
Service Oriented
Architectural Design

Emilio Tuosto
Computer Science Department

University of Leicester

with
R. Bruni, A. Lluch Lafuente, and U. Montanari

Dipartimento di Informatica
Universita’ di Pisa

Web Engineering Day
Athens, Sept. 3 2007

Motivations

Key issues of service-based architectures:
design
reconfiguration

Styles for reusing existing design patterns
Run-time changes (e.g., dynamic binding)

require reconfigurations of architectures
complement their static reconfigurations
driven by architectural information specified during design

Often, architectural styles must be preserved or
consistently changed

SEnSOria aims to develop an approach
for engineering SOCs

ADR principles
Architectures are modelled as suitable graphs
Hierarchical architectural designs

style preserving rules (not original)
algebraic presentation (original)

Reconfigurations defined over style proofs instead of
actual architectures

exploits the algebraic presentation
straightforward definition of hierarchical and inductive
reconfigurations (ordinary term rewriting and SOS)
only valid contexts considered (not all concrete designs)
matching is simpler during reconfigurations (design driven)

Overview

Architectural Design Rewriting (ADR)
Development/reconfiguration of software architectures
Taking into accounts styles for “well-formed”
reconfigurations
Applying ADR to SRML so that SRML is respected by
construction (i.e., style preserving rewritings)
Concluding remarks

ADR ingredients

Hypergraphs
edges model components: can be
terminal and non-terminal edges
nodes model connecting ports

Type-(hyper)graphs
Productions

rules like L ::= R
specify how non-terminals
should be replaced

◦

p

!!

i
""

##

r

$$

! i%% && ◦ i%% && " W%%

c

##

ADR by example

A local networking architecture
2 styles where each network hub has degree of
connectivity 2 or 3
Connections between hubs are also driven by the style

•

!"
!"

NET

•

• 3hub!! ""

##

•

3hub

$$

""

##

• 3hub!!

%%

##

•

!"
!"

NET

•

• 2hub!! "" •

2hub

$$

&&

2hub

''

%%

Designs and productions

Designs and productions
• 2hub!! "" •

•

• 3hub!! ""

##

•

• 2N!! "" •

•

• 3N!! ""

##

•

•

NET

##
Edges for the network example

Designs and productions

A design consists of
a lhs L which is a graph made of
a single non-terminal edge
a rhs R graph possibly containing
non-terminal edges
a map from the nodes of L to
the nodes of R

A production is a design where
the occurrences of non-terminal
are distinguished

 represents the
abstract class of the component

typ
e o

f th
e

pro
duc

tion

• 2hub!! "" •

•

• 3hub!! ""

##

•

• 2N!! "" •

•

• 3N!! ""

##

•

•

NET

##

•

!"
!"
!"

3N

•

• 3N!! ""

##

•

• #$ • 3N!! ""

##

• 3N!! ""

##

• •$#

3N ::= link3(3N, 3N, 3N)

link3 : 3N× 3N× 3N→ 3N

Edges for the network example

ADR methaphor

A term of a grammar is an instance of a design
Terms with variables are partial designs
Replacing variables corresponds to refinement
Replacing subterms with variables corresponds to
abstraction
Replacements are driven by term rewriting rules,
namely reconfiguration rules t -> t’

style is preserved if t and t’ have the same abstract class
otherwise styles change...in a consistent way

Design rewritings

link3to2 : x1
3to2−→ x′

1 x2
3to2−→ x′

2 x3
3to2−→ x′

3

link3(x1, x2, x3)
3to2−→ link2(link2(x′

2, x
′
1), x′

3)

Design rewritings

link2 : 2N× 2N→ 2N

2N

• !" • 2N!! "" • 2N!! "" • •"!

link3 : 3N× 3N× 3N→ 3N
•

!"
!"
!"

3N

•

• 3N!! ""

##

•

• #$ • 3N!! ""

##

• 3N!! ""

##

• •$#

link3to2 : x1
3to2−→ x′

1 x2
3to2−→ x′

2 x3
3to2−→ x′

3

link3(x1, x2, x3)
3to2−→ link2(link2(x′

2, x
′
1), x′

3)

Design rewritings

link2 : 2N× 2N→ 2N

2N

• !" • 2N!! "" • 2N!! "" • •"!

link3 : 3N× 3N× 3N→ 3N
•

!"
!"
!"

3N

•

• 3N!! ""

##

•

• #$ • 3N!! ""

##

• 3N!! ""

##

• •$#

link3to2 : x1
3to2−→ x′

1 x2
3to2−→ x′

2 x3
3to2−→ x′

3

link3(x1, x2, x3)
3to2−→ link2(link2(x′

2, x
′
1), x′

3)
•

!"
!"

NET

•

• 3hub!! ""

##

•

3hub

$$

""

##

• 3hub!!

%%

##

•

!"
!"

NET

•

• 2hub!! "" •

2hub

$$

&&

2hub

''

%%

SRML architectural elements

borrowed from
[FLB06]

service module

componentrequire interface

provide interface

wire

Terminals for SRML
SRML components, wires and interfaces
are modelled as terminal arcs

Terminals for SRML
SRML components, wires and interfaces
are modelled as terminal arcs

Terminals for SRML

c !! ◦

◦

c
!! ◦

◦

◦ c!!!

r

!! !

p

!!i!! "" i!! ""

!

r

!!i!! ""

e!! ""

i
!!

""

SRML components, wires and interfaces
are modelled as terminal arcs

Terminals for SRML

c !! ◦

◦

c
!! ◦

◦

◦ c!!!

r

!! !

p

!!i!! "" i!! ""

!

r

!!i!! ""

e!! ""

i
!!

""

SRML components, wires and interfaces
are modelled as terminal arcs

Restrictions:
Typing restrictions not present in the
(less-accurate) UML metamodel
internal wire cannot connect ᐊ or ᐅ
nodes
Further restrictions enforced by the
actual use of wires in a diagram
Only the most abstract structural
aspects of SRML are considered

Non-terminals for SRML
Non-terminals used as

the interface of a design (its type) and
in the body of a design (as an abstract element)

!/◦ "/◦

I

!!

""

##

$$
!/◦ "/◦

C

%% %%
◦ ◦

"

! B&&

''

((
"

"

AB

''

((
"

internal wires service components service module body activity module body

! M&& AM " W&& " E&&)) !

service module activity module wrapped service external wire

ADR4SRML...top down

ADR4SRML...top down

modules

bodies

amod smod wrap

AM

AB !!

""

! W##

! W##

M

B

$$

!!

""

! W##

" !" "

! W##

W

! !" ! E !!## " M##

ewire

E

! !" ! e !!## " ""!

abod sbod
AB

C

!!

""

r

##
◦ ! !!" !" !"

◦ I$$

%% &&

''

r

##
! !!" !" !"

B

p

!!

I

((##

))

r

**
" "!"!"! " C

!!

""

! !!" !" !"

◦

I

++

&&

,, ◦ I$$

%%

--

,,

! !!" !" !"

r

..

ADR4SRML...top down

ADR4SRML...top down

components

wires

comp comps
C

◦ ◦!" !" !"

c

!!

C

C

""

##

C

""

$$
◦ ◦!" !" !" !" !"

◦ ◦!" !" !" !" !" !" !" !"

◦ ◦!" !" !" !" !" !" !" !" !" !" !" !" !" !" !"

◦ ◦!" !" !" !" !" !" !" !" !" !" !" !" !" !" !" !" !" !"

I

%%

&&

''

((

wires iwire nowire
I

I

!!

"" ##

$$

!/◦ !" !/◦ "/◦ "/◦"!

!/◦ !" !/◦ "/◦ "/◦"!

I

%%

&&
''

((

I

!/◦ !" !/◦ "/◦ "/◦"!

!/◦ !" !/◦ i)) ** "/◦ "/◦"!

!/◦ !" !/◦ "/◦ "/◦"!

I

!/◦ !" !/◦ "/◦ "/◦"!

!/◦ !" !/◦ "/◦ "/◦"!

ADR4SRML...
Break-down SRML’s
composition operation

first wrap modules
then “internalise” wires

An advantage is to get
“consistency” by construction
in SRML reconfigurations

ADR4SRML...
Break-down SRML’s
composition operation

first wrap modules
then “internalise” wires

An advantage is to get
“consistency” by construction
in SRML reconfigurations

link
I

◦ !"!"!" ◦ ◦ ◦"! "! "!

I

!!

!!

"" ! e!! "" " I!!

""

""◦ !"!"!" ◦ ◦ ◦"! "! "!

ADR4SRML...
Break-down SRML’s
composition operation

first wrap modules
then “internalise” wires

An advantage is to get
“consistency” by construction
in SRML reconfigurations

link
I

◦ !"!"!" ◦ ◦ ◦"! "! "!

I

!!

!!

"" ! e!! "" " I!!

""

""◦ !"!"!" ◦ ◦ ◦"! "! "!

link(iwire, iwire) int−→ iwire.

ADR4SRML...
Break-down SRML’s
composition operation

first wrap modules
then “internalise” wires

An advantage is to get
“consistency” by construction
in SRML reconfigurations

link
I

◦ !"!"!" ◦ ◦ ◦"! "! "!

I

!!

!!

"" ! e!! "" " I!!

""

""◦ !"!"!" ◦ ◦ ◦"! "! "!

link(iwire, iwire) int−→ iwire.

I

◦ !"!"!" ◦ i!! "" ! e!! "" " i!! "" ◦ ◦"! "! "! int→

I

◦ !"!"!" ◦ i!! "" ◦ ◦"! "! "!

Conclusions

We propose ADR as a framework for style-preserving
reconfigurations of software architectures
Based on algebra of typed-graphs with interfaces
Hierarchical and inductive features for representing
complex reconfigurations
Formal model for SRML...reconfigurations of which are
compliant with SRML meta-model by construction
Future work: application of ADR to SOA

Useful pointers

A technical report is available at
http://www.di.unipi.it/TR/
(TR-07-17)
Emails

Roberto: bruni@di.unipi.it
Alberto: llafuente@di.unipi.it
Ugo: ugo@di.unipi.it
Emilio: et52@le.ac.uk

http://www.di.unipi.it
http://www.di.unipi.it
mailto:bruni@di.unipi.it
mailto:bruni@di.unipi.it
mailto:llafuente@di.unipi.it
mailto:llafuente@di.unipi.it
mailto:ugo@di.unipi.i
mailto:ugo@di.unipi.i
mailto:et52@le.ac.uk
mailto:et52@le.ac.uk

