HD-automata with distinctions

Emilio Tuosto University of Leicester

joint work with Kidane Yemane & Marino Miculan

Menu

A glimpse of HD-automata
Why distinctions?
HD-automata with distinctions
Conclusions

Ingredients bought from...

Ghani, Yemane, Victor [CMCS04]
Cattani, Sewell [lics00]
Fiore, Turi, Plotkin [lics99]
Gabbay, Pitts [lics99]
Fiore, Moggi, Sangiorgi [lics96]
Stark [lics96]

time

0

for a comparison, see Fiore-Staton [CMCS04] and Gadducci-Miculan-Montanari [HO Sym. Comp. 06]

An Operational Model for HD Formalisms

HD formalisms can express computations where ø new "events" can be generated ø behaviour depends on events generated in the past Examples: Petri nets VP-CCS ø nominal calculi Ø ...

Solution Names explicitly used in the model

Solution Names are local to states and transitions

"[...] identity of names does not affect the behaviour of a process[...]" [fms96]

Operations on names can be modelled (creation/deallocation)

`a' is exposed as 'v' during the transition
`c' is called 'y', afterward
`u' is freshly generated and identified as 'x'
`b' is discharged along the transition

Behavioural Minimisation

 HDA aim to yield minimal representation of process behaviour

 The minimisation procedure must preserve behaviour of processes

Behavioural Minimisation

 HDA aim to yield minimal representation of process behaviour

 The minimisation procedure must preserve behaviour of processes P I Kp Kmin

Behavioural Minimisation

 HDA aim to yield minimal representation of process behaviour

 The minimisation procedure must preserve behaviour of processes

Need of Symmetries

Basic HDA do not have canonical minimal representatives

P(x,y) = out x y.P(x,y) + out y x.P(x,y)

Q(x,y) = out x y.Q(y,x) + out y x.Q(y,x)

 Both minimal but not isomorphic (Pistore's thesis)

Use of Symmetries

- Symmetries are enough for obtaining a minimal realisation [MP00]
- Symmetries can model early/late pi-calculus [FMP02,FMT05] or fusion (hyperbisimulation) [FMTYV05]

ø but...

Other ingredients

[mathcall] and that equality and inequality conditions on names may affect process bisimilarity."

[fms96]

"[...] finding a mathematical formalism to ensure that extruded names are renamed injectively while other names may be renamed non-injectively is the key to understanding open bisimulation."

[gyv04]

HDA with Distinctions

Def. A distinction relation on \mathcal{N} is a pair (n, d), denoted by $n^{(d)}$, where $n \in \wp_{\text{fin}}(\mathcal{N})$ and $d \subseteq n \times n$ is a symmetric relation such that $(x, x) \notin d$, for all $x \in n$.

We equip HDA with distinctions

symmetries must
 "respect" distinctions

Nfs in Pictures

symmetries are just the identities
in general, they must respect distinctions

Nfs in Pictures

symmetries are just the identities
in general, they must respect distinctions

Nfs in Pictures

symmetries are just the identities
 in general, they must respect distinctions

HDA on DNSet

Def. An *HD*-automaton with distinctions over $L \in \text{obj}(\text{DNSet})$ is a coalgebra $K : E \to \wp_{\text{fin}}(L \otimes E)$ for the functor $T_L(_-) = \wp_{\text{fin}}(L \otimes _-)$.

The minimisation alg. on hda is a variant of Ferrari, Montanari and Pistore's one

it constructs (an approx. of)
 the final coalgebra

using an explicit
 normalisation step

 $h_{H_{(0)}}(q) \stackrel{\text{def}}{=} \emptyset, \quad \forall q \in Q_E$ $H_{(i+1)} \stackrel{\text{def}}{=} N_{i+1}(K; T(H_{(i)}))$

Concluding remarks

Classical HDA extended (?) with distinctions
Minimisation algorithm re-shaped in a more modular form
HDA with distinctions can model open pi

To be done: work out the relationships between

Set and DNSet

DNSet and pullback-preserving functors over index category of distinctions

Thank You