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Plan of the talk

® Qverview: verification of nominal calculi

® Definition of HD-automata
© coalgebra over a category of named sets
® description of the minimisation procedure for HD-automata

® A new (symbolic) semantics for Fusion calculus
® HD-automata for Fusion calculus
® Minimisation of HD-automata for Fusion calculus

® Some conclusions
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Overview

® Nominal calculi have been successfully applied to global computing for

& specifying
& verifying
® Names as suitable abstractions for
& mobility
& J|ocalities
& distributed object
security keys

e |e

® Nominal calculi also provide a basic programming model for novel programming
languages [CL99, BCFO04]

® and for workflow languages for Web Service coordination [BMMO05, LZ05]
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Verification of Nominal Calculi

® \Verification via semantic equivalence is intrinsically difficult for nominal calculi
& Models tend to be infinite even for simplest cases
& Explicit mechanisms are necessary to deal with names

® Symbolic semantics [HL95, BD96, Lin03]
& Takes a syntax-based approach and generalises standard operational semantics

by keeping track of equalities among names

& Transitions are derived in the context of such constraints
The main advantage is that it yields a smaller transition system

|e

Syntax-free models explicitly deal with names regardless of the syntax

® HD-automata as an operational model of history-dependent calculi [Pis99, MP98]

® \erification techniques
& Minimisation: partition refinement algorithm [FMP02]
& Type-theoretic definition of HD-automata [FMTO05]...
& . ._.exploited in Mihda
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History Dependent
Automata




HD-automata...intuitively

® states and transitions have local names:
©® names explicit in the operational model

® 5o that HD-automata model name
creation/deallocation or extrusion

Starting state has three names: 1, 2 and 3

® Arrival state has two names: 4 and 5
® The transition exposes 2 and a (fresh) name 0
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HD-automata...intuitively

states and transitions have local names:
© names explicit in the operational model

© 5o that HD-automata model name
(de)allocation or extrusion

State s has three names: 1, 2 and 3

State d has two names: 4 and 5
The transition exposes 2 and a (fresh) name 0

oc:4+—1and o :5~ 0, the new name

3 is “discharged”

HD-automata + symmetries based on
permutation algebras [MPOO

compact representation of behaviour (states dif-
fering only for the renaming of local names are
collapsed)

' & [ If/' —p.6/19



Named sets & named functions

Let \V be a set of names, and sym(N)é{p € Aut(N) | Vx &€ N.p(x) =z}, if N CWN,

States of HD-automata are defined by
means of named sets

A namedset (ns) is a pair
(Q,g) st

1. () is a permutation algebra interpreting
operators in Aut(N)

2. g:Q — UNepﬁn(N){sym(N)} s.t.
Vp € g(q).q9 = p(q)

permutation algebra

Transitions among states are represented by
means of named functions

A named function (h,¥) : D — FE
isst h : O@p — Qg and X : @Qp —

ofin (QE X N*N) and, forallg € @p and (e, 0) €
%(q).
1. oisinjective, o(le|) C |q|U{x} ando(z) = z,
forany x € N\ |€

2. 0;8p(q) C X2(q) N ge(h(q));0 = 32(q)
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Named sets & named functions

Let \V be a set of names, and sym(N)é{p € Aut(N) | Vx &€ N.p(x) =z}, if N CWN,

~—
J@
W9
-
States of HD-automata are defined by Transitions among states are represented by
means of named sets means of named functions

A named set (ns) is a pair A named function (h,>) : D — FE
<Qag> S.t. IS s.t. h QD — QE and Y. QD —

1. (@ is a permutation algebra interpreting ofin (QE X N*N) and, forall ¢ € Qp and (e, o) €
operators in Aut(N) ¥ (q),

2. g:Q — UNEpfin(N){sym(N)} s.t. 1. oisinjective, o(le|) C |q|U{*}ando(z) = z,
Vp € g(q).q = plq) forany z € N\ |e
2. 0;8p(q) € X2(q) A gr(h(g));o = X2(q)
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Named sets & named functions

Let \V be a set of names, and sym(N)é{p € Aut(N) | Vx &€ N.p(x) =z}, if N CWN,

~

~—

—
States of HD-automata are defined by
means of named sets

A named set (ns) is a pair
(Qg) st

1. () is a permutation algebra interpreting
operators in Aut(N)

2. g:Q — UNepﬁn(N){sym(N)} s.t.
Vo € g(g9)-9 = p(q)

-
Transitions among states are represented by
means of named functions

A named function (h,%) : D — E
isst. h : p — Qg and X : @p —
ofin (QE X N*N) and, forall g € @Qp and (e,0) €
%(q).
1. oisinjective, o(le|) C |q|U{x}ando(z) = z,
forany x € N\ |e|

2. 0;gp(q) C X2(q) A ge(h(q));o = 32(q)
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Category of named sets and HD-automata

® The category NS has named sets as objects and named functions as morphisms
1. L =(0,0) is initial object, I = ({x},* — 0)) is the terminal object and

2. the covariant powerset functor on Set is g (D) = (pfin (Do), g), where, given
@ C @p, g(Q) ={p | pis a permutation over |J .o lq/} NQp= Q.

HD-automaton

T (D) = pfin(L ® D)

® where the pairing operation D ® E = (Qp X Qf X J\/'*N,g> IS s.t.
g:Qp X Qg — UN,MEpﬁn(N) {sym(N) + sym (M)} where

g(d,e) ={p1+p2 | p1 €gp(d) A p2 € gp(e)}

(formally, D ® E is not a ns but g(d, e) is a symmetry on |d| + |e|)
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Minimising HD-automata

Let 7" : NS — NS be the functor acting as T, on obj(NS) and mapping (hp,>p) € NS(E, F) to the nf
{ h(B) = {{l,hp(q),0)|{l,q,0) € B}
»(B) = {{hplg),o50)]|(l,q,0) € BA(,q,0")€Xp(q)}

where B € pg (L ® E)

The minimisation algorithm on a T, coalgebra (D, K : D — T (D)) is

where N is a normalisation functor, i.e. N (D) is isomorphic to a subset of D
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Minimising HD-automata

i ® At the (i + 1)-th step, the outgo-

| ing transitions in K are “steeped”

/.:’: into H(;) through T and then
< normalised

The minimisation algorithm on a Ty, coalgebra (D, K : D — T (D)) is

where N is a normalisation functor, i.e. N (D) is isomorphic to a subset of D
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Minimising HD-automata

.ql
/3»/___,_...\_”\". y’
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S R ® At the (i + 1)-th step, the outgo-
Lo co Tau G ing transitions in K are “steeped”
: ! o .
] ; ® into H(;) through T and then
\\X ......................... ”_/.-"' normalised

\"'\.._\Q /."/,

The minimisation algorithm on a Ty, coalgebra (D, K : D — T (D)) is

where N is a normalisation functor, i.e. N (D) is isomorphic to a subset of D
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Minimising HD-automata

! Ja Y
e y ,
e S q, BIN o ’ .

S xo M Tf\'qz o ® At the (i + 1)-th step, the outgo-
foT - Tau G P ing transitions in K are “steeped”
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| ) : ® | into H(;) through T and then
N g . | ! normalised

The minimisation algorithm on a Ty, coalgebra (D, K : D — T (D)) is

where N is a normalisation functor, i.e. N (D) is isomorphic to a subset of D
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Minimising HD-automata

S Y ©® At the (¢ + 1)-th step, the outgo-
I__." i ing transitions in K are “steeped”
| ‘,-" into H(;) through T and then
\\X ......................... /’ N \ normalised

D

Tau 63;03

The minimisation algorithm on a T, coalgebra (D, K : D — T (D)) is

where N is a normalisation functor, i.e. N (D) is isomorphic to a subset of D
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Minimising HD-automata

At the (i + 1)-th step, the outgo-
ing transitions in K are “steeped”
into H(;) through T and then

normalised

Tau 63;03
The minimisation algorithm on a T, coalgebra (D, K : D — Ty, (D)) is

where N is a normalisation functor, i.e. N (D) is isomorphic to a subset of D
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Minimising HD-automata

At the (i + 1)-th step, the outgo-
ing transitions in K are “steeped”
into H(;) through T and then

normalised

Tau 63;03
The minimisation algorithm on a T, coalgebra (D, K : D — Ty, (D)) is

where N is a normalisation functor, i.e. N (D) is isomorphic to a subset of D

Theorem l The iterative partition refinement algorithm is convergent on finite HD-automata whenever

the normalisation functor is monotone on nfs.

5 ’7”.,?, &\& —p.9/19



Fusion calculus » @
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Fusion calculus syntax
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Fusion calculus syntax

Input and Output are

symmetric
¥/&m¢@ v
p o= {T=y;
P = 0 ‘ o ‘ Q+ R ‘ QR
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Fusion calculus syntax

total equivalence relations over \/
(i.e. dom(p) = N) with only finitely many
non-singular equivalence classes

UL ©
{z =y}
o ‘ Q+ R ‘ QR
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Fusion actions as prefix
represent an obligation to
make |hs and rhs equal
everywher

Fusion calculus syntax
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Canonical symbolic semantics (1)

Symbolic semantics efficiently characterise bisimulation equivalences for value-passing calculi.

Canonical symbolic semantics as for the m-calculus [San96, PS01]

Symbolic transition P

M is the enabling condition of
e action vy

’Eﬁﬁ o [ 7 _p.12119



Canonical symbolic semantics (1)

Symbolic semantics efficiently characterise bisimulation equivalences for value-passing calculi.

® Canonical symbolic semantics as for the w-calculus [San96, PS01]

Symbolic transition P

The substitutive effect of M is an idem-
potent substitution o/ s.t.

e enabling condition of
he action ~

om(z) =om(y) < M=z=y
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Canonical symbolic semantics (1)

Symbolic semantics efficiently characterise bisimulation equivalences for value-passing calculi.

® Canonical symbolic semantics as for the w-calculus [San96, PS01]

Symbolic transition P

e enabling condition of
he action ~

P P’
sum M,
P+Q == P

p%P’,zsox,Z#xazgn(M) match

scope v
(2)P =225 prig)z)
Mafy / M7('g)a’§§ / ~ ~ —
s P2 P agn(My) o PR P ici g ag {23}, 2 @n(M)
(2)P =2 ()P’ (2)Pp 2LEZDLE

P pr X% o E =g, L=MxNx[u=1], o= {F=glor
IZ;
P|Q:(P>(P,|Q,)O'LO'Q0
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Canonical symbolic semantics (1)

Symbolic hyperbisimulation and symbolic open bisimulation [San96, PS96] have similar
definitions, but the former avoids distinctions.

ISl A binary symmetric process relation S is a symbolic hyperbisimulation if (P, Q)

S implies:
it P =2 P’ with bn(vy) N f(Q) = 0 then Q S ()’ such that
2 M= N,

(™

v=7'on, (notey =~yop)
2 and (P, Q'op) €S (note P/ = Ployy).
P is symbolically hyperequivalent to ), written P ~ @, if (P,() € S for some symbolic

hyperbisimulation S.

Since the symbolic semantics applies the substitutive effects, we can leave most of that
out of the bisimulation definition. It is still necessary to apply substitution corresponding
to the stronger condition, o), to the label and continuation of the transition of ().
(Note that Q'on = Q'onro4.)

Theoreml P~Qiff P~Q
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From Fusion calculus to
HD-automata
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Labels

Labels consists of
® enabling conditions

® actions
Both of them can be represented as nss

Let Lab = {t au, i n, out, fuse} and M denote the ns ({e}, g) where
g = {ids, exchs}
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Let's define, for a Fusion calculus agent P,
A
Qpip) = 1P} U U {P'}UQpp
p=t2.pr

namely (Qp;p) are the processes reachable
from P.

Fusion calculus coalgebraically
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Fusion calculus coalgebraically

Let's define, for a Fusion calculus agent P, o _ _
It is trivial to equip @ p[p) with a named

Qpip 2 (p) U U {P'} UQp(p set structure. Indeed, for any g € QD[P],
M the group component gpipi(q) is the
P=—=P’ : :
identity on fn(q).

namely (Qp;p) are the processes reachable D|P] denotes such ns

from P.

| g o 7w —p.16/19




Fusion calculus coalgebraically

Let's define, for a Fusion calculus agent P, o _ _
It is trivial to equip @ p[p) with a named

Qpip 2 (p) U U {P'} UQp(p set structure. Indeed, for any g € QD[P],
M the group component gpipi(q) is the
P=—=P’ : :
identity on fn(q).

namely (Qp;p) are the processes reachable D|P] denotes such ns

from P.
The HD-automaton associated to P is the T -coalgebra K|P] s.t.

hip(q) ={{,¢",0) | ¢ 20, q' N1 corresponds to M, ~}

Given (I,q',0) € hxp(q)

® 5 maps fn(q’) on f(q) and new names to %

® and similarly for the names of [
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Minimising HD-automata for Fusion calculus

et us now define the normalisation functor for Fusion calculus.

Let (l,q,0) and (I, q, ") be two Let ¢ € dom(K) be a state.

hdt of . Assuming that the matching ns of [ A hdt <l, q, 0> is redundant for ¢ if there is
(resp. ") is M (resp. M), [ is redundant wrt [’ iff

(I',q',0") in ¥k (q) such that [ is redun-
[ and I’ have the same action part and dant wrt !’ and, for a substitution ¢’ ac-

. [[M]] logically implies [[M’]] , but not complishing with the interpretation of the
vice Sersa 7 enabling part of [, 0’; 0" = 0.

The intuition is that t = ([, ¢’, o) is dominated by another transition t' = (I’, ¢, o’)

® rcaching the same target state as t and with the same label but having

® cnabling conditions weaker than those of ¢ and,

® under the conditions of ¢, the names associated to the label of ¢ are the same as
those of t.
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Minimising HD-automata for Fusion calculus?

Definition

N filters those transitions out of a given state ¢ that are redundant because of the presence of
another transition having weaker conditions on names.
The functor N is monotonic on nfs.

Theorem l The minimisation algorithm converges on finite HD-automata for Fusion calculus.

Nz mimics redundancy conditions of symbolic hyperbisimulation. Indeed,

Theorem l Two finitary Fusion calculus processes are hyperbisimilar iff they have the same

minimal realisation.
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Conclusions and future
directions

New presentation of the minimisation
algorithm

HD-automata machinery for Fusion calculus:
providing a new symbolic semantics of Fusion
calculus

In the future, we wish to extend the approach
to open semantics of w-calculus.

It would be interesting to study relationships
among presheaf models of open semantics
of w-calculus ([GVY04]) and other approaches
e.g., [FS04, GMMO3]
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