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Abstract Autonomic management can improve the QoS provided by gdidiitributed
applications. Within the CoreGRID Component Model, theoaotmic manage-
ment is tailored to the automatic — monitoring-driven —ration of the compo-
nent assembly and, therefore, is defined as the effect dfifdised) management
code.

This work yields a semantics basedypergraphrewriting suitable to model
the dynamic evolution and non-functional aspects of Ser@dented Architec-
tures and component-based autonomic applications. Ingh&d, our main goal
is to provide a formal description of adaptation operatitrag are typically only
informally specified. We contend that our approach makeee#ts raise the
level of abstraction of management code in autonomic angta@zapplications.

1. Introduction

Developers of grid applications cannot rely neither on fitedet platforms
nor on stability of their status [9]. This makes dynamic ddléy of appli-
cations an essential feature in order to achieve user-defavels of Quality
of Service (QoS). In this regard, component technology fa@segl increased
impetus in the grid community for its ability to provide a ateseparation of
concerns between application logic and QoS-driven adaptavhich can also
be achievedutonomically As an example, GCM (the Grid Component Model
defined within the CoreGRID NOE) is a hierarchical compomeatiel explic-
itly designed to support component-based autonomic aits in highly
dynamic and heterogeneous distributed platforms [4].



An assembly of components may be naturally modeled as a guagbhif
components are autonomic, the graph can vary along with ribgraam exe-
cution and may change according to input data and/or gridweme status.
These changes can be encoded as reaction rules within theooemtAuto-
nomic Managei(hereafter denoted at)1). A proper encoding of these rules
effectively realises the management policy, which can leeifip of a given
assembly or pre-defined for parametric assemblies (subbless/ioural skele-
tong [1-2]. In any case, the management plan relies on the regoafion
operation exposed by the component model run-time support.

A major weakness of current component models (including G@&Mhat
the semantics of these operations are informally specitied, making hard to
reason about QoS-related management of components. hdhks

= We discuss few primitives useful for component adaptatidw cho-
sen operations are able to capture typical adaptationrpatte paral-
lel/distributed application on top of the grid. These arespnted as
non-functional interfacesf components that trigger component assem-
bly adaptation.

= We detail a semantics for these operations basdaypargraphrewrit-
ing suitable for the description of component concurrentasgtics and
assembly evolution along adaptations.

The key idea of our semantical model consists in modelingpmrant-based
applications by means tfypergraphsvhich generalise usual graphs be allow-
ing hyperedgesnamely arcs that can connect more than two nodes. Intyitive
hyperedges represent components able to interact thrpogk represented
by nodes of hypergraphs. TI8ynchronized Hyperedge Replacem@iiR)
model specifies how hypergraphs are rewritten accordingeéb@productions
Basically, rewritings represent adaptation of appligaipossibly triggered by
the underlying grid middleware events (or by the applicaithemselves).
SHR has been shown suitable for modelling non-functiorzéets of service
oriented computing [6—7] and is one of the modelling and téécal tools of
the SENSORIA project [14]. For simplicity, we consider a simplified vensiof
SHR where node fusions is limited and restriction is not @ered. Even if,
for the sake of simpleness, the SHR framework used in thik igarot the most
general available, it is sufficient to give semantics to tiamagement primitives
(aka adaptation operations) addressed here. The autonwemiager — by way
of these adaptation operations — can structurally recar&ign application to
pursue the (statically or dynamically specified) user ititgrs in terms of QoS.

2. Autonomic Componentsand GCM

Autonomic systems enables dynamically defined adaptatjoallbwing
adaptations, in the form of code, scripts or rules, to be @ddemoved or
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modified at run-time. These systems typically rely on a cksgraration of
concerns between adaptation and application logic [10].adtonomic com-
ponent will typically consist of one or more managed commtmeoupled
with a single autonomic manager that controls them. To muitsugoal, the
manager may trigger an adaptation of the managed compotzergact to a
run-time change of application QoS requirements or to thdgin status. In
this regard, an assembly of self-managed components ingplmvia their
managers, a distributed algorithm that manages the empiriécation.

The idea of autonomic management of parallel/distribgged/applications
is present in several programming frameworks, althougtifiardnt flavours:
ASSIST [15, 2], AutoMate [13], SAFRAN [5], and GCM [4] all ihale au-
tonomic management features. The latter two are derivad fiocommon
ancestor, i.e. the Fractal hierarchical component moddl [All the named
frameworks, except SAFRAN, are targeted to distributediegons on grids.

GCM builds on the Fractal component model [12] and exhibits¢ promi-
nent features: hierarchical composition, collectiveiattions and autonomic
management. GCM components have two kinds of interfacestitnal and
non-functional ones. The functional interfaces host akthports concerned
with implementation of the functional features of the comgat. The non-
functional interfaces host all those ports needed to supipecomponent man-
agement activity in the implementation of the non-funcéibfeatures, i.e. all
those features contributing to the efficiency of the componeobtaining the
expected (functional) results but not directly involvedrasult computation.
Each GCM component therefore containsAaly, interacting with other man-
agers in other components via the component non-functiobeatifaces. The
AM implements the autonomic cycle via a simple program basegaxctive
rules. These rules are typically specified as a collectionheh-eventif-
cond-then-adaptop clauses, whereventis raised by the monitoring of com-
ponent internal or external activity (e.g. the componemveseinterface re-
ceived a request, and the platform running a component d&deg threshold
load, respectively)condis an expression over component internal attributes
(e.g. component life-cycle statusigaptop represents an adaptation operation
(e.g. create, destroy a component, wire, unwire componantiy events to
another component’s manager) [5].

We informally describe some common adaptation operatibasrhay be
assigned to configuration interfaces are the following:

Migration A component is required to change its running location (plat-
form, site). The request must include the new location amdbeaper-
formed while keeping its attached external stgfe)(or restating from a
fresh default statestart).

Replication A component (either composite or primitive) is replicat&skpli-
cation operationis particularly targeted to compositegonents exhibit-



ing the parametric replication of inner components (suchedmviour
skeletons), and can be used to change their parallelisneelégnd thus
their performance and fault-tolerance properties). Rapbn events are
further characterized with respect to their relation wihlicated com-
ponent state, if any. A component replica may be created avitiesh
external state, carry a copy of the external staiepf), or share the
external state with the source componestigre).

Kill Acomponentiskilled. Due tothis kind of action disconnelatemponents
(and in particular storage managers) can subject to garduigetion.

Described primitives make possible the implementationevEgal adaptation
paradigms. In particular, migration may be used to adapafi@ication to

changes of grid topology as well as to performance drop oiurees. Replica-
tion and kill may be used to adapt both data and task paratapatation. In

particular, replication with share enables the redistrdruof sub-task in data
parallel computations; replication with copy enables teattindancy. Both
stateful and stateless farm computation (parameter-sngepmbarrassingly
parallel) may be reshaped both in parallelism degree araditocrun by using

replication and Kkill.

ExampPLE 1 LetP, C, SF, SAM, Wy, Wy, W3 components (Producer, Con-
sumer, Stateful Farfy Storage, Autonomic Manager, and Workets); - - Lg
locations. Thee kinds of bindings are used in the assemédydlso Sec. 4).

L >

—0— RPC or dataflow bindings ---- management bindings >+< data sharing port bindings

The described assembly of components (left) is paradigroftnany producer-
filter-consumer applications, where the producer (P) gates a stream of data
and the filter is parallel component (SF) exhibiting a shagtgte among its
inner components (e.g. adatabase). The original asserd@ity¢an be dynam-
ically adapted (right) by way of two adaptation operationg¢act to run-time
events, such as a request of increasing the throughputgd bperation moves

W; from L, to L7 (as an example to move a component onto a more power-
ful machine); theshare operation that replicate$V, and place it in the new
location Lg (to increase the parallelism degree). Both operations @mnes the

1This component is a composite component, and in particuigan instance of a behavioural skeleton [1].
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external state of the migrated/replicated component, visaealised by way
of a storage component) attached via a data sharing inter{&¢.

Example 1 illustrates how the management can be describeddglobal
viewpoint Indeed, the system is described by in a rather detailed sgy,
components are explicitly enumerated along with their eations. Even if
this global viewpoint is useful (and sometime unavoidalpien designing
distributed systems, it falls short in describing what Engomponents are
supposed to do when a reconfiguration is required. In otherstat is hard to
tell what thelocal behaviour of each component should be in order to obtain
the reconfiguration described by tgbal view.

Also, it is worth remarking that, though the diagram cleatscribes the
changes triggered by M in this scenario, the lack of a formal semantics leaves
some ambiguities. For example, itis not clear if the recamfigon should take
place if, and only if, the system is configured as on the lhdsris rather a
"template” configuration (e.g., should the system recomégtself also when
Wy is connected tdV; rather than taD? What if W, was not present?). Of
course, such ambiguous situations can be avoided when alfsamantics is
adopted.

3. A Walk through SHR

Synchronised Hyperedge Replacem@ittiR) can be thought of as a rule-
based framework for modelling (various aspects of) of itiated computing [7]
modelled asypergraphsa generalisation of graphs roughly representing (sets
of) relations among nodes. While graphs represent (setsitd)y relations
(labelled arcs connect exactly two nodes), labdtigueredgeéhereafter, edges)
canconnectany number of nodes. We give aninformal albetige description
of hypergraphsand SHR through a suitable graphical notation. The intedest
reader is referred to [7, 11] and references therein forablrtical details.

ExaMPLE 2 In our graphical notation, a hypergraph is depicted as

/
Ny A0 S
. 7 . (7]
g s

Edges (labelled by, AM and o) are connected to nodeg,(l, I, s and s’).
Specifically,AM connectsy and!’, f connectsy, I’ ands’ while twoo-labelled
edges are attached toands’. Notice that nodes can be isolated (ely.,

Hyperedges represent (distributed) components thasicttérrougtportsrep-
resented by nodes. Connections between edges and noded,teatacles
allow components sharing ports to interact (e.g., in Exanpf and AM can
interact ong and onl’).
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ExamMpPLE 3 The hypergraph in Example 2 represents (part of) a systemewhe
a managerAM and a componenf are located at’ and can interact on port
g. The componenf has access to the store dt(e.g. by way of a data port
[3]). Inthe system are also present another locatiGand stores.

As in string grammars, SHR rewriting is driven Ipyoductions In fact,
strings can be rewritten according to a setpabductions i.e. rules of the
form o — (3, wherea and 3 are strings (over fixed alphabets of terminal and
non-terminal symbols). Similarly, in SHR hypergraph rdings are specified
by productions of the forn. — R, where the |lhsl is a hyperedge, the rhs
R is a hypergraphs and states that occurrences @dn be replaced witl.
Intuitively, edges correspond to non-terminals and carepéaced with a hy-
pergraph according to their productions. In SHR, hypetgsagre rewritten by
synchronisingproductions, namely edge replacemensyachronised to ap-
ply the productions of edges sharing nodes, some conditiarss be fulfilled.
More precisely, an SHR production can be represented asvsll

l e g’o{ﬁi
g e Copy<g"s"l>’ij ® s ’Jj

[ ) ge Iil *s

where on the |hs is a decorated edge and on the rhs a hypergraptproduc-
tion above should be read as a rewriting rule specifying ¢dge f on the lhs
can be replaced with the hypergraph on the rhs providedhbatdnditions on
the tentacles are fulfilled. More precisetyypy andrep must be satisfied on
nodeg ands, respectively whilef is idle on nodel, namely it does not pose
any condition onl. According to our interpretation, this amounts to say that
when componenf is said to replicate with copy by itd M (conditioncopy
on nodey), it tells its store to duplicate itself (conditiarep on nodes). When
such conditions are fulfilled, edggis replaced with the hypergraph on the rhs
which yield two instances of one of which connected to the communicated
nodes as prescribed by the rhs of the production. Indéegposes three nodes
on conditioncopy and one orrep; these represent nodes that are communi-
cated (i.e.g andl are node communication accounts for mobility as edges can
dynamically detach their tentacles from nodes and conheact elsewhere.
SHR has a declarative flavour because programmers spenifiisnization
conditions of components independently from each otheceQne system is
built (by opportunely connecting its components) it willobxe according to
the possible synchronizations of the edges. Global tiansitare obtained by
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parallel application of productions with “compatible” abtions where com-
patibility depends on the chosen synchronisation pélicy

4. Productionsfor Non-functional I nterfaces

SHR can adequately formalise the non-functional interfaeehanisms in-
formally described in Sec. 2. Three conceptually distimteiifaces can be
consideredi) interfaces between components ahtd (for management bind-
ings), i7) interfaces toward the external state (for data sharingimgs), and
ii1) interfaces for communicating with other components (folCRRataflow
bindings). Since interfacegi are application dependent, we focus on the
coordination-related interfacésandqi.

A main advantage of our approach is that all aspects of noatifonal inter-
faces are captured in a uniform framework based on SHR. thdee

components are abstracted as edges connected to form gtagder
the coordination interface of each component is separdegiared and
is not mingled with its computational activity;

= being SHR docal rewriting mechanism, itis possible to specify confined
re-configuration of systems triggered logal conditions;

Migration. The migration of a componertitis triggered when itsl M raises
a signalgo with the new location on nodg The synchronisation of on the
go signal is given by following production:

[ e
go(g’,l") ’Jj S
g /] .

specifying thatf running at/ accepts to migrate t¢ (lhs); the “location”
tentacle of f is disconnected froni and attached td& (rhs). Notice thatf
maintains the connection to the previous statend ! is still present. The
tentacle connected tg on the |hs is connected i@ on the rhs; however, it
might well be thayy = ¢ (f is still connected to the origindd M) or g # ¢’ (f
changes manager). Similaritart moves the component to a new locatiGn
However, a new external stateis created together with its attaching node:

| e g e l e o/ ET’\
s s s

2SHR is parametric with respect to the synchronisation mashmadopted and can even encompass several
synchronisation mechanisms [7, 11].
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Replication.  Unlike migration, replication of preserves its location:

o g Lo I'e /]
ge xcp<g’»l’\1@ ® s g e \‘zi e s

the effect of the above production is to add a new instangeatf’ with AM
connected t@’; of course] = I’ andg = ¢’ are possible. The newly generated
instance shares external state with the original one.

Replication can also activate the new instance with a diffestate:

o @
ge vaa(s/-,l’\"ZI ® s ge \7| s

L

The production above creates a fresh replica @ft I’ and assigns to it the
manager af’; notice that the two instances ¢fshare the state

Replication can also trigger a new instancefdhat acts on a copy of the
state original state as described in the production of pageste f must notify
to its state to duplicate itself and connect the new copy’oklence, the state
connected ta duplicate itself on the nod€ when the action complementary
torep is received, as stated below.

@—rep(s’) e s | E‘— es e —@

Component killing. Components are killed using the following production:

[ e | e

ge Kill{ Iil ®s ge ®s

stating thatf disappears when its correspondidg/ sends &ill signal.

5. Synchronizing productions

The operational semantics of SHR is illustrated through »amgple that
highlights the following steps:

1 individuate the adjacent tentacles labeled by compatitelitions;

2 determine the synchronizing productions and replaceitiséafices of)
edges on their lhs with the hypergraphs on their rhs;

3 fuse the nodes that are equated by the synchronizations.

Let us apply the previous steps to show how migration worka gituation
represented by the following hypergraph
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starto(g,l1,51) AM o] .ll
ge {ﬂarto@’,l’,s’)—ﬁ\/g @
where componenf is running at and shareg with a manager M located
atl;. For brevity, tentacles are decorated with the conditisiggé¢ring the
rewriting (step 1). Indeed, the tentaclesA}/ and of f incident on nodey
yield compatible output and input conditions respectivsgiythatA M ordersf
to migrate ta/; and to use the store at while staying connected i@
Productions synchronisation consists in replacing theiweaces of the
edges on the lhs with the hypergraphs specified in the rhegfithductions and
applying the node fusions obtained by the node communic&ednstance, in
the previous example the synchronising productions arstteto production
of f given in Sec. 4 and the production df\/ whose |hs and rhs consist of
AM connected tg andl; (step 2). Hence, after the synchronization, the node
fusionsg’ = ¢, I’ = 1; ands’ = s, are applied (step 3), so that the hypergraph
is rewritten as

/@%\ ol

Let us remark that, o ands remains in the final hypergraph. In fact they
should not be removed because other edges can be allocated access.

The intuitive description of SHR given in this section sugjgehe following
design style and execution style:

assign an edge to each component and specify their prodagtio
represent the system as a hypergraph;

decorate the tentacles with the synchronisation condition
synchronize the productions until possible.

It is worth remarking that, unlike other semantical framexgo(e.g., process
calculi), in SHR synchronisation conditions may requirerenthan two (pro-
ductions of) components to be synchronised. This actualyedds on the
synchronisation policy at hand. For instance, in the mignatewriting de-
scribed in this section, it is possible to use broadcastant®ns on the nodg
so thatall the components connected @will move at!’ when the productions
are synchronised.

0. Conclusions

SHR is one of the modelling and theoretical frameworks of$R8soRIA
project [14] and has been exploited in [6] for managing agpion levekervice
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level agreemen{SLA) in a distributed environment; in [7] several variaofs
SHR have been described in a uniform context showing howftiniaalism
can suitably tackle many programming and modelling facesing in service
oriented computing. In this paper we have shown how SHR casuliably
used to formalise both adaption operations and the evaoluifacomponent-
based autonomic applications.

In an autonomic component model, as GCM, th&/ relies on adaptation
operation to realise its management policy (duringdgkecutionphase of the
autonomic cycle). In general, a proper formalisation ofpdtion operations
(possibly involving thed M itself), may help in

= developing correct and effective management policiesighoy the de-
veloper with a precise description of the effect (semahtadapation
operations;

m formally proving the proprierties of a single adaptationseguences of
them;

m formally proving local or global invariants characterigithe evolution
of assemblies of autonomic components;

m guiding developers of the component model itself to esthbihe ef-
fectiveness of provided adaptation operations (e.g. thepteteness of
the set of operations with respect to a given planned ewanlubf the
assembly).

This work covers the first of these items, thus representsstdiep in this
roadmap, whereas successive items can be enumerated iritteviork. The
presented adaptation operations are currently implerdémtée reference im-
plementation of GCM (developed within the GridCOMP STRE®&jgxt [8]);

their effectiveness in managing the QoS of grid applicatisreported in [1].
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