrightarrow\left(q, l, q^{\prime}\right) \in \rightarrow$
T co-algebraically: $K: S \rightarrow \wp(L \times S)$

$$
K: q \longleftrightarrow\left\{\left(l, q^{\prime}\right): q \xrightarrow{l} q^{\prime}\right\}
$$

(step of a) bundle

$$
\beta=\langle D: \text { Set, Step }: \wp(L \times D)\rangle
$$

B collection of bundles

Basic Definitions

Transition System

$T=(S, L, \rightarrow) \quad \rightarrow \subseteq S \times L \times S$

$$
\begin{aligned}
& \text { Notation } \\
& q \xrightarrow{l} q^{\prime} \Longleftrightarrow\left(q, l, q^{\prime}\right) \in \rightarrow
\end{aligned}
$$

T co-algebraically: $K: S \rightarrow \wp(L \times S)$

$$
K: q \longmapsto\left\{\left(l, q^{\prime}\right): q \xrightarrow{l} q^{\prime}\right\}
$$

(step of a) bundle $\quad \beta=\langle D:$ Set, Step : $\wp(L \times D)\rangle$
B collection of bundles

HD-automata are co-algebras defi ned on top of a permutation algebra [MFCS2000]

Basic Definitions

Transition System

$T=(S, L, \rightarrow) \quad \rightarrow \subseteq S \times L \times S$

$$
\begin{aligned}
& \text { Notation } \\
& q \xrightarrow{l} q^{\prime} \Longleftrightarrow\left(q, l, q^{\prime}\right) \in \rightarrow
\end{aligned}
$$

T co-algebraically: $K: S \rightarrow \wp(L \times S)$

$$
K: q \leftrightarrows\left\{\left(l, q^{\prime}\right): q \xrightarrow{l} q^{\prime}\right\}
$$

(step of a) bundle $\quad \beta=\langle D:$ Set, Step : $\wp(L \times D)\rangle$
B collection of bundles

HD-automata are co-algebras defi ned on top of a permutation algebra [MFCS2000]
\mathcal{H} is a HD -automata $\Rightarrow \exists \hat{\mathcal{H}}: \mathcal{H} \sim \hat{\mathcal{H}}$ and $\hat{\mathcal{H}}$ is minimal

Some notations

Set collection of sets
$: \triangleq \epsilon$

Fun collection of arrows

$$
\begin{aligned}
& H=\langle S: \text { Set }, D: \text { Set, } h: S \rightarrow D\rangle \\
& S_{H} \triangleq S, \quad D_{H} \triangleq D, \quad h_{H} \triangleq h
\end{aligned}
$$

$H ; K$ composition of H, K : Fun
$S_{H ; K}=S_{H} \quad D_{H ; K}=D_{K} \quad h_{H ; K}=h_{K} \circ h_{H}$
where $D_{H}=S_{K}$

A functor for transition systems

$T(Q)=\left\{\beta: B \mid D_{\beta}=Q\right\}$
Let H : Fun we define $T(H)$: Fun s.t.

- $S_{T(H)}=T\left(S_{H}\right)$
- $D_{T(H)}=T\left(D_{H}\right)$
- $h_{T(H)}: \beta \mapsto\left\langle D_{H},\left\{\left\langle l, h_{H}(q)\right\rangle \mid\langle l, q\rangle \in\right.\right.$ Step $\left._{\beta}\right\rangle$

HD definitions: Named Sets

NSet

$$
\begin{aligned}
A= & \langle Q: \text { Set }, \\
& |\mid: Q \rightarrow \omega, \\
& \leq: Q \times Q \rightarrow \text { Bool }, \\
& \left.G: \prod_{q: Q} \wp\left(\{q\}_{A}\right) \xrightarrow{b i j}\{q\}_{A}\right\rangle
\end{aligned}
$$

where $\{q\}_{A}=v_{1}, \ldots, v_{|q|}$

HD definitions: Named Sets

NSet

$$
\begin{aligned}
A= & \langle Q: \text { Set }, \\
& |\mid: Q \rightarrow \omega, \\
& \leq: Q \times Q \rightarrow \text { Bool }, \\
& \left.G: \prod_{q: Q} \wp\left(\{q\}_{A}\right) \xrightarrow{b i j}\{q\}_{A}\right\rangle
\end{aligned}
$$

where $\{q\}_{A}=v_{1}, \ldots, v_{|q|}$

Let $p\left(v_{1}, \ldots, v_{n}\right)$ be a π-agent

- $Q_{A}=\left\{q: p\left(v_{1}, \ldots, v_{n}\right) \xrightarrow{l_{1} \ldots l_{t}} q\right\}$
- $\left|p\left(v_{1}, \ldots, v_{n}\right)\right|_{A}=n$,
- a total order
- $G_{A}(q)=\left\{\rho:\{q\}_{A} \rightarrow\{q\}_{A}\right\}$

HD definitions: Named Functions

NFun

$$
\begin{aligned}
H= & \langle S: \text { NSet }, \\
& D: \text { NSet }, \\
& h: Q_{S} \rightarrow Q_{D}, \\
& \Sigma: \prod_{q: Q_{S}} \wp\left(\{h(q)\}_{D} \xrightarrow{\text { inj } \left.\left.\{q\}_{S}\right)\right\rangle}\right.
\end{aligned}
$$

HD definitions: Named Functions

NFun

Properties:

$$
\begin{aligned}
H= & \langle S: \text { NSet }, \\
& D: \text { NSet }, \\
& h: Q_{S} \rightarrow Q_{D}, \\
& \Sigma: \prod_{q: Q_{S}} \wp\left(\{h(q)\}_{D} \xrightarrow{\text { inj } \left.\left.\{q\}_{S}\right)\right\rangle}\right.
\end{aligned}
$$

$\forall \sigma: \Sigma_{H}(q)$

- $G_{D_{H}}\left(h_{H}(q)\right) ; \sigma=\Sigma_{H}(q)$
- $\sigma ; G_{S_{H}}(q) \subseteq \Sigma_{H}(q)$
- composition is trivially defi ned

HD definitions: Named Functions

NFun

$$
\begin{aligned}
H= & \langle S: \text { NSet }, \\
& D: \text { NSet }, \\
& h: Q_{S} \rightarrow Q_{D}, \\
& \Sigma: \prod_{q: Q_{S}} \wp\left(\{h(q)\}_{D} \xrightarrow{\text { inj } \left.\left.\{q\}_{S}\right)\right\rangle}\right.
\end{aligned}
$$

Properties:
$\forall \sigma: \Sigma_{H}(q)$

- $G_{D_{H}}\left(h_{H}(q)\right) ; \sigma=\Sigma_{H}(q)$
- $\sigma ; G_{S_{H}}(q) \subseteq \Sigma_{H}(q)$
- composition is trivially defi ned

HD definitions: Named Functions

NFun

$$
\begin{aligned}
H= & \langle S: \text { NSet }, \\
& D: \text { NSet }, \\
& h: Q_{S} \rightarrow Q_{D}, \\
& \Sigma: \prod_{q: Q_{S}} \wp\left(\{h(q)\}_{D} \xrightarrow{\text { inj } \left.\left.\{q\}_{S}\right)\right\rangle}\right.
\end{aligned}
$$

Properties:

$$
\forall \sigma: \Sigma_{H}(q)
$$

- $G_{D_{H}}\left(h_{H}(q)\right) ; \sigma=\Sigma_{H}(q)$
- $\sigma ; G_{S_{H}}(q) \subseteq \Sigma_{H}(q)$
- composition is trivially defi ned

HD-automata for π-agents

	$T A U$	$I N$	OUT	BIN	BOUT
$\|l\|$	\emptyset	$\{1,2\}$	$\{1,2\}$	$\{1\}$	$\{1\}$

HD-automata for π-agents

> Bundle $\beta=\langle D:$ NSet, Step $: \wp(q d D)\rangle$
> Step $=\{\ldots,\langle l, \pi, \sigma, q\rangle, \ldots\}$

HD-automata for π-agents

$$
\begin{aligned}
& \text { Bundle } \beta=\langle D: \mathbf{N S e t}, \text { Step }: \wp(q d D)\rangle \\
& \text { Step } \left.=\left\{\ldots,{ }^{\prime} l, \pi, \sigma, q\right\rangle, \ldots\right\}
\end{aligned}
$$

π-calculus label

HD-automata for π-agents

$$
\begin{aligned}
& \text { Bundle } \beta=\langle D: \text { NSet, Step }: \wp(q d D)\rangle \\
& \text { Step }=\{\ldots,!l, \pi, \sigma, q\rangle, \ldots\}
\end{aligned}
$$

$\epsilon_{:}|l| \rightarrow N$ observable names of the transition

HD-automata for π-agents

$$
\begin{aligned}
& \text { Bundle } \beta=\langle D: \text { NSet, Step }: \wp(q d D)\rangle \\
& \text { Step }=\{\ldots,\langle l, \pi, \sigma, q\rangle, \ldots\}
\end{aligned}
$$

$\leftarrow:\{q\} \bullet \rightarrow N$ meaning of the names of q

HD-automata for π-agents

$$
\begin{aligned}
& \text { Bundle } \beta=\langle D: \text { NSet, Step }: \wp(q d D)\rangle \\
& \text { Step }=\{\ldots,\langle l, \pi, \sigma, q\rangle, \ldots\}
\end{aligned}
$$

destination state

HD-automata for π-agents

> Bundle $\beta=\langle D:$ NSet, Step $: \wp(q d D)\rangle$
> Step $=\{\ldots,\langle l, \pi, \sigma, q\rangle, \ldots\}$

$$
S_{q}=\left\{\langle l, \pi, \sigma, q\rangle \in \text { Step }_{\beta}\right\}
$$

$$
G_{D_{\beta}}(q) ; S_{q}=S_{q}
$$

$\rho ;\langle l, \pi, \sigma, q\rangle=\langle l, \pi, \rho ; \sigma, q\rangle$

HD-automata for π-agents

Bundle $\beta=\langle D:$ NSet, Step : $\wp(q d D)\rangle$
Step $=\{\ldots,\langle l, \pi, \sigma, q\rangle, \ldots\}$

$$
S_{q}=\left\{\langle l, \pi, \sigma, q\rangle \in \text { Step }_{\beta}\right\}
$$

$$
G_{D_{\beta}}(q) ; S_{q}=S_{q}
$$

$\rho ;\langle l, \pi, \sigma, q\rangle=\langle l, \pi, \rho ; \sigma, q\rangle$

HD-automata and name creation

$$
A(u, v, w)=u(x) \cdot \bar{x} v \cdot n i l+\bar{w} w \cdot n i l
$$

HD-automata and name creation

$$
A(u, v, w)=u(x) \cdot \bar{x} v \cdot n i l+\bar{w} w \cdot n i l
$$

HD-automata and name creation

$A(u, v, w)=u(x) \cdot \bar{x} v \cdot n i l+\bar{w} w \cdot n i l$

HD-automata and name creation

$$
A(u, v, w)=u(x) \cdot \bar{x} v \cdot n i l+\bar{w} w \cdot n i l
$$

Bundle normalization

Bundle normalization

- compute the redundant transitions

Bundle normalization

- compute the redundant transitions
- compute the active names of a bundle

Bundle normalization

- compute the redundant transitions
- compute the active names of a bundle
- remove dominated transitions

Bundle normalization

- compute the redundant transitions
- compute the active names of a bundle
- remove dominated transitions
- select the canonical bundle according to the order relation

The functor on NSet

T is an endo-functor on NSet:

- $Q_{T(A)}=\left\{\beta \mid D_{\beta}=A \wedge \beta\right.$ normalized $\}$
- $|\beta|_{T(A)}=$ number of names of β
- $\beta_{1} \leq_{T(A)} \beta_{2}$ iff Step $_{\beta_{1}} \leq$ Step $_{\beta_{2}}$
- $G_{T(A)}(\beta)=$ group of β

The functor on NFun

...while on named functions:

- $S_{T(H)}=T\left(S_{H}\right)$
- $D_{T(H)}=T\left(D_{H}\right)$
- $h_{T(H)}(\beta)=\operatorname{norm}\left(\beta^{\prime}\right)$
$\beta^{\prime}=\left\langle D_{H},\left\{\left\langle l, \pi, \sigma^{\prime} ; \sigma, h_{H}(q)\right\rangle \mid\langle l, \pi, \sigma, q\rangle:\right.\right.$ Step $\left.\left._{\beta} \wedge \sigma^{\prime}: \Sigma_{H}(q)\right\}\right\rangle$
- $\Sigma_{T(H)}(\beta)=G r \operatorname{norm}\left(\beta^{\prime}\right) ; \operatorname{perm}^{-1}\left(\beta^{\prime}\right)$

The functor on NFun

...while on named functions:

- $S_{T(H)}=T\left(S_{H}\right)$
- $D_{T(H)}=T\left(D_{H}\right)$
- $h_{T(H)}(\beta)=\operatorname{norm}\left(\beta^{\prime}\right)$
$\beta^{\prime}=\left\langle D_{H},\left\{\left\langle l, \pi, \sigma^{\prime} ; \sigma, h_{H}(q)\right\rangle \mid\langle l, \pi, \sigma, q\rangle:\right.\right.$ Step $\left.\left._{\beta} \wedge \sigma^{\prime}: \Sigma_{H}(q)\right\}\right\rangle$
- $\Sigma_{T(H)}(\beta)=G r \operatorname{norm}\left(\beta^{\prime}\right) ; \operatorname{perm}^{-1}\left(\beta^{\prime}\right)$

A transition system over NSet and π-actions is a named function K such that $D_{K}=T\left(S_{K}\right)$

HD-automata as T-coalgebras

Let $p\left(v_{1}, \ldots, v_{n}\right)$ be a π-agent

- $Q_{A}=\left\{q: p\left(v_{1}, \ldots, v_{n}\right)^{l_{1} \ldots l_{t}} q\right\}$
- $\left|p\left(v_{1}, \ldots, v_{n}\right)\right|_{A}=n$,
- $G_{A}(q)=\left\{i d:\{q\}_{A} \rightarrow\{q\}_{A}\right\}$

HD-automata as T-coalgebras

Let $p\left(v_{1}, \ldots, v_{n}\right)$ be a π-agent

- $Q_{A}=\left\{q: p\left(v_{1}, \ldots, v_{n}\right) \xrightarrow{l_{1} \ldots l_{t}} q\right\}$
- $\left|p\left(v_{1}, \ldots, v_{n}\right)\right|_{A}=n$,
- $G_{A}(q)=\left\{i d:\{q\}_{A} \rightarrow\{q\}_{A}\right\}$
$\alpha: Q_{A} \rightarrow\left\{\beta \mid D_{\beta}=A\right\}$

HD-automata as T-coalgebras

Let $p\left(v_{1}, \ldots, v_{n}\right)$ be a π-agent

- $Q_{A}=\left\{q: p\left(v_{1}, \ldots, v_{n}\right)^{l_{1} \ldots l_{t}} q\right\}$
- $\left|p\left(v_{1}, \ldots, v_{n}\right)\right|_{A}=n$,
- $G_{A}(q)=\left\{i d:\{q\}_{A} \rightarrow\{q\}_{A}\right\}$
$\alpha: Q_{A} \rightarrow\left\{\beta \mid D_{\beta}=A\right\}$
$K=\langle A, T(A), \Sigma\rangle, \quad$ where $\Sigma(q)=G r\left(h_{K}(q)\right) ; \operatorname{perm}^{-1}(\alpha(q))$

Partition Refinement Algorithm

Initial approximation H_{0} :

- $S_{H_{0}}=S_{K}$
- $D_{H_{0}}=\perp, Q_{\perp}=\{\star\},|\star|_{\perp}=0$
- $G_{\perp} \star=\emptyset$
- $h_{H_{0}}(q)=\star$
- $\Sigma_{H_{0}} q=\{\emptyset\}$

Partition Refinement Algorithm

Initial approximation H_{0} :

- $S_{H_{0}}=S_{K}$
- $D_{H_{0}}=\perp, \quad Q_{\perp}=\{\star\},|\star|_{\perp}=0$
- $G_{\perp} \star=\emptyset$
- $h_{H_{0}}(q)=\star$
- $\Sigma_{H_{0}} q=\{\emptyset\}$

Partition Refinement Algorithm

Initial approximation H_{0} :

- $S_{H_{0}}=S_{K}$
- $D_{H_{0}}=\perp, \quad Q_{\perp}=\{\star\},|\star|_{\perp}=0$
- $G_{\perp} \star=\emptyset$
- $h_{H_{0}}(q)=\star$
- $\Sigma_{H_{0}} q=\{\emptyset\}$

Theorem If K is a finite HD,

- $\exists \bar{n}: D_{H_{\bar{n}+1}} \equiv D_{H_{\bar{n}}}$
- The isomorphism $F: D_{H_{\bar{n}}} \rightarrow D_{H_{\bar{n}+1}}$ yields the minimal realization of K up to strong early bisimilarity

Partition Refinement Algorithm (2)

At each step:

- a block is splitted: $h_{H_{n}}(q)=h_{H_{n}}\left(q^{\prime}\right)$ and $h_{H_{n+1}}(q) \neq h_{H_{n+1}}\left(q^{\prime}\right)$
- new names may be introduced

Partition Refinement Algorithm (2)

At each step:

- a block is splitted: $h_{H_{n}}(q)=h_{H_{n}}\left(q^{\prime}\right)$ and $h_{H_{n+1}}(q) \neq h_{H_{n+1}}\left(q^{\prime}\right)$
- new names may be introduced

The iteration step:
$h_{H_{n+1}}=\operatorname{norm}\left\langle D_{H_{n}},\left\{\left\langle l, \pi, \sigma^{\prime} ; \sigma, h_{H_{n}}\left(q^{\prime}\right)\right\rangle \mid q \xrightarrow{l, \pi, \sigma} q^{\prime} \wedge \sigma^{\prime}: \Sigma_{H_{n}}\left(q^{\prime}\right)\right\}\right.$

States, labels \& arrows

type α state $=$
| Star
| State of $\underbrace{\text { string }}_{\text {id }} * \underbrace{\alpha \text { list }}_{\text {names }} * \underbrace{(\alpha \text { list }) \text { list }}_{\text {group }}$
type α label $=$

\| Tau of			α list
\| BIn of	α list	$*$	α list
\| BOut of	α list	$*$	α list
\| In of	α list	$*$	α list
\| Out of	$\underbrace{\alpha \text { list }}_{\pi}$	$* \underbrace{\alpha \text { list }}_{\sigma}$	

type α arrow =
Arrow of $\underbrace{\alpha \text { state }}_{\text {source }} * \underbrace{\alpha \text { state }}_{\text {dest }} * \underbrace{\alpha \text { label }}_{\text {lab }}$

Bundle \& Automata

bundle: $\underbrace{(\alpha \text { arrow }) \text { list }}$
with the same source
type α automaton =
HDAutoma of $\underbrace{\alpha \text { state }}_{\text {start }} * \underbrace{(\alpha \text { state list }}_{\text {states }} * \underbrace{(\alpha \text { arrow }) \text { list }}_{\text {arrows }}$

Blocks

Blocks

At the end of each iteration,

- blocks represent the states of the n-th approximation of the minimal automaton while
- their norm components are the arrows of the approximation

Blocks (2)

type α blocks = Block of

states
norm
group
Σ
Θ^{-1}

: α state list *
active_names : α list *
: α list list *
$:(\alpha$ state $\rightarrow(\alpha * \alpha)$ list list) *
$:(\alpha$ state $\rightarrow(\alpha * \alpha)$ list $)$

Blocks (2)

type α blocks = Block of
states
norm
active_names : α list *
group
Σ
Θ^{-1}
: α list list *
: α state list *
: α arrow list *
: $(\alpha$ state $\rightarrow(\alpha * \alpha)$ list list) *
$:(\alpha$ state $\rightarrow(\alpha \quad * \quad \alpha)$ list $)$

Initially...

- All the states are (considered) bisimilar
- No norm, group or θ is given
[Block(states, [], [], [], (fun q \rightarrow [[]]), (fun q \rightarrow []))]

Generic step

Generic step

Generic step

Splitting: a closer look

Splitting: a closer look

let bundle hd q =
List.sort compare
(List.fi lter (funh \rightarrow (Arrow.source h) = q) (arrows hd))

Splitting: a closer look

List.map h_{n} bundle

Splitting: a closer look

$h_{n+1}=\operatorname{norm}\left\langle\right.$ states, $\left.\left\{\left\langle\ell, \pi, h_{n}\left(q^{\prime}\right), \sigma^{\prime} ; \sigma\right\rangle \mid q \xrightarrow{\ell \pi \sigma} q^{\prime} \wedge \sigma^{\prime} \in \Sigma_{n}\left(q^{\prime}\right)\right\}\right\rangle$
let red $\mathrm{bl}=\ldots .$.
let bl_in = List.fi Iter covered_inbl in list_diff bl bl_in

Splitting: a closer look

let an = active_names_bundle (red bundle) in let remove_in ar = match ar with
| Arrow(_,_, ln(_,_)) \rightarrow not (List.mem (obj ar) an)
$l_{-} \rightarrow$ false in
list_diff bundle (List.filter remove_in bundle)

Splitting: a closer look

$\Sigma_{n+1}(q)=($ compute_group $($ norm bundle $)) ; \theta_{q}^{-1}$

Termination

...informally, when H_{n+1} is isomorph to H_{n}

Termination

...informally, when H_{n+1} is isomorph to H_{n}

Termination

...informally, when H_{n+1} is isomorph to H_{n}

\wedge

Termination

...informally, when H_{n+1} is isomorph to H_{n}

\wedge no further names are added

An example

$$
\begin{gathered}
S(x, y, z)=x!y \cdot R(x, y, z)+y!x \cdot R(x, y, z) \\
R(x, y, z)=x ?(w) \cdot S(x, y, w)+y ?(w) \cdot S(y, x, z)
\end{gathered}
$$

An example

Minimal representation

state	b0		2	[1	[2;1]
state	b1		2	1;2	[2;1]
b0	\rightarrow	b1	out[1; 2]	1;2]	
b0	\rightarrow	b1	out[1; 2 .	2; 1	
b0	\rightarrow	b1	out2; 1.	1; 2	
b0	\rightarrow	b1	out[2; 1]	2;	
b1	\rightarrow	b0	bin 1	1;2	
b1	\rightarrow	b0	bin 1	2;1	
b1	\rightarrow	b0	bin 2	2; 1	
b1	\rightarrow	b0	bin 2	1; 2	
b1	\rightarrow	b0	in ${ }^{1}$; 1]	1;2	
b1	\rightarrow	b0	in $1 ; 1$	2;1	
b1	\rightarrow	b0	in $1 ; 2$	-1;2	
b1	\rightarrow	b0	in $1 ; 2$	2; 1	
b1	\rightarrow	b0	in $2 ; 1$	1;2	
b1	\rightarrow	b0	in $2 ; 1$	2; 1	
b1	\rightarrow	b0	in2 ; 2	1; 2	
b1	\rightarrow	b0	in[2;2]	[2;1	

Final remarks

- Handhover benchmarks are encouraging
- Extend to
- open bisimilarity
- asynchronous π-calculus
- complex terms: application to verification of security protocols
- More experimental results
- Optimization: handling of permutations
- Integrations (HAL and Mobility workbench)
- Ocaml compiler
- Tool re-engineering (on-going work)

