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Motivations
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What do we mean for application level QoS?

& Distributed computing is moving toward SOC

£ Integration of software and (heterogeneous) networks of (heterogeneous) systems
(e.g., Internet & mobile phones, wireless & wired networks)
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What do we mean for application level QoS?

& Distributed computing is moving toward SOC

£ Integration of software and (heterogeneous) networks of (heterogeneous) systems
(e.g., Internet & mobile phones, wireless & wired networks)

e SOC architectures are
- distributed
- Interconnected

- based on different
communication infrastructures:
IP, wireless, satellites...
- overlay networks

- Designers, programmers and
end-users may ignore the
stratification and complexity
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What do we mean for application level QoS?

£ Distributed computing is moving toward SOC

£ Integration of software and (heterogeneous) networks of (heterogeneous) systems
(e.g., Internet & mobile phones, wireless & wired networks)

e SOC architectures are
- distributed
- Interconnected

- based on different
communication infrastructures:
IP, wireless, satellites...
- overlay networks

- Designers, programmers and
end-users may ignore the
stratification and complexity

e SOC applications (SOAs) are soups
of services

- programmable coordination

“autonomous’

independent
mobile/stationary

“interconnected” through
interfaces

and published, searched and binded
. offline and in a mostly ad-hoc wa
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What do we mean for application level QoS?

& Distributed computing is moving toward SOC

£ Integration of software and (heterogeneous) networks of (heterogeneous) systems
(e.g., Internet & mobile phones, wireless & wired networks)

e SOC architectures are e SOC applications (SOAs) are soups
- distributed of services
- interconnected - programmable coordination
- based on different - “autonomous”
communication infrastructures: - independent

IP, wireless, satellites...

mobile/stationary
- overlay networks

“interconnected” through
interfaces

end—l.Js.ers.may ignore the _ and published, searched and binded
stratification and complexity . offline and in a mostly ad-hoc wa

- Designers, programmers and

2 May we search & glue services dynamically?

& What should drive service searching?
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Application-level QoS

Lifting QoS issues to applications
2 with programmable application level QoS

2 QoS in designing and implementing SOAs
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Application-level QoS

Lifting QoS issues to applications
2 with programmable application level QoS
2 QoS in designing and implementing SOAs
Search and bind wrt application level QoS

e application-related, e.g.
- price - transactions

- payment mode . data available in a given format
e low-level related (e.g., throughput, response time) not directly referred

but abstracted for expressing how they are “perceived” at application
evel




Application-level QoS

Lifting QoS issues to applications
2 with programmable application level QoS

2 QoS in designing and implementing SOAs

Search and bind wrt application level QoS
e application-related, e.g.
- price - transactions
- payment mode . data available in a given format
e low-level related (e.g., throughput, response time) not directly referred

but abstracted for expressing how they are “perceived” at application
evel

We uses c-semiring as
e a synchronisation mechanism...

e and for interpreting a logic!
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Constraint semirings

An algebraic structure (S, +,%,0,1) is a c-semiring iff 0 #1 € S, and

r+y=y—+<x
(z+y)+z=2+(y+2)
(x+y)rxz=(z*2z)+ (y*2)
r+1=1

THhkY=Y*x
(zxy)xz=x*(y*2)
zxl==x

zx0=20
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Constraint semirings

An algebraic structure (S, +,%,0,1) is a c-semiring iff 0 # 1 € S, and

rt+y=y+<zx

(z+y) +tz=2+(y+2)
(x+y)*xz=(z*2)+ (y*=z)
z+1=1

THhkY=Y*x
(z*xy)*z=x*(yx*z2)
rxl==x

zx0=0

Implicit partial order:
a<b < a+b=0>
“b is better than a”

- c-semirings preserved by many

mathematical constructions
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Constraint semirings

An algebraic structure (S, +,%,0,1) is a c-semiring iff 0 # 1 € S, and

rty=y+x ThyY = yYrT Implicit partial order:

. . a<b <+ a+b=2>
(z+y)+z=a+(y+2) (zxy)*z=zx(y*z2) “b is better than a”
(x+y)xz=(x*xz)+ (y*2) rx1l=u=x .

P 20 =0 - c-semirings preserved by many
r+ 1= r _ mathematical constructions
Examples

& (Real+, maz, min, 0, +00) (max/min): bandwidth, priority
({true, false}, V, A, false, true) (boolean): availability

(Real+, min, 4+, +00,0) (optimization): price, propagation delay

8

8

& ([0,1], maz,-,0,1) (probabilistic): performance and rates
2 ([0,1], maz, min,0,1) (fuzzy): performance and rates

8

(2N U,N, 0, N) (set-based, where IV is a set): capabilities and access rights
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Synchornised
Hyperedge
Replacement




Synchronised Hyperedge Replacement




Synchronised Hyperedge Replacement

£ Edge replacement: local

£ Synchronisation as distributed
constraint solving

£ Multi-party synchronisation

& New node creation

& Node fusion: model of mobility and
communication
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Benefits:

® Uniform framework
& for m, m-l,

fusion [Tuo03, Hir03, LMO04]
& LTS for Ambient ... [FMTO01]

Synchronised Hyperedge Replacement

@

Edge replacement: local

Synchronisation as distributed
constraint solving

Multi-party synchronisation

New node creation

Node fusion: model of mobility and
communication

Expressive for
¢ ... for Klaim ... [DFMT03]

& “sophisticated
synchronisations” [HT05, HLTO05,
LTO5




Hypergraphs Syntax

Given nodes N, hyperedges connect any number of nodes (generalisation of edge)

Yy
L:3, L(y,z,x), o
re —3— [ 32— e0Z
Syntactic Judgement T1:81,-..,Tn: Sy G, n(G)




Hypergraphs Syntax

Given nodes N, hyperedges connect any number of nodes (generalisation of edge)

L:3, L(y,z,x),

Syntactic Judgement

L:3, M:2
An example:

z:1,y:0,2:1F (L(y,2,2) | M(y, 2))




SHReQ
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Productions

Productions are the context free rules upon which hypergraph rewriting is defined

Once Y is satisfied, L(Z)

production x> L(7) Ao as G synchronising

with the edges connected to
nodes & according to A

& 7 is a tuple of pairwise distinguished nodes and L : |7

& x:{z[} — S is a weighting function

& eache node in the interface has an associated c-semiring value...
& that will “drive” synchronisations

£ communication function A : {|Z[} — R associates requirements to the interface of L

& R =5 x N" is the set of events, where S is an alphabet of actions
& n(A) ={z | dr € dom(A).z € A(z)}

& Gisagraphs.t. n(G) C {z[} Un(A)
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Interpreting SHReQ productions

Consider a production
x> L(%) LG

and a graph H having an arc labelled by L, e.g.:

H H[G/L]

& Replacing L with G in H according to 7 requires that H satisfies the conditions
expressed by x on the attachment nodes of L

& Once Y is satisfied in H, L() participate to the rewriting by “offering” A in the
synchronisation with all the edges connected to nodes in x
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Examples of SHReQ production

Consider
(xl’r? <£131,£B3>),
(33278’0)7
(x?nt? <>) .
Ty U, Tt U, T3 ug > L(wo, T3, 17) > il
(', v, (z', x")),
/ / / / (y/’1’<>) / / /
' v,y tve> M(2,y') Lz, y',y)
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Examples of SHReQ production

Consider
(xla'ra <£C1,$3>),
(x273’ <>)7
(z3,1, () .
Ty U, Tg U, X3 : ug > L(xo, x3,21) > il
(', r', (", 2)),
,717
' v,y > M2,y vt o) » L',y y')

Let'u apply these productions to the hypergraph
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Examples of SHReQ production

Consider
(xla'ra <£C1,$3>),
(x273’ <>)7
(z3,1, () .
Ty U, Tg U, X3 : ug > L(xo, x3,21) > il
(', r', (", 2)),
,717
' v,y > M2,y vt o) » L',y y')

Let'u apply these productions to the hypergraph
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Synchronising with c-semirings (1)

C-semiring values for

Synchronisation No synchronisation
Sync and Fin s.t. NoSync C S\ Fin s.t.

8 Sync C Fin C S 8 Sx NoSync C NoSync
8 1¢ Sync 8 oc NoSync
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Synchronising with c-semirings (1)

C-semiring values for

Synchronisation No synchronisation S
Sync and Fin s.t. NoSync C S\ Fin s.t.
Fin
8 SyncCFinCS 8 SxNoSyncC NoSync b} O< Nosyme )
8 1¢ Sync 8 oc NoSync

The Hoare c-semiring on H = Act U{1y,0p, L} (where Act is a set of actions) is specified according
to

2 Va e H.a+yg a=a,

Va,be ActU{Ll}.b#a = a+ygb=1

plus the c-semiring axioms for the sum Hoare synchronisations take
place only when all interacting
components agree on their
actions. This is reflected in the
Hoare c-semiring multiplicative
equations.

2 Va € Act. axg a = a
Va,b€ Act U{Ll}:b#a = a*xgb=1

8 plus commutative rules and the ones for 0 and 1

e S Er=m . Bhr” R



Synchronising with c-semirings (1)

Let Q be a finite multiset over N’ X R, mgu () is an idempotent substitution which is an mgu of
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Synchronising with c-semirings (1)

Let Q be a finite multiset over N’ X R, mgu () is an idempotent substitution which is an mgu of

defined iff

|QQz| >1 = H s & NoSync
(w,5,9)€QQx

e S A= Bl B



Synchronising with c-semirings (1)

Let Q be a finite multiset over N’ X R, mgu () is an idempotent substitution which is an mgu of

(z, 51, ul, o owpooco- o wl)
defined iff
|QQzx| >1 = H s € NoSync (z, Sm, L A 1A

(z,s,9)€QQr
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Synchronising with c-semirings (1)

Let Q be a finite multiset over N’ X R, mgu () is an idempotent substitution which is an mgu of

@ suowd, oulooul)
[ S A"
defined iff . v
|QQzx| >1 = H s € NoSync (z, Sm ul®, ceeoultoeeeu™)
(x,5,9)€QQx Z NoSync u1 (1% Un
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Synchronising with c-semirings (1)

Let Q be a finite multiset over N’ X R, mgu () is an idempotent substitution which is an mgu of

(z, 51, ul, - ul Up,)
A A

defined iff X v
|Q@z| >1 =[] s¢& NoSync (z,  smy o owph, Wl
(z,5,9)€QQx Z NoSync w1 Uqg Un,

The communication function induced by €2 is the function © : dom({2) — R defined as

(t,gp), t= ]]s & Sync, p=mguQ
(z,5,9)€QQx
Q(x) = 1

t()), t= J]s € Sync

\ (CU,S,:&)EQ@x

Basically, () yields the synchronisation of requirements in 2@z according to the c-semiring product.

e S A= Bl B



Synchronising with c-semirings (ll1)

The weighting function induced by I" and 2 is the function I' : dom(I") — S s.t.

1, x € new(Q)
Fa(z) =4 (@), |2Qz] =1

The weighting function computes the new weights of graphs after the synchronisations induced by (2.

5% e Wl SO | —p. 15028



Synchronising with c-semirings (lll)

The weighting function induced by I" and 2 is the function I' : dom(I") — S s.t.

1, x € new(Q)
Fa(z) =4 (@), |2Qz] =1

The weighting function computes the new weights of graphs after the synchronisations induced by (2.
rewriting system: (QP,I' - G)

where OP is the set of quasi-productions on P and is s.t.

8 pcop
8 oL@ 2GeOP A yeN\new() — /> LE{Y/.)) 2 gy e op
where
x(2), z e {z}\ {z,y}
X AlEf\{z} U{y} =S X () =9 x@)+x@@), z=yAyci
x (), z=y ANy & {z[}

a S Er=m . Bl Rt



SHReQ semantics

XDL(J})gGEQP p =mgu ) /\ x(x) < T'(x)
xedom(x)

[k L(Z) = Tk Gp

TG BTG, Tob Gy BTLFG, p=mgu /\ I'(z) =Ty (x)
r€dom(I'; )Ndom(I'y)

T UTs - Gy | G = (D1 UTs) - G | Ghp
where ) = Ql |_|QQ
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SHReQ semantics

XDL(J})gGEQP p =mgu ) /\ x(x) < T'(x)
xedom(x)

TG BTG, Tob Gy BTLFG, p=mgu /\ I'(z) =Ty (x)
L r€dom(I'; )Ndom(I'y)

PluPQkGl|G2%(F1UP2)QFG’1|G\’2p

where ) = Ql LI QQ
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QoS & Synchronisations

A network of rings consists of "“rings” of different sizes connected by gates~ .

_
_
_
_
RT—
/\

-~ \
Bl <

] AN
" E

R

\

]
* G+ 1B y

The B-edgesavoid new gates to be attached on the node
they insist on
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QoS & Synchronisations

A network of rings consists of “rings” of different sizes connected by gates.

il
N

@0 <

R

B~y BT

)+
T
T
|

\ : : : :
Nodes with no B-edges, can be used to generate new rings and will be weighted by the amount
of available resource.
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QoS & Synchronisations

A network of rings consists of “rings” of different sizes connected by gates.

I~ B LU =t L
Bl e=<(G— B * (G 18] .
R IRo w7 —m
[ 7]

s

The c-semiring is HR, the cartesian product of the Hoare c-semiring $ = (H,+g,*y,05,15)
(where H = {a,b,c,15,0g, L}) and R = (woo, max, min, 0, +00)
The idea is that

2 ¢ coordinates the network rewritings

£ 9, handles resource availability
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Productions for the ring case study

Create Brother (n < u)

Tre

A

re (a,m) R |

R — ze — B

Yo (a,+00) ‘RTI

Ye
z +— (a,n)
y — (&, fo0)

x:(0g,u),y:0> R(x,y) R(x,z) | R(z,y) | B(2)

Accept Syncrhonisation R Accept Syncrhonisation B
re (b4oc0) xe re (b+occ) T e
A A 1 1

R — [m 5] — [B]
_|_ I

Yo (a,+o0) Ye
xz — (b, +00)
y — (&, +00)

z: (0p,+00),y:0> R(z,y) amd Gl o

R(xz,y) | = :0> B(x) B(x)

where a € {a, b}
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Productions for the ring case study2

Create Gate (r > 0)

— T — Z

xe (a,+00) E'—O—EPO—R%
+ 4+
-
T

Ye (b,+oc0) Ye

z — (a, +o0)
y — (b, +0o0)

4y :(OHau)vy 0> R(xay)

R(z,y) | B(z) | G(z) | Ry (2,2)

Accept Synchronisation Init Accept Synchronisation Gate
re (c,too) xT e re (B,+oc0) xT @
A
R| — |R adl — |G
B
Yye (c,+oo) Ye Yo (b,+o0) Ye
2T Aeties
z:0,y:0> R(z,y) —— R(zy) | :0,y:0>G(zy) —— G(z,y)

where( € {b, ¢}
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The ring case study

| et's start the derivation from

o B[~
(1g,5)® AN ®(14,5)
\ N
2[R
g \

CreateBrother{u = 5,n = 2) x Createﬁrother(u =4,n = 3)

2 R chooses the production Create Brother with ©w = 5 and n = 2

2 R chooses u =4 and n =3
The resulting synchronisation produces the new weights for the nodes as,

(a,2) = (a,2) x (a,+00) = (a xg a, min(2, +00))
(a,3) = (a,3) x (a,+00) = (a xg a, min(3, +00)).
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The ring case study

1
[
— b,og | \b,oo —
a,oo | R b,o0 7 R , OO
/ | N
(a,2) ® £| ° (a,3)
cf\,oo bo/o
NG - -
R 7 b,oo/ﬂ/

CreateGate(r = 1,u = 2) X CreateGate(r = 1,u = 3) X Accept™

Only R and R can create brothers or gates and they use the remaining resources to
create gates to two 2-rings (r = 1); the other edges apply the Accept productions.
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Note that e and e are now blocked.

(b,00)

N A RN
R2 _7 . <-c,00— G |b,0o- o@ﬂ/lj i’\
C/c’ A\\El b, 0o,

/®
(p,00)
\
all l-edges synchro-

nises with Accept
Synchronisation |

The ring case study

1

i'—C,OO% ® —C,30

\c,3
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C-semiring logic for
SHReQ




Reasoning with SHReQ

A spatio-temporal logic for SHReQ has been defined in [HLTO05]
Vi is the set of are node variables, Viy N N = () and Vg is the set of recursion variables

¢ = nil | Pl ~| ¢[l¢ & £ C L denotes a finite set of labels
;Eg | | ?@S) & ¢ ranges over N' U Vs
o0 | 11, & fis a symbol for c-semiring function
=)o | Mo 8 uoc
o = 8 tecV
v(€) | (ue(u).@)¢ | (ve(a).9)¢ "
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Reasoning with SHReQ

A spatio-temporal logic for SHReQ has been defined in [HLTO05]
Vi is the set of are node variables, Vir NN = () and Vkx is the set of recursion variables

¢ u= ol | 9l | ¢llo

&) | £(6) F is the set of c-semiring function
flo,...,9) S¢ — S, i > 0. Set F obvi-
>0 | 11,9 0U:||y CCTn_ta;_lnS .C—semlrlbn.g addf|t|on
[Z]qﬁ ‘ [H]¢ a.n multiplication as mary unc-

tions, and values as zero-adic func-
w—=v tions

(&) | (ue(@).0)¢ | (ve(a).9)¢
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Reasoning with SHReQ

A spatio-temporal logic for SHReQ has been defined in [HLTO05]
Vi is the set of are node variables, Vir NN = () and Vkx is the set of recursion variables

¢

nil | 9lo | ollg
r©) | L@
1(,....9)
>, 6 | T1, ¢
e | [me

(&) | (ue(@).0)¢ | (ve(a).9)¢

Spatial and temporal modalities
(dual modalities are necessary for
the lack of negation in c-semirings).
Quantification is modelled on top of
c-semiring summation and moltipli-
cation.

5% 2 WSO e —p. 22028



Reasoning with SHReQ

A spatio-temporal logic for SHReQ has been defined in [HLTO05]
Vi is the set of are node variables, Viy N N = () and Vg is the set of recursion variables

6 = nil | 9l | 6|6
r©) | £
(..., )
5,6 | TL,¢
e | e
¢(€) | (ue(@)-9)E | (ve(@).0)€

Notice that
& C-semiring values 0 and 1 model falsity and truth

& Absence of negation [LMO5]

£ Basic operations are represented by functions f

5% 2 WSO e —p. 22028



Reasoning with SHReQ

& Formulae are interpreted as maps G — S, where G is the set of all weighted graphs
8 Let (QP,T' - G) be a SHReQ rewriting system and (S, +,*,0,1) a c-semiring
& ke{Z,I},o:Vy =Nandp: Vg —G— S

5% 2 WSO e —p. 23028



Reasoning with SHReQ

& Formulae are interpreted as maps G — S, where G is the set of all weighted graphs
8 Let (QP,T' - G) be a SHReQ rewriting system and (S, +,*,0,1) a c-semiring
& ke{Z,I},o:Vy =Nandp: Vg —G— S

[nil]s,p(THFG) = G=mnil
[£(©) 10p(THG) = Y pce{G=L(0)}
[£=¢]6pTHG) = Eo=¢0o
[T() ]o;p(T'EG) = ({0 € dom(I")) xI'(£0)
[f(@1,..50n) |oip(TEG) = f(lo1]op(THG), ... [ on]oip(T'HG))
[P1ld2 ]oip(THEG) = 2 aco) @1 lop(lEGi)x [ ¢2 ]op(F G2)}
[P1lld2 ]o:p(THG) = 1lig,a)eo@)tl @1 ]op(lGr) +[é2 |o;p(T'F G2)}
[ fu @ loip(TEG) = Kzcdomm)l @ lofz /0T F G)
[k o losTH-G) = & o, ., l0]T"FG)
[¢(©) 10p(THG) = (o)
[ (ue(@). ) 1oip(THEG) = UpA X[ S 1515/ pese) (€0) (T FG)
[(e(@).9)E lop(TEG) = gfp(AAGL[@ o1, pfersery) (E0) T F G)
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Reasoning with SHReQ

£ Formulae are interpreted as maps G — S, where G is the set of all weighted graphs
& Let (QP,T'+ G) be a SHReQ rewriting system and (S, +,*,0,1) a c-semiring
& ke S}, 0:Vy 2Nandp: Vg —>G— S
[nil]e:p(TFG) = G =nil
[ £6) lo;p(THG) = ZLGS{G = L(éa)}
[£=¢&16;p(T'FG) = Eo=¢0o
= (&0 € dom(T")) * (o)
= f(Ié1]o;p(TFG),....[¢n]op(TFG))
= 2 G1.enee) U d1 lopn(E G1)x [ ¢2 ]oip(T F G2)}
= Ilc,,ayeold1lop(T - G1) +[ 2 ]o)p(IF G2)}

)
[ f(@1,---,0n) Jo;p(T' = G)
)
)
oip(lFG) = Keedomm [ @ lof/,); (I F G)
)
)
)
)

[Fu ¢
[ lonF G = iy ap o [#107F G
[v(©) |o;p(THG) = tp(&o)
[ (1e(@).0)E Joip(TFG) = oW X0.[ 61,05, perer)) (€0 F G)

==
-
[
-
\}
_ _ [— [— S— S— S— —_ —_ —_ —_ —_
Q
o)
Ve
pj
T

= afpAW AL D11 peser) (0N F G)




Reasoning with SHReQ

£ Formulae are interpreted as maps G — S, where G is the set of all weighted graphs
& Let (QP,T'+ G) be a SHReQ rewriting system and (S, +,*,0,1) a c-semiring
& ke S}, 0:Vy 2Nandp: Vg —>G— S
[nil]ep(THG) = G =nil
[£) 1oip(THG) = Xpcel{G=L(60)}
[£=¢10pTHFG) = Eo=¢0

[T(©) loip(TFG) = (o € dom(T))*I'(¢0)

[f(d1:- - 0n) Josp(TEG) = f([01]op(THEG),....[¢n ol FG))

==
-
[
-
\}
_ _ [— [— S— S— S— S— — —_ —_ —_
Q
o)
Ve
pj
T

[A1l2 [op(TEG) = 2 a, .ay)co@) @1 ]op(lTEGl)x [ d2 ]o)p(T = G2)}
) = Iliey.ccoilé1]opTEGr)+[¢2]0;p (T G2)}
[fu @ op(TFG) = Kzedomm| @ lofz/,1:p(TFG)
[k o losTH-G) = & o, ., l0]T"FG)
[¢(©) 1o:p(CHG) = tp(éo)
[ (ue(@)-9)E losp(THG) = UfpATAD[ 1,75, perser) (€N G)
)

= afpAW AL D11 peser) (0N F G)




Reasoning with SHReQ

& Formulae are interpreted as maps G — S, where G is the set of all weighted graphs
8 Let (QP,T' - G) be a SHReQ rewriting system and (S, +,*,0,1) a c-semiring
& ke{SI},o:Vy >Nandp: Vg -G — S
) = G =nil
) = ZLGS{G = L(ga)}
[£=¢1]0p(THG) = Eo=¢0o
) = (€0 € dom(T))*T'(&0)
)

[f(@1,-500) loip(THG) = fl¢1lo:p(TEG), ... [ ¢n ]op(TFG))

[ |

—_

\)
= = = = = = = = [ = = =
[ - - -

[ ¢1lP2 Josp(TEG) = Da, aoyco@)tl @1 lop(TEG1) [ ¢2 ]o)p(IF G2)}
oo EG) = Tliganeco@ il @1 lopEGr)+ [ ¢2]o)p( - G2)}
[fu @ op(TFG) = Kzedomm[ @ lofz/,1:p(TFG)
[[K]¢]op(THG) = w2, o [0]1T"FG)
[¢(©) 1o:p(CHG) = tp(éo)
[ (1e(@).0)E Joip(THG) = oA AL D5, peser) (€0 F G)
[ (ve(@).$)E loip(THG) = gfp(AW AL 1,05/ pleser)) (§0)(T F G)




Reasoning with SHReQ

£ Formulae are interpreted as maps G — S, where G is the set of all weighted graphs
& Let (QP,T'+ G) be a SHReQ rewriting system and (S, +,*,0,1) a c-semiring
& ke S}, o:Vy —2Nandp: Vg —>G— S
) = G =nil
) = YpeelG=L(0)}
) = fo=¢o
[T() o EG) = (o € dom(I)) xI'(§0)
[f(#1,--.00) Jos)p(THG) = f(Id1]op(THEG),....[¢n]op(TFG))
)
)

[A1l2 |op(TEG) = D a, .ay)co@) @1 ]op(lTEGl)x [ d2 ]o)p(T = G2)}
[P1llP2 ]op(TEG) = Tl cco@tl @1 lop(TFG1) + 1 ¢2]o:p(TF G2)}
[fu @ )op(TFG) = Kzedomm[ @ lofz/,1:p(TFG)
[k o ]osTH-G) = & aL, ., l0]T"FG)
[¢(©) 1o:p(CHG) = rtp(éo)
[ (ue(@)-9)E losp(THG) = UfpATAD[ 1,75, perser) (€N G)
[ (ve(@).0)E 1osp(TEG) = gfp(AW A0 D o159 peiser) (§0) (T F G)
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Reasoning with SHReQ

& Formulae are interpreted as maps G — S, where G is the set of all weighted graphs

8 Let (QP,T' - G) be a SHReQ rewriting system and (S, +,*,0,1) a c-semiring

& ke{Z,I},o:Vy =Nandp: Vg —G— S

[nil Jo;p(T' = G)

[ £(€) Io:ip(T F G)
[£=¢ 10T G)
[T(E) losp (T = G)
[f(®15-- s 0n) Josp (T G)
[ #1162 |o3p(T - G)

] )

¢ | )

] )

]

]

]

[ ¢1ll2 Jo3p(T =G

| ku @ ]o;p(T' G
[[K] @ ]osp(THG

[ (&) Io:p(T F G)

[ (ne(a).¢)€
| (ve(a).@)¢

oip(I'F G)
o:ip(I'HG)

G = nal

S ree{G = L(é0)}

§o=Eo

(6o € dom(T")) x T'(&0)

flo1]lop(TEG), o[ dn ]oip(T E G))

261,60 e0(@) L 21 lop(TE G1) x [ @2 ]o;p (T F G2)}
I, .ayco{l @1 lop(T'F G1) + 1 @2 o3 (I = G2)}
Kzedom(T)l @ lofz /,1:p(T'H G)

KII‘I—~G$I"}—G’[¢](F/ = G)

tp(&o)

oA X0.[ 6 515/ 1 pleer) (E0)(T F G)
afp N[ S 1,05/ pleser)) (E0) (T G)




Applying the logic (1)

A formula expressing that there is a path between nodes u, v made of edges labelled by
elements in £:

path(u, v, £) L pr(u,v).(u=v) + Zi}(u, w)|e(w, v).

A pair of nodes u, v belong to a ring whenever there are two disjoint paths from u to v
made of R-edges

ring(u, v) o path(u,v, {R}) | path(v,u,{R})
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Applying the logic (1)

A formula expressing that there is a path between nodes u, v made of edges labelled by
elements in £:

path(u, v, £) L pr(u,v).(u=v) + Zi}(u, w)|e(w, v).

A pair of nodes u, v belong to a ring whenever there are two disjoint paths from u to v
made of R-edges

ring(u, v) o path(u,v, {R}) | path(v,u,{R})

ring(u,v) does not

(b,00)
? hold if v and v be-
_‘_\ ) longs to  different

([
| N
e
R? I ° G }— ® (a,0) E‘ (a,00) ® — \Ri’?ings because they are
— - SN— 4,/ onnected with a path
C/ A\_E‘ - B - that must contain a
R ‘\‘Tj/ R G-edge.

[
(b,00)

Q
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Applying the logic (1)

A formula expressing that there is a path between nodes u, v made of edges labelled by
elements in £:

path(u, v, £) L pr(u,v).(u=v) + Zi}(u, w)|e(w,v).

A pair of nodes u, v belong to a ring whenever there are two disjoint paths from u to v
made of R-edges

ring(u, v) o path(u,v, {R}) | path(v,u,{R})

. def The boolean interpreta-
Summatlon(gb) — :ut¢_|_ [E]t tion of summation(¢p) is
eventually(¢)

T« S Er=m . BEr



Applying the logic (Il

Hﬂ({B}(u) | 1) — summation (Z({G}(fu,u) | 1)>

u v
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where = € F maps 0 into 1 App|y|ng the |ogiC (II)

and every value distinct from
OtoOand — is <g.

Hﬂ({B}(u) | 1) — summation (Z({G}(U,u) | 1)>

u

v

Y /T N ST e o 2528



Applying the logic (Il

Hﬂ({B}(u) | 1) — summation (Z({G}(fu,u) | 1)>

u v

& its interpretation on graph

o
(1H75).\ .(1H,5)

will range over its two nodes e and e

& The antecedent 1 since no B-edge is present; the whole formula holds only if the
consequent is 1 as well.

&2 The initial graph eventually evolves to a graph containing gates connected to that
nodes, namely the consequent is evaluated to 1, as required.
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A non-trivially valued formula

We now introduce a formula concerning QoS aspects and whose interpretation might
return values different from 0 or 1.

5% 2 WSO L —p. 26028



A non-trivially valued formula

We now introduce a formula concerning QoS aspects and whose interpretation might
return values different from 0 or 1.

ZF *2({B}(u) [ 1)
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A non-trivially valued formula

We now introduce a formula concerning QoS aspects and whose interpretation might
return values different from 0 or 1.

ZF *2({B}(u) [ 1)

£ its interpretation on graph

(1H,3)o/
\E/

will range over its two nodes e and e and is evaluated to (1, 5)

e S Er=m . Bl



A non-trivially valued formula

We now introduce a formula concerning QoS aspects and whose interpretation might
return values different from 0 or 1.

ZF *2({B}(u) [ 1)

& but, its interpretation on graph

R

Bj— *1m5)

(1H,3) o

-
S~

{

is evaluated to (1, 3)
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Mixing all up

Our last example states a property related to structure, behaviour and QoS.

resource = Z { Ry Hw,v) | 1)*

w,v

(1] (R} (w,v) | 1) x T(w))
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Mixing all up

First, the resources of

Our last example states a property related to structure, behaviour and newly generated rings
are computed by look-

resource =—= Z ({RS}(w,v) | 1)* ing over a graph con-
taining a R -edge

w,v

Then, after a rewrit-

(1] (R} (w,v) | 1) x T(w))

ing step, the weights
of the first attachment
node of the R-edge are

summed up.
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Mixing all up

Our last example states a property related to structure, behaviour and QoS.

resource = Z { Ry Hw,v) | 1)*

(1] (R} (w,v) | 1) x T(w))

& Formula summation(resource) computes the best value of resource in every reachable
state, i.e., the best initial resource value of every ring ever created

& interpreting summation(resource) on

(b,00)

R RL>e¢ —{R] R3 }\L
/"\ - a e —N - Y
o 1 (c,2) ® G | O\Eb,oo) E‘ (b,_oo)/o G | o (¢,3) 1 e
R R
.
(b,00)

finds the two new rings over which the maximum is chosen resulting in (0, 3).
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Conclus_ions_ and future
directions

We presented c-semiring as
£ an abstract model of application level QoS
2 a synchronisation mechanism

2 an interpretation of a spatio-temporal logic

Future work

£ comparisons of c-semiring and other
algebraic structures

£ decidability of the logic

Y 5 e Wl ST -p 288
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