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& Plan of the talk

#® \What global computing and service oriented computing are?

» Abstractions for SOC
s Constraint semirings

s KoS
s APIs for SOC

» Hypergraphs Model
s Programming model
s Specification hypergraphs and related logic

» Automata Model

® Semantic based verification
» Model checking

» Equivalence checking
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| Global Computing and Services

Service Oriented Computing

» applications are made by gluing services
& “autonomous’
s Iindependent (local choices, independently built)
& mobile/stationary
s “Interconnected”

# Interactions governed by programmable coordination policies
# services are searched and binded ... offline
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G Global Computing and Services

» Service Oriented Computing

» applications are made by gluing services
& “autonomous”
s Iindependent (local choices, independently built)
& mobile/stationary
s ‘“Interconnected”

# Interactions governed by programmable coordination policies
# services are searched and binded ... offline

# Can search/bind be dynamic and at run-time?

® What should be considered relevant for searching?
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& SOC architectures

SOC architectures are
® distributed

® [nterconnected

® based on different communication infrastructures:
» IP, wireless, satellites...
» multi-layered: overlay networks (EC-GC2)

Remark 1 Designers and end-users may ignore the stratification and
complexity of the systems. They usually have a high-level view of the

computations!
...hence, global computing is not just go(P), 5(x) or s(y) & search/bind
cycle of SOAs must be defined abstractly. For instance,

® Application-level QoS
#® Long Running Transactions
o ..
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Abstractions for
application-level QoS
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Application-level QoS

Lifting QoS issues to application level...

...for programming global computers _ _ _
First steps (extending Klaim)

in [DFM™03] and recently
QoS for designing and implementing SOC in [DFM*05]
applications (SOA)

with programmable application level QoS

no longer considered only at the low-level layers

Search and bind wrt application level QoS

& application-related, e.g.
& price & transactions

& payment mode & data available in a given format

» |ow-level related (e.g., throughput, response time) not directly referred but
abstracted for expressing their “perception” at high-level.

Example 1 When downloading remote information QoS is specified as a constraint
on the format of the file (e.g, DVI format instead of Postscript) instead of the
underlying network speed (either for application-dependent constraints e.g., editing
motivations or download time constraints).

_ = = = A | - p.6/56




& QoS as Constraint Semirings

C-Semirings [BMR95, BMR97] for abstracting application level
QoS [DFM*03]
® (S +,%0,1), where

s S Is aset (containing 0 and 1),

s +.%x:5x5—-S5

=+ *
r+y=y—+wox THY=Y*xxT
(z+y) +z=x+ (y+2) (zxy)*x2z=a*(yx*2z)
r+0=x rx0=0
r+1=1 rx1l==x
T+r=2 (x+y)*z=(r*x2)+ (y*2)
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& QoS as Constraint Semirings

C-Semirings [BMR95, BMR97] for abstracting application level
QoS [DFM*03]
® (S +,%0,1), where

s S Is aset (containing 0 and 1),

s +.%x:5x5—-S5

-+ *
T+yYy=y+<x THY =Y*xX
(z+y) +z=x+ (y+2) (xxy)*xz=x*(y*2)
r+0=x rx0=0
r+1=1 rx1l==x
rT+x =1 (x+y)*xz=(zx2)+ (y*2)

® |mplicit partial order: a <b <= a+b=0>b *“bis better than a”
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& QoS as Constraint Semirings

C-Semirings [BMR95, BMR97] for abstracting application level
QoS [DFM*03]
® (S +,%0,1), where

s S Is aset (containing 0 and 1),

s +.%x:5x5—-S5

=F *
rTt+ty=y—+zx THY =Y*xX
(z+y)+z=2+(y+2) (zxy)xz =z *x(y*2)
x+0=2x rx0=0
r+1=1 rx1l==x
r+xr==x (x+y)*xz=(rx2)+ (y*2)

® |mplicit partial order: a <b <= a+b=0>b *“bis better than a”

Proposition 1 Cartesian product, exponential and power

constructions of c-semirings are c-semiring.
E L % i
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| Examples of c-semirings

Example 2 The resource c-semiring R = (woo, max, min, 0, co) is defined on w, the set of
natural numbers with infinity.

C-semirings for specifi ¢ synchronisation mechanisms:
Example 3 The Hoare synchronisation c-semiring is $ = (H, +, *m, 0m, 1 7) where
H=ActU{1y,0H, L} and

Va € Act. a*xa = a (1)
Va, b€ ActU{l}:b#a = axb=1 (2)
plus commutative rules and the ones for 0 and 1 (3)

Operation + 7 is obtained by extending the c-semiring axioms for the additive operation with

a+ga=aVaecH
a+mgb=1Va,be ActU{L}.b#a

We can defi ne a general synchronisation policy as a c-semiring that combines (using the
cartesian product) a classical synchronisation algebra with the QoS requirements of interest

e.g., HR = H x R is the c-semiring of broadcast with priorities
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[ Another bunch of c-semiring examples

C-semirings structures can be defined for many frameworks:
#» ({true,false}, Vv, A, false, true) (boolean): Availability
® (Real+, min, +, 400, 0) (optimization): Price, propagation delay

<
<
® (Real+, max, min; 0, +o00) (max/min): Bandwidth
(10,1], max, -,0, 1) (probabilistic): Performance and rates
<

0, 1], max, min, 0, 1) (fuzzy): Performance and rates

o 2V U.N,0, N) (set-based, where N is a set): Capabilities and
access rights
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| Process Algebraic Foundations of SOC

m-calculus [MPW92]
Djoin [FG96, FGLT96] Rich theor basic wrt SOC
D [HR98, HROO] Y| (only link mobility)

Fusion [PV98

Ambient [CGOO

Seal [VC98]
Boxed [BCCO1
Safe [LS00

Hierarchical | not very natural

Klaim [BBD* 03]

Hierarchical [BLP02 Lack of
lerarcnica .
| Very natural | observational
OKlaim [BBVO03] .
semantics

MetaKlaim [FMPar]
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G Klaimology

#» Twofold nature: calculus and language
(logical vs. phisical sites: but no “routing”
features)

m =5 AN _p.11/56




Klaimology
#» Twofold nature: calculus and language
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features) <><<Q
#» Multiple tuple spaces N
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& Klaimology
#» Twofold nature: calculus and language
(logical vs. phisical sites: but no “routing” QQ;\
features) <><<Q
#» Multiple tuple spaces N

® Localities: first class citizens
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Twofold nature: calculus and language

(logical vs. phisical sites: but no “routing”
features)

Multiple tuple spaces

Localities: first class citizens
Process migration
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| Klaimology

#» Twofold nature: calculus and language

(logical vs. phisical sites: but no “routing” QQ;\
features) K
#» Multiple tuple spaces <
® Localities: first class citizens
#» Process migration
SN P := nil
._-' | a.P
| PP
& a = aQs
a = ../l Klaim actions
| e(P)
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KoS characteristics

ICoS aims at being a minimal calculus for SOC and

# builds on Klaim (e.qg.,
processes are localised)...

#» ...and w-calculus
# naturally supports P2P model
» QoS as first class citizen

» QoS-driven semantics

#» only local communications
(unlike Klaim)

# link construction primitives
#» only one remote action
#» which relies on link topology

#» semantic transitions report the
“cost” of the execution
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| Remote actions in KoS
ICoS ... graphically
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| Remote actions in oS
ICoS ... graphically
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| Remote actions in oS
ICoS ... graphically




| Remote actions in KoS
ICoS ... graphically




| KoS syntax

Let C be the c-semiring of QoS values (ranged over by «)

’y pr—
N, M =
0
s P
(vs)N
N || M
s~
P =
Q | .
nil
€
~v.P
(vs)P !
Tx
P ] Q
-
P
T.T
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| KoS Operational Semantics

The semantics of KoS is defined by the relation

N > M
K

which states that NV performs « with cost x and becomes M.

Local transitions (communications, node or link creations) have
unitary QoS value, while the only non-trivial QoS values appear on
the transitions that spawn processes or show the presence of links.
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KoS Operational Semantics'

(PREF) s:~.P D% s P v & {node, (t), con,(s), acc,(s)}

1
N ”O:“” N M t“CT’<S>>M’ 0<k<r
(CON)
N M T N M s At
s (T) / st / o
N——=N M—==>M 1 (T,t) = o
(COMM) =
N||MT>N’0||M’
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[ KoS Operational Semantics?

K s link t

(LINK) s~ > 0

(NODE) s :: node, (t).P nedet) s s P s ~t]t:o0, -

1
N —> N’
K _ bn(a)Nf(M) =0 A
(PAR) - i
N M- N | (ada(N) N adds() ) adds (M) < 0

Rule (NODE) allows a process allocated at s to use a name ¢ as the address of a
new node and to create a new link from s to ¢t exposing the QoS value . The side
condition of (PAR) prevents new nodes (and links) to be created by using addresses

of existing nodes.
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| KoS Operational Semantics®

(LEVAL)  s: €.[Q]@s.P % suPls:Q

ZP@t link r'
N PO N R sk < K
K}/ K}//
/
(ROUTE) tFr
r’ es (P)at / ’
N || M > N || M
/ !/
K * K
S(PYQt ;
T€m</> > N’ MH””?/M M’ k' x k! <k
K K

(LAND)

N|M——>N"|M|t:P
Kk % K

Local spawning is always enabled while e, [P]@1 from s is not always possible: the net must contain a

path of links from s to ¢ suitable wrt k.
(ROUTE) states that P can traverse a link go an intermediate node r provided that costs are respected.

(LAND) describes the last hop: in this case, P is spawned at ¢, provided that the QoS value of the whole
path that has been found is lower than x.

L =" A _p.18/56




& Public links

Links in KoS are public:

1>

1

N sueg|Pl@t || s—~nr | 7:cong(t).ea|Ql@t || t:acecs(r),

$» s and r are trying to spawn a process on t (but no path to ¢ exists).
» ris aware that a link must be fi rst created (and ¢ agrees on that).
Initially, only (CoN) con be applied:

sues[Pl@t || s~7r || rue]Q@t || r At | t:mnil

1>

N/

r At provides now a path (costing 3) from s to ¢, hence using (PREF), (LINK),
(ROUTE) and (LAND) we derive

N’%s:: nil || r:=:eQl@t || t:: P.

Noteworthy, the migration of P prevents () to be spawned because the link created
by » has been used by P.
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& Private links

Private links can be traversed only by those processes having the
appropriate “rights”. Access rights are (particular) names.

A {r} /

N2s:epqlPlot] s Rs  MZ2s:epqlPlet] s 2 s

P can traverse the linkin N butnottheonein @ M

Access rights c-semiring: R = (piin(S) U {S}, glb,U, S, D)

X <Y «— Y CX

A private link between the nodes s and ¢ can be specified as

{r}
(vp)(s: P s g | t: Q)
Ex = L = AN —p.20/56




& Permanent and stable links

ICoS links are vanishing but permanent links can be easily encoded:

s leon(t) || t o2 lacc. (s)

A slight variation are stable links, which are links existing until a given
condition is satisfied.

Stable, Gt = lcon(t) | €|While G do acci(s) od nil|@t
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& SOC & Transactions

#® Long-Running Transactions (LRTs) equip SOAs with the
possibility of atomic execution

#® |LRTs use compensations for undoing the effects of partial
executions when the overall orchestration cannot be completed

#» Primitives for LRTs have been informally specified in most of the
languages for orchestrating WS (wscL [WSC], spMmL [BPM],
WSFL [Ley01l], XLANG [XLA], BPEL4WS ["'BP])

We propose Java Transactional Web Services (Jtws), a set of Java
APIs supporting coordination of SOA and their transactional
composition.

JTws exploit a signal passing mechanism and consists of

® IJscL: provides the signal handling primitives
® JTL: provides primitives for transactional flows
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& JscL & JTL

The Jsci layer allows to specify generic components that

® creates a signal link between two components
#» sends a signal to the components
#® handles signals received by other components

JtL IS defined on top of JscL and allows to specify transactional flows
by composing according

# transactional sequences
#» transactional parallel

We have fruitfully exploited Jtws for implementing the Sagas
calculus [BMMO5].

m =5 AN _p.23/56




Modelling SOC
with
Syncrhonized Hyperedge
Replacement
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Hypergraphs Programming model*

Edge replacement for graph
rewritings [Fed71, Pav72]

Graphs for distributed systems [CM83, DM87]

Edge replacement/distributed constraint solving
problem [MR96]

Graphs grammars for software architecture
styles [HIMOO]

Synchronised Hyperedge Replacement (SHR) with
mobility for name passing calculi [HMO1]

Extension to node fusions [FMTO01]




| Hypergraphs Programming model?

Using SHR, we aim at

# defining a uniform framework
# tackling new non-functional computational phenomena of SOC
The metaphor is

» “SOC systems as Hypergraphs”
®» “SOC computations as SHR”
In other words:

» Components are represented by hyperedges
Systems are bunches of (connected) hyperedges

o
# Computing means to synchronously rewrite hyperedges...
® ..according to a synchronisation policy
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Replacement of Hyperedges
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Replacement of Hyperedges




G Replacement of Hyperedges

°

Edge replacement: local

°

Synchronisation as distributed
constraint solving

°

Multiple synchronisation

New node creation

°

°

Node fusion: model of mobility
and communication
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G Replacement of Hyperedges

°

Edge replacement: local

°

Synchronisation as distributed
constraint solving

°

Multiple synchronisation

New node creation

°

°

Node fusion: model of mobility
and communication

Benefi ts:
®» Uniform framework for 7, 7-I, fusion

®» TS for Ambient ...
®» . forKlaim...
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G Replacement of Hyperedges

L—d
®» Edge replacement: local
$» Synchronisation as distributed
constraint solving
® Multiple synchronisation
®» New node creation
®» Node fusion: model of mobility
and communication
Benefi ts:
» Uniform framework for 7, 7-1, fusion » .. and path reservation for KAOS
» LTS for Ambient ... ® expressive for distributed coordination
» . forKlaim ... ® wireless networks
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G Replacement of Hyperedges

L—d
®» Edge replacement: local
$» Synchronisation as distributed
constraint solving
® Multiple synchronisation
®» New node creation
®» Node fusion: model of mobility
and communication
Benefi ts:
» Uniform framework for 7, 7-1, fusion » .. and path reservation for KAOS
» LTS for Ambient ... ® expressive for distributed coordination
» . forKlaim ... ® wireless networks

SHR can combine QoS & sophisticated synchronisations [HT05, LTO5, HLT]
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| Hyperedges and Hypergraphs Syntax

A hyperedge connects more than two nodes (generalisation of edge)

Y
L:3, L(y,z,x), e
1

re —s3—J[ —32—ez
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| Hyperedges and Hypergraphs Syntax

A hyperedge connects more than two nodes (generalisation of edge)

L:3, L(y,z,x), G = nil ’ L(%) ‘ G|G ‘ vy.G

it

re —s3—J[ —32—ez
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G Hyperedges and Hypergraphs Syntax

A hyperedge connects more than two nodes (generalisation of edge)

L:3, L(y,z,x), G = nil ’ L(z) ‘ G|G ‘ vy.G

it

re —3—J I—2—ez

Syntactic Judgement  z;:s1,...,z,:8, F G,  fn(G) C{x1,...,xn}
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Hyperedges and Hypergraphs Syntax

A hyperedge connects more than two nodes (generalisation of edge)

L:3, L(y,z,x),

xre

G:=nil | L(z) | GIG | vy.G

it

3 L 2 e

Syntactic Judgement  z;:s1,...,z,:8, F G,  fn(G) C{x1,...,xn}

An example:

L:3, M:2

z:1,y:0Fvz(L(y, 2z )My, z))
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&

Hyperedges and Hypergraphs Syntax

A hyperedge connects more than two nodes (generalisation of edge)

L:3, L(y,z,x),

xre

: Gr=nil | L@ | GG | vyG
I

3 L 2 e

Syntactic Judgement  z;:s1,...,z,:8, F G,  fn(G) C{x1,...,xn}

An example:

L:3, M:2

v:1,y:0F vz (Liy, z0)| My, 2)
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& Productions

Productions of SHReQ are based on requirements: R = 5 x N*
(where (S, +,%,0,1) is a fixed c-semiring)

production x> L(T) A G
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& Productions

Productions of SHReQ are based on requirements: R = 5 x N*
(where (S, +,%,0,1) is a fixed c-semiring)

# production o L@ > G

# 1 is atuple of pairwise distinguished nodes and L : |7|
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& Productions

Productions of SHReQ are based on requirements: R = 5 x N*
(where (S, +,%,0,1) is a fixed c-semiring)

# production B> L(z) L a

#» 1 is atuple of pairwise distinguished nodes and L : |7
® v :{z|} — S is the applicability function
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& Productions

Productions of SHReQ are based on requirements: R = 5 x N*
(where (S, +,%,0,1) is a fixed c-semiring)

#® production x> L(z) — G

#» 1 is atuple of pairwise distinguished nodes and L : |7
® \: {z|} — S is the applicability function

® A :{z|} — R isthe communication function.
n(A) communicated nodes of A: those nodes appearing in a
requirement in the range of A.
The set of new nodes of A is new(A) = n(A) \ dom(A)
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& Productions

Productions of SHReQ are based on requirements: R = 5 x N*
(where (S, +,%,0,1) is a fixed c-semiring)

® production > L(E) S @

°

T IS a tuple of pairwise distinguished nodes and L : |7

e

x : {|z|} — S is the applicability function

°

A - {z|} — R is the communication function.

n(A) communicated nodes of A: those nodes appearing in a
requirement in the range of A

The set of new nodes of A is new(A) = n(A) \ dom(A)

® (Gisagraphs.t fn(G) C{z|} Un(A)

£ * = © L =" A —p.29/56




Interpreting SHReQ productions

x> L(T) Aa

—p. 30/56
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and a graph H having an arc labelled by L, e.g.:

Consider



| Interpreting SHReQ productions

Consider
x> L(T) Aa
and a graph H having an arc labelled by L, e.g.:

® Replacing L with G In H according to « requires that H satisfies
the conditions expressed by y on the attachment nodes of L.
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| Interpreting SHReQ productions
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x> L(T) Aa
and a graph H having an arc labelled by L, e.g.:

® Replacing L with G In H according to « requires that H satisfies
the conditions expressed by y on the attachment nodes of L.
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| Interpreting SHReQ productions

Consider
x> L(T) Aa
and a graph H having an arc labelled by L, e.g.:

® Replacing L with G In H according to « requires that H satisfies
the conditions expressed by y on the attachment nodes of L.

#® Once y is satisfied in H, L(x) contributes to the rewriting by
offering A in the synchronisation with all the edges connected to
nodes in z.
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| Interpreting SHReQ productions

Consider
x> L(T) Aa
and a graph H having an arc labelled by L, e.g.:

® Replacing L with G In H according to « requires that H satisfies
the conditions expressed by y on the attachment nodes of L.

#® Once y is satisfied in H, L(x) contributes to the rewriting by
offering A in the synchronisation with all the edges connected to
nodes in z.
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& Synchronised Rewriting for SHReQ

Events for
Synchronisation Sync and Fin S.t. No synchronisation NoSync C S\ Fin S.t.
P SyncC FinCS ® S x NoSync C NoSync
® 1< Sync » 0e< NoSync

SHReQ semantics exploits a mgu accounting for node fusions.

Let 2 be a fi nite multiset over N x R: mgu(2) for denoting an idempotent
substitutionis defi ned iff

(x,s,1), (x,s",0) € QQx

implies
ja| = |9
Vied{l,... |a|}: u; € new(2) V ¥; € new((2)
QQzx| >1 = H s & NoSync
(x,s,7)€NQx

L £ o = AN —p.31/56




| Synchronised Rewriting for SHReQ

Events for
Synchronisation Sync and Fin S.t. No synchronisation NoSync C S\ Fin S.t.
P SyncC FinCS ® S x NoSync C NoSync
® 1< Sync » 0e< NoSync

SHReQ semantics exploits a mgu accounting for node fusions.

Let 2 be a fi nite multiset over N x R: mgu(2) for denoting an idempotent
substitutionis defi ned iff

(x,s,1), (x,s",0) € QQx

implies
ja = [o]
Vied{l,... |a|}: u; € new(Q2) V U; € new((2)
QQzx| >1 = H s & NoSync
(x,s,7)€NQx
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| Synchronised Rewriting for SHReQ

Events for
Synchronisation Sync and Fin S.t. No synchronisation NoSync C S\ Fin S.t.
P SyncC FinCS ® S x NoSync C NoSync
® 1< Sync » 0e< NoSync

SHReQ semantics exploits a mgu accounting for node fusions.

Let 2 be a fi nite multiset over N x R: mgu(2) for denoting an idempotent
substitutionis defi ned iff

(x,s,1), (x,s",0) € QQx

implies
ja = [o]
Vied{l,... |a|}: u; € new(Q2) V U; € new((2)
QQzx| >1 = H s & NoSync
(x,s,7)€NQx

and obtained by computing the mgu of the equations
{a, =v; | Is,t € S : (x,s,u),(x,t,0) € QN1 < i <|ul}
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| Quiasi-productions

The set QP of quasi-productions on P is the smallest set s.t. P C QP and

Y>L(E) 2GeQP A yeN\new(Q)
Y

b LE( ) 2 Gy ),y € o

where
[ x(2), z €{z]t \ {z,y}
X'z \{z}u{yt =95 X&) =q x(@)+xy), »=yryez
L x(2), =y ANy & {z[}

SHReQ rewriting system: (9P, ' - G)
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| Graph transitions

(REN)
X>L(E) > GeQP  p=mgu(Q) A x(@) <T(x)
x€dom(x)
[k L(E) = TaF (v 2)(Gp)
(CoMm)

DG BTG DhFG X2TLFG, p=mgu(A WA,)
A Ti(z) =Ta(z)

redom(I'1)Ndom(I'2)

A1WA-

UL B Gy | Go == (T1UT2) 4 un,) F (v 2)(GY | Ga)p

where Z = new({2) \ new({2)
3 ¥ = L =" A —p.33/56




| Graph transitions

(REN)
X>L(E) > GeQP  p=mgu(Q) A x(@) <T(x)
k x€dom(x)
[k L(E) 5 Tok (v Z)(B*p)
(CoMm)

DG AT FG, Fgl—GggF’ FG’ p = mgu(A; ¥ A,)

A Ti(@) =Taa)

redom(I'y) ﬂdom(Fg)

A1wWAo N

MUl GG == (T1UTs) g w0, F (v 2)(GY | Go)p

where Z = new({2) \ new({2)
3 ¥ = L =" A —p.33/56




& Induced communication functions

Let p = mgu($2). The communication function induced by €2 is the function 2 : dom(€2) — R defi ned as

[ (t,gp), t= H s ¢ Sync
(z,s,7)€ENQx

Q) = 4

(t, (), t= H s € Sync

L (z,s,7)€ENQx

Basically, 2(x) yields the synchronisation of requirements in 2@z according to the c-semiring product.

The weighting function induced by I" and 2 is
I'g:dom(T) — S,
1, x € new ()
Fo(x) = I'(x), QQz| =1

Po(z) = Q(z)l1, otherwise

The weighting function computes the new weights of graphs after the synchronisations induced by (2.

s e s L = AN - aass




| QoS & Synchronisations in SHReQ

A network of rings COﬂSIStS of rlngs ' of different sizes connected by

E“\.
i

z-edges/afvz)id new gates to be attached on the node they insist on.
(e.g., above, only the 2-rings can create (gates to) new rings).

The nodes with no i-edges, can be used to generate new rings and
will be weighted by the amount of available resource.

s :4L o L€ | = N _p. 35056




| C-semirings for the ring case study

The c-semiring for networks of rings is HA given by the cartesian
product of the Hoare synchronisations c-semiring

5{) — <H7+H7*H70H71H>1 Where
H: {CL)b?Ca 1H70H7J—}

and the R = (weo, max, min, 0, +00).
The idea Is that

» § coordinates the network rewritings
R handles resource availability
the initial graph is a ring

e o ©

non-limited nodes have weights (14, u) where value u is the
maximal amount of available resource

the limited nodes created during ring evolution are weighted with
(b, +00) which is constantly maintained.

°

s :4L o L€ | = N _p. 36/56




| Productions for the ring case study

Create Brother (n < u)

Tr e

A

re (a,n) R |

R — zo—ﬂ

Yo (a,+00) “fﬂ

Ye

z +— (a,n)
y — (o, +00)
z:(0p7,u),y :0> R(z,y) R(z,2) | R(zy) | ()
Accept Syncrhonisation R Accept Syncrhonisation |

re (b,+oo) xTe re (b,+oo) T

A A 1 |

Tﬁjﬁg o=

Yye (a,+oco) Ye

21 (05, +00),y 105 R(zy) 2, Ray) | 2 :00 1) 2225

[(x)

where o € {a, b}

A _p.37/56



| Productions for the ring case study?

Create Gate (r > 0)

— T — Z

re (a,+o00) ﬂ—.—ﬁ}%.—R}f
1 1

R| — TRJ
1

Ye (b,400) Ye

z +— (a, 4o0)
y — (b, +00)

z:(0m,u)y 0> R(z,y) R(z,y) | U(z) | G(zx) | Ry (2,2)

Init Ring
(r >0)
xre re (c,u) xre
A

ze (cu) R Ry | — |R]
Ry — ze Yo (c,+o0) Ye —7‘
Yo (c,+0) Rg—l

Y e

z:0,y:0> RY(z,y) — " R(x,2) | RY (zy) | x:0,y:0> Ry (x,y) z : R(z,y) | l(y)

where 5 € % c}

o E - [ ¢ ] = AN —p.38/56




| Productions for the ring case study?

Accept Synchronisation Init Accept Synchronisation Gate
Te (c +o00) T e e B +o00) e
A A
Yo (c,+00) Yo Yo (b,+0c0) Ye
o et v (045
z:0,y :0> R(z,y) » R(x,y) | ¢ :0,y :0>G(2,y) > G(2,y)

where 3 € {b, c}

s :4L o L€ | = N _p. 30056




| SHReQ for the ring case study

The derivation starts from a 2-ring components with resource value 5.

N\

CL,OO/@FCL,S\
\ ®(14,5)

N
AR

N
- \

CreatBrother{u 2/5, n=2) X Creat]?\)rother(u =4, n = 3)

R chooses production Create Brother © = 5 (satisfying condition 5 < 5)
and n = 2 while R chooses u = 4 (satisfying condition 4 < 5) and

n = 3. The resulting synchronisation produces the new weights for the
nodes as,

—~
L
DO
~—
|
—~

a,2)x (a,+o0) = (a*g a, min(2, +00))
(a,3) = (a,3) x (a,+00) = (a xg a, min(3, +00)).

S E . m =N A —p.40/56




| SHReQ for the ring case study

CreatGate(r = 1,u = 2) x CreatGate(r = 1,u = 3) x Accept”

Only R and R can create brothers or gates and they use the
remaining resources to create gates to two 2-rings (r = 1); the other
edges apply the Accept productions.

S E . m =N A —p.40/56




SHReQ for the ring case study

(b,00)

T J/é\i\ 1

2
Ry —¢2—=>= ® <-¢,00—
c,o/

Note that . and .

ﬂb,oo— e (a,o00) (a,c0) ® —b,oo—E'—C,OO% S —\c,oo_ R‘i)
c,3
/\\‘Z‘ L E‘// :

/

5 | /
ﬂ\%/ R
/
/®
(p,00)
\
all l-edges synchro-

nises with Accept Syn-
chronisation |

now are internal.

o E - [ ¢ ] = A —p. 4056




—c,2—> @ éC,OO—? b,co- @ (a,c0) l (a,00) @ —b,oo—?|70;00% ® —C,00— R3
,o/ J L - \c,3 \
l b, oo \L

SHReQ for the ring case study

(b,00)

o ﬂ/é\ﬂ\ 1

—— //
i’\% R -
///
~
® e
A (b,00),”
AN /

\ [
InitRing(r = 1,uv = 2) X InitRing(r = 1,u = 3) X Accept”

m =5 AN . 40/56




History Dependent
Automata

s :4L o L€ | = N _p 4156




| I

HD-automata

HD-automata as an operational model of history-dependent
calculi [P1s99, MP98, MP00, FMPO02]

allow a finite representation of classes of infinite LTS

states and transitions equipped with names:

» names no longer dealt as syntactic components: they become
explicit in the operational model

» as a consequence...HD-automata model name
creation/deallocation or name extrusion

names of HD-automata are local...

...hence a mechanism for describing how names correspond
each other along transitions is required

so that, a “history” of names in the computation can be
determined

m =5 AN . 42/56




& HD-automata: an intuition

The transition is labelled by lab and exposes
names 2 (of s) and a fresh name 0

°

State s has three names: 1, 2 and 3

State d has two names: 4 and 5

4 correspond to 1 and 5 to the new name 0

o o o 0

Notice that names 3 in s is “discharged” along
such transition

A HD-automaton associates a “history” to names of the states
appearing in the computation: it is possible to reconstruct the
associations that lead to the state containing the name.

If a state is reached in two different computations, different histories
could be assigned to its names.

m =5 AN . 43/56




HD-automata Foundations

HD-automata with symmetries are based on permutation
algebras [MPOO]

In [FMTO5a] a type-theoretic definition of HD-automata in terms of
a polymorphic lambda calculus (A—11*) has been given

Dependent types formally state the relationships between the
different components of HD-automata...

...and have been exploited for implementing Mihda: a partition
refinement algorithm over HD-automata (introduced in [FMPQ02])

Mihda minimizes HD-automata representing w-calculus agents
(wrt early bisimilation)

HD-automata and Mihda have been also used for modelling
Fusion calculus [FMT™05c]

S E . m =N AN —p. 44/56




& Named sets

Named sets are used for representing the states of HD-automata. Basically, a
named set is a set whose elements are equipped with a fi nite set of names and a
symmetry

Definition 1 A named set is a structure (Q, |_|, G) such that

® :Q — pifN)

$» (s afunction on @ such that, for any q € @, G(q) is a group of permutations of
n(q)

Given a named set A, we write Q 4, |_| , and G4 for denoting the components of A

Example 4 Consider the w-calculus agent

|| >

Az, y)

A state g4 € NS4 of a named set representing A(x,y) has two local names
(namely, |qga| = {z,y}). The symmetry of g4 consists of the identity permutations
and the permutation that exchanges x with y.

(v2)(Zz.P + yz.P).
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& Named functions

Transitions among states are represented by means of named functions:

Definition 2 Let S and D be two named sets. A named function is a pair (h : S — D, %)
such that A is a function from Qs to Qp and for all ¢ € S, ¥ (q) yields a finite set of functions
from |h(q)|, to names in |q|, of to the distinguished name x such that

1. Vo € X(q).Gp(h(q));0 = X(q),
2. Yo € X(q).0;Gs(q) C X(q),
3. any function of X (q) is injective.

Given a named function H = (h : S — D, ) we write

® dom(H) =S5, ® hy=h,
® cod(H)=D, » >y=13,

Definition 3 Let H, K be two named functions. We say that H and K can be composed iff
cod(H) = dom(K). In this case, the composition of H and K is the named function H; K
such that

®» dom(H; K)=dom(H),
N COd(H;K) :COd<K),hH;K :hH;hK and
® Yux =M €dom(H; K).Xk(hu(q)); Xa(q)

L =" A —p. 46/56




Verification techniques
for SOC

S E . m =N A —p.47/56




G Systems...

Q: What is interesting in a SOA computation?

A: No precise answer...our interpretation is

Systems evolve both “in time”

: and “in space”. Time evolu-
Systems for SOC are obtained . > :
tion is usually interpreted as

by gluing services that are dis- _ .
: ) . the dynamic of a system, while
tributed and evolve “together . :
spatial evolution corresponds

causality, parallelism,... _ _
M ( ol ) to structural reconfi guration of
systems.

=y
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| A logic for SHReQ

SHReQ has been recently equipped with a spatio-temporal logic

Interpreted over c-semirings [HLT].

Let (S, +,*,0,1) be a fixed c-semiring and G the set of weighted
graphs.

~

o == nil | T'(&) | £(&) | ol¢ | ¢|l¢  spatial operators
f(o,...,9) c-semiring operators
2.9 | 11,2 node guantification
U =" node equality
Do | [Ile temporal operator
v(§) | (pr(w).9)§ | (ve(a).9)¢  fixpoints

where £ C L is a finite set of labels, £ is a metavariable for nodes or
node variables and f is an operation on the fixed c-semiring values.
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| A logic for SHReQ?

Fixed a SHReQ rewriting system (QP, ' - G), we interpret formulae as maps G — S.
Let o be a map from node variables to nodes and p be a map from recursion variables to functions G — S.

[ nil |o;p (T G)

[T(€) lop(T F G)

[ £(8) ]o:p(T'F G)

[ ¢1|¢2 ]Io;p(r = G)

[ ¢1||¢2 ]Io;p(r = G)

[f(ﬁbl ----- an) ]Io;p(rw_ G)

G = nil

(€0 € n(@)) x T'(£0)

(G =L(&o)) (L € £)

Z(Gl,Gg)GG(G){[ $1 ]op(DEG1) x[ P2 ]o:p(TF G2)}
[T, ayyco@ tl @1 1op(TF G1) + [ b2 105 (T F G2)}
f(I b1 ]o;p(T G, ..., [ n Jo:p (T F Q)

[ 2, ?]o:p(TEG)
[[I.®]0:p(IF G)

[ § = 5/ ]Io;p(r = G)
[[D2]e 1T FG)

[ e 1(TFG)

[¢(€) 1op(T' - G)

[ (pe(a).0)€ |o;p (T F G)
[ (ve(@).9)€ ]o:p(T F G)

Z:::En(G) [ ¢ ]U["’:/u,];;o(F = G)

[Tecne) [ 21012/ (TF G)

Eo=¢0o

ZPI—G&P/I—G’ [¢ ](F/ . G/)
HPl—GﬂF’l—G/ [ ¢](F/ . G/)

tp(€o) i

PO AL, 0, ) o, JENT FG)

gPO AT (6] 5, 1 e, ETFG)

AN —p.50/56



A logic for SHReQ?

Fixed a SHReQ rewriting system (QP, ' - G), we interpret formulae as maps G — S.
Let o be a map from node variables to nodes and p be a map from recursion variables to functions G — S.

[ nil |6 p (T G)

[T() (T G)

[ £(8) lo:p (T F G)

[ ¢1|¢2 ]G;p(r = G)

[ ¢1||¢2 ]o;p(r = G)

[ f(@1,.- s 0n) lop (I F G)
[ 20 ¢l (T FG)
[[I.¢ 1o (T FG)

|[£ - fl ]Io*;p(r = G)
[l ]I G)

[N ¢1(FG)

| t(él]lo;p(r = G)

[ (pe(@).¢)¢ Josp (I F G)
| (Vt(a)-ﬁb)é]lo;p(r - G)

G = nil

(o0 € n(@)) xT'(&o0)

(G = L)« (L € £)

Z(Gl,Gg)e@(G){[ A1 lop(TE G1) x [ P2 Jo:p(TF G2)}
H(Gl,Gg)GG(G){[ b1 Jo:ip(T'F G1) + [ 02 ]o:p (T F G2)}
FL 1 1osp(TEG)yoo oy [ dn loip(T F G))

Z*’EEm(G) [ & 1oz /01 (T F G)

Han(G) [ @101z /01 (T G)

Eo=¢o

2.
HF,‘?GAI‘/I—G/
tp(€o) )
(A A0L D] 5, e, NENT @)
ofpA X0[ G ] 5, | e ) (€T FG)

[¢ (T - G)
[¢ (T = G)

rrcAri-af

nil characterises graphs with no edges, I'(¢) yields the weight of £, L(£) states that an edge L attached to £ exists s.t.

L € £. ¢1|¢p2 sums up all the values of ¢; on all decompositions. The temporal operator [> "] ¢ sums the values of ¢

after one transition (and similarly for [> "] ¢).
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Applying SHReQ logic

Path existence:
path(u, v, £) = pr(u,v).(u =v) + Z L(u, w)|e(w, v)

Ring membership:
ring(u,v) = path(u, v, {R}) | path(v,u,{R})
Highest availability:
> ul(u)x ~({}(u) | 1)
(on a ring evaluates to the maximum over the weights of non limited nodes)

Inspecting new rings:

resource = S (~({R4}(w,v) | 1)) + ({RE}(w,v) | 1) % @
S (AR w, v) [ 1) T(w))) * (01, +00)) -

looks for Rj-edge, and, after the next rewriting step, (5) selects resource of the newly introduce
R-edge.
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o o

Verification with HD-automata

SHReQ is amenable of model checking (forthcoming)

However, properties of systems can be also stated in terms of
equivalences: see [TV04] for spatial properties and [FMTO5Db] for
a more general discussion

HD-automata can be minimised through a partition refinement
algorithm

the co-algebraic specification of HD-automata and the
minimisation algorithm is independent of the chosen language or
equivalence

» m-calculus & early bisimulation
» Fusion calculus & hyperbisimulation

s :4L o L€ | = ™ _p 52056




| Minimising HD-automata

The minimisation algorithm builds the minimal realisation H of (fi nite) HD-automata by
constructing (approximations of) the fi nal coalgebra morphism. The active names of each
state ¢ are those in the ranges of > 7 (q).

Given a T-coalgebra K : A — T1(A) (i.e., a HD-automata) on named set A, the minimisation
algorithm is specifi ed in a declarative way by the equations

Initial approximation: Ho:{gr— L, X :q—0) (6)

lterative construction: HZ-HéK; T>(H;). (7)

Intuitively, in the starting phase of the algorithm, all the states of automaton K are considered
equivalent. At the (i 4+ 1)-th iteration, the image through 7% of the i-th iteration is composed
with K as prescribed in (7).

At each iteration, two cases can arise:

» aclass is splitted because the states that it contains are no longer considered
equivalent or

®» a new active name is discovered.

The algorithm terminates when both these two cases do not occur. This is equivalent to
saying that there H, 1 is equal to H,, for some n.
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| The main step
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The malin step

“/-.' ~,.\‘ .ql
e N %
/ . \ 9 BIN x o [*/y] @
../' "\,. .\
: Tau ©
| *g3
./.
. ./.
N %

let bundle hd g =
List.sort compare
(List.filter (fun h — (Arrow.source h) = q) (arrows hd))
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The malin step

R 9 IS

\ ;
9 BIN x o[*/y] | :

e T T Tl \ ® . > @ q2 /

Tau © e

List.map h,, bundle
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e . I N
e .

_./ ____________ .

/ o’ . |
| |
\'-. ./:

\‘x ./:
\\Q/ Tau 63,03

hnir = normi{states, {{{, 7, hn(q),0;0) = (7 oqd AN o € Ln(qd)})

At each iteration, redundant transitions decrease and, when the itera-
tive construction terminates, only the really redundant free inputs are
removed
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e "\.
.\‘
.............. \
o’ ° “\
.'
./.
~/.
\x ........................... %
O 7

Tau 63,03
let an = active_names_bundle (red bundle) in

let remove_in ar = match ar with
| Arrow(_, ,In(_, )) — not (List.mem (obj ar) an)
|  — falsein
list_diff bundle (List.filter remove_in bundle)

m =5 AN _p.54/56




s B e N
.,.\‘
.............. "\‘
o o -.\. e
i q
./:
./:
T | “/..

Tau 063;03

Ynt1(q) = (compute_group (norm bundle)) ; 6!
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T o N,
7 \
/ ———————————— \
. e . “‘\
|
". ./.
\"‘ ./:
N ) T

Tau 063;03

Ynt1(q) = (compute_group (norm bundle)) ; 6!

Theorem At the end of each iteration ¢ bl ocks corresponds to Ay,
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| Mihda
Minimizing History Dependent Automata:
#» HD-automata for history dependent calculi
® Co-algebraic specification
#» Partition Refinement Algorithm based on co-algebraic
specification [FMPO02]
# Mihda: Ocaml implementation (refining A—11* spec.)
Comp. Time | States | Trans. | Min. Time | States | Trans.
GSMsmall Om 0.931s 211 398 Om 4.193s 105 197
GSMfull Om 8.186s | 964 | 1778 | Om 54.690s | 137 253
Ly E (= ¢ | = A —p. 55056




& Mihda Architecture
[Domirlgtion] ’

'
. "

-
\'. b /

\"\, ""“"‘ :/“
‘N, P /
'\,,\ ‘,“/‘ ~/°
- e ’
‘/ -
: s’ -7 d ’
i ,~/” o - :I :/:
LT # Adherent to specs
N R - 8
(Transitions) F X nghly modular
KA . /: _ _
;o # Easily extendible
" N, ;s

\/“ “
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