Theories for Service Oriented Computing

Emilio Tuosto

Dipartimento di Informatica, Universita di Pisa
Largo B. Pontecorvo 3, 56127 Pisa, Italy. +39-50-2212799. +39-50-2212726.

etuosto@di.unipi.it - http://www.di.unipi.it/ etuosto

Napoli, 29 June 2005

A | —p.1/56

& Plan of the talk

#® \What global computing and service oriented computing are?

» Abstractions for SOC
s Constraint semirings

s KoS
s APIs for SOC

» Hypergraphs Model
s Programming model
s Specification hypergraphs and related logic

» Automata Model

® Semantic based verification
» Model checking

» Equivalence checking

B Bl oy o L = = A |- p. 256

| Global Computing and Services

Service Oriented Computing

» applications are made by gluing services
& “autonomous’
s Iindependent (local choices, independently built)
& mobile/stationary
s “Interconnected”

Interactions governed by programmable coordination policies
services are searched and binded ... offline

E s % - m = = ™ | —p.3/56

G Global Computing and Services

» Service Oriented Computing

» applications are made by gluing services
& “autonomous”
s Iindependent (local choices, independently built)
& mobile/stationary
s ‘“Interconnected”

Interactions governed by programmable coordination policies
services are searched and binded ... offline

Can search/bind be dynamic and at run-time?

B Bl oy o L = = A | -p.3se

G Global Computing and Services

» Service Oriented Computing

» applications are made by gluing services
& “autonomous”
s Iindependent (local choices, independently built)
& mobile/stationary
s ‘“Interconnected”

Interactions governed by programmable coordination policies
services are searched and binded ... offline

Can search/bind be dynamic and at run-time?

® What should be considered relevant for searching?

=l A | - p. 3/56

& SOC architectures

SOC architectures are
® distributed

® [nterconnected

® based on different communication infrastructures:
» IP, wireless, satellites...
» multi-layered: overlay networks (EC-GC2)

Remark 1 Designers and end-users may ignore the stratification and
complexity of the systems. They usually have a high-level view of the

computations!
...hence, global computing is not just go(P), 5(x) or s(y) & search/bind
cycle of SOAs must be defined abstractly. For instance,

® Application-level QoS
#® Long Running Transactions
o ..

A | —p. 4/56

&
A

E i E.

Abstractions for
application-level QoS

| I B B

o

Application-level QoS

Lifting QoS issues to application level...

...for programming global computers _ _ _
First steps (extending Klaim)

in [DFM™03] and recently
QoS for designing and implementing SOC in [DFM*05]
applications (SOA)

with programmable application level QoS

no longer considered only at the low-level layers

Search and bind wrt application level QoS

& application-related, e.g.
& price & transactions

& payment mode & data available in a given format

» |ow-level related (e.g., throughput, response time) not directly referred but
abstracted for expressing their “perception” at high-level.

Example 1 When downloading remote information QoS is specified as a constraint
on the format of the file (e.g, DVI format instead of Postscript) instead of the
underlying network speed (either for application-dependent constraints e.g., editing
motivations or download time constraints).

_ = = = A | - p.6/56

& QoS as Constraint Semirings

C-Semirings [BMR95, BMR97] for abstracting application level
QoS [DFM*03]
® (S +,%0,1), where

s S Is aset (containing 0 and 1),

s +.%x:5x5—-S5

=+ *
r+y=y—+wox THY=Y*xxT
(z+y) +z=x+ (y+2) (zxy)*x2z=a*(yx*2z)
r+0=x rx0=0
r+1=1 rx1l==x
T+r=2 (x+y)*z=(r*x2)+ (y*2)

E
A

A | —p.7/56

& QoS as Constraint Semirings

C-Semirings [BMR95, BMR97] for abstracting application level
QoS [DFM*03]
® (S +,%0,1), where

s S Is aset (containing 0 and 1),

s +.%x:5x5—-S5

=+ *
r+y=y—+wox THY=Y*xxT
(z+y) +z=x+ (y+2) (zxy)*x2z=a*(yx*2z)
r+0=x rx0=0
r+1=1 rx1l==x
T+r=2 (x+y)*z=(r*x2)+ (y*2)

E
A

A | —p.7/56

& QoS as Constraint Semirings

C-Semirings [BMR95, BMR97] for abstracting application level
QoS [DFM*03]
® (S +,%0,1), where

s S Is aset (containing 0 and 1),

s +.%x:5x5—-S5

-+ *
T+yYy=y+<x THY =Y*xX
(z+y) +z=x+ (y+2) (xxy)*xz=x*(y*2)
r+0=x rx0=0
r+1=1 rx1l==x
rT+x =1 (x+y)*xz=(zx2)+ (y*2)

® |mplicit partial order: a <b <= a+b=0>b *“bis better than a”

E
A

A | —p.7/56

& QoS as Constraint Semirings

C-Semirings [BMR95, BMR97] for abstracting application level
QoS [DFM*03]
® (S +,%0,1), where

s S Is aset (containing 0 and 1),

s +.%x:5x5—-S5

=F *
rTt+ty=y—+zx THY =Y*xX
(z+y)+z=2+(y+2) (zxy)xz =z *x(y*2)
x+0=2x rx0=0
r+1=1 rx1l==x
r+xr==x (x+y)*xz=(rx2)+ (y*2)

® |mplicit partial order: a <b <= a+b=0>b *“bis better than a”

Proposition 1 Cartesian product, exponential and power

constructions of c-semirings are c-semiring.
E L % i

— = A | —p.7/56

| Examples of c-semirings

Example 2 The resource c-semiring R = (woo, max, min, 0, co) is defined on w, the set of
natural numbers with infinity.

C-semirings for specifi ¢ synchronisation mechanisms:
Example 3 The Hoare synchronisation c-semiring is $ = (H, +, *m, 0m, 1 7) where
H=ActU{1y,0H, L} and

Va € Act. a*xa = a (1)
Va, b€ ActU{l}:b#a = axb=1 (2)
plus commutative rules and the ones for 0 and 1 (3)

Operation + 7 is obtained by extending the c-semiring axioms for the additive operation with

a+ga=aVaecH
a+mgb=1Va,be ActU{L}.b#a

We can defi ne a general synchronisation policy as a c-semiring that combines (using the
cartesian product) a classical synchronisation algebra with the QoS requirements of interest

e.g., HR = H x R is the c-semiring of broadcast with priorities

o L = = A | -p.8I56

&]

[Another bunch of c-semiring examples

C-semirings structures can be defined for many frameworks:
#» ({true,false}, Vv, A, false, true) (boolean): Availability
® (Real+, min, +, 400, 0) (optimization): Price, propagation delay

<
<
® (Real+, max, min; 0, +o00) (max/min): Bandwidth
(10,1], max, -,0, 1) (probabilistic): Performance and rates
<

0, 1], max, min, 0, 1) (fuzzy): Performance and rates

o 2V U.N,0, N) (set-based, where N is a set): Capabilities and
access rights

B Bl oy o L = = A | -p.oise

| Process Algebraic Foundations of SOC

m-calculus [MPW92]
Djoin [FG96, FGLT96] Rich theor basic wrt SOC
D [HR98, HROO] Y| (only link mobility)

Fusion [PV98

Ambient [CGOO

Seal [VC98]
Boxed [BCCO1
Safe [LS00

Hierarchical | not very natural

Klaim [BBD* 03]

Hierarchical [BLP02 Lack of
lerarcnica .
| Very natural | observational
OKlaim [BBVO03] .
semantics

MetaKlaim [FMPar]

s :4L o L€ | = ™ _p 10056

G Klaimology

#» Twofold nature: calculus and language
(logical vs. phisical sites: but no “routing”
features)

m =5 AN _p.11/56

Klaimology
#» Twofold nature: calculus and language
(logical vs. phisical sites: but no “routing” QQ;\
features) <><<Q
#» Multiple tuple spaces N
s E o fé | = A _p.11/56

& Klaimology
#» Twofold nature: calculus and language
(logical vs. phisical sites: but no “routing” QQ;\
features) <><<Q
#» Multiple tuple spaces N

® Localities: first class citizens

o E - [¢] = AN —p.11/56

o o

Twofold nature: calculus and language

(logical vs. phisical sites: but no “routing”
features)

Multiple tuple spaces

Localities: first class citizens
Process migration

Klaimology

)
<<Q°)
Q

A _p.11/56

o o

Twofold nature: calculus and language
(logical vs. phisical sites: but no “routing”
features)

Multiple tuple spaces

Localities: first class citizens
Process migration

Klaimology
SN
&
Q
A —p.11/56

o o

Twofold nature: calculus and language
(logical vs. phisical sites: but no “routing”
features)

Multiple tuple spaces

Localities: first class citizens
Process migration

Klaimology

)
<<Q°)
Q

A _p.11/56

| Klaimology

#» Twofold nature: calculus and language

(logical vs. phisical sites: but no “routing” QQ;\
features) K
#» Multiple tuple spaces <
® Localities: first class citizens
#» Process migration
SN P := nil
._-' | a.P
| PP
& a = aQs
a = ../l Klaim actions
| e(P)

m =5 AN _p.11/56

KoS characteristics

ICoS aims at being a minimal calculus for SOC and

builds on Klaim (e.qg.,
processes are localised)...

#» ...and w-calculus
naturally supports P2P model
» QoS as first class citizen

» QoS-driven semantics

#» only local communications
(unlike Klaim)

link construction primitives
#» only one remote action
#» which relies on link topology

#» semantic transitions report the
“cost” of the execution

m =5 AN _p.12/56

| Remote actions in KoS
ICoS ... graphically

s :4L o L€ | = ™ _p 13156

| Remote actions in KoS
ICoS ... graphically

m =5 AN _p.13/56

| Remote actions in oS
ICoS ... graphically

| Remote actions in oS
ICoS ... graphically

| Remote actions in oS
ICoS ... graphically

| Remote actions in KoS
ICoS ... graphically

| KoS syntax

Let C be the c-semiring of QoS values (ranged over by «)

’y pr—
N, M =
0
s P
(vs)N
N || M
s~
P =
Q | .
nil
€
~v.P
(vs)P !
Tx
P] Q
-
P
T.T

m =5 AN _p.14/56

| KoS Operational Semantics

The semantics of KoS is defined by the relation

N > M
K

which states that NV performs « with cost x and becomes M.

Local transitions (communications, node or link creations) have
unitary QoS value, while the only non-trivial QoS values appear on
the transitions that spawn processes or show the presence of links.

s :4L o L€ | = ™ _p 15056

KoS Operational Semantics'

(PREF) s:~.P D% s P v & {node, (t), con,(s), acc,(s)}

1
N ”O:“” N M t“CT’<S>>M’ 0<k<r
(CON)
N M T N M s At
s (T) / st / o
N——=N M—==>M 1 (T,t) = o
(COMM) =
N||MT>N’0||M’

s :4L o L€ | = N _p. 16056

[KoS Operational Semantics?

K s link t

(LINK) s~ > 0

(NODE) s :: node, (t).P nedet) s s P s ~t]t:o0, -

1
N —> N’
K _ bn(a)Nf(M) =0 A
(PAR) - i
N M- N | (ada(N) N adds()) adds (M) < 0

Rule (NODE) allows a process allocated at s to use a name ¢ as the address of a
new node and to create a new link from s to ¢t exposing the QoS value . The side
condition of (PAR) prevents new nodes (and links) to be created by using addresses

of existing nodes.

£ ¥ o L =" A —p.17/56

| KoS Operational Semantics®

(LEVAL) s: €.[Q]@s.P % suPls:Q

ZP@t link r'
N PO N R sk < K
K}/ K}//
/
(ROUTE) tFr
r’ es (P)at / ’
N || M > N || M
/ !/
K * K
S(PYQt ;
T€m</> > N’ MH””?/M M’ k' x k! <k
K K

(LAND)

N|M——>N"|M|t:P
Kk % K

Local spawning is always enabled while e, [P]@1 from s is not always possible: the net must contain a

path of links from s to ¢ suitable wrt k.
(ROUTE) states that P can traverse a link go an intermediate node r provided that costs are respected.

(LAND) describes the last hop: in this case, P is spawned at ¢, provided that the QoS value of the whole
path that has been found is lower than x.

L =" A _p.18/56

& Public links

Links in KoS are public:

1>

1

N sueg|Pl@t || s—~nr | 7:cong(t).ea|Ql@t || t:acecs(r),

$» s and r are trying to spawn a process on t (but no path to ¢ exists).
» ris aware that a link must be fi rst created (and ¢ agrees on that).
Initially, only (CoN) con be applied:

sues[Pl@t || s~7r || rue]Q@t || r At | t:mnil

1>

N/

r At provides now a path (costing 3) from s to ¢, hence using (PREF), (LINK),
(ROUTE) and (LAND) we derive

N’%s:: nil || r:=:eQl@t || t:: P.

Noteworthy, the migration of P prevents () to be spawned because the link created
by » has been used by P.

s :4L o L€ | = ™ _p 10056

& Private links

Private links can be traversed only by those processes having the
appropriate “rights”. Access rights are (particular) names.

A {r} /

N2s:epqlPlot] s Rs MZ2s:epqlPlet] s 2 s

P can traverse the linkin N butnottheonein @ M

Access rights c-semiring: R = (piin(S) U {S}, glb,U, S, D)

X <Y «— Y CX

A private link between the nodes s and ¢ can be specified as

{r}
(vp)(s: P s g | t: Q)
Ex = L = AN —p.20/56

& Permanent and stable links

ICoS links are vanishing but permanent links can be easily encoded:

s leon(t) || t o2 lacc. (s)

A slight variation are stable links, which are links existing until a given
condition is satisfied.

Stable, Gt = lcon(t) | €|While G do acci(s) od nil|@t

s :4L o L€ | = ™ _p 2156

& SOC & Transactions

#® Long-Running Transactions (LRTs) equip SOAs with the
possibility of atomic execution

#® |LRTs use compensations for undoing the effects of partial
executions when the overall orchestration cannot be completed

#» Primitives for LRTs have been informally specified in most of the
languages for orchestrating WS (wscL [WSC], spMmL [BPM],
WSFL [Ley01l], XLANG [XLA], BPEL4WS ["'BP])

We propose Java Transactional Web Services (Jtws), a set of Java
APIs supporting coordination of SOA and their transactional
composition.

JTws exploit a signal passing mechanism and consists of

® IJscL: provides the signal handling primitives
® JTL: provides primitives for transactional flows

s :4L o L€ | = ™ _p. 22156

& JscL & JTL

The Jsci layer allows to specify generic components that

® creates a signal link between two components
#» sends a signal to the components
#® handles signals received by other components

JtL IS defined on top of JscL and allows to specify transactional flows
by composing according

transactional sequences
#» transactional parallel

We have fruitfully exploited Jtws for implementing the Sagas
calculus [BMMO5].

m =5 AN _p.23/56

Modelling SOC
with
Syncrhonized Hyperedge
Replacement

A _p. 24/56

Hypergraphs Programming model*

Edge replacement for graph
rewritings [Fed71, Pav72]

Graphs for distributed systems [CM83, DM87]

Edge replacement/distributed constraint solving
problem [MR96]

Graphs grammars for software architecture
styles [HIMOO]

Synchronised Hyperedge Replacement (SHR) with
mobility for name passing calculi [HMO1]

Extension to node fusions [FMTO01]

| Hypergraphs Programming model?

Using SHR, we aim at

defining a uniform framework
tackling new non-functional computational phenomena of SOC
The metaphor is

» “SOC systems as Hypergraphs”
®» “SOC computations as SHR”
In other words:

» Components are represented by hyperedges
Systems are bunches of (connected) hyperedges

o
Computing means to synchronously rewrite hyperedges...
® ..according to a synchronisation policy

s :4L o L€ | = N _p. 26056

L —

Replacement of Hyperedges

m =5 AN _p.27/56

Replacement of Hyperedges

Replacement of Hyperedges

G Replacement of Hyperedges

°

Edge replacement: local

°

Synchronisation as distributed
constraint solving

°

Multiple synchronisation

New node creation

°

°

Node fusion: model of mobility
and communication

A _p.27/56

G Replacement of Hyperedges

°

Edge replacement: local

°

Synchronisation as distributed
constraint solving

°

Multiple synchronisation

New node creation

°

°

Node fusion: model of mobility
and communication

Benefi ts:
®» Uniform framework for 7, 7-I, fusion

®» TS for Ambient ...
®» . forKlaim...

o E - [¢] = A —p.27/56

G Replacement of Hyperedges

L—d
®» Edge replacement: local
$» Synchronisation as distributed
constraint solving
® Multiple synchronisation
®» New node creation
®» Node fusion: model of mobility
and communication
Benefi ts:
» Uniform framework for 7, 7-1, fusion » .. and path reservation for KAOS
» LTS for Ambient ... ® expressive for distributed coordination
» . forKlaim ... ® wireless networks

H =5 AN _p.27/56

G Replacement of Hyperedges

L—d
®» Edge replacement: local
$» Synchronisation as distributed
constraint solving
® Multiple synchronisation
®» New node creation
®» Node fusion: model of mobility
and communication
Benefi ts:
» Uniform framework for 7, 7-1, fusion » .. and path reservation for KAOS
» LTS for Ambient ... ® expressive for distributed coordination
» . forKlaim ... ® wireless networks

SHR can combine QoS & sophisticated synchronisations [HT05, LTO5, HLT]

A _p.27/56

| Hyperedges and Hypergraphs Syntax

A hyperedge connects more than two nodes (generalisation of edge)

Y
L:3, L(y,z,x), e
1

re —s3—J[—32—ez

s :4L o L€ | = ™ _p. 28156

| Hyperedges and Hypergraphs Syntax

A hyperedge connects more than two nodes (generalisation of edge)

L:3, L(y,z,x), G = nil ’ L(%) ‘ G|G ‘ vy.G

it

re —s3—J[—32—ez

s :4L o L€ | = ™ _p. 28156

G Hyperedges and Hypergraphs Syntax

A hyperedge connects more than two nodes (generalisation of edge)

L:3, L(y,z,x), G = nil ’ L(z) ‘ G|G ‘ vy.G

it

re —3—J I—2—ez

Syntactic Judgement z;:s1,...,z,:8, F G, fn(G) C{x1,...,xn}

o E - [¢] = A —p. 28/56

Hyperedges and Hypergraphs Syntax

A hyperedge connects more than two nodes (generalisation of edge)

L:3, L(y,z,x),

xre

G:=nil | L(z) | GIG | vy.G

it

3 L 2 e

Syntactic Judgement z;:s1,...,z,:8, F G, fn(G) C{x1,...,xn}

An example:

L:3, M:2

z:1,y:0Fvz(L(y, 2z)My, z))

o E - [¢] = AN —p.28/56

&

Hyperedges and Hypergraphs Syntax

A hyperedge connects more than two nodes (generalisation of edge)

L:3, L(y,z,x),

xre

: Gr=nil | L@ | GG | vyG
I

3 L 2 e

Syntactic Judgement z;:s1,...,z,:8, F G, fn(G) C{x1,...,xn}

An example:

L:3, M:2

v:1,y:0F vz (Liy, z0)| My, 2)

& Eﬁ - [¢] = A _p.28/56

& Productions

Productions of SHReQ are based on requirements: R = 5 x N*
(where (S, +,%,0,1) is a fixed c-semiring)

production x> L(T) A G

s :4L o L€ | = ™ _p. 20056

& Productions

Productions of SHReQ are based on requirements: R = 5 x N*
(where (S, +,%,0,1) is a fixed c-semiring)

production o L@ > G

1 is atuple of pairwise distinguished nodes and L : |7|

s :4L o L€ | = ™ _p. 20056

& Productions

Productions of SHReQ are based on requirements: R = 5 x N*
(where (S, +,%,0,1) is a fixed c-semiring)

production B> L(z) L a

#» 1 is atuple of pairwise distinguished nodes and L : |7
® v :{z|} — S is the applicability function

s :4L o L€ | = ™ _p. 20056

& Productions

Productions of SHReQ are based on requirements: R = 5 x N*
(where (S, +,%,0,1) is a fixed c-semiring)

#® production x> L(z) — G

#» 1 is atuple of pairwise distinguished nodes and L : |7
® \: {z|} — S is the applicability function

® A :{z|} — R isthe communication function.
n(A) communicated nodes of A: those nodes appearing in a
requirement in the range of A.
The set of new nodes of A is new(A) = n(A) \ dom(A)

s :4L o L€ | = ™ _p. 20056

& Productions

Productions of SHReQ are based on requirements: R = 5 x N*
(where (S, +,%,0,1) is a fixed c-semiring)

® production > L(E) S @

°

T IS a tuple of pairwise distinguished nodes and L : |7

e

x : {|z|} — S is the applicability function

°

A - {z|} — R is the communication function.

n(A) communicated nodes of A: those nodes appearing in a
requirement in the range of A

The set of new nodes of A is new(A) = n(A) \ dom(A)

® (Gisagraphs.t fn(G) C{z|} Un(A)

£ * = © L =" A —p.29/56

Interpreting SHReQ productions

x> L(T) Aa

—p. 30/56

-~

and a graph H having an arc labelled by L, e.g.:

Consider

| Interpreting SHReQ productions

Consider
x> L(T) Aa
and a graph H having an arc labelled by L, e.g.:

® Replacing L with G In H according to « requires that H satisfies
the conditions expressed by y on the attachment nodes of L.

s :4L o L€ | = N _p. 30056

| Interpreting SHReQ productions

Consider
x> L(T) Aa
and a graph H having an arc labelled by L, e.g.:

® Replacing L with G In H according to « requires that H satisfies
the conditions expressed by y on the attachment nodes of L.

s :4L o L€ | = N _p. 30056

| Interpreting SHReQ productions

Consider
x> L(T) Aa
and a graph H having an arc labelled by L, e.g.:

® Replacing L with G In H according to « requires that H satisfies
the conditions expressed by y on the attachment nodes of L.

#® Once y is satisfied in H, L(x) contributes to the rewriting by
offering A in the synchronisation with all the edges connected to
nodes in z.

s :4L o L€ | = N _p. 30056

| Interpreting SHReQ productions

Consider
x> L(T) Aa
and a graph H having an arc labelled by L, e.g.:

® Replacing L with G In H according to « requires that H satisfies
the conditions expressed by y on the attachment nodes of L.

#® Once y is satisfied in H, L(x) contributes to the rewriting by
offering A in the synchronisation with all the edges connected to
nodes in z.

s :4L o L€ | = N _p. 30056

& Synchronised Rewriting for SHReQ

Events for
Synchronisation Sync and Fin S.t. No synchronisation NoSync C S\ Fin S.t.
P SyncC FinCS ® S x NoSync C NoSync
® 1< Sync » 0e< NoSync

SHReQ semantics exploits a mgu accounting for node fusions.

Let 2 be a fi nite multiset over N x R: mgu(2) for denoting an idempotent
substitutionis defi ned iff

(x,s,1), (x,s",0) € QQx

implies
ja| = |9
Vied{l,... |a|}: u; € new(2) V ¥; € new((2)
QQzx| >1 = H s & NoSync
(x,s,7)€NQx

L £ o = AN —p.31/56

| Synchronised Rewriting for SHReQ

Events for
Synchronisation Sync and Fin S.t. No synchronisation NoSync C S\ Fin S.t.
P SyncC FinCS ® S x NoSync C NoSync
® 1< Sync » 0e< NoSync

SHReQ semantics exploits a mgu accounting for node fusions.

Let 2 be a fi nite multiset over N x R: mgu(2) for denoting an idempotent
substitutionis defi ned iff

(x,s,1), (x,s",0) € QQx

implies
ja = [o]
Vied{l,... |a|}: u; € new(Q2) V U; € new((2)
QQzx| >1 = H s & NoSync
(x,s,7)€NQx

s :4L o L€ | = N _p 3156

| Synchronised Rewriting for SHReQ

Events for
Synchronisation Sync and Fin S.t. No synchronisation NoSync C S\ Fin S.t.
P SyncC FinCS ® S x NoSync C NoSync
® 1< Sync » 0e< NoSync

SHReQ semantics exploits a mgu accounting for node fusions.

Let 2 be a fi nite multiset over N x R: mgu(2) for denoting an idempotent
substitutionis defi ned iff

(x,s,1), (x,s",0) € QQx

implies
ja = [o]
Vied{l,... |a|}: u; € new(Q2) V U; € new((2)
QQzx| >1 = H s & NoSync
(x,s,7)€NQx

and obtained by computing the mgu of the equations
{a, =v; | Is,t € S : (x,s,u),(x,t,0) € QN1 < i <|ul}

s :4L o L€ | = N _p 3156

| Quiasi-productions

The set QP of quasi-productions on P is the smallest set s.t. P C QP and

Y>L(E) 2GeQP A yeN\new(Q)
Y

b LE() 2 Gy),y € o

where
[x(2), z €{z]t \ {z,y}
X'z \{z}u{yt =95 X&) =q x(@)+xy), »=yryez
L x(2), =y ANy & {z[}

SHReQ rewriting system: (9P, ' - G)

s :4L o L€ | = N _p 32156

| Graph transitions

(REN)
X>L(E) > GeQP p=mgu(Q) A x(@) <T(x)
x€dom(x)
[k L(E) = TaF (v 2)(Gp)
(CoMm)

DG BTG DhFG X2TLFG, p=mgu(A WA,)
A Ti(z) =Ta(z)

redom(I'1)Ndom(I'2)

A1WA-

UL B Gy | Go == (T1UT2) 4 un,) F (v 2)(GY | Ga)p

where Z = new({2) \ new({2)
3 ¥ = L =" A —p.33/56

| Graph transitions

(REN)
X>L(E) > GeQP p=mgu(Q) A x(@) <T(x)
k x€dom(x)
[k L(E) 5 Tok (v Z)(B*p)
(CoMm)

DG AT FG, Fgl—GggF’ FG’ p = mgu(A; ¥ A,)

A Ti(@) =Taa)

redom(I'y) ﬂdom(Fg)

A1wWAo N

MUl GG == (T1UTs) g w0, F (v 2)(GY | Go)p

where Z = new({2) \ new({2)
3 ¥ = L =" A —p.33/56

& Induced communication functions

Let p = mgu($2). The communication function induced by €2 is the function 2 : dom(€2) — R defi ned as

[(t,gp), t= H s ¢ Sync
(z,s,7)€ENQx

Q) = 4

(t, (), t= H s € Sync

L (z,s,7)€ENQx

Basically, 2(x) yields the synchronisation of requirements in 2@z according to the c-semiring product.

The weighting function induced by I" and 2 is
I'g:dom(T) — S,
1, x € new ()
Fo(x) = I'(x), QQz| =1

Po(z) = Q(z)l1, otherwise

The weighting function computes the new weights of graphs after the synchronisations induced by (2.

s e s L = AN - aass

| QoS & Synchronisations in SHReQ

A network of rings COﬂSIStS of rlngs ' of different sizes connected by

E“\.
i

z-edges/afvz)id new gates to be attached on the node they insist on.
(e.g., above, only the 2-rings can create (gates to) new rings).

The nodes with no i-edges, can be used to generate new rings and
will be weighted by the amount of available resource.

s :4L o L€ | = N _p. 35056

| C-semirings for the ring case study

The c-semiring for networks of rings is HA given by the cartesian
product of the Hoare synchronisations c-semiring

5{) — <H7+H7*H70H71H>1 Where
H: {CL)b?Ca 1H70H7J—}

and the R = (weo, max, min, 0, +00).
The idea Is that

» § coordinates the network rewritings
R handles resource availability
the initial graph is a ring

e o ©

non-limited nodes have weights (14, u) where value u is the
maximal amount of available resource

the limited nodes created during ring evolution are weighted with
(b, +00) which is constantly maintained.

°

s :4L o L€ | = N _p. 36/56

| Productions for the ring case study

Create Brother (n < u)

Tr e

A

re (a,n) R |

R — zo—ﬂ

Yo (a,+00) “fﬂ

Ye

z +— (a,n)
y — (o, +00)
z:(0p7,u),y :0> R(z,y) R(z,2) | R(zy) | ()
Accept Syncrhonisation R Accept Syncrhonisation |

re (b,+oo) xTe re (b,+oo) T

A A 1 |

Tﬁjﬁg o=

Yye (a,+oco) Ye

21 (05, +00),y 105 R(zy) 2, Ray) | 2 :00 1) 2225

[(x)

where o € {a, b}

A _p.37/56

| Productions for the ring case study?

Create Gate (r > 0)

— T — Z

re (a,+o00) ﬂ—.—ﬁ}%.—R}f
1 1

R| — TRJ
1

Ye (b,400) Ye

z +— (a, 4o0)
y — (b, +00)

z:(0m,u)y 0> R(z,y) R(z,y) | U(z) | G(zx) | Ry (2,2)

Init Ring
(r >0)
xre re (c,u) xre
A

ze (cu) R Ry | — |R]
Ry — ze Yo (c,+o0) Ye —7‘
Yo (c,+0) Rg—l

Y e

z:0,y:0> RY(z,y) — " R(x,2) | RY (zy) | x:0,y:0> Ry (x,y) z : R(z,y) | l(y)

where 5 € % c}

o E - [¢] = AN —p.38/56

| Productions for the ring case study?

Accept Synchronisation Init Accept Synchronisation Gate
Te (c +o00) T e e B +o00) e
A A
Yo (c,+00) Yo Yo (b,+0c0) Ye
o et v (045
z:0,y :0> R(z,y) » R(x,y) | ¢ :0,y :0>G(2,y) > G(2,y)

where 3 € {b, c}

s :4L o L€ | = N _p. 30056

| SHReQ for the ring case study

The derivation starts from a 2-ring components with resource value 5.

N\

CL,OO/@FCL,S\
\ ®(14,5)

N
AR

N
- \

CreatBrother{u 2/5, n=2) X Creat]?\)rother(u =4, n = 3)

R chooses production Create Brother © = 5 (satisfying condition 5 < 5)
and n = 2 while R chooses u = 4 (satisfying condition 4 < 5) and

n = 3. The resulting synchronisation produces the new weights for the
nodes as,

—~
L
DO
~—
|
—~

a,2)x (a,+o0) = (a*g a, min(2, +00))
(a,3) = (a,3) x (a,+00) = (a xg a, min(3, +00)).

S E . m =N A —p.40/56

| SHReQ for the ring case study

CreatGate(r = 1,u = 2) x CreatGate(r = 1,u = 3) x Accept”

Only R and R can create brothers or gates and they use the
remaining resources to create gates to two 2-rings (r = 1); the other
edges apply the Accept productions.

S E . m =N A —p.40/56

SHReQ for the ring case study

(b,00)

T J/é\i\ 1

2
Ry —¢2—=>= ® <-¢,00—
c,o/

Note that . and .

ﬂb,oo— e (a,o00) (a,c0) ® —b,oo—E'—C,OO% S —\c,oo_ R‘i)
c,3
/\\‘Z‘ L E‘// :

/

5 | /
ﬂ\%/ R
/
/®
(p,00)
\
all l-edges synchro-

nises with Accept Syn-
chronisation |

now are internal.

o E - [¢] = A —p. 4056

—c,2—> @ éC,OO—? b,co- @ (a,c0) l (a,00) @ —b,oo—?|70;00% ® —C,00— R3
,o/ J L - \c,3 \
l b, oo \L

SHReQ for the ring case study

(b,00)

o ﬂ/é\ﬂ\ 1

—— //
i’\% R -
///
~
® e
A (b,00),”
AN /

\ [
InitRing(r = 1,uv = 2) X InitRing(r = 1,u = 3) X Accept”

m =5 AN . 40/56

History Dependent
Automata

s :4L o L€ | = N _p 4156

| I

HD-automata

HD-automata as an operational model of history-dependent
calculi [P1s99, MP98, MP00, FMPO02]

allow a finite representation of classes of infinite LTS

states and transitions equipped with names:

» names no longer dealt as syntactic components: they become
explicit in the operational model

» as a consequence...HD-automata model name
creation/deallocation or name extrusion

names of HD-automata are local...

...hence a mechanism for describing how names correspond
each other along transitions is required

so that, a “history” of names in the computation can be
determined

m =5 AN . 42/56

& HD-automata: an intuition

The transition is labelled by lab and exposes
names 2 (of s) and a fresh name 0

°

State s has three names: 1, 2 and 3

State d has two names: 4 and 5

4 correspond to 1 and 5 to the new name 0

o o o 0

Notice that names 3 in s is “discharged” along
such transition

A HD-automaton associates a “history” to names of the states
appearing in the computation: it is possible to reconstruct the
associations that lead to the state containing the name.

If a state is reached in two different computations, different histories
could be assigned to its names.

m =5 AN . 43/56

HD-automata Foundations

HD-automata with symmetries are based on permutation
algebras [MPOO]

In [FMTO5a] a type-theoretic definition of HD-automata in terms of
a polymorphic lambda calculus (A—11*) has been given

Dependent types formally state the relationships between the
different components of HD-automata...

...and have been exploited for implementing Mihda: a partition
refinement algorithm over HD-automata (introduced in [FMPQ02])

Mihda minimizes HD-automata representing w-calculus agents
(wrt early bisimilation)

HD-automata and Mihda have been also used for modelling
Fusion calculus [FMT™05c]

S E . m =N AN —p. 44/56

& Named sets

Named sets are used for representing the states of HD-automata. Basically, a
named set is a set whose elements are equipped with a fi nite set of names and a
symmetry

Definition 1 A named set is a structure (Q, |_|, G) such that

® :Q — pifN)

$» (s afunction on @ such that, for any q € @, G(q) is a group of permutations of
n(q)

Given a named set A, we write Q 4, |_| , and G4 for denoting the components of A

Example 4 Consider the w-calculus agent

|| >

Az, y)

A state g4 € NS4 of a named set representing A(x,y) has two local names
(namely, |qga| = {z,y}). The symmetry of g4 consists of the identity permutations
and the permutation that exchanges x with y.

(v2)(Zz.P + yz.P).

m =5 AN . 45/56

& Named functions

Transitions among states are represented by means of named functions:

Definition 2 Let S and D be two named sets. A named function is a pair (h : S — D, %)
such that A is a function from Qs to Qp and for all ¢ € S, ¥ (q) yields a finite set of functions
from |h(q)|, to names in |q|, of to the distinguished name x such that

1. Vo € X(q).Gp(h(q));0 = X(q),
2. Yo € X(q).0;Gs(q) C X(q),
3. any function of X (q) is injective.

Given a named function H = (h : S — D,) we write

® dom(H) =S5, ® hy=h,
® cod(H)=D, » >y=13,

Definition 3 Let H, K be two named functions. We say that H and K can be composed iff
cod(H) = dom(K). In this case, the composition of H and K is the named function H; K
such that

®» dom(H; K)=dom(H),
N COd(H;K) :COd<K),hH;K :hH;hK and
® Yux =M €dom(H; K).Xk(hu(q)); Xa(q)

L =" A —p. 46/56

Verification techniques
for SOC

S E . m =N A —p.47/56

G Systems...

Q: What is interesting in a SOA computation?

A: No precise answer...our interpretation is

Systems evolve both “in time”

: and “in space”. Time evolu-
Systems for SOC are obtained . > :
tion is usually interpreted as

by gluing services that are dis- _ .
:) . the dynamic of a system, while
tributed and evolve “together . :
spatial evolution corresponds

causality, parallelism,... _ _
M (ol) to structural reconfi guration of
systems.

=y

A _p. 48/56

| A logic for SHReQ

SHReQ has been recently equipped with a spatio-temporal logic

Interpreted over c-semirings [HLT].

Let (S, +,*,0,1) be a fixed c-semiring and G the set of weighted
graphs.

~

o == nil | T'(&) | £(&) | ol¢ | ¢|l¢ spatial operators
f(o,...,9) c-semiring operators
2.9 | 11,2 node guantification
U =" node equality
Do | [Ile temporal operator
v(§) | (pr(w).9)§ | (ve(a).9)¢ fixpoints

where £ C L is a finite set of labels, £ is a metavariable for nodes or
node variables and f is an operation on the fixed c-semiring values.

S E . m =N A —p. 49/56

| A logic for SHReQ?

Fixed a SHReQ rewriting system (QP, ' - G), we interpret formulae as maps G — S.
Let o be a map from node variables to nodes and p be a map from recursion variables to functions G — S.

[nil |o;p (T G)

[T(€) lop(T F G)

[£(8)]o:p(T'F G)

[¢1|¢2]Io;p(r = G)

[¢1||¢2]Io;p(r = G)

[f(ﬁbl ----- an)]Io;p(rw_ G)

G = nil

(€0 € n(@)) x T'(£0)

(G =L(&o)) (L € £)

Z(Gl,Gg)GG(G){[$1]op(DEG1) x[P2]o:p(TF G2)}
[T, ayyco@ tl @1 1op(TF G1) + [b2 105 (T F G2)}
f(I b1]o;p(T G, ..., [n Jo:p (T F Q)

[2, ?]o:p(TEG)
[[I.®]0:p(IF G)

[§ = 5/]Io;p(r = G)
[[D2]e 1T FG)

[e 1(TFG)

[¢(€) 1op(T' - G)

[(pe(a).0)€ |o;p (T F G)
[(ve(@).9)€]o:p(T F G)

Z:::En(G) [¢]U["’:/u,];;o(F = G)

[Tecne) [21012/ (TF G)

Eo=¢0o

ZPI—G&P/I—G’ [¢](F/ . G/)
HPl—GﬂF’l—G/ [¢](F/ . G/)

tp(€o) i

PO AL, 0,) o, JENT FG)

gPO AT (6] 5, 1 e, ETFG)

AN —p.50/56

A logic for SHReQ?

Fixed a SHReQ rewriting system (QP, ' - G), we interpret formulae as maps G — S.
Let o be a map from node variables to nodes and p be a map from recursion variables to functions G — S.

[nil |6 p (T G)

[T() (T G)

[£(8) lo:p (T F G)

[¢1|¢2]G;p(r = G)

[¢1||¢2]o;p(r = G)

[f(@1,.- s 0n) lop (I F G)
[20 ¢l (T FG)
[[I.¢ 1o (T FG)

|[£ - fl]Io*;p(r = G)
[l]I G)

[N ¢1(FG)

| t(él]lo;p(r = G)

[(pe(@).¢)¢ Josp (I F G)
| (Vt(a)-ﬁb)é]lo;p(r - G)

G = nil

(o0 € n(@)) xT'(&o0)

(G = L)« (L € £)

Z(Gl,Gg)e@(G){[A1 lop(TE G1) x [P2 Jo:p(TF G2)}
H(Gl,Gg)GG(G){[b1 Jo:ip(T'F G1) + [02]o:p (T F G2)}
FL 1 1osp(TEG)yoo oy [dn loip(T F G))

Z*’EEm(G) [& 1oz /01 (T F G)

Han(G) [@101z /01 (T G)

Eo=¢o

2.
HF,‘?GAI‘/I—G/
tp(€o))
(A A0L D] 5, e, NENT @)
ofpA X0[G] 5, | e) (€T FG)

[¢ (T - G)
[¢ (T = G)

rrcAri-af

nil characterises graphs with no edges, I'(¢) yields the weight of £, L(£) states that an edge L attached to £ exists s.t.

L € £. ¢1|¢p2 sums up all the values of ¢; on all decompositions. The temporal operator [> "] ¢ sums the values of ¢

after one transition (and similarly for [> "] ¢).

AN —p.50/56

Applying SHReQ logic

Path existence:
path(u, v, £) = pr(u,v).(u =v) + Z L(u, w)|e(w, v)

Ring membership:
ring(u,v) = path(u, v, {R}) | path(v,u,{R})
Highest availability:
> ul(u)x ~({}(u) | 1)
(on a ring evaluates to the maximum over the weights of non limited nodes)

Inspecting new rings:

resource = S (~({R4}(w,v) | 1)) + ({RE}(w,v) | 1) % @
S (AR w, v) [1) T(w))) * (01, +00)) -

looks for Rj-edge, and, after the next rewriting step, (5) selects resource of the newly introduce
R-edge.

m =5 AN _p.51/56

o o

Verification with HD-automata

SHReQ is amenable of model checking (forthcoming)

However, properties of systems can be also stated in terms of
equivalences: see [TV04] for spatial properties and [FMTO5Db] for
a more general discussion

HD-automata can be minimised through a partition refinement
algorithm

the co-algebraic specification of HD-automata and the
minimisation algorithm is independent of the chosen language or
equivalence

» m-calculus & early bisimulation
» Fusion calculus & hyperbisimulation

s :4L o L€ | = ™ _p 52056

| Minimising HD-automata

The minimisation algorithm builds the minimal realisation H of (fi nite) HD-automata by
constructing (approximations of) the fi nal coalgebra morphism. The active names of each
state ¢ are those in the ranges of > 7 (q).

Given a T-coalgebra K : A — T1(A) (i.e., a HD-automata) on named set A, the minimisation
algorithm is specifi ed in a declarative way by the equations

Initial approximation: Ho:{gr— L, X :q—0) (6)

lterative construction: HZ-HéK; T>(H;). (7)

Intuitively, in the starting phase of the algorithm, all the states of automaton K are considered
equivalent. At the (i 4+ 1)-th iteration, the image through 7% of the i-th iteration is composed
with K as prescribed in (7).

At each iteration, two cases can arise:

» aclass is splitted because the states that it contains are no longer considered
equivalent or

®» a new active name is discovered.

The algorithm terminates when both these two cases do not occur. This is equivalent to
saying that there H, 1 is equal to H,, for some n.

m =5 AN _p.53/56

| The main step

m =5 AN _p.54/56

The malin step

“/-.' ~,.\‘ .ql
e N %
/ . \ 9 BIN x o [*/y] @
../' "\,. .\
: Tau ©
| *g3
./.
. ./.
N %

let bundle hd g =
List.sort compare
(List.filter (fun h — (Arrow.source h) = q) (arrows hd))

H O] AN —p.54/56

The malin step

R 9 IS

\ ;
9 BIN x o[*/y] | :

e T T Tl \ ® . > @ q2 /

Tau © e

List.map h,, bundle

m =5 AN _p.54/56

e . I N
e .

_./ ____________ .

/ o’ . |
| |
\'-. ./:

\‘x ./:
\\Q/ Tau 63,03

hnir = normi{states, {{{, 7, hn(q),0;0) = (7 oqd AN o € Ln(qd)})

At each iteration, redundant transitions decrease and, when the itera-
tive construction terminates, only the really redundant free inputs are
removed

m =5 AN _p.54/56

e "\.
.\‘
.............. \
o’ ° “\
.'
./.
~/.
\x %
O 7

Tau 63,03
let an = active_names_bundle (red bundle) in

let remove_in ar = match ar with
| Arrow(_, ,In(_,)) — not (List.mem (obj ar) an)
| — falsein
list_diff bundle (List.filter remove_in bundle)

m =5 AN _p.54/56

s B e N
.,.\‘
.............. "\‘
o o -.\. e
i q
./:
./:
T | “/..

Tau 063;03

Ynt1(q) = (compute_group (norm bundle)) ; 6!

m =5 AN _p.54/56

T o N,
7 \
/ ———————————— \
. e . “‘\
|
". ./.
\"‘ ./:
N) T

Tau 063;03

Ynt1(q) = (compute_group (norm bundle)) ; 6!

Theorem At the end of each iteration ¢ bl ocks corresponds to Ay,

m =5 AN _p.54/56

| Mihda
Minimizing History Dependent Automata:
#» HD-automata for history dependent calculi
® Co-algebraic specification
#» Partition Refinement Algorithm based on co-algebraic
specification [FMPO02]
Mihda: Ocaml implementation (refining A—11* spec.)
Comp. Time | States | Trans. | Min. Time | States | Trans.
GSMsmall Om 0.931s 211 398 Om 4.193s 105 197
GSMfull Om 8.186s | 964 | 1778 | Om 54.690s | 137 253
Ly E (= ¢ | = A —p. 55056

& Mihda Architecture
[Domirlgtion] ’

'
. "

-
\'. b /

\"\, ""“"‘ :/“
‘N, P /
'\,,\ ‘,“/‘ ~/°
- e ’
‘/ -
: s’ -7 d ’
i ,~/” o - :I :/:
LT # Adherent to specs
N R - 8
(Transitions) F X nghly modular
KA . /: _ _
;o # Easily extendible
" N, ;s

\/“ “

A p.56/56

References

[BBD T 03]

[BBVO3]
[BC99]

[BCCO1]

[BLPO2]

[BMMO5]

[BMR95]
[BMR97]

["BP]
[BPM]
[CGOO]

[CM83]

[DFEM T 03]

Lorenzo Bettini, Viviana Bono, Rocco De Nicola, Gianluigi Ferrari, Daniele Gorla, Michele Loreti, Eugenio
Moggi, Rosario Pugliese, Emilio Tuosto, and Betti Venneri. The KLAIM Project: Theory and Practice. In
Corrado Priami, editor, Global Computing: Programming Environments, Languages, Security and Analysis of
Systems, number 2874 in Lecture Notes in Computer Science, pages 88 — 150, Rovereto (Italia), February
9-14, 2003. Springer-Verlag.

Lorenzo Bettini, Viviana Bono, and Betti Venneri. Subtyping Mobile Clasees and Mixins. In Proc. of Foundation
of Object Oriented Languages (FOOL10), 2003. Electronic proceedings.

Boumediene Bal, Henri E. Belkhouche and Luca Cardelli, editors. Workshop on Internet Programming Lan-
guages, volume 1686 of LNCS. Springer, 1999.

Michele Bugliesi, Giuseppe Castagna, and Silvia Crafa. Boxed Ambients. In Tools and Algorithms for the
Construction and Analysis of Systems, number 2215 in Lecture Notes in Computer Science, pages 38-63.
Springer-Verlag, 2001.

Lorenzo Bettini, Michele Loreti, and Rosario Pugliese. Infrastructure language for open nets. In Proc. of the
2002 ACM Symposium on Applied Computing (SAC’'02), Special Track on Coordination Models, Languages
and Applications. ACM Press, 2002. Special Track on Coordination Models, Languages and Applications.

Roberto Bruni, Hernan Melgratti, and Ugo Montanari. Theoretical Foundations for Compensations in Flow
Composition Languages. In Annual Symposium on Principles of Programming Languages POPL, 2005. To
appear.

Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Constraint solving over semiring. In Proceedings of
IJCAI95, San Matco, 1995. CA: Morgan Kaufman.

Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Semiring-based constraint satisfaction and optimiza-
tion. Journal of the ACM, 44(2):201-236, March 1997.

BPEL Specification (v.1.1).ht t p: / / www. i bm conf devel operwor ks/ | i brary/ ws- bpel
Business Process Modeling Language (BPML). ht t p: / / www. bpmi . or g/ BPML. ht m
Luca Cardelli and Andrew D. Gordon. Mobile ambients. Theoretical Computer Science, 240, 2000.

llaria Castellani and Ugo Montanari. Graph Grammars for Distributed Systems. In Hartmut Ehrig, Manfred
Nagl, and Grzegorz Rozenberg, editors, Proc. 2nd Int. Workshop on Graph-Grammars and Their Application
to Computer Science, volume 153 of Lecture Notes in Computer Science, pages 20-38. Springer-Verlag, 1983.

Rocco De Nicola, Gianluigi Ferrari, Ugo Montanari, Rosario Pugliese, and Emilio Tuosto. A Formal Basis for
Reasoning on Programmable QoS. In Nachum Dershowitz, editor, International Symposium on Verification
— Theory and Practice — Honoring Zohar Manna’s 64th Birthday, volume 2772 of Lecture Notes in Computer
Science, pages 436—479. Springer-Verlag, 2003.

56-1

http://www.ibm.com/developerworks/library/ws-bpel
http://www.bpmi.org/BPML.htm

[DFM T 05]

[DFP98]
[DM87]

[Fed71]

[FG96]

[FGL T 96]

[FMPO02]

[FMPar]

[FMTO1]

[FMTO5a]

[FMTO5b]

[FMT T 05¢]

[HIMOO]

[HLT]

Rocco De Nicola, Gianluigi Ferrari, Ugo Montanari, Rosario Pugliese, and Emilio Tuosto. A Basic Calculus
for Modelling Service Level Agreements. In Jean-Marie Jacquet and Gian Pietro Picco, editors, International
Conference on Coordination Models and Languages, volume 3454 of Lecture Notes in Computer Science,
pages 33 — 48. Springer-Verlag, April 2005.

Rocco De Nicola, Gianluigi Ferrari, and Rosario Pugliese. KLAIM: A kernel language for agents interaction and
mobility. IEEE/ACM Transactions on Networking, 24(5):315-330, 1998.

Pierpaolo Degano and Ugo Montanari. A model of distributed systems based on graph rewriting. Journal of
the ACM, 34:411-449, 1987.

Jerome Feder. Plex languages. Information Science, 3:225-241, 1971.

Cedric Fournet and George Gonthier. The reflexive CHAM and the join-calculus. In Conference Record of

POPL '96: The 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
372-385, St. Petersburg Beach, Florida, January 1996.

Cedric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc Maranget, and Didier Rémy. A calculus of mobile
processes. In Ugo Montanari and Vladimiro Sassone, editors, CONCUR '96: Concurrency Theory, 7th Inter-
national Conference, volume 1119 of Lecture Notes in Computer Science, pages 406—421, Pisa, Italy, August
1996. Springer-Verlag.

Gianluigi Ferrari, Ugo Montanari, and Marco Pistore. Minimizing Transition Systems for Name Passing Calculi:
A Co-algebraic Formulation. In Mogens Nielsen and Uffe Engberg, editors, FOSSACS 2002, volume 2303 of
Lecture Notes in Computer Science, pages 129-143. Springer-Verlag, 2002.

Gianluigi Ferrari, Eugenio Moggi, and Rosario Pugliese. MetaKlaim: A type safe multi-stage language for
global computing. Mathematical Structures in Computer Science, to appear.

Gianluigi Ferrari, Ugo Montanari, and Emilio Tuosto. A LTS Semantics of Ambients via Graph Synchroniza-
tion with Mobility. In Italian Conference on Theoretical Computer Science, volume 2202 of Lecture Notes in
Computer Science, Torino (Italy), October 4-6, 2001. Springer-Verlag.

Gianluigi Ferrari, Ugo Montanari, and Emilio Tuosto. Coalgebraic Minimisation of HD-automata for the 7t -
Calculus in a Polymorphic A-Calculus. Theoretical Computer Science, 331:325-365, 2005.

Gianluigi Ferrari, Ugo Montanari, and Emilio Tuosto. Model Checking for Nominal Calculi. In Vladimiro Sas-
sone, editor, Foundations of Software Science and Computation Structures, volume 3441 of Lecture Notes in
Computer Science, pages 1-24. Springer-Verlag, 2005. Invited paper to the ETAPS 2005 of Ugo Montanari.

Gianluigi Ferrari, Ugo Montanari, Emilio Tuosto, Bjorn Victor, and Kidane Yemane. Modelling and Minimising
the Fusion Calculus Using HD-Automata. In CALCO2005, 2005. To appear.

Dan Hirsch, Paola Inverardi, and Ugo Montanari. Reconfiguration of Software Architecture Styles with Name
Mobility. In Antonio Porto and Gruia-Catalin Roman, editors, Coordination 2000, volume 1906 of Lecture Notes
in Computer Science, pages 148-163. Springer-Verlag, 2000.

Dan Hirsch, Alberto Lluch-Lafuente, and Emilio Tuosto. A Logic for Application Level QoS. Submitted to
QAPLOS.

56-2

[HMO1] Dan Hirsch and Ugo Montanari. Synchronized hyperedge replacement with name mobility: A graphical calcu-
lus for name mobility. In International Conference in Concurrency Theory, volume 2154 of Lecture Notes in
Computer Science, pages 121-136, Aalborg, Denmark, 2001. Springer-Verlag.

[HR98] Mattew Hennessy and James Riely. Resource access control in systems of mobile agents. In Uwe Nestmann
and Benjamin C. Pierce, editors, HLCL '98: High-Level Concurrent Languages (Nice, France, September 12,
1998), volume 16.3 of entcs, pages 3—17. Elsevier Science Publishers, 1998. Full version as CogSci Report
2/98, University of Sussex, Brighton.

[HROO] Matthew Hennessy and James Riely. Information flow vs. resource access in the asynchronous pi-calculus.
In 27th International Colloquium on Automata, Languages and Programming (ICALP '2000), July 2000. A
longer version appeared as Computer Science Technical Report 2000:03, School of Cognitive and Computing
Sciences, University of Sussex.

[HTO5] Dan Hirsch and Emilio Tuosto. SHReQ: A Framework for Coordinating Application Level QoS. In 3rd IEEE
International Conference on Software Engineering and Formal Methods. ieee, 2005. To appear.

[Ley01] F. Leymann. wsFL Specification (v.1.0).ht t p: / / ww 306. i bm coni sof t war e/ sol uti ons/ webservi ce
May 2001.
[LS00] Francesca Levi and Davide Sangiorgi. Controlling interference in ambients. In Conference Record of POPL'00:

The 27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 352-364,
Boston, Massachusetts, January 2000.

[LTO5] Ivan Lanese and Emilio Tuosto. Synchronized Hyperedge Replacement for Heterogeneous Systems. In Jean-
Marie Jacquet and Gian Pietro Picco, editors, International Conference on Coordination Models and Lan-
guages, volume 3454 of Lecture Notes in Computer Science, pages 220 — 235. Springer-Verlag, April 2005.

[MP98] Ugo Montanari and Marco Pistore. History Dependent Automata. Technical report, Computer Science Depart-
ment, Universita di Pisa, 1998. TR-11-98.

[MPO0O] Ugo Montanari and Marco Pistore. 7t -Calculus, Structured Coalgebras, and Minimal HD-Automata. In Mogens
Nielsen and Branislav Roman, editors, Mathematical Foundations of Computer Science, volume 1983 of Lec-
ture Notes in Computer Science. Springer-Verlag, 2000. An extended version will be published on Theoretical
Computer Science.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A Calculus of Mobile Processes, | and Il. Information and
Computation, 100(1):1-40,41-77, September 1992.

[MR96] Ugo Montanari and Francesca Rossi. Graph rewriting and constraint solving for modelling distributed systems
with synchronization. In P. Ciancarini and C. Hankin, editors, Proceedings of the First International Conference
COORDINATION '96, Cesena, Italy, volume 1061 of Lecture Notes in Computer Science. Springer-Verlag,

April 1996.
[Pav72] Theodosios Pavlidis. Linear and context-free graph grammars. Journal of the ACM, 19(1):11-23, 1972.
[Pis99] Marco Pistore. History Dependent Automata. PhD thesis, Computer Science Department, Universita di Pisa,
1999.
[PV98] Joachim Parrow and Bjorn Victor. The Fusion Calculus: Expressiveness and Symmetry in Mobile Processes.

In Annual Symposium on Logic in Computer Science. IEEE Computer Society, 1998.

56-3

http://www-306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

[TV04]

[VC98]

[WSC]

[XLA]

Emilio Tuosto and Hugo T. Vieira. An Observational Model for Spatial Logics. In First International Workshop
on Views On Designing Complex Architectures, Electronic Notes in Theoretical Computer Science, Bertinoro,
Italy, September 2004. Elsevier. To appear.

Jan Vitek and Giuseppe Castagna. Towards a calculus of secure mobile computations. In [BC99], Chicago,
lllinois, May 1998.

Web Services Conversation Language (WSCL) 1.0. ht t p: / / www. W3. or g/ TR/ wscl 10/ .

Web Services for Business Process Design (XLANG). ht t p: / / www. got dot net . conl t eam xml _wsspecs/ x|

56-4

http://www.w3.org/TR/wscl10/
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm

	Plan of the talk
	Global Computing and Services
	Global Computing and Services
	Global Computing and Services

	SOC architectures
	 hypertarget {abs}{ �egin {tabular}{cc} �egin {minipage}{.5linewidth }center Abstractions for application-level QoSend {minipage} & �egin {minipage}{.5linewidth }includegraphics [width=5cm]{figures/grid.eps}end {minipage} end {tabular} }
	hypertarget {bkg}{Application-level QoS}
	QoS as Constraint Semirings
	QoS as Constraint Semirings
	QoS as Constraint Semirings
	QoS as Constraint Semirings

	Examples of c-semirings
	Another bunch of c-semiring examples
	hypertarget {kos}{Process Algebraic Foundations of SOC}
	Klaim ology
	Klaim ology
	Klaim ology
	Klaim ology
	Klaim ology
	Klaim ology
	Klaim ology

	mucaos characteristics
	Remote actions in mucaos
	Remote actions in mucaos
	Remote actions in mucaos
	Remote actions in mucaos
	Remote actions in mucaos
	Remote actions in mucaos

	mucaos syntax
	mucaos Operational Semantics
	mucaos Operational Semantics1
	mucaos Operational Semantics2
	mucaos Operational Semantics3
	Public links
	Private links
	Permanent and stable links
	hypertarget {jtws}{SOC & Transactions}
	jscl & jtl
	 hypertarget {shreq}{ �egin {tabular}{cc} �egin {minipage}{.5linewidth }center Modelling SOC \ with \ Syncrhonized Hyperedge Replacementend {minipage} & �egin {minipage}{.5linewidth }includegraphics [width=5cm]{figures/shrek.eps}end {minipage} end {tabular} }
	Hypergraphs Programming model1
	Hypergraphs Programming model2
	Replacement of Hyperedges
	Replacement of Hyperedges
	Replacement of Hyperedges
	Replacement of Hyperedges
	Replacement of Hyperedges
	Replacement of Hyperedges
	Replacement of Hyperedges

	Hyperedges and Hypergraphs Syntax
	Hyperedges and Hypergraphs Syntax
	Hyperedges and Hypergraphs Syntax
	Hyperedges and Hypergraphs Syntax
	Hyperedges and Hypergraphs Syntax

	Productions
	Productions
	Productions
	Productions
	Productions

	Interpreting shreq productions
	Interpreting shreq productions
	Interpreting shreq productions
	Interpreting shreq productions
	Interpreting shreq productions

	Synchronised Rewriting for shreq
	Synchronised Rewriting for shreq
	Synchronised Rewriting for shreq

	Quasi-productions
	Graph transitions
	Graph transitions

	Induced communication functions
	QoS & Synchronisations in shreq
	C-semirings for the ring case study
	Productions for the ring case study
	Productions for the ring case study2
	Productions for the ring case study3
	SHReQ for the ring case study
	SHReQ for the ring case study
	SHReQ for the ring case study
	SHReQ for the ring case study

	 hypertarget {hd}{ �egin {tabular}{cc} �egin {minipage}{.5linewidth }center History Dependent Automataend {minipage} & �egin {minipage}{.5linewidth }includegraphics [angle=45,width=5cm]{figures/hd.eps}end {minipage} end {tabular} }
	hda
	hda : an intuition
	hda Foundations
	Named sets
	Named functions
	 hypertarget {ver}{ �egin {tabular}{cc} �egin {minipage}{.5linewidth }center Verification techniques for SOCend {minipage} & �egin {minipage}{.5linewidth }includegraphics [angle=45,width=5cm]{figures/red_bundle.eps}end {minipage} end {tabular} }
	Systems...
	A logic for shreq
	A logic for shreq 2
	A logic for shreq 2

	Applying shreq logic
	Verification with hda
	Minimising hda
	The main step
	The main step
	The main step
	The main step
	The main step
	The main step
	The main step

	Mihda
	hdimp Architecture

