Synchronised Hyperedge Replacement

as a Model for

Service Oriented Computing

FMCO

Amsterdam, 1-4 November 2005

‘, ; (| .::,‘:ll:-“l ’i’i - p. 1/26

Forewords

(with apologies and presentations)

5% e |5 W ™ —p.226

Apologies & presentations

Let me first apologise for not having mentioned co-authors (and myself)...

Ugo Montanari

Gianluigi Ferrari

SHR as a uniform framework for non-
functional aspects of SOC

¢

¥ (Context-free flavour

! “SOC systems as Hypergraphs”

Emilio Tuosto

! “SOC computations as SHR”

In other words:

Ivan Lanese

& Components = hyperedges
! Systems = bunches of hyperedges
¢

¥ Computing = rewrite hypergraphs...

Dan Hirsch LS ...with “some” synchronisation policy

ﬁﬁ Wn}’.’{"l,"“l ’i’i —p. 3/26

Apologies & presentations

Let me first apologise for not having mentioned co-authors (and myself)...

Ugo Montanari P ‘
Gianluigi Ferrari
SHR as a uniform framework for non-
R l functional aspects of SOC
LS Context-free flavour
2 /) LY “SOC systems as Hypergraphs”
' Emilio Tuuosto | LS “SOC computations as SHR”
Tvan Lanese In other words:
! Components = hyperedges
LY Systems = bunches of hyperedges
LY Computing = rewrite hypergraphs...
D S ! ...with “some” synchronisation policy
an JArsc

In this speech

® several results on SHR are collected

® and a brand new, “modular’ presesentation is given

ﬁﬁ Wn}’.’{"l,"“l ’i’i —p. 3/26

Anatomy of a title...Synchronised Hyperedge Replacement

o

N et [Wl 2w —p.426

Anatomy of a title...Synchronised Hyperedge Replacement

o< @

Edge replacement: local

Synchronisation as distributed
constraint solving

Multi-party synchronisation

New node creation

Node fusion: model of mobility and
communication

“_‘ ot |2 N A —p. 426

Anatomy of a title...Synchronised Hyperedge Replacement

Edge replacement: local

Synchronisation as distributed
constraint solving

Multi-party synchronisation

New node creation

Node fusion: model of mobility and
communication

Benefits:
& Uniform framework & Expressive for
& for m, m-I, fusion & distributed coordination
& LTS for Ambient ... ¢ application level QoS
¢ .. for Klaim ... & sophisticated synchronisations

Y 00 e (S W w426

Anatomy of a title...Service Oriented Computing

® Distributed computing is moving toward SOC

® |Integration of software and (heterogeneous) networks of (heterogeneous) systems
(e.g., Internet & mobile phones, wireless & wired networks)

,' ﬁ ’?‘-}:{"f“l ’i’i —p.5/26

Anatomy of a title...Service Oriented Computing

® Distributed computing is moving toward SOC
® |Integration of software and (heterogeneous) networks of (heterogeneous) systems

In
(e.g., Internet & mobile phones, wireless & wired networks)

® SOC architectures are
© distributed
© interconnected

based on different
communication infrastructures:
« |P, wireless, satellites...

« overlay networks

@

Designers, programmers and
end-users may ignore the
stratification and complexity

Y 0 e e W w _posi26

Anatomy of a title...Service Oriented Computing

® Distributed computing is moving toward SOC

® SOC architectures are
distributed
interconnected

o @ |l@

based on different
communication infrastructures:
« |P, wireless, satellites...

« overlay networks

@

Designers, programmers and
end-users may ignore the
stratification and complexity

Integration of software and (heterogeneous) networks of (heterogeneous) systems
(e.g., Internet & mobile phones, wireless & wired networks)

© SOC applications (SOAs) are soups
of services

& programmable coordination

e

“autonomous’

e

independent

|e

mobile/stationary

e

“interconnected” through
interfaces

and published, searched and binded
. offline and in a mostly ad-hoc wa

I et |5 Wl W —p 526

SHR family
step by step

Hypergraphs Syntax

Fixed a set of nodes NV, hyperedges connect any number of nodes (generalisation of
edge)

L . 37 L(:U? Z7x)7

Yy
°
I
re —3—J[—2—ez2

Syntactic Judgement x1: A1,...,zn A, F G,

Y 0t [™ —p 726

Hypergraphs Syntax

Fixed a set of nodes NV, hyperedges connect any number of nodes (generalisation of
edge)

L . 37 L(:U? Z7x)7

Yy
°
I
re —3—J[—2—ez2

Syntactic Judgement x1: A1,...,zn A, F G,

An example:

L:3, M:2

z,y b vz.(Ly, z,2)|M(y, 2))

Y 5t e [W - b 72

Productions

Productions are the context free rules upon which hypergraph rewriting is defined

L(z) as G syn-
x> L(Z) EANpe. chronising with the edges

production %
connected to nodes I ac-

cording to A

T is a tuple of pairwise distinguished nodes and L : |Z|

® is a typing for nodes %
® in the simplest case there is simply a type “node”
types “drive’ synchronisations

A {|Z]} — £ is a communication function associating events to nodes
E =Ax N7 is the set of events, where A is an alphabet of actions
n(A) = {z|dz € dom(A).z € A(z)}

® Gisagraphst. fn(G) C {z[} Un(A),

o W W —p.8/26

T1,%2, T3> L(z1, 22, T3

z,y Fvz.(L(y, z,2)|M(y, 2))

e

X

{(z1,a,()}
oo

{(331,5.,<>}

1,:132[>M(£U175132) — L

{(y,7,0)}

/

a5

< O

re

Yo

/

L

)
L

L(x1,22,x3)

(xla X2, .932)

L

A toy example

> T, = VZ(L(:%Zax)‘L(:E? 25 Z))

o W W —p.9/26

The simplest SHR rewriting system

In order to introduce the basic concepts of SHR, let us first consider the case that nodes
are not communicated [HIMOO].
A SHR rewriting system consists of a triple

(Alg, P, x F G)

where
® Alg is an algebra specifying the synchronisation policy (namely the types of nodes)

® P s a set of productions and

® |- G is the initial labelled graph
The set of transitions of (Alg, P, x = G) is the smallest set obtained by applying the

inference rules on the next slide starting from the productions in P

,’ ﬁ ’?‘.}:{"lj“l ’i"i —p. 10/26

Semantics for the simplest SHR rewriting system

(res)

xFrvax: AG Miz.a.0)la0)€E) >y Frae: AG

x1 F Gi LTS X1 G X2 F G2 LTS Xo = GY dom(x1) Ndom(xz) =0

Al A
X1, X2 = G1|G2 % X/17X/2 = Gll‘G/Z

(par)

oAy Ar g telene b, v g
(rer ge)

vy Aam(e) ;
X;x: AR G{"/y} > X'\ {y: A} Gy}

5% (e |5 W ™ —p. 1126

SHR family:
adding mobility

Adding a bit of complexity

Let we exchange nodes in synchronisations. Why is this needed? Consider the Ambient
calculus e.g.,

ﬁ @ |5 N _ _p.13/26

Adding a bit of complexity

Let we exchange nodes in synchronisations. Why is this needed? Consider the Ambient
calculus e.g.,

open a | al...] — ..

ﬁ @ |5 N _ _p.13/26

Adding a bit of complexity

Let we exchange nodes in synchronisations. Why is this needed? Consider the Ambient
calculus e.g.,

open a | al...] — ..

Components
z
open a : &}—> o
T - Yy
al--] : . Qo

,’ ﬁ ’?‘.}:{"lj“l ’i"i —p. 13/26

Adding a bit of complexity

Let we exchange nodes in synchronisations. Why is this needed? Consider the Ambient
calculus e.g.,

open a | al...] — ..
Components
P
open a : %—> e
T - Yy
a[. .] :) i} o
Productions
z P
W [— o
OpeEN a
L Y {Y/x} y—==
o a o o
open a

5N (e |5 W ™ —p. 13026

Adding a bit of complexity

Let we exchange nodes in synchronisations. Why is this needed? Consider the Ambient
calculus e.g.,

open a | al...] — ..

Components

open a : %—>o

x . Y

al---]: e ——fa}—>e 2
v
Producti ‘
roauctions . . |_0;
W. — o
open a

L Y ¥ /x} y==
° a ® O

open a

5N (e |5 W ™ —p. 13026

Adding a bit of complexity

Let we exchange nodes in synchronisations. Why is this needed? Consider the Ambient
calculus e.g.,

open a | al...] — ..
Components
z
X - Yy = Y
a[. .] :) i} o
v
Productions . . o ,
% [— o
OpeEN a
—
X Yy Y/} Yy—=—2x r;
{ a o o
open a

}';ﬁ ’?‘.}:{"Kj“l ’i"i —p. 13/26

Adding a bit of complexity

Let we exchange nodes in synchronisations. Why is this needed? Consider the Ambient
calculus e.g.,

open a | al...] — ..

Components

open a : %—>o

X - Y
a1 o I o °
Productions
z z - .
Oa ‘ N S N @. yisv
open a
L Yy {¥/x} y=4=
o a ([o
open a

For details about Ambient and SHR see [FMTO01]

;’yﬁ ’?‘.}.’{";‘l ’i"i —p. 13/26

Extending SHR with node passing

Technicalities to face with:
® nodes vs restriction
® node “fusions” (e.g., see Ambient) X T(X)

’
A / ,
xFG——= X'FG
: dom(y) — dom(y) is an idempotent substitution ‘/,/,in(y)

® cffects of node fusions on node types

Reconsidering graph transitions...

L
® if A(z) = (a,7) then |g| = ar(a)
® dom(x') = m(dom(x)) U (n(A) \ dom(x))

Coll (N a - p.14/26

Synchonisation algebras

Synchronisation algebras with mobility [LM04]| extend Winskel's synchronisation
algebras to encompass mobility in the style of name-passing calculi.

Y 00 o 1 W aw _p 1526

Synchonisation algebras

Synchronisation algebras with mobility [LM04]| extend Winskel's synchronisation

algebras to encompass mobility in the style of name-passing calculi.
Nodes are typed with SAMs over the actions set A # ()

A= (N, A, ar, €, Sync, 3)

5% (e |5 W ™ —p.15/26

Synchonisation algebras

Synchronisation algebras with mobility [LM04]| extend Winskel's synchronisation

algebras to encompass mobility in the style of name-passing calculi.
Nodes are typed with SAMs over the actions set A # ()

A= (N, A, ar, €, Sync, 3)

where
® ¢ is a distinguished action s.t. ar(e) =0

® Sync C A are “final” actions (e € Sync)
® Y for action composition triples like (a, b, (¢, Mb)) s.t.
a,b,ce A

c=esa=b=c¢
Mb : Inta) W Intarey — {1,2,...} states how nodes of a and b are fused

and how they correspond to nodes of ¢

{ ﬁ @ |5 N N _p.15/26

Synchonisation algebras

Synchronisation algebras with mobility [LM04] extend Winskel's synchronisation

algebras to encompass mobility in the style of name-passing calculi.
Nodes are typed with SAMs over the actions set A # ()

A= (N, A, ar, e, Sync, X))

The “Milner” SAM on actions L is (Mil, A, ar, ¢, Sync, X2), where
A=H{a,a|aec L}U{T €}

where
® ar(a;) = ar(a;) and ar(7) = 0
© Sync = {7,¢}.

© MP, ,, : Int, W Inty, — Intmax(nm) is undefined on ¢ > min(z,y) and
Vi < min(n,m).MP([1,i]) = M P([2,i]) =1

® vaclL. (CL, €, (CL, MPar(a),O)) IV (a,a, (’7‘, MPa,r(a),ar(a))) € X

P N _p.15/26

SHR transitions and SAMs [LTO5]

Let (Alg, o) be the commutative monoid of SAMs of interest and consider transitions
(once more)...

XI—G—>A’7T Y F G

® for all z € n(A)p \ dom(y’) (i.e., z € bn(G)), x'(x) is determined according to the
freely assigned SAM in the productions

® for each z € dom(')

def

X (z) = A10...04A,

where {A,..., A, } are the SAMs assigned by to the nodes in 71 (x)

® / is well-defined since SAMs form a commutative monoid

When assigning all nodes the types “Milner” (resp. “Hoare"),
we obtain the (very) special case of CCS-like (resp. CSP-like)

synchronisations! [HMO01, Hir03]

Technicalities...

Names mainly affect rules (res) and (nmerge):

X,az:AI—G%x’I—G’ actp () € Synca

(res)

A\{(x,a,{y a,{y E}, Tldom(x
b v AG M@ | @) o D, 0\

x cannot be the representa-

tive element when its class
is not trivial (otherwise you

might have undesired scope
extrusions!)

5N (e |5 W aw —p. 17126

Technicalities...

Names mainly affect rules (res) and (nmerge):

X,az:Al—G%x’l—G’ actp(z) € Synca

A\{(z,a,(9)) | (a,(7))€E}, Tldom(x)

(res)
xFrvae: AG

X" F (v X"\ x").G

This is a sort of “close” mechanism
(similar to 7-calculus). Nodes ex-

truded on £ must be bound after
the transition (z € dom(x" \ x"),

unless elsewhere extruded).

ﬁ @ |5 N T _p.17/26

Technicalities...

Names mainly affect rules (res) and (nmerge):

(res)

A\{(x,a,{y a,{y E}, Tldom(x
YFva:AG \{(z,a,(9)) | (a,(9))EE}, 7|a ()>XN|_(V Y\)G

X, r:Ay: AFG Awiay, (5u) (a2, (52)), @ > ' F G’ (a1, a9, (c,Mb)) € X4

(merge)

A,%HC,’IIJ, om(x)Uyx
ox: Ak G{/,} A, pla T s X (v X p \ X").Gp

where:
® p=mgu ({01[j1] = v2[j2]| Mb([1, j1]) = Mb([2, j2]) }U{u = v | ur = vr}Uy =)

© fi] = (5K){"/,}p i Mb([j. k) = i, i € Intr(o)

® the type of z in fn(G’p) is A1 o...0 A, where A;,..., A, are the types in x of
{x1,...,2,}, the equivalence class of z

5N (e |5 W aw —p. 17126

An example

® (Clients C1,...,C,, invoke a service from remote servers [Gl and @ provided that they are
authorised

® A trusted authority Au checks for the authorisation

Zlo—

x Clients are connected to Au on a

° Z2 0 — B> _ _
\ “public’ node z while servers are
S connected on a “private” (i.e., re-
4 C | Con,

stricted) one.

Bs will simply acquire the requests
from clients and forward them to
each server.

Notice that
® synchronisations C; — Au are “Milner” (e.g., PPP)

® B, is required when broadcast is not primitive

® then broadcast must be “encoded”

5% (e |5 W ™ —p.18/26

An example

® (Clients C1,...,ChH invoke a service from remote servers [l and @ provided that they are
authorised
® A trusted authority Au checks for the authorisation

Clients are connected to Au on a

“public” node = while servers are
connected on a “private” (i.e., re-
stricted) one.

In SHR we can simply specify

(xaaUthi7<y>)

> x: Mil,y : Bdc + Ci(y)

(xvaUthi7<u>)

x: Mil - Ci(x)

x: Mil,u : BdcF Au(z,u) > x: Mil,u : Bdc '+ Au(x,u)

5% (e |5 W ™ —p.18/26

SHR family: dealing
with application level
QoS

Application-level QoS

Lifting QoS issues to applications
¢ with programmable application level QoS

© QoS in designing and implementing SOAs

,’ ﬁ ’?‘.}:{"lj“l ’i"i —p. 20/26

Application-level QoS

Lifting QoS issues to applications
© with programmable application level QoS

© QoS in designing and implementing SOAs

Search and bind wrt application level QoS
© application-related, e.g.
& price & transactions
i

& payment mode data available in a given format

¢ |ow-level related (e.g., throughput, response time) not directly referred but abstracted
for expressing their “perception” at the application level

Y 00 e (S e - 2026

Application-level QoS

Lifting QoS issues to applications

¢ with programmable application level QoS

© QoS in designing and implementing SOAs

Search and bind wrt application level QoS

© application-related, e.g.
& price & transactions
.

& payment mode data available in a given format

¢ |ow-level related (e.g., throughput, response time) not directly referred but abstracted
for expressing their “perception” at the application level

Constraint-semiring [BMR95, BMR97] are particularly suitable because
© they have an implicit partial order ® ..e.g., cartesian product

¢ preserved by many constructions... © hence multi-criteria

SHR uses c-semiring as a synchronisation mechanism! [HT05

[o WE [_p. 20/26

SHReQ Productions

An algebraic structure (S, +,%,0,1) is a c-semiring iff 0 #1 € S, and

r+y=y+<wx TxY=Y*xXT
(z+y)+z=2+(y+2) (THxy)*xz=a*x(yx*2)
(z+y)*z=(x*xz)+ (y*=2) zxl==z
r+1=1 zx0=0

[o WE N _p.21/26

SHReQ Productions

An algebraic structure (S, +,%,0,1) is a c-semiring iff 0 # 1 € S, and

T+y=vy+ax ThY =YKk Implicit partial order:

_ _ a<b <= a+b=2>b
(z+y)+z=a+(y+2) (zxy)*z=zx(y*z2) “b is better than a”
(z+y)*z=(x*xz)+ (y*=2) zxl==z :
r+1=1 250 =0 The cartesian product of c-

a - semirings is a c-semiring

;’5 ':};-ﬁ ’?‘.}.’{";‘l ’i"i —p. 21/26

SHReQ Productions

An algebraic structure (S, +,%,0,1) is a c-semiring iff 0 # 1 € S, and

T+y=vy+ax ThY =YKk Implicit partial order:

_ _ a<b <= a+b=2>b
(z+y)+z=a+(y+2) (zxy)*z=zx(y*z2) “b is better than a”
(z+y)*z=(x*xz)+ (y*=2) zxl==z :
r+1=1 250 =0 The cartesian product of c-

a - semirings is a c-semiring

Transitions rewrite “weighted” graphs

XI—G—>A Y F G

as before, but now node types are c-semiring values and requirements _

represent events for

Synchronisation Sync and Fin s.t. No synchronisation NoSync C S\ Fin s.t.
® Sync C FinC S ® S« NoSync C NoSync
©® 1 c Sync ® 0 c NoSync

;’5 ':};-ﬁ ’?‘.}.’{";‘l ’i"i —p. 21/26

SHReQ Synchronised Rewriting

When fusing two nodes of a production x > L(Z) Aa..

X' LEY /1) e qp,y

[x(2), z e {lzf \{z, y}
updated requirements are X' (2) = ¢ x(z)+x(y), z=yAye
L x(@), z=yANy & {z[}

50 (el |5 W aw —p. 22026

SHReQ Synchronised Rewriting

When fusing two nodes of a production v > I.(#) ENye. _
yields an idempotent substitution defined iff

|AQx| >1 = H s &€ NoSync

(CC,S,Q)EA@CC

updated requirements are x’'(2) = ¢ Z=yANyEZT

z=y Ay & {z]}

x>L@) HGeP Mp=mgudh A x@) <x()

xedom(x)
Y FLE) S xvAFv Z.(Gp)

Y 00 o 1 e e _p 2226

SHReQ Synchronised Rewriting

When fusing two nodes of a production x > L(Z) La..

X' > LE{ /) 2 e,

[x(2), z e {lzf \{z, y}
updated requirements are x'(2) = ¢ x(z)+x(y), z2=yAy€EZ
L x(2), z=y Ny &{zlt
x> L(#) > GEeP p=mgul A x@ <X(@)
xedom(x)

Y FLE) S xvAFv Z.(Gp)

Xll—Glﬂx’ll—G'l Xgl—Gggxlzl—G’g p=mgu A1 ¥ Ao

N xile) = xe(z)

z€dom(x1)Ndom(x2)

Ar1WAg / /
x1 U x2 F G1 | Gy —— (Xl UXQ)(AlH‘JAg) - VZ.(Gl | Gg)p

Y 00 o 1 e e _p 2226

A network of rings consists of "“rings” of different sizes connected by gates~

—
—
_—
_—

R

—
—

o
\E/

—

e

R

QoS & Synchronisations

TN

=}«

The l-edges avoid new gates to be attached on the node
they insist on

[o WE A _p.23/26

QoS & Synchronisations

A network of rings consists of “rings” of different sizes connected by gates.

.{RT\F%E_ T LI TN

N@m—
R

=}«
|
B
7
|
=

@I\

\ : : : :
Nodes with no l-edges, can be used to generate new rings and will be weighted by the amount
of available resource.

5% (e |5 W ™ —p. 23026

QoS & Synchronisations

A network of rings consists of “rings” of different sizes connected by gates.

B T B T G

/ °
~m—" T ng S {a—"
h_

The c-semiring is HR, the cartesian product of the Hoare c-semiring $ = (H,+g,*g,0m,15)
(where H = {a,b,c¢,15,0x,L}) and R = (woo, max, min, 0, +00)
The idea is that

® ¢ coordinates the network rewritings

R

® % handles resource availability

® the initial graph is a ring where

® non-limited nodes are weighted (1,w) with u the maximal amount of available
resource

® newly generated limited nodes are weighted (b, +-c0) which is constantly maintained.

5% (e |5 W ™ —p. 23026

Productions for the ring case study

Create Brother (n < u)

Tr e

S
re (a,n) R |

R — zo—ﬂ

Yo (a,+00) “fﬂ

Ye

z +— (a,n)

— (o, +00)
z:(0g,u),y 0> R(z,y) — R(z,2) | R(z,y) | I(2)
Accept Syncrhonisation R

Accept Syncrhonisation |

re (b,+oo) T @

ﬁ - fpg] — 0
Yye (a,+too) Ye

xz — (b, +00)
z: (0, 400),y :0> R(z,y) — o) R(z,y) | ©:0>[(x) z2 (b, Hoo) I[(x)

re (b,+oo) xTe

where a € {a, b}

,ﬁ}ﬁ ’?‘.}:{"lj“l ’i"i —p. 24/26

Productions for the ring case study?

Create Gate (r > 0)

re (a,+o00) 7 Lf Ei% f — R;f
| | \b
R| — T@

T

Ye (b,+oc0) Ye
z — (a, 4o0)
y — (b, +0o0)

4y :(OH,U),y 0> R(x7y>

R(z,y) | l(z) | G(z,x) | Ry (2,2)

Accept Synchronisation Init Accept Synchronisation Gate
re (c,+o00) T ® re (B,+oc0) xTe
R| — |[R] G| — |q|
Yye (c,+oo) Ye Yo (b,+o0) Ye
xz — (c, +00) x +— (B, +o0)

y — (¢, +o00) y — (b, +00)

z:0,y :0> R(z,y) R(z,y) | :0,y:0>G(z,y) G(z,y)
Accept Synchronisation Init Accept Synchronisation Gate
re (c,too) xTe re (B,+oco) x @
A A S S
y — [o — [
1
Yye (c,+o0) Ye Yo (b,+o0) Ye
detcees e

z:0,y:0> R(z,y) —— R(zy) | :0,y:0>G(zy) —— G(z,y)

5% (e |5 W ™ —p. 2526

The ring case study

The derivation starts from

a, o0 | R a

e —‘j\ "\

(1g,5)® N ®(1y,5)
a,/2>E}/a7\©(

// \

CreateBrother{u = 5,n = 2) x Createﬁrother(u =4,n = 3)

R chooses production Create Brother v = 5 (satisfying condition 5 < 5) and n = 2 while
R chooses u = 4 (satisfying condition 4 < 5) and n = 3. The resulting synchronisation
produces the new weights for the nodes as,

(a,2) = (a,2) x (a,+00) = (a xg a, min(2, +00))
(a,3) = (a,3) x (a,+00) = (a xg a, min(3, +00)).

ﬁ @ |5 N N _p.26/26

The ring case study

1
[
—bog|\b,oo—
~
'S

| R[’1 R =0
(a,2) @ L
b b
G O A
’OOYT b,oo/_

:

1

[]
—~
Q
w
—~

CreateGate(r = 1,u = 2) X CreateGate(r = 1,u = 3) X Accept”

Only R and R can create brothers or gates and they use the remaining resources to create gates to two 2-rings (r = 1); the

other edges apply the Accept productions.

5% (el |5 W aw —p. 26026

: -

Note that « and « are now internal.

RN 2

J/l\i\ 1
L]

R% ——c,2—> @& <-C,00— (}b,oo— o (a,c00) l (a,00) ® -b,oo] GG |70,oo+ e — c,0o| Ri’
C/C’O/ - - \Ca3
o e [

The ring case study

(b,00)

/
‘ /

/®
(p,o0)
\
all [-edges synchro-

nises with Accept
Synchronisation |

;’5 ':};-ﬁ ’?‘.}.’{";‘l ’i"i —p. 26/26

References

[BMR95]

[BMR97]

[FMTO1]

[HIMOO]

[Hir03]

[HMO1]

[HTO5]

[LMO04]

[LTO5]

[Win85]

Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Constraint solving over semiring. In Proceedings of
IJCAI95, San Matco, 1995. CA: Morgan Kaufman.

Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Semiring-based constraint satisfaction and optimization.
Journal of the ACM, 44(2):201-236, March 1997.

Gianluigi Ferrari, Ugo Montanari, and Emilio Tuosto. A LTS Semantics of Ambients via Graph Synchronization
with Mobility. In Italian Conference on Theoretical Computer Science, volume 2202 of Lecture Notes in Computer
Science, Torino (ltaly), October 4-6, 2001. Springer-Verlag.

Dan Hirsch, Paola Inverardi, and Ugo Montanari. Reconfiguration of software architecture styles with name mobility.
In Antonio Porto and Gruia-Catalin Roman, editors, Coordination 2000, volume 1906 of Lecture Notes in Computer
Science, pages 148-163. Springer-Verlag, 2000.

Dan Hirsch. Graph Transformation Models for Software Architecture Styles. PhD thesis, Departamento de Com-
putacién, Universidad de Buenos Aires, 2003. http://www.di.unipi.it/dhirsch.

Dan Hirsch and Ugo Montanari. Synchronized hyperedge replacement with name mobility: A graphical calculus
for name mobility. In International Conference in Concurrency Theory, volume 2154 of Lecture Notes in Computer
Science, pages 121-136, Aalborg, Denmark, 2001. Springer-Verlag.

Dan Hirsch and Emilio Tuosto. SHReQ: A Framework for Coordinating Application Level QoS. In K. Aichernig
Bernhard and Beckert Bernhard, editors, 3rd IEEE International Conference on Software Engineering and Formal
Methods, pages 425-434. IEEE Computer Society, 2005.

Ivan Lanese and Ugo Montanari. Synchronization algebras with mobility for graph transformations. In Proc.
FGUC'04 — Foundations of Global Ubiquitous Computing, ENTCS, 2004. To appear.

Ivan Lanese and Emilio Tuosto. Synchronized Hyperedge Replacement for Heterogeneous Systems. In Jean-
Marie Jacquet and Gian Pietro Picco, editors, International Conference on Coordination Models and Languages,
volume 3454 of Lecture Notes in Computer Science, pages 220 — 235. Springer-Verlag, April 2005.

Glynn Winskel. Synchronization trees. Theoretical Computer Science, 34:33-82, May 1985.

26-1

	 hypertarget {intro}{ �egin {tabular}{cc} �egin {minipage}{.5linewidth }center Forewords \ cf {10}{(with apologies and presentations)}
end {minipage} & �egin {minipage}{.5linewidth }includegraphics
[width=6cm]{figures/overlook.eps}end {minipage} end {tabular} }
	Apologies & presentations
	Apologies & presentations

	Anatomy of a title...{myred S}ynchronised {myred H}yperedge {myred R}eplacement
	Anatomy of a title...{myred S}ynchronised {myred H}yperedge {myred R}eplacement
	Anatomy of a title...{myred S}ynchronised {myred H}yperedge {myred R}eplacement

	Anatomy of a title...{myred S}ervice {myred O}riented {myred C}omputing
	Anatomy of a title...{myred S}ervice {myred O}riented {myred C}omputing
	Anatomy of a title...{myred S}ervice {myred O}riented {myred C}omputing

	 hypertarget {hg}{ �egin {tabularx}{linewidth }{X@{hspace {1.5cm}}X} �egin {minipage}{linewidth }center SHR family \ step by step end {minipage} & �egin {minipage}{.5linewidth }includegraphics [width=5cm]{figures/shr.eps}end {minipage} end {tabularx} }
	Hypergraphs Syntax
	Hypergraphs Syntax

	Productions
	A toy example
	The simplest SHR rewriting system
	Semantics for the simplest SHR rewriting system
	 hypertarget {sam}{ �egin {tabularx}{linewidth }{X@{hspace {1.5cm}}X} �egin {minipage}{1.1linewidth }center SHR family: \ adding mobility end {minipage} & �egin {minipage}{.5linewidth }includegraphics [width=5cm]{figures/grid.eps}end {minipage} end {tabularx} }
	Adding a bit of complexity
	Adding a bit of complexity
	Adding a bit of complexity
	Adding a bit of complexity
	Adding a bit of complexity
	Adding a bit of complexity
	Adding a bit of complexity

	Extending SHR with node passing
	Synchonisation algebras
	Synchonisation algebras
	Synchonisation algebras
	Synchonisation algebras

	SHR transitions and SAMs~mycite {lt05}
	Technicalities...
	Technicalities...
	Technicalities...

	An example
	An example

	 hypertarget {shreq}{ �egin {tabularx}{linewidth }{X@{hspace {1.5cm}}X} �egin {minipage}{linewidth }center SHR family: dealing with application level QoS end {minipage} & �egin {minipage}{.5linewidth }includegraphics [width=5cm]{figures/shrek.eps}end {minipage} end {tabularx} }
	Application-level QoS
	Application-level QoS
	Application-level QoS

	shreq Productions
	shreq Productions
	shreq Productions

	shreq Synchronised Rewriting
	shreq Synchronised Rewriting
	shreq Synchronised Rewriting

	QoS & Synchronisations
	QoS & Synchronisations
	QoS & Synchronisations

	Productions for the ring case study
	Productions for the ring case study2
	The ring case study
	The ring case study
	The ring case study

