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Service Oriented Computing

Distributed computing is moving toward SOC

® |Integration of software and (heterogeneous) networks of (heterogeneous) systems
(e.g., Internet & mobile phones, wireless & wired networks)
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Formal tools for SOC

Specification Implementation

® Process calculi ® HD-automata € Kiaim
& Klaim & operational model ©® Aspasya
‘ ‘ - . .
: CéCPS . & minimisation ® SHR: Gredy
. < l')l_ - ;ClP&PL ® \ihda
> mbolic Fusion @ i I
y Spatial model checking ® Jrus & Jeca
calculus O
® SHR - L.ong running transac-
.. tions
® QoS as c-semirings
® Spatial logics wrt
& HD-automata
& SHR
Works with several peoples:
Inside Pisa: Outside Pisa:
® pisa Department: Andrea Bracciali, Roberto ® Florence: Rocco De Nicola and Rosario
Bruni, Gianluigi Ferrari, Dan Hirsch, lvan Pugliese

Lanese, Hernan Melgratti, Ugo Montanari,
Daniele Strollo

® pPisa CNR: Stefania Gnesi ® Lisbon: Hugo Torres Viera

Uppsala: Kidane Yemane & Bjérn Victor
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Formal tools for SOC

Specification Implementation

& Process calculi
Klaim...CoS
clP

ccs,

Symbolic Fusion
calculus

SHR

QoS as c-semirings

e e e @

e |l

& Spatial logics wrt

& HD-automata
& SHR

@

e |e

HD-automata
& operational model

& minimisation
clP & PL
Spatial model checking

e |l@

@

e e |@

Klaim
Aspasya
SHR: Gredy

Mihda
JTWS & JSAGA

Long running
tions

transac-
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Application-level QoS

Lifting QoS issues to applications
First steps (extending

_ _ Klaim) in [DFM*03] and
© QoS in designing and implementing SOAs recently in [DFM+05]

© with programmable application level QoS
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Application-level QoS

Lifting QoS issues to applications
First steps (extending

_ o _ _ Klaim) in ﬂm] and
¢ QoS in designing and implementing SOAs recently in [DFM*05]

© with programmable application level QoS

Search and bind wrt application level QoS

© application-related, e.g.
& price transactions

s
& payment mode & data available in a given format

¢ |ow-level related (e.g., throughput, response time) not directly referred but abstracted
for expressing their “perception” at the application level

Application level QoS abstracted as constraint-semiring [BMR95, BMR97]
© for coordinating mobility

© and synchronisations
C-semiring are particularly indicated because

® they have an implicitly defined partial ® _..in particular cartesian product of
order c-semirings is a c-semiring
® their structure is preserved by many math- © hence c-semirings are suitable for multi-

ematical operations... criteria
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JCoS aims at being a minimal calculus for SOC

s

@

JCoS builds on Klaim (e.g., processes
are localised)

‘cause it naturally supports a
peer-to-peer programming model

JCoS primitives handle QoS values
as first class entities

JICoS semantics ensures that the
QoS values are respected during

execution

@

@

@

JCoS characteristics

only local communications (unlike
Klaim)

link construction primitives
only one remote action
which relies on link topology

semantic transitions report the
“cost” of the execution
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Remote actions in oS

JCoS ... graphically
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SHR & SOC

Joint works with

G. Ferrari, D. Hirsch, |. Lanese, A.
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Hypergraphs Programming model

Using SHR, we aim at
® defining a uniform framework

® tackling new non-functional computational phenomena of SOC

The metaphor is

@

“SOC systems as Hypergraphs”

@

“SOC computations as SHR"

In other words:

@)

Components are represented by hyperedges
Systems are bunches of (connected) hyperedges

Computing means to synchronously rewrite hyperedges...

e @ @ @

...according to a synchronisation policy
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Synchronised Replacement of Hyperedges
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Synchronised Replacement of Hyperedges

Edge replacement: local

Synchronisation as distributed
constraint solving

Multi-party synchronisation

New node creation

Node fusion: model of mobility and
communication
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SHR & synchronisation algebras via an example

® C(Clients C4,...,C,, invoke a service from a remote servers S, ..., S, provided that they
are authorised

® A trusted authority Au checks for the authorisation

YT Clients are connected to Au on a

U - “public’” node z while servers are

Au © B2 connected on a “private” (i.e., re-
stricted) ones.

29 0 — (@ Bs will simply acquire the requests

from clients and forward them to

— each server.
Com |

® synchronisations C; — Au are “Milner” (e.g., in PPP connections)

Notice that

® B, is required when broadcast is not primitive

® then broadcast must be “encoded”
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SHR & synchronisation algebras via an example

® Clients C1,...,C,, invoke a service from a remote servers S, ..., S, provided that they

are authorised
® A trusted authority Au checks for the authorisation

Clients are connected to Au on a
“public” node z while servers are
connected on a “private” (i.e., re-
stricted) ones.

In SHR we can simply specify

(xaaUthi7<y>)

> x: Mil,y : Bdc + Ci(y)

(z,auth;,{(u))

x: Mil - Ci(x)

x: Mil,u : BdcF Au(z,u) > x: Mil,u : Bdc+ Au(x,u)

where Bdc is the broadcast SAM.
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A logic for SHR & QoS

A spatio-temporal logic for SHR interpreted over c-semirings has been defined in [HLT].

~

¢ n= nil | T(E) | £&) | ol | oll¢ |
F(o,...,0) where (S, +, *f, 0,1) is a c-semiring,
£ C L is a finite set of labels, &
2@ | 1@ is @ metavariable for nodes or node
2l | e variables and f is an operation on
U= ) ) the fixed c-semiring values
v(§) | (ur(a).9)E | (ve(a).¢)§
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A logic for SHR & QoS

A spatio-temporal logic for SHR interpreted over c-semirings has been defined in [HLT].

~

¢ =l [ T(E) | L&) | dlo | ol
f(o,...,9) where (S, +,*,0,1) is a c-semiring,
S ¢ | I & £ C L is a finite set of labels, &
[Zti & | [l_ﬁ & is a metavariable for nodes or node

variables and f is an operation on
w="u ) ) the fixed c-semiring values

v(€) | (ur(u).9)¢ | (ve(u).9)¢

Let G be the set of weighted graphs: we interpret formulae as maps G — S.

Let 0 be a map from node variables to nodes and p be a map from recursion variables to

functions § — S.

|[ P12 :U;p(F -G) = Z(Gl,Gg)E@(G){I[ P1 ]]G;p(r = Gy) * I[ P2 ]Ia;p(r - G2)}
[ 611102 o3p(THG) = 1lig,,a0)co@l 110 (TF G1) + 12 |0 (T F G2)}
[ > ¢]ep(TEG) = ern(g) [ ¢ lo@ /ol FG)
[I[. ¢ ]ep(TEG) = H:UEH(G) [ ¢ otz /010 (T F G)

[S]¢1CFG) = X an (61T FG)

[[610FG) = T, 4. 61T FG)
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HD-automata

Joint works with

G. Ferrari, U. Montanari, K. Yemane and B. Victor
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HD-automata...intuitively

© HD-automata as an operational model of history-dependent calculi [Pis99, MP98]

® allow a finite representation of classes of infinite LTS
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HD-automata...intuitively

® HD-automata as an operational model of history-dependent calculi [Pis99, MP98]
® allow a finite representation of classes of infinite LTS
A HD-automaton associates a “history” to names of the states appearing in the compu-

tation: it is possible to reconstruct the associations that lead to the state containing the
name. If a state is reached in two different computations, different histories could be

assigned to its names.
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HD-automata...intuitively

HD-automata as an operational model of history-dependent calculi [Pis99, MP98]

® allow a finite representation of classes of infinite LTS

® states and transitions have local names:
® names explicit in the operational model

® 5o that HD-automata model name

creation /deallocation or extrusion

State s has three names: 1, 2 and 3

® State d has two names: 4 and 5

The transition is labelled by lab and exposes
names 2 (of s) and a fresh name 0
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HD-automata...intuitively

HD-automata as an operational model of history-dependent calculi [Pis99, MP98]

® allow a finite representation of classes of infinite LTS

® states and transitions have local names:
© names explicit in the operational model

© so that HD-automata model name
creation /deallocation or extrusion

@

State s has three names: 1, 2 and 3

@

State d has two names: 4 and 5

@

The transition is labelled by lab and exposes
names 2 (of s) and a fresh name 0

oc:4+—1and o:5— 0, the new name

3 is “discharged”
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Mihda

Minimising History Dependent Automata:

Co-algebraic specification

® Partition Refinement Algorithm based on co-algebraic specification [FMP02
® \ihda: Ocaml implementation (refining A~11'* spec. [FMT05a])

Comp. Time | States Trans. Min. Time | States | Trans.

GSMsmall || Om 0.931s Om 4.193s [ 197 ]

GSM full Om 8.186s Nge) | Om 54.690s
[Normalisation] "
\'\.\ ‘/“""”’ /:/
‘N, _z"’ /:
'~ e /7
N /“/‘ :/..
" (Automaton) ,”
! R ‘/“, K4 ‘/”
LT F ® Adherent to specs
1 R R . 7’
- v /‘/ ~/~ ~ K .
V ysr / 7 ® Highly modular
(Transitions) ,:' s ® : :
PSEN L ® Easily extendible
/“/ "\., / ’ /
," \.,\ l/

Vd
BEs v~ o



The main step
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The main step
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The main step
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The main step

.'\.
S B \" q. BIN x a[*/y] @
o . ‘
\.
| -
./.
./.
S | .’/. 7 (XD

Tau 63;03
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The main step

BIN x 620>

Tau 63;03
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The main step

BIN x 620>

L—-" -~-

Tau 63;03

Theorem Any block at a generic iteration 7 collects those states that cannot
be distinguished in i-steps.

Theorem The algorithm converges on finite HD-automata (for
m-calculus [FMTO05a])

Theorem  The iterative partition refinement algorithm is convergent on fi-
nite HD-automata whenever the normalisation functor is monotone on nfs (for

m-calculus [FMTT05b])
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Application level QoS

Application level QoS abstracted as constraint-semiring [BMR95, BMR97]

® for coordinating mobility
® and synchronisations
An algebraic structure (S, +,*,0,1) is a c-semiring iff

® 0,1cSand0#1

+:5x8—-5 *:8%x85—>S8
r+y=y—+wx TxY=Y*XT
(z+y)+z=ax+(y+2) (xy)*xz=1a*x(y*2)
r+0==x rxl==x
® and z+1=1 rx0=0
rT+r==x (x+y)xz=(x*xz)+ (y*2)

The cartesian product
of c-semirings is a c-

Implicit partial order:
a<b << a+b=">

“b is better than a” semiring

Ew’ 5/ | -p.18/43



JCoS syntax & semantics

Let C be the c-semiring of QoS values (ranged over by k)

P,Q := T ==
nil
~v.P v
(vs)P Tx
P | Q —v
P T,T
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JCoS syntax & semantics

Let C be the c-semiring of QoS values (ranged over by k)

P,Q := T ==
nil
~v.P v
(vs)P T
P | Q —v
P T,T

N %> M states that N performs « with a cost x and becomes M I
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JCoS syntax & semantics

Let C be the c-semiring of QoS values (ranged over by k)

-V

T, T
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JCoS syntax & semantics

Let C be the c-semiring of QoS values (ranged over by k)

P,Q := T ==
nil
~v.P v
(vs)P T
P | Q —v
P T,T

N %> M states that N performs « with a cost x and becomes M I

reR (POt N M ElRkt L M k) <k
/ !/ _
K

N

(LAND)

N|M———>N|M|t:P
K * K

Ew’ 5/ | -p.19/43



A motivating example

Consider a scenario where n servers provide services to m clients and focus on balancing
the load of the servers.

® clients (c¢;) and servers (s;) are located on different nodes
® , issues requests to s; by spawning a process I

A generic client is described by the following term:

® (s;,k;) represents the load r; of the server s; perceived b ¢;

® (5 and R specify the behaviour of ¢;:

Cs
R

(T, 7v).e4 | R]Ou.cOnyis {u).(u, v * J)

(7x).{(x + 1) ... actual request ...(?y).(y — 1)

e e

Remark 1 Remote spawning consumes the traversed links, hence c; attempts to
re-establish a connection with the server!

Eﬁ" 5/ | —p.20/43



A motivating example?

s; is described as:

® (¢;, k!) records the QoS value k! assigned to the link towards c;

® (1) is the current load of s,

® S ¢ s;is aload manager for ¢;

1>

Scs (?0).(D).If , | < max

then (c, ?v).accy(y{c)-(c, f(v,1))

S repeatedly acquires (h) and depending on the load decides whether to accept requests
for new connections coming from c.

Eﬁ" 5/ | —p. 2143



JCoS Operational Semantics

(PREF) s:v.P 7T@S> s P, v & {node,(t),cong(s),accy(s)}

s cony (t) t acc,/(s)

N ; >N M ] >M' 0<k <K
(CON)
N||M%>N’HM’Hs/it
N%N’ MSTt>M’ ><1(T,t) =0
(comM)
NHM?N/O‘HM,

E‘?’ 5/ | -p.2243



oS Operational Semantics?

(LINK) s At — li/’:kt >0

(NODE) s = node, (t).P “°dle<’°>> s:Plst|t: o,
N —> N’
( ) K . bn(a)Nfn(M)=0 A
PAR 1
N | M %> N’ || M (addr(N') \ addr(N)) Naddr(M) = ()

Rule (NODE) allows a process allocated at s to use a name ¢ as the address of a new
node and to create a new link from s to t exposing the QoS value x. The side condition
of (PAR) prevents new nodes (and links) to be created by using addresses of existing
nodes.
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KoS Operational Semantics®

(LEVAL) s £4[Q]Os.P —>s: Pl s:Q

N r e (P)at / M r link r’ N M/ Iﬁ',/‘k/i” S
/{,/ H;//
(ROUTE) t#
r' 5 (P)at / /
N|M- 2 N M
K %K
S P @ o
N rsﬁ(/) t>N/ M r11r;:<t>M/ /ﬁ:l*lﬁjﬁglﬁ)
K K
(LAND)
N[M———>N|[M|[t:P
K %K

Local spawning is always enabled while a,.;[P]@t from s is not always possible: the net must contain a

path of links from s to ¢ suitable wrt k.
(ROUTE) states that P can traverse a link go an intermediate node r provided that costs are respected.

(LAND) describes the last hop: in this case, P is spawned at t, provided that the QoS value of the whole
path that has been found is lower than k.

EWW — p. 24/43



Public links

Links in [CoS are public:

>

1

N s eg|PlOt || s~7r | r:cong(t).ex|QOt || t::accy(r),

s and r are trying to spawn a process on t (but no path to t exists).

® 1 is aware that a link must be first created (and ¢ agrees on that).

Initially, only (CON) con be applied:

sues[PlOt || s~r || ruesQ@ || rA~t | t: mil

1>

N/

r A t provides now a path (costing 3) from s to ¢, hence using (PREF), (LINK),
(ROUTE) and (LAND) we derive

N’ % s:nil || r:ex]QOt || t:: P.

Noteworthy, the migration of P prevents () to be spawned because the link created by r
has been used by P.

Ei‘: 5/ | -p.25/43



Private links

Private links can be traversed only by those processes having the appropriate “rights’.
Access rights are (particular) names.

>

NZ2s i eg [P0t || s 2 &

P can traverse the link in NN but not the one in

Access rights c-semiring: R = (pgq(S) U{S}, glb, U, S, D)

X<Y <— Y CX

A private link between the nodes s and ¢ can be specified as

wp)s=PllsZi)t:0)
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Permanent and stable links

JCoS' links are vanishing but permanent links can be easily encoded:
s leon, (t) || t :: lacc (s)

A slight variation are stable links, which are links existing until a given condition is
satisfied.

Stables G t & lcon,(t) | e|While G do acck(s) od nil|@t

Ew’ i/ | M —p.2743



Hypergraphs Syntax

A hyperedge connects more than two nodes (generalisation of edge)

Y
L:37 L(y7z7x)7 o

re —3— ][,

G:u=nil | L(z) | GIG | vy.G

Syntactic Judgement 1z : sq,...

Tyt Sy F G, fn(G) C{zy,...,z,}

EWW —p. 28/43



Hypergraphs Syntax

A hyperedge connects more than two nodes (generalisation of edge)

L : 37 L(:U? Z?'CE)?

G:u=nil | L(z) | GIG | vy.G

it

re —3—J[ —32—ez2

Syntactic Judgement 1 :5s1,...,%, S, F G,

An example:

L:3, M:2

vi1y:0F v (L(y, 2 2)M(y, 2))
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Productions

Productions based on requirements: R = S x N (where (S, +,%,0,1) is a c-semiring)

production x> L(7) 4G

T is a tuple of pairwise distinguished nodes and L : |Z|

X : {|lZ|} — S is the applicability function

A {|z[} — R is the communication function

G is a graph s.t. fn(G) C {|z[} Un(A)

EG" 5/ | —p 2043



Productions

Productions based on requirements: R = S x N (where (S, +,%,0,1) is a c-semiring)

production

x> L(7) La

T is a tuple of pairwise distinguished nodes and L : |Z|

X : {z|} — S is the applicability function

A {|z[} — R is the communication function

G is a graph s.t. fn(G) C {|z[} Un(A)

Replacing L with G in H
that H satisfies

the conditions expressed by
x on the attachment nodes

of L

Once Y is satisfied in H, L(Z)
to the rewriting by offering

A in the synchronisation with all the
edges connected to nodes in

Eﬁ" 5/ | —p. 2943



Synchronised Rewriting

Events for
Synchronisation Sync and Fin s.t. No synchronisation NoSync C S\ Fin s.t.
® Sync C FinC S ® S NoSync C NoSync
® 1 c Sync ® 0 c NoSync
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Synchronised Rewriting

Events for

Synchronisation Sync and Fin s.t. No synchronisation NoSync C S\ Fin s.t.

® Sync C FinC S ® S« NoSync C NoSync
® 1 c Sync ® 0 c NoSync

mgu accounting for node fusions; let 2 be a finite multiset over N’ x R.
mgu(Q) ={u; =v; | Is,t € S : (x,s,u), (x,t,0) € QA1 <7 < |ul}

Is an idempotent substitution defined iff

|QQzx| >1 = H s & NoSync
(z,5,9)€QQ

EG” 5/ | —p.3043



Synchronised Rewriting

Events for
Synchronisation Sync and Fin s.t. No synchronisation NoSync C S\ Fin s.t.
® Sync C FinC S ® S % NoSync C NoSync
® 1 c Sync ® 0 c NoSync

mgu accounting for node fusions; let 2 be a finite multiset over N’ x R.
mgu(Q) ={u; =v; | Is,t € S : (x,s,u), (x,t,0) € QA1 <7 < |ul}

Is an idempotent substitution defined iff

|QQzx| >1 = H s & NoSync
(z,5,9)€QQ

-G 23T -G

xe€dom(I'y)Ndom(T'y)

A{WAo
Huls -Gy | Gy —— (F1 UFQ)(Al

WA2)
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Quasi-productions

The set QP of quasi-productions on P is the smallest set s.t. P C QP and

XxbL(E) SGeQP A yeN\new(Q)
Y

b LE( ) 2 Gpy),) € o

where
[ x(2), z €z} \{z,y}
X Az \{zu{y} =9  X()=1 x@)+x), 2=yryeci
L x(2), =y ANy & {z[}

rewriting system: (QP,I'+ G)
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Graph transitions

(REN)
X>L(E) 2 GeQP  p=mgu(Q) A x(@) <T(x)
xedom(x)
[+ L(Z) 2 Tq + (v 2)(Gp)
(com)

Fll—GlgF’ll—G’l FQI‘GQEF/QI_GQ p:mgu(Al&JAg)
A Ti(z) =Ta()
rxe€dom(I'; )Ndom(I'y)

A{WA5
Fiulo b Gr | Ge == (D1 UT2) g ua, F (¥ 2)(G1 | Go)p

where Z = new({2) \ new(£2)
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Graph transitions

(REN)
X>L(E) 2 GeQP  p=mgu(Q) A x(@) <T(x)
L x€dom(x)
[+ L(Z) = Tg - (v Z)(Ep)
(com)

Fll—GlgF’ll—G’l FQI‘GQEF/QI_GQ p:mgu(Al&JAg)
A Ti(z) =Ta()
rxe€dom(I'; )Ndom(I'y)

AL WAs N\

[1Ul B Gy | G == (D1 UT2) 4y, up,) 0 2)(GY [ G2)p

where Z = new({2) \ new(£2)
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Induced communication functions

Let p = mgu(£2). The communication function induced by  is the function 2 : dom(€2) — R defined

as

)

\

(t,?]p), t= H S &/ S’y?’LC
(z,s,9)€QQr

(), t= ]Jls € Sync
(@,5,9)€QQx

Basically, Q2(x) yields the synchronisation of requirements in 2@z according to the c-semiring product.

The weighting function induced by I' and ( is

Lo(z) =

g :dom(I') — S,

1, x € new(£2)
(), [Q@z| =1
Fo(xz) = Q(x)l1, otherwise

The weighting function computes the new weights of graphs after the synchronisations induced by (2.
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QoS & Synchronisations

A network of rings consists of “rings” of different sizes connected by gatesn

Doy eI

-
T w | g
o

l-edges avoid new gates to be attached on the node they insist on. (e.g., above, only
the 2-rings can create (gates to) new rings).

=y
\
=

The nodes with no I-edges, can be used to generate new rings and will be weighted by
the amount of available resource.
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C-semirings for the ring case study

The c-semiring for networks of rings is $HR given by the cartesian product of the Hoare
synchronisations c-semiring $ = (H, + g, *m,0q, 1), where

H=1{a,b,¢c,1y,0g, L}

and the R = (W, max, min, 0, +00).
The idea is that

$) coordinates the network rewritings

R handles resource availability

the initial graph is a ring

non-limited nodes have weights (15, u) where value u is the maximal amount of
available resource

the limited nodes created during ring evolution are weighted with (b, 400) which is
constantly maintained.
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Productions for the ring case study

Create Brother (n < u)

Tr e

S
re (a,n) R |

R — zo—ﬂ

Yo (a,+00) “fﬂ

Ye

z +— (a,n)

— (o, +00)
z:(0g,u),y 0> R(z,y) — R(z,2) | R(z,y) | I(2)
Accept Syncrhonisation R

Accept Syncrhonisation |

re (b,+oo) T @

ﬁ - fpg ] — 0
Yye (a,+too) Ye

xz — (b, +00)
z: (0, 400),y :0> R(z,y) — o ) R(z,y) | ©:0>[(x) z2 (b, Hoo) I[(x)

re (b,+oo) xTe

where a € {a, b}
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Productions for the ring case study?

Create Gate (r > 0)
r — 2
xe (a,+00) E}—o—ﬂ%o—R}f
41 4+
P
Ye (b,4o0) Ye

x — (a, +o0)
y — (b, +00)

z:(0m,u)y 0> R(z,y) R(zy) | l(z) | G(zx) | Ry (2,2)

Init Ring
(r >0)
xre re (c,u) xre
A

ze (cu) R Ry| — |R|
Ry| —  ze e (coc) Yo —
Yo (c,+0) Rg—l

Y e

z:0,y:0> RY(z,y) — " R(x,2) | RY ((zy) | ©:0,y:0> R} (x,y) z : R(z,y) | l(y)

where (8 € {b, c} am
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Productions for the ring case study

Accept Synchronisation Init Accept Synchronisation Gate
re (c,+o0) T re (B,+00) Te@
A A S A
5 — [ Q) — [6
T T
Yye (c,+o0) Ye Ye (b,+o0) Ye
T — Ec, ioog T — ((g,i—oo))
z:0,y :00> R(z,y) ————— R(z,y) | #:0,y :0>G(zy) —————— G(z,y)

where 8 € {b, c}
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The ring case study

The derivation starts from a 2-ring components with resource value 5.

a,o0 | R ,3
e —‘J\a \
(1H,5>-\ N ® (14,5)
~
CL,/2>_R CL,C<
P - \

CreatBrother{u = 5,n = 2) x Creat]_gxrother(u =4,n = 3)

R chooses production Create Brother u = 5 (satisfying condition 5 < 5) and n = 2 while
R chooses u = 4 (satisfying condition 4 < 5) and n = 3. The resulting synchronisation
produces the new weights for the nodes as,

(a,2) = (a,2) x (a,+00) = (a xg a, min(2, +00))
(a,3) = (a,3) x (a,+00) = (a xg a, min(3, +00)).
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The ring case study

1
([ ]
I S
o RE b0 "R o
/Ocr’J T N
(a@)& i /-(a,B)
a,o0 b,oc0
\_ _ _
" [, &S
NPy
([ ]
1

CreatGate(r = 1,u = 2) x CreatGate(r = 1,u = 3) x Accept”

Only R and R can create brothers or gates and they use the remaining resources to
create gates to two 2-rings (r = 1); the other edges apply the Accept productions.
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2
Ry —¢2—=>= ® <-¢,00—
c,o/

s

(b,00)

?}b,oo— ® (a,0) l (a,00) @ -b,o0-

\

g e @)

The ring case

study

1

'R z\// R
v

/®
(p,o0)
\
all [-edges synchro-

nises with Accept
Synchronisation |

Note that « and « now are internal.

Efc,oo+ ™ _\c,oo_

c,3
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(b,00)

s

The ring case study

1

/\\‘Z‘ b,oo E‘//

AN b Ve
( ,oo}

G C,00=> @ ——C,00—] R3
j \

c,3

\ [
InitRing(r = 1,uv = 2) X InitRing(r = 1,u = 3) X Accept”
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Named sets & named functions

Let NV be a set of names, and sym(N)é{p € Aut(N) | Vx &€ N.p(x) =z}, if N CWN,

States of HD-automata are defined by named sets

Permutation algebra (S, O) Definition 2 Named set (ns) (Q, g)
1. the carrier S is a set and 1. Q is a permutation algebra;
2. OC{p:S— S| peAut(N)} are s.t. 2. ¢:Q — UNepfin(N){Sym(N)} -
id € O and, for all z € S Vp € g(q).q9 = qp.
zid = x lq| = dom(p) € g(q) are the names of g.
~ lg| is the cardinality of |q|.

Vp1,p2 € Aut(N). zp1;p2 = (2p1)p>

Transitions among states are represented by means of named functions
Definition 3 A named function (h: S — D,X) iss.t. S and D are nss, h is
a function from Qs to Qp and Vq € S.3(q) € pf,((lg|g U {*})lh(q”D) s.t.

1. Yo € 3(q). gD(h(q));0 =32(q),

2. Vo € ¥(q). 0;85(q) € X(q),

3. any function of 3(q) is injective.
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Category of named sets and HD-automata

® The category NS has named sets as objects and named functions and
1. L =(0,0) is initial object, I = ({x},* — () is the terminal object and
2. the covariant powerset functor on Set is g, (D) = (pfin (Do), g), where, given

@ C @p, g(Q) ={p | pis a permutation over |J .o [q/} NQp= Q.

® where the pairing operation D ® £ = (Qp X Qg,g) is s.t.
g:Qp XQp — UN,Me@ﬁn(N) {sym(N) 4 sym (M)} where

g(d,e) ={p1+p2 | p1 €gp(d) A p2 € gp(e)}

(formally, D ® E is not a ns but g(d, e) is a symmetry on |d| + |€]
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Minimising HD-automata

Fixed a HD-automaton K on the functor T, (D) = g, (L ® D), T : NS — NS is the functor s.t.
T(D) = Tr,(D) D € obj(NS)
| (%) D= (hp,Ep) € NS(E,F)for E,F € obj(NS)

{ h(B) = {{hp(e) | q € B}
where, B € pgn(L ® E),

%(B) = A{{hpl(qg),o;0") | {l,q,0") € BA{,q',0") € ¥p(q)}
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Minimising HD-automata

Fixed a HD-automaton K on the functor T, (D) = g, (L ® D), T : NS — NS is the functor s.t.

_} To(D) D < obj(NS)
T(D) = { (h,X) D =(hp,Sp) € NS(E,F) for E,F € obj(NS)

{ h(B) = {{hp(e) | q € B}
where, B € pgn(L ® E),

%(B) = A{{hpl(qg),o;0") | {l,q,0") € BA{,q',0") € ¥p(q)}
A normalisation functor N is any functor s.t. N (D) is isomorphic to a subset of D.
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Minimising HD-automata

Fixed a HD-automaton K on the functor T, (D) = g, (L ® D), T : NS — NS is the functor s.t.

B TL(D) D e 0bj(NS)
T(D) = { (h,%) D =<(hp,Ep) € NS(E,F) for E,F € obj(NS)

{ h(B) = {{,hp(q9) |, q € B}
where, B € pgn(L ® E),

%(B) = {{hplg),o;0") | {l,q,0") € BA(l,q',0") € ¥p(q)}
A normalisation functor N is any functor s.t. N (D) is isomorphic to a subset of D.

(g— L,q— 0), where dom(H(O)) =D
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Minimising HD-automata

Fixed a HD-automaton K on the functor T, (D) = g, (L ® D), T : NS — NS is the functor s.t.

B TL(D) D e 0bj(NS)
T(D) = { (h,%) D =<(hp,Ep) € NS(E,F) for E,F € obj(NS)

h(B) = {{,hp(q9) |, q € B}

where, B € pgn(L ® E),
E(B) — {(l,hD((]),O’§O”> | <l7Q7 J/> € B/\<l7q,70J> S ZD(Q)}

A normalisation functor N is any functor s.t. N (D) is isomorphic to a subset of D.

(g— L,q— 0), where dom(H(O)) =D

® Al the states of K are initially considered equivalent

At the (i + 1)-th step, H ;) through T is first normalised and then mapped through K

at the end, the kernel yields the equivalence classes grouping equivalent states.
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Convergence

Theorem The iterative partition refinement algorithm is convergent on finite

HD-automata whenever the normalisation functor is monotone on nfs.

Proof.
By construction, @f,( ) is monotone, hence T' is monotone because it is the
composition of two monotone functors. Therefore, M : H — K;T(H) is
monotone and finite. Finally, all nfs chains having finite domain are finite,
hence, the iterative algorithm converges to the maximal fix-point of M.

This proof mimics that in [FMTO05a] with the difference that there only the case of the
early semantics of m-calculus is dealt with, while here, the result is extended to the
general case of finite HD-automata (with the only additional assumption that the
normalisation functor is monotone).
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