Specification and verification in service oriented computing

Emilio Tuosto

Dipartimento di Informatica
Università di Pisa

Lectureship interview, Leicester University
August 2005
Service Oriented Computing

- Distributed computing is moving toward SOC
- Integration of software and (heterogeneous) networks of (heterogeneous) systems (e.g., Internet & mobile phones, wireless & wired networks)
Service Oriented Computing

- Distributed computing is moving toward SOC
- Integration of software and (heterogeneous) networks of (heterogeneous) systems (e.g., Internet & mobile phones, wireless & wired networks)

- SOC architectures are
 - distributed
 - interconnected
 - based on different communication infrastructures:
 - IP, wireless, satellites...
 - multi-layered: overlay networks
 - Designers, programmers and end-users may ignore the stratification and complexity
Service Oriented Computing

- Distributed computing is moving toward SOC
- Integration of software and (heterogeneous) networks of (heterogeneous) systems (e.g., Internet & mobile phones, wireless & wired networks)

SOC architectures are
- distributed
- interconnected
- based on different communication infrastructures:
 - IP, wireless, satellites...
 - multi-layered: overlay networks
- Designers, programmers and end-users may ignore the stratification and complexity

SOC applications (SOAs) are soups of services
- programmable coordination
- “autonomous”
- independent
- mobile/stationary
- “interconnected” through interfaces and published, searched and binded...
- offline and mostly ad-hoc way
Distributed computing is moving toward SOC

Integration of software and (heterogeneous) networks of (heterogeneous) systems (e.g., Internet & mobile phones, wireless & wired networks)

SOC architectures are
- distributed
- interconnected
- based on IP & more
- multiple networks

Designers, programmers and end-users may ignore the stratification and complexity

How do we program SOC?

Can search/bind be dynamically done at run-time?

What is considered relevant for searching services?

What about verification?
Formal tools for SOC

Specification
- Process calculi
 - Klaim
 - cIP
 - CCS\parallel
 - Symbolic Fusion calculus
- SHR
- QoS as c-semirings
- Spatial logics wrt
 - HD-automata
 - SHR

Verification
- HD-automata
- operational model
- minimisation
- cIP & PL
- Spatial model checking

Implementation
- Klaim
- Aspaya
- SHR: Gredy
- Mihda
- JTWS & JSAGA
- Long running transactions

Works with several people:

Inside Pisa:
- Pisa Department: Andrea Bracciali, Roberto Bruni, Gianluigi Ferrari, Dan Hirsch, Ivan Lanese, Hernán Melgratti, Ugo Montanari, Daniele Strollo
- Pisa CNR: Stefania Gnesi

Outside Pisa:
- Florence: Rocco De Nicola and Rosario Pugliese
- Uppsala: Kidane Yemane & Björn Victor
- Lisbon: Hugo Torres Viera
Formal tools for SOC

Specification
- Process calculi
 - Klaim...KoS
 - cIP
 - CCS
 - Symbolic Fusion calculus
- SHR
- QoS as c-semirings
- Spatial logics wrt
 - HD-automata
 - SHR

Verification
- HD-automata operational model
- minimisation
- cIP & PL
- Spatial model checking

Implementation
- Klaim
- Aspasya
- SHR: Gredy
- Mihda
- JTWS & JSAGA
- Long running transactions
KoS

Joint works with

Oath of Hippocrates
Lifting QoS issues to applications

- with programmable application level QoS
- QoS in designing and implementing SOAs
Lifting QoS issues to applications
- with programmable application level QoS
- QoS in designing and implementing SOAs

Search and bind wrt application level QoS
- application-related, e.g.
 - price
 - payment mode
 - transactions
 - data available in a given format
- low-level related (e.g., throughput, response time) not directly referred but abstracted for expressing their “perception” at the application level

First steps (extending Klaim) in [DFM+03] and recently in [DFM+05]
Lifting QoS issues to applications

- with programmable application level QoS
- QoS in designing and implementing SOAs

Search and bind wrt application level QoS

- **application-related**, e.g.
 - price
 - payment mode
 - transactions
 - data available in a given format

- **low-level related** (e.g., throughput, response time) **not** directly referred but abstracted for expressing their “perception” at the application level

Application level QoS abstracted as **constraint-semiring** [BMR95, BMR97]

- for coordinating mobility

- and synchronisations

C-semiring are particularly indicated because

- they have an implicitly defined partial order
- their structure is preserved by many mathematical operations...
- ...in particular cartesian product of c-semirings is a c-semiring
- hence c-semirings are suitable for multi-criteria
KoS aims at being a **minimal** calculus for SOC

- **KoS** builds on **Klaim** (e.g., processes are localised)

- ’cause it naturally supports a **peer-to-peer** programming model

- **KoS** primitives handle QoS values as first class entities

- **KoS** semantics ensures that the QoS values are respected during execution

- Only local communications (unlike **Klaim**)

- Link construction primitives

- Only one remote action

- Which relies on link topology

- Semantic transitions report the “cost” of the execution
Remote actions in \mathcal{KoS}

\mathcal{KoS} ... graphically
Remote actions in \mathcal{KoS}

\mathcal{KoS} ... graphically
Remote actions in \mathcal{KoS}

\mathcal{KoS} ... graphically
Remote actions in \(\text{KoS} \)

\(\text{KoS} \) ... graphically
Remote actions in \textit{KoS}

\textit{KoS} ... graphically
SHR & SOC

Joint works with
G. Ferrari, D. Hirsch, I. Lanese, A.
LLuch-lafuente, U. Montanari
Hypergraphs Programming model

Using SHR, we aim at

- defining a uniform framework
- tackling new *non-functional* computational phenomena of SOC

The metaphor is

- “SOC systems as Hypergraphs”
- “SOC computations as SHR”

In other words:

- Components are represented by hyperedges
- Systems are *bunches* of (connected) hyperedges
- Computing means to synchronously rewrite hyperedges...
- ...according to a synchronisation policy
Synchronised Replacement of Hyperedges
Synchronised Replacement of Hyperedges

- Edge replacement: local
- Synchronisation as distributed constraint solving
- Multi-party synchronisation
- New node creation
- Node fusion: model of mobility and communication
Synchronised Replacement of Hyperedges

- Edge replacement: local
- Synchronisation as distributed constraint solving
- Multi-party synchronisation
- New node creation
- Node fusion: model of mobility and communication

Benefits:
- Uniform framework for π, π-l, fusion
- LTS for Ambient ...
- ... for Klaim ...
- ... and path reservation for KAOS
- expressive for distributed coordination
- wireless networks
Synchronised Replacement of Hyperedges

- Edge replacement: local
- Synchronisation as distributed constraint solving
- Multi-party synchronisation
- New node creation
- Node fusion: model of mobility and communication

Benefits:
- Uniform framework for π, π-l, fusion
- LTS for Ambient ...
- ... for Klaim ...
- ... and path reservation for KAOS
- Expressive for distributed coordination
- Wireless networks

SHR can combine QoS & sophisticated synchronisations (details in [HT05, LT05, HLT])
Clients C_1, \ldots, C_m invoke a service from a remote servers S_1, \ldots, S_n provided that they are authorised.

A trusted authority Au checks for the authorisation.

Clients are connected to Au on a “public” node x while servers are connected on a “private” (i.e., restricted) ones. B_2 will simply acquire the requests from clients and forward them to each server.

Notice that:

- synchronisations $C_i \leftarrow Au$ are “Milner” (e.g., in PPP connections)
- B_2 is required when broadcast is not primitive
- then broadcast must be “encoded”
Clients C_1, \ldots, C_m invoke a service from a remote servers S_1, \ldots, S_n provided that they are authorised

A trusted authority Au checks for the authorisation

Clients are connected to Au on a “public” node x while servers are connected on a “private” (i.e., restricted) ones.

In SHR we can simply specify

$$x : Mil \vdash C_i(x) \xrightarrow{(x, auth_i, \langle y \rangle)} x : Mil, y : Bdc \vdash C'_i(y)$$

$$x : Mil, u : Bdc \vdash Au(x, u) \xrightarrow{(x, auth_i, \langle u \rangle)} x : Mil, u : Bdc \vdash Au(x, u)$$

where Bdc is the broadcast SAM.
A spatio-temporal logic for SHR interpreted over c-semirings has been defined in [HLT].

\[
\phi \ ::= \ nil \mid \Gamma(\xi) \mid \mathcal{L}(\tilde{\xi}) \mid \phi \& \phi \mid \phi \parallel \phi
\]

\[
\mid f(\phi, \ldots, \phi)
\mid \sum_u \phi \mid \prod_u \phi
\mid [\sum] \phi \mid [\prod] \phi
\mid u = v
\mid r(\tilde{\xi}) \mid (\mu r(\tilde{u}).\phi)\tilde{\xi} \mid (\nu r(\tilde{u}).\phi)\tilde{\xi}
\]

where \(\langle S, +, \cdot, 0, 1 \rangle \) is a c-semiring, \(\mathcal{L} \subseteq \mathcal{L} \) is a finite set of labels, \(\xi \) is a metavariable for nodes or node variables and \(f \) is an operation on the fixed c-semiring values.
A spatio-temporal logic for SHR interpreted over c-semirings has been defined in \cite{HLT}.

\[
\phi ::= \quad \text{nil} \mid \Gamma(\xi) \mid \mathcal{L}(\tilde{\xi}) \mid \phi\phi \mid \phi\|\phi \\
\mid f(\phi, \ldots, \phi) \\
\mid \sum_u \phi \mid \prod_u \phi \\
\mid [\sum] \phi \mid [\prod] \phi \\
\mid u = v \\
\mid r(\tilde{\xi}) \mid (\mu r(\tilde{u}).\phi)\tilde{\xi} \mid (\nu r(\tilde{u}).\phi)\tilde{\xi}
\]

where \(\langle S, +, \ast, 0, 1 \rangle \) is a c-semiring, \(\mathcal{L} \subseteq \mathcal{L} \) is a finite set of labels, \(\xi \) is a metavariable for nodes or node variables and \(f \) is an operation on the fixed c-semiring values.
A logic for SHR & QoS

A spatio-temporal logic for SHR interpreted over c-semirings has been defined in [HLT].

\[
\phi ::= \text{nil} \mid \Gamma(\xi) \mid \mathcal{L}(\tilde{\xi}) \mid \phi|\phi \mid \phi\|\phi
\]

where \(\langle S, +, *, 0, 1 \rangle \) is a c-semiring, \(\mathcal{L} \subseteq \mathcal{L} \) is a finite set of labels, \(\xi \) is a metavariable for nodes or node variables and \(f \) is an operation on the fixed c-semiring values.

Let \(G \) be the set of weighted graphs: we interpret formulae as maps \(G \to S \).
Let \(\sigma \) be a map from node variables to nodes and \(\rho \) be a map from recursion variables to functions \(G \to S \).

\[
\begin{align*}
\phi_1\phi_2]_{\sigma;\rho}(\Gamma \vdash G) &= \sum_{(G_1, G_2) \in \Theta(G)} \{ \phi_1\phi_2]_{\sigma;\rho}(\Gamma \vdash G_1) * \phi_2\phi_1]_{\sigma;\rho}(\Gamma \vdash G_2) \\
\phi_1\phi_2]_{\sigma;\rho}(\Gamma \vdash G) &= \prod_{(G_1, G_2) \in \Theta(G)} \{ \phi_1\phi_2]_{\sigma;\rho}(\Gamma \vdash G_1) + \phi_2\phi_1]_{\sigma;\rho}(\Gamma \vdash G_2) \\
\sum_u \phi]_{\sigma;\rho}(\Gamma \vdash G) &= \sum_{x \in n(G)} \{ \phi]_{\sigma[x/u];\rho}(\Gamma \vdash G) \\
\prod_u \phi]_{\sigma;\rho}(\Gamma \vdash G) &= \prod_{x \in n(G)} \{ \phi]_{\sigma[x/u];\rho}(\Gamma \vdash G) \\
[\sum] \phi](\Gamma \vdash G) &= \sum_{\Gamma \vdash G \prec \Gamma' \vdash G'} \phi](\Gamma' \vdash G') \\
[\prod] \phi](\Gamma \vdash G) &= \prod_{\Gamma \vdash G \prec \Gamma' \vdash G'} \phi](\Gamma' \vdash G')
\end{align*}
\]
HD-automata

Joint works with
HD-automata...intuitively

- HD-automata as an operational model of history-dependent calculi [Pis99, MP98]
- allow a finite representation of classes of infinite LTS
HD-automata...intuitively

- HD-automata as an operational model of history-dependent calculi [Pis99, MP98]
- allow a finite representation of classes of infinite LTS

A HD-automaton associates a “history” to names of the states appearing in the computation: it is possible to reconstruct the associations that lead to the state containing the name. If a state is reached in two different computations, different histories could be assigned to its names.
HD-automata...intuitively

- HD-automata as an operational model of history-dependent calculi \[\text{[Pis99, MP98]}\]
- allow a finite representation of classes of infinite LTS

- states and transitions have local names:
 - names explicit in the operational model
 - so that HD-automata model name creation/deallocation or extrusion
- State s has three names: 1, 2 and 3
- State d has two names: 4 and 5
- The transition is labelled by lab and exposes names 2 (of s) and a fresh name 0
HD-automata...intuitively

- HD-automata as an operational model of history-dependent calculi [Pis99, MP98]
- allow a finite representation of classes of infinite LTS

- states and transitions have local names:
 - names explicit in the operational model
 - so that HD-automata model name creation/deallocation or extrusion
- State s has three names: 1, 2 and 3
- State d has two names: 4 and 5
- The transition is labelled by lab and exposes names 2 (of s) and a fresh name 0
- $\sigma : 4 \mapsto 1$ and $\sigma : 5 \mapsto 0$, the new name
- 3 is “discharged”
Minimising History Dependent Automata:

- Co-algebraic specification
- Partition Refinement Algorithm based on co-algebraic specification [FMP02]
- Mihda: Ocaml implementation (refining $\lambda \to, \Pi, \Sigma$ spec. [FMT05a])

<table>
<thead>
<tr>
<th></th>
<th>Comp. Time</th>
<th>States</th>
<th>Trans.</th>
<th>Min. Time</th>
<th>States</th>
<th>Trans.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSM small</td>
<td>0m 0.931s</td>
<td>211</td>
<td>398</td>
<td>0m 4.193s</td>
<td>105</td>
<td>197</td>
</tr>
<tr>
<td>GSM full</td>
<td>0m 8.186s</td>
<td>964</td>
<td>1778</td>
<td>0m 54.690s</td>
<td>137</td>
<td>253</td>
</tr>
</tbody>
</table>

- Adherent to specs
- Highly modular
- Easily extendible
The main step
Theorem Any block at a generic iteration i collects those states that cannot be distinguished in i-steps.

Theorem The algorithm converges on finite HD-automata (for π-calculus [FMT05a])

Theorem The iterative partition refinement algorithm is convergent on finite HD-automata whenever the normalisation functor is monotone on nfs (for π-calculus [FMT+05b])
References

[DFM+05] Rocco De Nicola, Gianluigi Ferrari, Ugo Montanari, Rosario Pugliese, and Emilio Tuosto. A Basic Calculus for Modelling Service Level Agreements. In Jean-Marie Jacquet and Gian Pietro

Application level QoS abstracted as constraint-semiring \[\text{[BMR95, BMR97]}\]

- for coordinating mobility
- and synchronisations

An algebraic structure \(\langle S, +, *, 0, 1 \rangle\) is a c-semiring iff

- \(0, 1 \in S\) and \(0 \neq 1\)

\[
\begin{align*}
+ & : S \times S \rightarrow S \\
& x + y = y + x \\
& (x + y) + z = x + (y + z) \\
& x + 0 = x \\
& x + 1 = 1 \\
& x + x = x \\

* & : S \times S \rightarrow S \\
& x * y = y * x \\
& (x * y) * z = x * (y * z) \\
& x * 1 = x \\
& x * 0 = 0 \\
& (x + y) * z = (x * z) + (y * z)
\end{align*}
\]

and

Implicit partial order:

\[a \leq b \iff a + b = b\]

"b is better than a"

The cartesian product of c-semirings is a c-semiring
Let C be the c-semiring of *QoS values* (ranged over by κ):

\[
\begin{align*}
N, M & ::= 0 \\
& | \quad s :: P \\
& | \quad (\nu s)N \\
& | \quad N \parallel M \\
& | \quad s^\kappa t
\end{align*}
\]

\[
\begin{align*}
P, Q & ::= \text{nil} \\
& | \quad \gamma . P \\
& | \quad (\nu s)P \\
& | \quad P \mid Q \\
& | \quad !P \\
& | \quad \ldots
\end{align*}
\]

\[
\begin{align*}
\gamma & ::= (T) \\
& | \quad \langle v_1, \ldots, v_n \rangle \\
& | \quad \varepsilon^\kappa[P]@t \\
& | \quad con_{\kappa}(t) \\
& | \quad acc_{\kappa}(t) \\
& | \quad node_{\kappa}(t)
\end{align*}
\]

\[
\begin{align*}
T & ::= \varepsilon \\
& | \quad v \\
& | \quad ?x \\
& | \quad \neg v \\
& | \quad T, T
\end{align*}
\]
Let C be the c-semiring of QoS values (ranged over by κ).

\[N, M ::= \\
0 \\
s :: P \\
(\nu s)N \\
N \parallel M \\
s \overset{\kappa}{\rightarrow} t \]

\[P, Q ::= \\
inl \\
\gamma . P \\
(\nu s)P \\
P \mid Q \\
!P \\
\ldots \]

\[\gamma ::= \\
(T) \\
\langle v_1, \ldots, v_n \rangle \\
\varepsilon \kappa [P]@t \\
con_{\kappa} \langle t \rangle \\
acc_{\kappa} \langle t \rangle \\
node_{\kappa} \langle t \rangle \]

\[T ::= \\
\varepsilon \\
v \\
?x \\
\neg v \\
T, T \]

$N \overset{\alpha}_{\kappa} \rightarrow M$ states that N performs α with a cost κ and becomes M.
Let C be the c-semiring of QoS values (ranged over by κ).

\[
\begin{align*}
N, M & ::= 0 \mid s :: P \mid (\nu s)N \mid N \parallel M \mid s ^{\kappa} t \\
N, M & ::= 0 \mid s :: P \mid (\nu s)N \mid N \parallel M \mid s ^{\kappa} t \\
\end{align*}
\]

\[
\begin{align*}
P, Q & ::= \text{nil} \mid \gamma.P \mid (\nu s)P \mid P \parallel Q \mid !P \mid \ldots \\
\end{align*}
\]

\[
\begin{align*}
\gamma & ::= (T) \mid \langle v_1, \ldots, v_n \rangle \mid \epsilon \kappa [P] @ t \mid \text{con}_\kappa \langle t \rangle \mid \text{acc}_\kappa \langle t \rangle \mid \text{node}_\kappa \langle t \rangle \\
T & ::= \epsilon \mid v \mid ?x \mid \neg v \mid T, T
\end{align*}
\]

$N \xrightarrow{\alpha}{\kappa} M$ states that N performs α with a cost κ and becomes M.

\[\text{(ROUTE)}\]

$N \xrightarrow{r, \epsilon^s, (P) @ t}{\kappa'} N' \quad \text{M} \xrightarrow{r, \text{link} r'}{\kappa''} \text{M'} \quad \kappa' \ast \kappa'' \leq \kappa$

$\kappa' \ast \kappa'' \leq \kappa$

$N \parallel M \xrightarrow{r', \epsilon^s, (P) @ t}{\kappa'} N' \parallel M'$

$t \neq r'$
Let C be the c-semiring of QoS values (ranged over by κ).

\[
\begin{align*}
N, M &::= 0 \\ &\mid s :: P \\ &\mid (\nu s)N \\ &\mid N \parallel M \\ &\mid s \overset{\kappa}{\sim} t
\end{align*}
\]

\[
\begin{align*}
P, Q &::= \text{nil} \\ &\mid \gamma.P \\ &\mid (\nu s)P \\ &\mid P \mid Q \\ &\mid !P \\ &\mid \ldots
\end{align*}
\]

\[
\begin{align*}
\gamma &::= \langle v_1, \ldots, v_n \rangle \\ &\mid \varepsilon \kappa \text{[P]@t} \\ &\mid \text{con}_\kappa \langle t \rangle \\ &\mid \text{acc}_\kappa \langle t \rangle \\ &\mid \text{node}_\kappa \langle t \rangle
\end{align*}
\]

\[
T ::= \varepsilon \\ &\mid v \\ &\mid ?x \\ &\mid \neg v \\ &\mid T, T
\]

$N \overset{\alpha}{\kappa} \rightarrow M$ states that N performs α with a cost κ and becomes M.

\[
\begin{align*}
N \overset{r}{\varepsilon} \kappa\langle P \rangle@t &\rightarrow N' \\ M \overset{r}{\text{link}} t &\rightarrow M' \\
\kappa' \ast \kappa'' &\leq \kappa
\end{align*}
\]

(LAND)

\[
\begin{align*}
N \parallel M \overset{\tau}{\kappa'} \ast \kappa'' &\rightarrow N' \parallel M' \parallel t :: P
\end{align*}
\]
A motivating example

Consider a scenario where n servers provide services to m clients and focus on balancing the load of the servers.

- clients (c_i) and servers (s_j) are located on different nodes
- c_i issues requests to s_j by spawning a process R

A generic client is described by the following term:

$$c_i :: \langle s_1, \kappa_1 \rangle \mid \ldots \mid \langle s_n, \kappa_n \rangle \mid !C_\delta$$

- $\langle s_j, \kappa_j \rangle$ represents the load κ_j of the server s_j perceived by c_i
- C_δ and R specify the behaviour of c_i:

$$C_\delta \triangleq (\exists u, v).\varepsilon_v[R].u.con_{v*\delta}\langle u \rangle.\langle u, v \ast \delta \rangle$$

$$R \triangleq (\exists x).\langle x + 1 \rangle \ldots \text{actual request} \ldots (\exists y).\langle y - 1 \rangle$$

Remark 1 Remote spawning consumes the traversed links, hence c_i attempts to re-establish a connection with the server!
A motivating example

s_j is described as:

$$s_j :: \langle h \rangle \mid \langle c_1, \kappa'_1 \rangle \mid \ldots \mid \langle c_m, \kappa'_m \rangle \mid !(S \ c_1 \ s_j) \mid \ldots \mid !(S \ c_m \ s_j)$$

- $\langle c_i, \kappa'_i \rangle$ records the QoS value κ'_i assigned to the link towards c_i
- $\langle h \rangle$ is the current load of s_j
- $S \ c_i \ s_j$ is a load manager for c_i

\[S \ c \ s \triangleq (?l).\langle l \rangle . If \ s \ l < max \ then \ (c, ?v).acc_{f(v,l)} \langle c \rangle \cdot \langle c, f(v,l) \rangle \]

S repeatedly acquires $\langle h \rangle$ and depending on the load decides whether to accept requests for new connections coming from c.
\[(\text{PREF}) \quad s :: \gamma . P \xrightarrow{\gamma \circ s} _ \quad 1 \quad s :: P, \quad \gamma \not\in \{\text{node}_\kappa \langle t \rangle, \text{con}_\kappa \langle s \rangle, \text{acc}_\kappa \langle s \rangle\}\]

\[(\text{CON}) \quad \frac{N \xrightarrow{s \ \text{con}_\kappa \langle t \rangle} N'}{1} \quad \frac{M \xrightarrow{t \ \text{acc}_{\kappa'} \langle s \rangle} M'}{1} \quad 0 < \kappa \leq \kappa' \]

\[\frac{N || M \xrightarrow{\tau} N' || M'}{1} \xrightarrow{s \ \kappa} t \quad (\text{COMM}) \quad \frac{N \xrightarrow{s \ (T)} N'}{1} \quad \frac{M \xrightarrow{s \ t} M'}{1} \quad \triangleq (T, t) = \sigma \]

\[\frac{N || M \xrightarrow{\tau} N' \sigma || M'}{1} \]
(LINK) \[s \xrightarrow{\kappa} t \quad \frac{s \text{ link } t}{0} \]

(NODE) \[s :: \text{node}_{\kappa}(t).P \xrightarrow{\text{node}(t)} s :: P \parallel s \xrightarrow{\kappa} t \parallel t :: 0, s \neq t \]

(PAR) \[\frac{N \xrightarrow{\alpha \kappa} N'}{N \parallel M \xrightarrow{\alpha \kappa} N' \parallel M} \quad \text{if} \quad \left\{ \begin{array}{l} \text{bn}(\alpha) \cap \text{fn}(M) = \emptyset \land \text{addr}(N') \setminus \text{addr}(N) \cap \text{addr}(M) = \emptyset \end{array} \right\} \]

Rule (NODE) allows a process allocated at \(s \) to use a name \(t \) as the address of a new node and to create a new link from \(s \) to \(t \) exposing the QoS value \(\kappa \). The side condition of (PAR) prevents new nodes (and links) to be created by using addresses of existing nodes.
KoS Operational Semantics

\[(\text{LEVEL}) \quad s :: \varepsilon_\kappa[Q]@s.P \xrightarrow{\tau} s :: P \parallel s :: Q\]

\[(\text{ROUTE}) \quad N \xrightarrow{r \varepsilon_\kappa^s\langle P \rangle@t} N' \quad M \xrightarrow{r \text{ link } r'} M' \quad \kappa' \ast \kappa'' \leq \kappa \quad t \neq r'\]

\[
\frac{N \parallel M \xrightarrow{r' \varepsilon_\kappa^s\langle P \rangle@t} N' \parallel M'}{\kappa' \ast \kappa'' \leq \kappa}
\]

\[(\text{LAND}) \quad N \xrightarrow{r \varepsilon_\kappa^s\langle P \rangle@t} N' \quad M \xrightarrow{r \text{ link } t} M' \quad \kappa' \ast \kappa'' \leq \kappa\]

\[
\frac{N \parallel M \xrightarrow{\tau} N' \parallel M' \parallel t :: P}{\kappa' \ast \kappa'' \leq \kappa}
\]

Local spawning is always enabled while \(\varepsilon_\kappa[Q]@t\) from \(s\) is not always possible: the net must contain a path of links from \(s\) to \(t\) suitable wrt \(\kappa\).

(ROUTE) states that \(P\) can traverse a link go an intermediate node \(r\) provided that costs are respected.

(LAND) describes the last hop: in this case, \(P\) is spawned at \(t\), provided that the QoS value of the whole path that has been found is lower than \(\kappa\).
Links in \mathcal{KoS} are public:

$$N \triangleq \begin{array}{c} s :: \varepsilon_3[P]@t \ | \ s \overset{1}{\rightarrow} r \ | \ r :: \text{con}_2(t).\varepsilon_2[Q]@t \ | \ t :: \text{acc}_2(r), \end{array}$$

- s and r are trying to spawn a process on t (but no path to t exists).
- r is aware that a link must be first created (and t agrees on that).

Initially, only (CON) can be applied:

$$N' \triangleq \begin{array}{c} s :: \varepsilon_3[P]@t \ | \ s \overset{1}{\rightarrow} r \ | \ r :: \varepsilon_2[Q]@t \ | \ r \overset{2}{\rightarrow} t \ | \ t :: \text{nil}. \end{array}$$

$r \overset{2}{\rightarrow} t$ provides now a path (costing 3) from s to t, hence using (PREF), (LINK), (ROUTE) and (LAND) we derive

$$N' \xrightarrow{\tau} \begin{array}{c} s :: \text{nil} \ | \ r :: \varepsilon_2[Q]@t \ | \ t :: P. \end{array}$$

Noteworthy, the migration of P prevents Q to be spawned because the link created by r has been used by P.
Private links can be traversed only by those processes having the appropriate “rights”. Access rights are (particular) names.

\[N \trianglerighteq s :: \varepsilon_{\{r,s\}}[P] @ t \parallel s \{ r \} \quad s' \]

\[M \trianglerighteq s :: \varepsilon_{\{r,s\}}[P] @ t \parallel s \{ r,u \} \quad s' \]

\(P \) can traverse the link in \(N \) but not the one in \(M \).

Access rights c-semiring:

\[\mathcal{R} = \langle \wp_{\text{fin}}(S) \cup \{S\}, \text{glb}, \cup, S, \emptyset \rangle \]

\[X \leq Y \iff Y \subseteq X \]

A private link between the nodes \(s \) and \(t \) can be specified as

\[(\nu p)(s :: P \parallel s \{ p \} t \parallel t :: Q)\]
Permanent and stable links

\(\mathcal{Ko}_S\) links are vanishing but permanent links can be easily encoded:

\[s :: !\text{con}_\kappa(t) \parallel t :: !\text{acc}_\kappa'(s) \]

A slight variation are stable links, which are links existing until a given condition is satisfied.

\[\text{Stable}_s \ G \ t \triangleq !\text{con}_\kappa(t) \mid \varepsilon[\text{While } G \text{ do } \text{acc}_\kappa(s) \text{ od } \text{nil}] \odot t \]
Hypergraphs Syntax

A hyperedge connects more than two nodes (generalisation of edge)

\[L : 3, \; L(y, z, x), \]

\[
\begin{aligned}
x & \xrightarrow{3} L \\
\end{aligned}
\]

\[
\begin{aligned}
y & \xrightarrow{1} \\
\end{aligned}
\]

\[
\begin{aligned}
z & \xrightarrow{2} \\
\end{aligned}
\]

\[
G ::= \text{nil} \mid L(\tilde{x}) \mid G \mid v \ y . G
\]

Syntactic Judgement

\[
x_1 : s_1, \ldots, x_n : s_n \vdash G, \quad fn(G) \subseteq \{x_1, \ldots, x_n\}
\]
A hyperedge connects more than two nodes (generalisation of edge)

\[L : 3, \ L(y, z, x), \]

\[G ::= \text{nil} \mid L(\bar{x}) \mid G|G \mid \nu y.G \]

\begin{center}
\begin{tikzpicture}
 \node (y) at (0,0) [circle,fill] {y};
 \node (x) at (-1,-1) [circle,fill] {x};
 \node (z) at (1,-1) [circle,fill] {z};
 \node (L) at (0,-1.5) [draw] {L};
 \draw[->] (x) -- (L) node[midway,above] {3};
 \draw[->] (L) -- (z) node[midway,above] {2};
 \draw[->] (y) -- (L) node[midway,above] {1};
\end{tikzpicture}
\end{center}

Syntactic Judgement

\[x_1 : s_1, \ldots, x_n : s_n \vdash G, \quad fn(G) \subseteq \{x_1, \ldots, x_n\} \]

An example:

\[L : 3, \ M : 2 \]

\[x : 1, y : 0 \vdash \nu z. (L(y, z, x)|M(y, z)) \]
Productions

Productions based on requirements: \(\mathcal{R} = S \times \mathcal{N}^* \) (where \(\langle S, +, *, 0, 1 \rangle \) is a c-semiring)

\[
\text{production} \quad \chi \triangleright L(\tilde{x}) \xrightarrow{\Lambda} G
\]

- \(\tilde{x} \) is a tuple of pairwise distinguished nodes and \(L : |\tilde{x}| \)
- \(\chi : \{\tilde{x}\} \rightarrow S \) is the applicability function
- \(\Lambda : \{\tilde{x}\} \rightarrow \mathcal{R} \) is the communication function
- \(G \) is a graph s.t. \(\text{fn}(G) \subseteq \{\tilde{x}\} \cup n(\Lambda) \)
Productions based on requirements: $\mathcal{R} = S \times \mathcal{N}^*$ (where $\langle S, +, \star, 0, 1 \rangle$ is a c-semiring)

production $\chi > L(\tilde{x}) \xrightarrow{\Lambda} G$

- \tilde{x} is a tuple of pairwise distinguished nodes and $L : |\tilde{x}|$
- $\chi : \{|\tilde{x}|\} \rightarrow S$ is the applicability function
- $\Lambda : \{|\tilde{x}|\} \rightarrow \mathcal{R}$ is the communication function
- G is a graph s.t. $\text{fn}(G) \subseteq \{|\tilde{x}|\} \cup n(\Lambda)$

Replacing L with G in H requires that H satisfies the conditions expressed by χ on the attachment nodes of L.

Once χ is satisfied in H, $L(\tilde{x})$ contributes to the rewriting by offering Λ in the synchronisation with all the edges connected to nodes in \tilde{x}.
Synchronised Rewriting

Events for

Synchronisation \(\text{Sync} \) and \(\text{Fin} \) s.t.

- \(\text{Sync} \subseteq \text{Fin} \subseteq S \)
- \(1 \in \text{Sync} \)

No synchronisation \(\text{NoSync} \subseteq S \setminus \text{Fin} \) s.t.

- \(S \ast \text{NoSync} \subseteq \text{NoSync} \)
- \(0 \in \text{NoSync} \)
Synchronised Rewriting

Events for

Synchronisation \(Sync \) and \(Fin \) s.t.

- \(Sync \subseteq Fin \subseteq S \)
- \(1 \in Sync \)

No synchronisation \(NoSync \subseteq S \setminus Fin \) s.t.

- \(S \ast NoSync \subseteq NoSync \)
- \(0 \in NoSync \)

\(\text{mgu} \) accounting for node fusions; let \(\Omega \) be a finite multiset over \(\mathcal{N} \times \mathcal{R} \).

\[
\text{mgu}(\Omega) = \{\tilde{u}_i = \tilde{v}_i \mid \forall s, t \in S : (x, s, \tilde{u}), (x, t, \tilde{v}) \in \Omega \land 1 \leq i \leq |\tilde{u}|\}
\]

is an idempotent substitution defined iff

\[
|\Omega@x| > 1 \implies \prod_{(x, s, \tilde{y}) \in \Omega@x} \text{ if } s \notin NoSync
\]
Synchronised Rewriting

Events for

Synchronisation \(Sync \) and \(Fin \) s.t.
- \(Sync \subseteq Fin \subseteq S \)
- \(1 \in Sync \)

No synchronisation \(NoSync \) \(\subseteq S \setminus Fin \) s.t.
- \(S \ast NoSync \subseteq NoSync \)
- \(0 \in NoSync \)

\(\text{mgu accounting for node fusions; let } \Omega \text{ be a finite multiset over } \mathcal{N} \times \mathcal{R}. \)

\[
\text{mgu}(\Omega) = \{ \tilde{u}_i = \tilde{v}_i \mid \exists s, t \in S : (x, s, \tilde{u}), (x, t, \tilde{v}) \in \Omega \wedge 1 \leq i \leq |\tilde{u}| \}
\]

is an idempotent substitution defined iff

\[
|\Omega @ x| > 1 \implies \prod_{(x, s, \tilde{y}) \in \Omega @ x} s \notin NoSync
\]

\[
\Gamma_1 \vdash G_1 \xrightarrow{\Lambda_1} \Gamma_1' \vdash G_1' \quad \Gamma_2 \vdash G_2 \xrightarrow{\Lambda_2} \Gamma_2' \vdash G_2' \\
\bigwedge_{x \in \text{dom}(\Gamma_1) \cap \text{dom}(\Gamma_2)} \Gamma_1(x) = \Gamma_2(x)
\]

\[
\Gamma_1 \cup \Gamma_2 \vdash G_1 | G_2 \xrightarrow{\Lambda_1 \cup \Lambda_2} (\Gamma_1 \cup \Gamma_2)_{(\Lambda_1 \cup \Lambda_2)} \vdash (\nu Z)(G_1' | G_2')_{\rho}
\]

\(\rho = \text{mgu}(\Lambda_1 \cup \Lambda_2) \)
The set QP of quasi-productions on P is the smallest set s.t. $P \subseteq QP$ and

$$\chi \triangleright L(\tilde{x}) \xrightarrow{\Omega} G \in QP \quad \wedge \quad y \in N \setminus \text{new}(\Omega)$$

$$\downarrow$$

$$\chi' \triangleright L(\tilde{x}\{y/x\}) \xrightarrow{\Omega\{y/x\}} G\{y/x\} \in QP$$

where

$$\chi' : \{\tilde{x}\} \setminus \{x\} \cup \{y\} \rightarrow S \quad \chi'(z) = \begin{cases}
\chi(z), & z \in \{\tilde{x}\} \setminus \{x, y\} \\
\chi(x) + \chi(y), & z = y \wedge y \in \tilde{x} \\
\chi(x), & z = y \wedge y \notin \{\tilde{x}\}
\end{cases}$$

rewriting system: $(QP, \Gamma \vdash G)$
(REN)

\[\chi \triangleright L(\tilde{x}) \xrightarrow{\Omega} G \in \mathcal{QP} \quad \rho = \text{mgu}(\Omega) \quad \bigwedge_{x \in \text{dom}(\chi)} \chi(x) \leq \Gamma(x) \]

\[\Gamma \vdash L(\tilde{x}) \xrightarrow{\Omega} \Gamma_\Omega \vdash (\nu Z)(G\rho) \]

(COM)

\[\Gamma_1 \vdash G_1 \xrightarrow{\Lambda_1} \Gamma_1' \vdash G_1' \quad \Gamma_2 \vdash G_2 \xrightarrow{\Lambda_2} \Gamma_2' \vdash G_2' \quad \rho = \text{mgu}(\Lambda_1 \uplus \Lambda_2) \quad \bigwedge_{x \in \text{dom}(\Gamma_1) \cap \text{dom}(\Gamma_2)} \Gamma_1(x) = \Gamma_2(x) \]

\[\Gamma_1 \cup \Gamma_2 \vdash G_1 \mid G_2 \xrightarrow{\Lambda_1 \uplus \Lambda_2} (\Gamma_1 \cup \Gamma_2)_{(\Lambda_1 \uplus \Lambda_2)} \vdash (\nu Z)(G_1' \mid G_2')\rho \]

where \(Z = \text{new}(\Omega) \setminus \text{new}(\Omega) \)
Graph transitions

REN
\[
\chi \triangleright L(\tilde{x}) \xrightarrow{\Omega} G \in \mathcal{QP} \quad \rho = \text{mgu}(\Omega) \quad \bigwedge_{x \in \text{dom}(\chi)} \chi(x) \leq \Gamma(x)
\]

\[
\Gamma \vdash L(\tilde{x}) \xrightarrow{\Omega} \Gamma_{\Omega} \vdash (\nu Z)(G\rho)
\]

COM
\[
\Gamma_1 \vdash G_1 \xrightarrow{\Lambda_1} \Gamma'_1 \vdash G'_1 \quad \Gamma_2 \vdash G_2 \xrightarrow{\Lambda_2} \Gamma'_2 \vdash G'_2 \quad \rho = \text{mgu}(\Lambda_1 \uplus \Lambda_2)
\]

\[
\bigwedge_{x \in \text{dom}(\Gamma_1) \cap \text{dom}(\Gamma_2)} \Gamma_1(x) = \Gamma_2(x)
\]

\[
\Gamma_1 \cup \Gamma_2 \vdash G_1 \mid G_2 \xrightarrow{\Lambda_1 \uplus \Lambda_2} (\Gamma_1 \cup \Gamma_2)_{(\Lambda_1 \uplus \Lambda_2)} \vdash (\nu Z)(G'_1 \mid G'_2)\rho
\]

where \(Z = \text{new}(\Omega) \setminus \text{new}(\Omega)\)
Induced communication functions

Let \(\rho = \text{mgu}(\Omega) \). The communication function induced by \(\Omega \) is the function \(\Omega : \text{dom}(\Omega) \rightarrow \mathcal{R} \) defined as

\[
\Omega(x) = \begin{cases}
(t, \tilde{y} \rho), & t = \prod_{(x, s, \tilde{y}) \in \Omega \atop \in \text{Sync}} s \notin \text{Sync} \\
(t, \emptyset), & t = \prod_{(x, s, \tilde{y}) \in \Omega \atop \in \text{Sync}} s \in \text{Sync}
\end{cases}
\]

Basically, \(\Omega(x) \) yields the synchronisation of requirements in \(\Omega \atop x \) according to the c-semiring product.

The weighting function induced by \(\Gamma \) and \(\Omega \) is

\[
\Gamma_\Omega : \text{dom}(\Gamma) \rightarrow S,
\]

\[
\Gamma_\Omega(x) = \begin{cases}
1, & x \in \text{new}(\Omega) \\
\Gamma(x), & \|\Omega \atop x\| = 1 \\
\Gamma_\Omega(x) = \Omega(x) \downarrow 1, & \text{otherwise}
\end{cases}
\]

The weighting function computes the new weights of graphs after the synchronisations induced by \(\Omega \).
A network of rings consists of “rings” of different sizes connected by gates.

l-edges\ avoid new gates to be attached on the node they insist on. (e.g., above, only the 2-rings can create (gates to) new rings).

The nodes with no l-edges, can be used to generate new rings and will be weighted by
the amount of available resource.
C-semirings for the ring case study

The c-semiring for networks of rings is $\mathcal{H} \mathcal{R}$ given by the cartesian product of the Hoare synchronisations c-semiring $\mathcal{H} = \langle \mathcal{H}, +_H, \star_H, 0_H, 1_H \rangle$, where

$$\mathcal{H} = \{a, b, c, 1_H, 0_H, \bot\}$$

and the $\mathcal{R} = \langle \omega_\infty, \text{max}, \text{min}, 0, +\infty \rangle$.

The idea is that

- \mathcal{H} coordinates the network rewritings
- \mathcal{R} handles resource availability
- the initial graph is a ring
- non-limited nodes have weights $(1_H, u)$ where value u is the maximal amount of available resource
- the limited nodes created during ring evolution are weighted with $(b, +\infty)$ which is constantly maintained.
Productions for the ring case study

Create Brother \((n < u)\)

\[
x \bullet \rightarrow R \rightarrow y \bullet (\alpha, +\infty)
\]

\[
x : (0_H, u), y : 0 \triangleright R(x, y) \xrightarrow{x \rightarrow (a, n)} R(x, z) \upharpoonright R(z, y) \upharpoonright l(z)
\]

Accept Synchronisation R

\[
x \bullet (b, +\infty) \xrightarrow{x \rightarrow (b, +\infty)} R(x, y)
\]

\[
x : (0_H, +\infty), y : 0 \triangleright R(x, y) \xrightarrow{x \rightarrow (b, +\infty)} R(x, y)
\]

where \(\alpha \in \{a, b\}\)
Productions for the ring case study

\[
x : (0_H, u), y : 0 \triangleright R(x, y) \quad \xrightarrow{x \mapsto (a, +\infty), y \mapsto (b, +\infty)} \quad R(x, y) \mid l(x) \mid G(z, x) \mid R_{r}^{u}(z, z)
\]

\[
x : 0, y : 0 \triangleright R_{r}^{u}(x, y) \quad \xrightarrow{x \mapsto (c, u), y \mapsto (c, +\infty)} \quad R(x, z) \mid R_{r-1}^{u}(z, y)
\]

\[
x : 0, y : 0 \triangleright R_{0}^{u}(x, y) \quad \xrightarrow{x \mapsto (c, u), y \mapsto (c, +\infty)} \quad R(x, y) \mid l(y)
\]

where \(\beta \in \{b, c\} \)
Productions for the ring case study

Accept Synchronisation Init

\[
\begin{align*}
R & \quad \rightarrow \quad R \\
y \cdot (c, +\infty) & \quad x \cdot (c, +\infty) \\
x : 0, y : 0 & \triangleright R(x, y) \quad x \mapsto (c, +\infty) \\
y \mapsto (c, +\infty) & \quad R(x, y)
\end{align*}
\]

Accept Synchronisation Gate

\[
\begin{align*}
G & \quad \rightarrow \quad G \\
y \cdot (b, +\infty) & \quad x \cdot (\beta, +\infty) \\
x : 0, y : 0 & \triangleright G(x, y) \quad x \mapsto (\beta, +\infty) \\
y \mapsto (b, +\infty) & \quad G(x, y)
\end{align*}
\]

where \(\beta \in \{b, c\} \)
The derivation starts from a 2-ring components with resource value 5.

\[\text{CreatBrother}(u = 5, n = 2) \times \text{CreatBrother}(u = 4, n = 3) \]

\(R \) chooses production \textit{Create Brother} \(u = 5 \) (satisfying condition \(5 \leq 5 \)) and \(n = 2 \) while \(R \) chooses \(u = 4 \) (satisfying condition \(4 \leq 5 \)) and \(n = 3 \). The resulting synchronisation produces the new weights for the nodes as,

\[
\begin{align*}
(a, 2) &= (a, 2) \times (a, +\infty) = (a \ast_H a, \min(2, +\infty)) \\
(a, 3) &= (a, 3) \times (a, +\infty) = (a \ast_H a, \min(3, +\infty)).
\end{align*}
\]
The ring case study

\[\text{CreatGate}(r = 1, u = 2) \times \text{CreatGate}(r = 1, u = 3) \times \text{Accept}^* \]

Only \(R \) and \(R \) can create brothers or gates and they use the remaining resources to create gates to two 2-rings \((r = 1) \); the other edges apply the \text{Accept} productions.
The ring case study

Note that • and • now are internal.
The ring case study

\[\text{InitRing}(r = 1, u = 2) \times \text{InitRing}(r = 1, u = 3) \times \text{Accept}^* \]
Named sets & named functions

Let \(\mathcal{N} \) be a set of names, and \(\text{sym}(N) \overset{\Delta}{=} \{ \rho \in \text{Aut}(\mathcal{N}) \mid \forall x \not\in N. \rho(x) = x \} \), if \(N \subseteq \mathcal{N} \),

States of HD-automata are defined by named sets

Definition 1 Permutation algebra \(\langle S, O \rangle \)
1. the carrier \(S \) is a set and
2. \(O \subseteq \{ \hat{\rho} : S \rightarrow S \mid \rho \in \text{Aut}(\mathcal{N}) \} \) are s.t.
 - \(\hat{id} \in O \) and, for all \(x \in S \)
 - \(x \cdot \hat{id} = x \)
 - \(\forall \rho_1, \rho_2 \in \text{Aut}(\mathcal{N}). \ x \rho_1 \rho_2 = (x \rho_1) \rho_2 \)

Definition 2 Named set (ns) \(\langle Q, g \rangle \)
1. \(Q \) is a permutation algebra;
2. \(g : Q \rightarrow \bigcup_{N \in \varphi_{\text{fin}}(\mathcal{N})} \{ \text{sym}(N) \} \) s.t.
 \[\forall \rho \in g(q). q = q \hat{\rho}. \]
 \[|q| = \text{dom}(\rho) \in g(q) \text{ are the names of } q. \]
 \[\|q\| \text{ is the cardinality of } |q|. \]

Transitions among states are represented by means of named functions

Definition 3 A named function \(\langle h : S \rightarrow D, \Sigma \rangle \) is s.t. \(S \) and \(D \) are ns, \(h \) is a function from \(Q_S \) to \(Q_D \) and \(\forall q \in S. \Sigma(q) \in \varphi_{\text{fin}}(\{ \|q\|_S \cup \{\ast\} \}^{h(q)|D}) \) s.t.
1. \(\forall \sigma \in \Sigma(q). gD(h(q)); \sigma = \Sigma(q), \)
2. \(\forall \sigma \in \Sigma(q). \sigma; gS(q) \subseteq \Sigma(q), \)
3. any function of \(\Sigma(q) \) is injective.
The category **NS** has named sets as objects and named functions and
1. \(\bot = \langle \emptyset, \emptyset \rangle \) is initial object, \(I = \langle \{\ast\}, \ast \mapsto \emptyset \rangle \) is the terminal object and
2. the covariant powerset functor on **Set** is \(\wp_{\text{fin}}(D) = \langle \wp_{\text{fin}}(Q_D), g \rangle \), where, given
 \(Q \subseteq Q_D \), \(g(Q) = \{ \rho \mid \rho \) is a permutation over \(\bigcup_{q \in Q} |q| \} \land Q \rho = Q \).

Definition 4 Given a ns \(L \), a **HD-automaton** over \(L \) is a coalgebra for

\[
T_L(D) = \wp_{\text{fin}}(L \otimes D)
\]

where the pairing operation \(D \otimes E = \langle Q_D \times Q_E, g \rangle \) is s.t.
\[
g : Q_D \times Q_E \to \bigcup_{N,M \in \wp_{\text{fin}}(N)} \{ \text{sym}(N) + \text{sym}(M) \} \text{ where}
\]
\[
g(d, e) = \{ \rho_1 + \rho_2 \mid \rho_1 \in g_D(d) \land \rho_2 \in g_E(e) \}
\]

(formally, \(D \otimes E \) is not a ns but \(g(d, e) \) is a symmetry on \(|d| + |e| \))
Minimising HD-automata

Fixed a HD-automaton K on the functor $T_L(D) = \varphi_{\text{fin}}(L \otimes D)$, $T : \textbf{NS} \rightarrow \textbf{NS}$ is the functor s.t.

$$T(D) = \begin{cases} T_L(D) & D \in \text{obj}\,(\textbf{NS}) \\ \langle h, \Sigma \rangle & D = \langle h_D, \Sigma_D \rangle \in \textbf{NS}(E, F) \text{ for } E, F \in \text{obj}\,(\textbf{NS}) \end{cases}$$

where,

$$\begin{align*}
\text{h}(B) &= \{ \langle l, \text{h}_D(q) \rangle \mid \langle l, q \rangle \in B \} \\
\Sigma(B) &= \{ \langle l, \text{h}_D(q), \sigma; \sigma' \rangle \mid \langle l, q, \sigma \rangle \in B \land \langle l, q', \sigma' \rangle \in \Sigma_D(q) \}
\end{align*}$$

$$B \in \varphi_{\text{fin}}(L \otimes E),$$
Fixed a HD-automaton K on the functor $T_L(D) = \varphi_{\text{fin}}(L \otimes D)$, $T : \textbf{NS} \to \textbf{NS}$ is the functor s.t.

$$T(D) = \begin{cases} T_L(D) & D \in \text{obj}(\textbf{NS}) \\ \langle h, \Sigma \rangle & D = \langle h_D, \Sigma_D \rangle \in \textbf{NS}(E, F) \text{ for } E, F \in \text{obj}(\textbf{NS}) \end{cases}$$

where,

$$h(B) = \{ \langle l, h_D(q) \rangle \mid \langle l, q \rangle \in B \} \quad \B \in \varphi_{\text{fin}}(L \otimes E),$$

$$\Sigma(B) = \{ \langle l, h_D(q), \sigma; \sigma' \rangle \mid \langle l, q, \sigma' \rangle \in B \wedge \langle l, q', \sigma' \rangle \in \Sigma_D(q) \}$$

A normalisation functor N is any functor s.t. $N(D)$ is isomorphic to a subset of D.
Minimising HD-automata

Fixed a HD-automaton \(K \) on the functor \(T_L(D) = \varphi_{\text{fin}}(L \otimes D) \), \(T : \mathbf{NS} \to \mathbf{NS} \) is the functor s.t.

\[
T(D) = \begin{cases}
T_L(D) & D \in \text{obj}(\mathbf{NS}) \\
\langle h, \Sigma \rangle & D = \langle h_D, \Sigma_D \rangle \in \mathbf{NS}(E, F) \text{ for } E, F \in \text{obj}(\mathbf{NS})
\end{cases}
\]

where,

\[
\begin{align*}
 h(B) &= \{ \langle l, h_D(q) \rangle \mid \langle l, q \rangle \in B \} \\
\Sigma(B) &= \{ \langle l, h_D(q), \sigma; \sigma' \rangle \mid \langle l, q, \sigma' \rangle \in B \land \langle l, q', \sigma' \rangle \in \Sigma_D(q) \}
\end{align*}
\]

A normalisation functor \(N \) is any functor s.t. \(N(D) \) is isomorphic to a subset of \(D \).

The minimisation algorithm on a \(T_L \) coalgebra \((D, K : D \to T_L(D))\) is

\[
\begin{align*}
 H_0 &= (q \mapsto \bot, q \mapsto \emptyset), \text{ where } \text{dom}(H_0) = D \\
 H_{i+1} &= K ; N(T(H_i)),
\end{align*}
\]

where \(N \) is a normalisation functor.
Fixed a HD-automaton K on the functor $T_L(D) = \phi_{\text{fin}}(L \otimes D)$, $T : \text{NS} \to \text{NS}$ is the functor s.t.

$$T(D) = \begin{cases} T_L(D) & D \in \text{obj}(\text{NS}) \\ \langle h, \Sigma \rangle & D = \langle h_D, \Sigma_D \rangle \in \text{NS}(E, F) \text{ for } E, F \in \text{obj}(\text{NS}) \end{cases}$$

where,

$$h(B) = \{ \langle l, h_D(q) \rangle \mid \langle l, q \rangle \in B \}$$

$$\Sigma(B) = \{ \langle l, h_D(q), \sigma; \sigma' \rangle \mid \langle l, q, \sigma' \rangle \in B \land \langle l, q', \sigma' \rangle \in \Sigma_D(q) \}$$

A normalisation functor N is any functor s.t. $N(D)$ is isomorphic to a subset of D.

The minimisation algorithm on a T_L coalgebra $(D, K : D \to T_L(D))$ is

$$H(0) \triangleq \langle q \mapsto \bot, q \mapsto \emptyset \rangle, \text{ where } \text{dom}(H(0)) = D$$

$$H(i+1) \triangleq K; N(T(H(i)))$$

where N is a normalisation functor

- All the states of K are initially considered equivalent
- At the $(i + 1)$-th step, $H(i)$ through T is first normalised and then mapped through K
- at the end, the kernel yields the equivalence classes grouping equivalent states.
Theorem The iterative partition refinement algorithm is convergent on finite HD-automata whenever the normalisation functor is monotone on nfs.

Proof.

By construction, $\varphi_{\text{fin}}(_)$ is monotone, hence T is monotone because it is the composition of two monotone functors. Therefore, $\mathcal{M} : H \mapsto K ; T(H)$ is monotone and finite. Finally, all nfs chains having finite domain are finite, hence, the iterative algorithm converges to the maximal fix-point of \mathcal{M}.

This proof mimics that in [FMT05a] with the difference that there only the case of the early semantics of π-calculus is dealt with, while here, the result is extended to the general case of finite HD-automata (with the only additional assumption that the normalisation functor is monotone).