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Overview
of the
talk

“Ayudadme a comprender lo que os digo y os lo explicaré mejor”
“Help me in understanding what I’m saying and I will explain it better”

(Antonio Machado)
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Overview

A few motivations
Background

application level QoS
constraint semirings (c-semirings)
Synchronised Hyperedge Replacement (SHR)

Putting things together: SHReQ
weighted graphs...
...and their productions
synchronising productions for SHReQ

An example

Conclusions
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Motivations

The real technology - behind all of our technologies - is language

(N. Fisher)
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Global Computing

Programming global
systems is hard be-
cause:

Absence of centralised control (self*)

Client-Server not enough: P2P

Administrative domains (Security)

Interoperability
different platforms

different devices (e.g. PDA, laptop, mobile phones...)

“Mobility” (resources & computation)

Network Awareness
Applications are location dependent

Locations have different features
and allow multiple access policies

Independently programmed in a
distributed environment

...
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Global Computing and Services

Service Oriented Computing
applications are made by gluing services

“autonomous”
independent (local choices, independently built)
mobile/stationary
“interconnected”

interactions governed by programmable coordination policies
services are searched and binded ... offline
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Global Computing and Services

Service Oriented Computing
applications are made by gluing services

“autonomous”
independent (local choices, independently built)
mobile/stationary
“interconnected”

interactions governed by programmable coordination policies
services are searched and binded ... offline

Can search/bind be dynamic and at run-time?

Search and bind wrt application level QoS
not low-level performance (e.g., throughput, response time)
but application-related, e.g.

price services
payment mode
data available in a given format
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Our approach in brief

WAN programming is not just go(P), s̄〈x〉 or s(y)

Lifting QoS issues to application level...

...for programming global computers

with programmable application level QoS

and develop proof techniques and tools

First steps (extending Klaim)
in [DFM+03, DFM+05]

We are currently defining SHReQ, an (hyper)graph model which
exploits c-semiring for

expressing application level QoS and

for coordinating activities...

...by synchronisation on c-semiring values
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Background

“During my nine years at the elementary schools
I was not able to teach anything to my professors”

(Bertolt Brecht)
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Constraint Semirings

C-Semirings [BMR95, BMR97] for abstracting application level QoS

〈A,+, ?,0,1〉, where
A is a set (containing 0 and 1),
+, ? : A × A → A

+ ?
x + y = y + x
(x + y) + z = x + (y + z)
x + 0 = x
x + 1 = 1

x + x = x

x ? y = y ? x
(x ? y) ? z = x ? (y ? z)

x ? 0 = 0

x ? 1 = x
(x + y) ? z = (x ? z) + (y ? z)

Implicit partial order: a ≤ b ⇐⇒ a + b = b “b is better than a”
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Examples of c-semirings

Example 1 (Priority) P = 〈N, max, min, 0,∞〉 where N is the set of natural
numbers with infinity.

Example 2 (Broadcast) B = 〈A ∪ A ∪ {1,0,⊥},0,1, +, ?〉 where A is a set of
actions, A = {a | a ∈ A} are the coactions and

∀a ∈ Act.a ? a = a ∧ a ? a = a

∀a, b ∈ Act ∪ Act ∪ {⊥} : b 6∈ {a, a} =⇒ a ? b =⊥

the corresponding commutative rules plus the ones for 0 and 1

+ also obeys the axioms

a + a = a

a + b =⊥

}

∀a, b ∈ Act ∪ Act ∪ {⊥}.b 6= a

Proposition 1 Cartesian product of c-semirings is a c-semiring.

e.g., BP = B × P is the c-semiring of broadcast with priorities
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Another bunch of c-semiring examples

C-semirings structures can been defined for many frameworks:

〈{true, false},∨,∧, false, true〉 (boolean): Availability

〈Real+, min,+,+∞, 0〉 (optimization): Price, propagation delay

〈Real+, max, min, 0,+∞〉 (max/min): Bandwidth

〈[0, 1], max, ·, 0, 1〉 (probabilistic): Performance and rates

〈[0, 1], max, min, 0, 1〉 (fuzzy): Performance and rates

〈2N ,∪,∩, ∅, N〉 (set-based, where N is a set): Capabilities and
access rights

– p. 11



Hypergraphs model

Distributed systems as graphs [CM83, DM87]
explicitly describe topology
and are suitable for expressing multiparty synchronisation
we use Synchronised Hyperedge Replacement (SHR)

Edge replacement for graph rewritings [Fed71, Pav72]

Edge replacement/distributed constraint solving problem [MR96]

Graphs grammars for software architecture styles [HIM00]

SHR with mobility for nominal calculi [HM01, Hir03]

Extension to node fusions [FMT01, Tuo03]...

...wich accounts for a concurrent semantics of the Fusion
calculus [LM03]
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Hypergraphs model2

We aim at tackling new non-functional computational phenomena of
systems using SHR.

The metaphor is

“Global computers as Hypergraphs”

“Global computing as SHR”

In other words:

Components are represented by hyperedges

Systems are bunches of (connected) hyperedges

Computing means to synchronously rewrite hyperedges...

...according to a synchronisation policy

– p. 13



SHR...naively

L → G

Benefits:
Uniform framework for π, π-I, Fusion

LTS for Ambient ...

... for Klaim ...

... and path reservation for a Klaim extension

expressive for distributed coordination

wireless networks [Tuo05]

– p. 14
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SHReQ

“[...] Shrek cuts a deal with Farquaad and sets out to rescue the beautiful Princess Fiona
to be Farquaad’s bride.”

(from http://www.shrek.com)

– p. 15



Hyperedges and Hypergraphs Syntax

A hyperedge connects more than two nodes (generalisation of edge)

L : 3, L(y, z, x), •
y

•x L3

1

2 •z

G ::= nil
∣

∣ L(x̃)
∣

∣ G|G
∣

∣ ν y.G

Syntactic Judgement x1 : s1, . . . , xn : sn ` G, fn(G) ⊆ {x1, . . . , xn}

An example:

L : 3, M : 2

x : 1, y : 0 ` ν z.(L(y, z, x)|M(y, z))

•
0

y

L M

•x 1 ◦1z

– p. 16
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Productions

Productions of SHReQ are based on requirements: R = S ×N ∗

(where 〈S,+, ?,0,1〉 is a fixed c-semiring)

production χ . L(x̃)
Λ
−→ G
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Interpreting SHReQ productions

Consider

π : χ . L(x̃)
Λ
−→ G

and a graph H having an arc labelled by L, e.g.:
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����
����

Replacing L with G in H according to π requires that H satisfies
the conditions expressed by χ on the attachment nodes of L.

Once χ is satisfied in H, L(x̃) contributes to the rewriting by
offering Λ in the synchronisation with all the edges connected to
nodes in x̃.
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Synchronised Rewriting for SHReQ

Events for
Synchronisation Sync and Fin s.t.

Sync ⊆ Fin ⊆ S

1 ∈ Sync

No synchronisation NoSync ⊆ S \ Fin s.t.

S ? NoSync ⊆ NoSync

0 ∈ NoSync

SHReQ semantics exploits a mgu accounting for node fusions.

Let Ω be a finite multiset over N ×R:mgu(Ω) for denoting an idempotent
substitutionis defined iff

(x, s, ũ), (x, s′, ṽ) ∈ Ω@x
implies

|ũ| = |ṽ|

∀i ∈ {1, . . . , |ũ|} : ũi ∈ new(Ω) ∨ ṽi ∈ new(Ω)

|Ω@x| > 1 =⇒
∏

(x,s,ỹ)∈Ω@x

s 6∈ NoSync
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|Ω@x| > 1 =⇒
∏

(x,s,ỹ)∈Ω@x

s 6∈ NoSync

and obtained by computing the mgu of the equations

{ũi = ṽi | ∃s, t ∈ S : (x, s, ũ), (x, t, ṽ) ∈ Ω ∧ 1 ≤ i ≤ |ũ|}

– p. 19



Quasi-productions

The set QP of quasi-productions on P is the smallest set s.t. P ⊆ QP and

χ . L(x̃)
Ω
−→ G ∈ QP ∧ y ∈ N \ new(Ω)

⇓

χ′ . L(x̃{y/x})
Ω{y/x}
−−−→ G{y/x} ∈ QP

where

χ′ : {|x̃|} \ {x} ∪ {y} → S χ′(z) =











χ(z), z ∈ {|x̃|} \ {x, y}

χ(x) + χ(y) , z = y ∧ y ∈ x̃

χ(x), z = y ∧ y 6∈ {|x̃|}

SHReQ rewriting system: (QP ,Γ ` G)
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Graph transitions

(REN)

χ . L(x̃)
Ω
−→ G ∈ QP ρ = mgu(Ω)

∧

x∈dom(χ)

χ(x) ≤ Γ(x)

Γ ` L(x̃)
Ω
−→ ΓΩ ` (ν Z)(Gρ)

(COM)

Γ1 ` G1
Λ1−→ Γ′

1 ` G′
1 Γ2 ` G2

Λ2−→ Γ′
2 ` G′

2 ρ = mgu(Λ1 ] Λ2)
∧

x∈dom(Γ1)∩dom(Γ2)

Γ1(x) = Γ2(x)

Γ1 ∪ Γ2 ` G1 | G2

Λ1]Λ2

−−→ (Γ1 ∪ Γ2)(Λ1]Λ2) ` (ν Z)(G′
1 | G′

2)ρ

where Z = new(Ω) \ new(Ω)
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Induced communication functions
Let ρ = mgu(Ω). The communication function induced by Ω is the function Ω : dom(Ω) → R defined as

Ω(x) =

8

>

>

>

>

>

<

>

>

>

>

>

:

(t, ỹρ), t =
Y

(x,s,ỹ)∈Ω@x

s 6∈ Sync

(t, 〈〉), t =
Y

(x,s,ỹ)∈Ω@x

s ∈ Sync

Basically, Ω(x) yields the synchronisation of requirements in Ω@x according to the c-semiring product.

The weighting function induced by Γ and Ω is

ΓΩ : dom(Γ) → S,

ΓΩ(x) =

8

>

<

>

:

1, x ∈ new(Ω)

Γ(x), |Ω@x| = 1

ΓΩ(x) = Ω(x)↓1 , otherwise

The weighting function computes the new weights of graphs after the synchronisations induced by Ω.

– p. 22



Applying SHReQ’s semantics

•x •y

S

•w

R1 R2

•r •s

U1 U3 U2

Let’s compose broadcast and priority c-semirings:

SyncBP = {1} = {〈1,∞〉}

FinBP = {1} ∪ {(a, n)|a ∈ W, n > 0}

NoSyncBP = {0 = 〈0, 0〉,⊥} ∪ {(a, 0)|a ∈ W} ∪ {(0, n)|n ∈ N}

The only value in SyncBP is 1

FinBP are all coactions together whith any valid priority
n > 0

NoSyncBP contains all pairs with at least one “zero” in
their components.
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Selecting productions2

The initial graph

•x 1

S

•w 1

R

•r 1

U1 U3

Checking alarm

•1〈〉x1 •x1

R −→ Rra

•(a,∞)〈〉x2 •x2

x1, x2 :0 . R(x1, x2)
(x1,1,〈〉) (x2,(a,∞),〈〉)
−−−−−−−−−−−−−→ Rra(x1, x2)

Sending alarm

•(a,n)〈〉y1 •y1

Un −→ Uwa
n

y1 :0 . Un(y1)
(y1,(a,n),〈〉)
−−−−−−→ Uwa

n (y1)
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Selecting productions2

•x1 •w

R

(α,∞)

•x2

•r

•y1 •y2

U1

(α,1)

U3

(α,3)

Checking alarm

•1〈〉x1 •x1

R −→ Rra

•(a,∞)〈〉x2 •x2

x1, x2 :0 . R(x1, x2)
(x1,1,〈〉) (x2,(a,∞),〈〉)
−−−−−−−−−−−−−→ Rra(x1, x2)

Sending alarm

•(a,n)〈〉y1 •y1

Un −→ Uwa
n

y1 :0 . Un(y1)
(y1,(a,n),〈〉)
−−−−−−→ Uwa

n (y1)

(α, 1) ? (α, 3) ? (α,∞) = (α, 1)
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A SHReQ synchronisation

r :0 . U1(r)
(r,(α,1),〈〉)
−−−−−−−→ U

wa

1 (r) {r/y1}

(REN1)

r :1 ` U1(r)
(r,(α,1),〈〉)
−−−−−−−→ r :1 ` U

wa

1 (r)

w, r :0 . R(w, r)

(w,1,〈〉)
(r,(α,∞),〈〉)
−−−−−−−−→ R

ra
(w, r) {w/x1, r/x2}

(REN2)

w, r :1 ` R(w, r)

(w,1,〈〉)
(r,(α,∞),〈〉)
−−−−−−−−→ w, r, z :1 ` R

ra
(w, r)

w, r :1 ` U1(r) | R(w, r)

(w,1,〈〉)
(r,(α,1),〈〉)
−−−−−−−→ w, z :1, r : (α, 1) ` Uwa

1 (r) | Rra(w, r)
(COM1)

r :0 . U3(r)
(r,(α,3),〈〉)
−−−−−−−→ U

wa

3 (r){r/y2}

(REN3)

r :1 ` U3(r)
(r,(α,3),〈〉)
−−−−−−−→ r :1 ` U

wa

3 (r)

w, r :1 ` U1(r) | R(w, r) | U3(r)

(w,1,〈〉)
(r,(α,1),〈〉)
−−−−−−−→ w, z :1, r : (α, 1) ` Uwa

1 (r) | Rra(w, r) | Uwa

3 (r) (COM2)
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Exploiting the mgu

•x

S

(α,∞)〈x〉

•w

Rra

(α,∞)〈u〉

(α,∞)〈u〉

•r (α,1)

Uwa
1

(α,1)〈z〉

Uwa
3

Sending ambulance assistance

• 1〈〉x • x

S −→ S

• (α,∞)〈x〉w •w

x,w :0 . S(x,w)
(x,1,〈〉) (w,(α,∞),〈x〉)
−−−−−−−−−−−−−−→ S(x,w)

Forwarding alarm

• (a,∞)〈u〉w •w

Rra
−→ R

• (a,∞)〈u〉r •r

w :0, r : (a, 0) . Rra(w,r)
(w,(a,∞),〈u〉) (r,(a,∞),〈u〉)
−−−−−−−−−−−−−−−−−−→ R(w,r)

Receiving ambulance assistance

• (α,n)〈z〉r •r

Uwa

n
−→ Uua

n

•z

r : (α, n) . Uwa

n
(r)

(r,(α,n),〈z〉)
−−−−−−−→ Uua

n
(z)
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Exploiting the mgu
ρ = x/u, x/z

•x

S

•w

R

•r (α,1)

Uua
1 U3
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Conclusions

“Run, rabbit run
Dig that hole, forget the sun

And when at last the work is done
Don’t sit down it’s time to dig another one

(Breathe, Roger Waters)
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Final Remarks

We have presented SHReQ’s syntax and semantics

The main features are
general multiparty synchronisations c-semiring based
SHReQ uses application level QoS as coordination
mechanism of distributed activities

Surprisingly, they fit the design principles in [Mil96]

We plan to

Validate our design choice at the light of [Mil96]

Develop formal methods based on SHReQ for specifying
distributed applications that can bargain their non-functional
requirements

Hopefully, develop verification techniques (e.g., model checking)
on SHReQ [FL04]

...

– p. 28
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