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Abstract

We present an axiomatic approach to the concept of meaningless-
ness in finite and transfinite term rewriting and lambda calculus. We
justify our axioms in several ways. They can be intuitively justified
from the viewpoint of rewriting as computation. They are shown
to imply important properties of meaninglessness: genericity of the
class of meaningless terms, confluence modulo equality of meaning-
less terms, the consistency of equating all meaningless terms, and the
construction of Böhm trees and models of rewrite systems. Finally,
we show that they can be easily verified for many existing notions of
meaninglessness and easily refuted for some notions that are known
not to be good characterizations of meaninglessness.

1 Introduction

The concept of a meaningless term in a rewrite system originates with the
lambda calculus [Bar84, Bar92]. There exist terms in the lambda calculus
that, in certain precisely definable senses, cannot be distinguished from each
other and cannot contribute information to any context in which they are
placed. Such terms may intuitively be considered meaningless or undefined,
and in a denotational semantics they may be mapped to the bottom element
of the semantic domain.

In the (pure untyped) lambda calculus, one such class of terms is the
set of terms that have no head normal form, that is, those that cannot be
reduced to a term of the form λx1 . . . λxn.yM1 . . . Mk. Several other classes
of terms have also been proposed as formalizing the notion of undefinedness.
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In our study of transfinite term rewriting ([KKSdV95]), that is, orthog-
onal term rewriting in which terms may be infinitely large and rewrite se-
quences may have any ordinal length, we have encountered a class of terms
having similar properties — the so-called hypercollapsing terms. In addition,
we have found that the Church–Rosser property of finitary orthogonal term
rewrite systems fails for transfinite systems unless these terms are identified
with each other. Several other classes of terms are also plausible candidates
for notions of meaninglessness.

In this paper we consider the general concept of meaningless terms in a
rewrite system. We present axioms that a set of terms in a rewrite system
should satisfy to be considered as a reasonable notion of meaninglessness.
The axioms can be easily verified for many existing notions; it is sufficient
to prove several of their important properties, which in the past have been
proved separately. We consider left-linear term rewrite systems and lambda
calculus, in both finitary and transfinite forms. We assume the reader to be
familiar with the basic theory of term rewriting [DJ90, Klo92] and lambda
calculus [Bar84, HS86]. The basic theory of transfinite rewriting has already
been set out [KKSdV95, KKSdV97].

We will show the usefulness of our axioms in several ways.

• They arise naturally from the notion of rewriting as computation of
the meaning of terms.

• The axioms imply two standard lemmas: the Genericity Lemma and
the Consistency Lemma. Genericity states that a meaningless subterm
is irrelevant to the computational meaning of the term containing it.
Consistency states that adding the rule that all meaningless terms are
equal does not give an inconsistent system (one in which all terms are
provably equal).

• The axioms allow us to derive the existence and uniqueness of a Böhm
normal form for every term, which constitutes a denotational semantics
for a term rewrite system or lambda calculus equipped with a notion
of meaninglessness. The denotation of a term is simply its unique nor-
mal form with respect to “Böhm rewriting”: reduction by the ordinary
rewrite rules plus an axiom allowing meaningless subterms to be re-
placed by a ⊥ symbol.

• The axioms can be checked straightforwardly for many existing notions
of meaninglessness, both for term rewriting systems and lambda calculi.

2
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The results in this paper correct and extend results presented in
[AKK+94], which deals with term rewriting systems. Our second axiom
here was missing from that paper, as observed by the second author of the
present paper.

2 Notations

A position, also called an occurrence, is a finite sequence of positive integers.
ε denotes the empty sequence. Given a position u and a term t, the subterm
t|u, when it exists, is defined by t|ε = t, and F (t1, . . . , tn)|(i · u) = ti|u (if
i ≤ n). There is a natural prefix ordering on positions, and two positions are
said to be disjoint if neither is a prefix of the other.

We write s → t for a single reduction step, s →∗ t for a finite reduction
sequence, and s →→ t for a reduction of any ordinal length, finite or infinite.
(Infinitely long reductions will be formalized in Section 6.)

A context is a term in which the “hole” symbol, [ ], may appear (any
number of times). We write C[ ] to denote an arbitrary context, and C[t] to
denote the result of replacing every occurrence of the hole by t. The hole
behaves in effect like a variable symbol, but it is convenient to distinguish
the two notions. In lambda calculus, the substitution of t for the hole symbol
is assumed to involve renaming of bound variables as necessary to prevent
variable capture. (Note that this is distinct from definitions of context sub-
stitution that are used in some other places, where the substitution is purely
textual and allows capture of variables.)

Let U be a set of terms. s
U
→A t holds if A is a set of pairwise disjoint

positions of subterms of s in U , and t can be obtained from s by replacing
those subterms by arbitrary terms.

s
U
↔A t holds if t can be obtained from s by replacing some set A of

pairwise disjoint subterms of s in U by terms of U .

We write s
U
→ t or s

U
↔ t if we do not wish to mention A.

U
= is the transitive closure of

U
↔.

s
in U
−→ t denotes a reduction of s to t of one step, which reduces a redex

inside some subterm s′ of s, where s′ ∈ U . s
in U

−→∗ t and s
in U
−→−→ t are reductions

composed of
in U
−→-steps, finitely many or arbitrarily many, respectively.

s
out U
−→ t is a one-step reduction that reduces a redex not contained in any

subterm of s in U . We similarly define s
out U

−→∗ t and s
out U
−→−→ t.

3
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Juxtaposition of relation symbols denotes relational composition. Revers-
ing a relational symbol denotes the inverse relation.

Given an equivalence relation ≈ on the terms of a rewrite system, the
reduction relation is said to be confluent up to ≈ if s←←→→ t implies s→→≈
←← t. It is said to be confluent modulo ≈ if s ←←≈→→ t implies s →→≈←← t.
The reduction relation is said to be confluent up to (resp. modulo) U if it is

confluent up to (resp. modulo)
U
= .

Confluence modulo U is the more natural concept to define, but our main
theorems only require the weaker notion of confluence up to U .

3 Axioms and properties of notions of mean-

inglessness

3.1 The axioms

Let U be a set of terms of some rewrite system. There are five axioms that
we may require U to satisfy, to be considered as a notion of meaninglessness.

From the point of view of rewriting as the computation of meaning, if a
term is meaningless, then so should be every term that it reduces to. This is
our first axiom.

Axiom 1 (Closure) U is closed under rewriting.

Our second axiom expresses the idea that a meaningless term cannot con-
vey any information when looked at “from outside.” For example, Print(t)
might be intended to reduce to some sort of printable representation of t. In
order for this to happen, t must be reducible to a term that can be pattern-
matched from outside, that is, a term that can be overlapped by a redex. If
t is meaningless, it should not be possible to extract information from t in
this way; therefore, whenever such a t is overlapped by a redex, that redex
should also be meaningless.

For term rewriting, this motivation justifies our restriction to left-linear
systems. Non-left-linear systems are capable of performing a test of syn-
tactic identity on any two terms whatever. In such systems, every term
may contribute information to its context, and no term could be considered
meaningless.

4
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Definition 1 Let t be a redex, i.e., an instance σ(l) of the left-hand side l
of some rewrite rule. The redex t overlaps its subterm at position u if u is a
non-empty position of l and l | u is not a variable.

As an example, consider the term Head(Cons(A, B)) and the rule men-
tioned above. The redex at ε overlaps the subterm at 1, but does not overlap
any other subterm. Notice that if a redex overlaps a subterm that is also a
redex, the two redexes conflict — in general, if the inner redex is reduced, the
outer redex will no longer be a redex. The orthogonal term rewrite systems
are those in which no redex can overlap a redex.

Axiom 2 (Overlap) If a redex t overlaps a subterm in U , then t ∈ U .

This axiom can be stated for the lambda calculus in more concrete terms:
it means that if λx.t is in U , then so is (λx.t)t′ for any t′.

The axiom can be related to Knuth–Bendix completion. If we have a rule
that rewrites any member of U to the undefined symbol ⊥, then a redex that
overlaps a subterm in U is an example of a conflict between that rule and
the rule for the redex. The conflict is resolved if the redex itself is also in U .

For the lambda calculus, we will require that the set of meaningless terms
is closed under substitution. This is because when a term is reduced, its
subterms are not simply copied to give subterms of the result, but may be
instantiated as well. For example, in lambda calculus, we have reductions
such as (λx.xx)(λy.y)→ (λy.y)(λy.y), in which the subterm xx becomes in-
stantiated to (λy.y)(λy.y). A subterm that is meaningless should not become
meaningful by this process. This condition is not required in our study of
term rewriting, as variables in terms behave more like constant symbols and
are never instantiated by rewriting.

Axiom 3 (Substitution) U is closed under substitution.

For transfinite rewriting, some of our results require that the set of mean-
ingless terms contains all the hypercollapsing terms or all the root-active
terms.

Definition 2 A term t is root-active if every reduct of t can be reduced to
a redex. R is the set of root-active terms.

A term rewrite rule is collapsing if for every reduction by the rule, the
reduct is a descendant of a subterm of the redex. A collapsing redex is a
redex of a collapsing rule.

5
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A term is hypercollapsing if each of its reducts reduces to a collapsing
redex. H is the set of hypercollapsing terms.

We have phrased the definition of a collapsing rule in such a way that it
can be applied both to term rewrite systems and lambda calculus. For term
rewriting, the definition of a collapsing rule is equivalent to the following: a
collapsing rule is one whose right-hand side is a variable. For example, the
rules Head(Cons(x, y)) → x and I(x) → x are collapsing, but F (A) → A
is not. For lambda calculus, the definition implies that beta reduction is
collapsing. The definition also makes sense for higher-order rewriting (see
e.g., [vO94]), but that is beyond the scope of this paper.

An example of a root-active term is the term A, given the rule A → A.
Less trivially, consider the rules Last(Cons(x, y)) → Last(y) and Ones →
Cons(1, Ones). For these rules, the term Last(Ones) is root-active. Neither
of these terms is hypercollapsing. A contrived example of a hypercollapsing
term is the term A, with the rules A→ B(A) and B(x)→ x. The latter rule
is a collapsing rule, and every reduct of A in this system is reducible to a
redex of that rule. In the lambda calculus, an example of a root-active term
is Y I, where Y = λf.(λx.f(xx))(λx.f(xx)) and I = λx.x. Every reduct of
Y I can be reduced to a term of the form IM for some M , which has a redex
at the root.

Computation on a root-active term never reaches even a partial final
result since further computation at the root of the term can always take
place. Therefore, all such terms can reasonably be regarded as meaningless.
Technically, we only need to assume that they are all in U in order to obtain
the existence of Böhm normal forms.

Hypercollapsing terms are a special case of root-active terms. They re-
semble infinite applications of an identity operator. Every hypercollapsing
term can be reduced to a term of the form C0[C1[C2[. . .]]], where each Ci[x]
is the left-hand side of a rule whose right-hand side is x. Their technical
significance is that it is exactly these terms that cause the Church–Rosser
property to fail in orthogonal transfinite rewrite systems. If they are all
identified with each other, the Church–Rosser property is restored. We use
this in proving the uniqueness of Böhm trees in orthogonal rewrite systems,
and the Consistency property, which says that one may consistently identify
all meaningless terms with each other, without introducing any “unwanted”
equalities.

6
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Axiom 4

1. (Hypercollapse) H ⊆ U .

2. (Root-active) R ⊆ U .

Since all hypercollapsing terms are root-active, Axiom 4(2) implies Ax-
iom 4(1).

Beta reduction is a collapsing rule, so all redexes of lambda calculus are
collapsing redexes, and the class of hypercollapsing terms is the same as the
class of root-active terms. Therefore, the two versions of Axiom 4 need not
be distinguished for lambda calculus.

The fifth axiom expresses that the meaningfulness of a term does not
depend on the identity of its meaningless subterms. This is quite similar to
the Genericity property, but not identical to it. We use this axiom in proving
the uniqueness of Böhm trees.

Axiom 5 (Indiscernability) If s
U
↔ t, then s ∈ U if and only if t ∈ U .

3.2 Related notions

Given a class of meaningless terms U , what terms can we say are definitely
meaningful? Some terms not in U may reduce to terms in U , so we cannot say
that every term outside U is meaningful. Very often, it is reasonable to regard
every normal form as meaningful. However, one approach to the semantics
of run-time type errors or domain errors is to regard terms such as 1/0 or
factorial(−1) as valid terms, but “erroneous.” If division is not defined for
a zero denominator, and factorial is not defined for negative integers, then
these terms are normal forms, but not meaningful. Instead, we can define a
notion of being “definitely meaningful” purely in terms of U .

Definition 3 A term is totally meaningful if none of its reducts contains
any subterm in U .

Intuitively, meaningless terms should be computationally irrelevant. This
is captured formally by the property of Genericity.

Definition 4 Suppose that for every term s in U and every context C[ ], if
C[s] reduces to a totally meaningful term t, then C[r] reduces to t for every
r. Then U is called a generic set.

7
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An example of a generic set in the lambda calculus is the set of terms
having no head normal form. (See [Bar84], Theorem 14.3.24 for a proof
of this.) The set of terms having no normal form is not generic. This is
demonstrated by the fixed-point operator Y = λf.(λx.f(xx))(λx.f(xx)) and
the context C[ ] = [ ](λy.z). Y has no normal form, the term C[Y ] has normal
form z, but C[w] does not reduce to z.

Genericity is usually defined in terms of conversion to normal form
C[r] (→→ ∪ ←←)∗ t instead of reduction to totally meaningful form C[r]→→ t.
This is always done in the context of confluent rewriting systems with each
subterm of a normal form being meaningful. In that context, the two notions
coincide. Stating it in the ‘rewrite’ form has the advantage of making sense
for non-confluent rewriting systems as well, as remarked by Mizuhito Ogawa
(in personal communication).

Definition 5 A rewriting system is called consistent if there exist two nor-
mal forms that are not related by (→→ ∪ ←←)∗.

For a set of terms U , it is called U-consistent if there exist two totally

meaningful terms (with respect to U) that are not related by (→→ ∪ ←← ∪
U
= )∗.

The system is relatively consistent with respect to U if, for all totally

meaningful terms s and t, s(→→ ∪ ←← ∪
U
= )∗t implies s(→→ ∪ ←←)∗t.

4 Finite-term rewriting

In this section, only finitary TRSs are considered. That is, all terms are
finite and all reduction sequences are finitely long. There is no limit on the
number of symbols or rules in a rewrite system.

We first prove some general lemmas.

Lemma 1
U
↔ is transitive if and only if Axiom 5 holds.

Proof of Lemma 1 Assume Axiom 5. Suppose r
U
↔A s

U
↔B t. Let C be

the set of minimal elements of A ∪B. Then by Axiom 5, r
U
↔C t.

Now suppose that
U
↔ is transitive, s

U
↔ t, and s ∈ U . Let r be a member

of U containing no proper subterm in U . Then r
U
↔ s

U
↔ t, so by transitivity,

r
U
↔ t. But the choice of r implies that t ∈ U . Therefore,

U
↔ is transitive.

Proof of Lemma 1 2

8
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Example 1 Consider terms constructed from nullary A and B, and unary

F . Let U consist of every term except F (A). We have F (A)
U
↔ F (B)

U
↔ A,

but not F (A)
U
↔ A.

Lemma 2

1. Suppose U satisfies Axiom 2. If s
U
← s′ out U

−→−→ t, then for some t′,

s→→ t′
U
← t.

2. Suppose U satisfies Axiom 2. If s
U
↔ s′ out U

−→−→ t, then for some t′,

s→→ t′
U
↔ t.

3. Suppose U satisfies Axiom 2. If s
U
= s′ out U

−→−→ t, then for some t′,

s→→ t′
U
= t.

4. Suppose U satisfies Axioms 1 and 2. If s
in U
−→−→ s′ out U

−→−→ t, then for some

t′, s
out U
−→−→ t′

in U
−→−→ t.

Proof of Lemma 2

1. Let s
U
← s′ by substitution at positions A of s′. Let A′ be the set of

residuals of A by s′ out U
−→−→ t. No step of s′ out U

−→−→ t can happen inside any
residual of the subterms of s′ at positions in A, nor, by Axiom 2, can it
overlap any of them. These residuals, being identical to their ancestors,
are in U . Therefore, starting from s instead of s′, the same sequence
of reductions can be performed at the same positions, giving a term t′

differing from t by substituting terms for the subterms of t at A′.

2. The second part is proved similarly. Note that we cannot conclude that

s
out U
−→−→ t′ unless Axiom 5 also holds.

3. Immediate from the preceding item.

4. Suppose s
in U
−→−→ s′ out U

−→−→ t. Let A be the set of positions of maximal

subterms of s′ in U . Axiom 1 implies that each step of s
in U
−→−→ s′ takes

place at a position of which some member of A is a prefix. By Axiom 2,

the reduction s′ out U
−→−→ t can only reduce redexes that are outside and

do not overlap any residual of A. This reduction can therefore be

performed on s, to give a reduction s
out U
−→−→ t′. Let A′ be the set of

9
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residuals of A in t′ by this reduction. The reduction s
in U
−→−→ s′ is an

interleaving of
in U
−→−→-reductions on the subterms of s′ at positions in A.

By performing the same reductions on the subterms of t′ at positions

in A′ we obtain a
in U
−→−→-reduction of t′ to t.

Proof of Lemma 2 2

Lemma 3 Suppose U satisfies Axioms 1 and 2. If s →→ t then for some r,

s
out U
−→−→ r

in U
−→−→ t.

Proof of Lemma 3 The given reduction can be expressed as an alternation

of
out U
−→−→ and

in U
−→−→ segments. A finite number of applications of Lemma 2(4)

suffice to move all
in U
−→ steps to the end of the sequence.

Proof of Lemma 3 2

Lemma 4 Suppose U satisfies Axioms 1 and 2. If s →→ t and t is totally

meaningful, then s
out U
−→−→ t.

Proof of Lemma 4 This follows from Lemma 3 since, by Axiom 1, if r
in U
−→−→

t and t is totally meaningful, then r = t.

Proof of Lemma 4 2

Lemma 5 Suppose U satisfies Axioms 1 and 2. If s
U
= s′ →→ t, and t is

totally meaningful, then s→→ t.

Proof of Lemma 5 Assume Axioms 1 and 2, and that s
U
= s′ →→ t. By

Lemma 4, s′ out U
−→−→ t. By Lemma 2, s→→ t′

U
= t. Since t is totally meaningful,

t′ = t.

Proof of Lemma 5 2

Lemma 6 Suppose U satisfies Axiom 1. Then
in U
−→−→ is a subrelation of

U
= .

Proof of Lemma 6 Suppose that s
in U
−→ t by reducing a redex contained in

an undefined subterm at position u. By Axiom 1, s
U
↔{u} t. Therefore, for a

finite reduction s
in U
−→−→ t, s

U
= t.

Proof of Lemma 6 2

10
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Lemma 7 Suppose U satisfies Axioms 1 and 2. If s
U
= r →→ t, then for

some q, s→→ q
U
= t.

Proof of Lemma 7 Assume Axioms 1 and 2 hold. By transitivity of
U
= ,

it is sufficient to prove the lemma from the hypothesis that s
U
↔ r →→ t.

By Lemma 3, we have s
U
↔ r

out U
−→−→ t′

in U
−→−→ t. By Lemma 2(2), this implies

s→→ r′ U
↔ t′. By Axiom 1 and Lemma 6, r′ U

= t.

Proof of Lemma 7 2

4.1 Genericity

The Genericity Lemma formalizes our intuition that meaningless terms are
computationally irrelevant.

Lemma 8 (Genericity) In a left-linear term rewrite system, every set U
satisfying Axioms 1 and 2 is generic.

Proof of Lemma 8 Suppose that C[ ] is a context, s ∈ U , t is totally mean-

ingful, and C[s]→→ t. By Axioms 1 and 2 and Lemma 4, C[s]
out U
−→−→ t. For any

term r, C[s]
U
→ C[r]. By Axiom 2 and Lemma 2(1), C[r] →→ t′

U
← t. Since t

is totally meaningful, t = t′. Therefore, U is generic.

Proof of Lemma 8 2

We remark that the axioms we gave in [AKK+94] do not suffice for gener-
icity, as is demonstrated by the example of the rule F (A) → B and the set
U = {A}. This satisfies the axioms of that paper, but U is not generic. F (A)
reduces to the totally meaningful term B, but F (B) does not reduce to B.

The axioms here are sufficient but not necessary, as demonstrated by the
following examples.

Example 2

• The rules {A → B, B → B} and the set U = {A}. U is generic, and
satisfies Axiom 2 but not Axiom 1.

• The rules {G(A)→ B, G(x)→ B} and the set U = {A}. U is generic,
and satisfies Axiom 1 but not Axiom 2.

11
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Figure 1: Diagram for the proof of Lemma 9

These are deliberately contrived counterexamples. The axioms are sat-
isfied by many notions of meaninglessness occurring in the literature. In
many cases in Section 8, an example showing failure of an axiom can be used
directly to show failure of genericity.

4.2 Confluence and consistency

Lemma 9 (Confluence) In an orthogonal term rewrite system, if U satis-
fies Axioms 1 and 2 then the system is confluent modulo U .

Proof of Lemma 9 See Figure 1. (1) and (3) are given by Lemma 7. (2)
is given by confluence of finite orthogonal term rewrite systems.

Proof of Lemma 9 2

Lemma 10 In a left-linear term rewrite system, suppose that U satisfies
Axioms 1 and 2, and the rewrite system is confluent up to U . Then the
system is relatively consistent with respect to U .

Proof of Lemma 10 Consider a proof of equality of two totally meaningful
terms s0 and sn. It takes the form of a deduction s0R1s1R2 . . . Rnsn, where
each relation Ri is either a reduction sequence (forwards or backwards) or an

instance of
U
= .

12

The Journal of Functional and Logic Programming 1999-1



Kennaway et al. Meaningless Terms in Rewriting §5

Consider the leftmost occurrence in the proof of either
U
= or ←←→→.

If the former is leftmost, then the proof must begin with s0
U
= s1, s0 →→

s1
U
= s2 or s0 ←← s1

U
= s2. The first two are impossible because s0 is totally

meaningful. The third implies, by Lemma 5 and total meaningfulness of s0,
that s0 ←← s2.

If ←←→→ occurs to the left of all occurrences of U , then the proof must
begin s0 ←← s1 →→ s2 or s0 →→ s1 ←← s2 →→ s3. By confluence up to U , this

can be transformed into s0 →→
U
=←← . . ., and then by the previous case into

s0 →→←← . . ..

Therefore, if the proof contains any occurrences of
U
= or ←←→→, the left-

most can be removed without introducing any new such segments. Therefore,
all of them can be removed. The result is a proof of equality of s0 and sn of
the form s0 →→←← sn, which is a proof in the original system.

Proof of Lemma 10 2

Corollary 1 (Relative consistency) In an orthogonal term rewrite sys-
tem, suppose that U satisfies Axioms 1 and 2. Then the system is relatively
consistent with respect to U .

Proof of Corollary 1 Since orthogonal systems are confluent, they are
confluent up to any set U . The corollary is then immediate from Lemma 10.

Proof of Corollary 1 2

5 Finite lambda calculus

Our results for finitary lambda calculus with beta reduction are rather similar
to the above, but with the addition of an extra hypothesis on U , Axiom 3.
With this axiom, the proofs of Lemmas 2, 3, 4, and 5 carry over to the
lambda calculus, and the Genericity property follows immediately.

Lemma 11 (Genericity) In finitary lambda calculus, every set U satisfy-
ing Axioms 1, 2, and 3 is generic.

Lemma 12 (Relative consistency) Suppose that U satisfies Axioms 1, 2,
and 3. Then the system is relatively consistent with respect to U .
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Proof of Lemma 12 The lambda calculus is left-linear and confluent and,
therefore, confluent up to U for any U . Thus, the other hypotheses of
Lemma 10 hold. The proof proceeds as for that lemma.

Proof of Lemma 12 2

6 Transfinite rewriting

6.1 Basic concepts

The basic concepts of transfinite term rewriting and lambda calculus have
already been set out [KKSdV95, KKSdV97]. (Although the title of the former
paper appears to restrict it to orthogonal systems, its basic definitions and
some of its results apply to left-linear systems.) We shall very briefly state
the fundamental definitions and two basic theorems.

The infinite terms may be obtained by defining a metric on the space
of finite terms and taking the metric closure. The metric defines the dis-
tance between non-identical terms s and t to be 2−d where d is the depth
of the shortest position at which they differ1. The metric completion adds
terms such as Cons(1,Cons(2,Cons(3, . . .))) or A(A(A(. . . , . . .), A(. . . , . . .)),
A(A(. . . , . . .), A(. . . , . . .))). A reduction step is defined as in the finite case.
We require that the left-hand side of a rewrite rule be a finite term, but the
right-hand side may be infinite.

Transfinite rewrite sequences may be of any ordinal length, finite or infi-
nite. For a review of the basic definitions of ordinal numbers, see [Phi92].

A transfinite rewrite sequence of length α, an ordinal number, consists of
a sequence of terms ( tβ | 0 ≤ β ≤ α ), and for each β < α a reduction step
tβ → tβ+1. An open transfinite rewrite sequence is defined similarly, except
that if α is a limit ordinal, there is no term tα.

Given such a sequence, let the reduction tβ → tβ+1 be performed at
position uβ, with depth dβ. The sequence is strongly continuous if for every
limit ordinal λ < α, dβ tends to infinity as β tends to λ from below. If α is
not a limit ordinal, or if it is and the above condition on depths is satisfied
also for λ = α, then the sequence is strongly convergent .

1Readers familiar with [KKSdV97] should note that for brevity, we only discuss Λ111

in this paper. Our results also apply to Λ001 and Λ101 — see the discussion of abc-active
terms in Section 8.1.2.

14
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There is a standard topology on the class of ordinals, called the order
topology, in which a basis for the open sets is the class of intervals { γ |
α ≤ γ < β } for all α and β. Every strongly continuous (resp. convergent)
sequence is continuous (resp. convergent) with respect to this topology on
ordinals and the metric on the space of finite and infinite terms.

We consider only strongly convergent reductions. All reductions men-
tioned are either proved or implicitly assumed to be strongly convergent.

For transfinite rewriting, the definitions of
U
→A and

U
↔A in Section 2

apply verbatim. This implies that the set A can be infinite. However, the

transitive closure
U
= is for both finite and infinite rewriting the union of all

finite compositions of the relation
U
↔. We do not define any notion of an

infinite composition of relations.
Sequences of length greater than ω may seem to lack computational mean-

ing, but their existence cannot be avoided. As soon as we allow ourselves
to take the limit of an infinite reduction sequence, there is the possibility of
the limit term containing redexes, and hence of the construction of sequences
longer than ω. Furthermore, the usual “tiling” method of constructing the
projection of one sequence over another will, in general, build sequences of
lengths much greater than ω. Fortunately, such sequences need not lose
computational motivation, because of the Compression Lemma:

Lemma 13 (Compression) [KKSdV95, KKSdV97] For left-linear TRSs
and for lambda calculus, for any ordinal α, if t reduces to s by a reduction of
length α, then t reduces to s by a reduction of length at most ω.

The main difference with finite rewriting is that infinitary confluence (con-
fluence of→→) is not implied by orthogonality. The canonical counterexample
is given by the rules A(x)→ x and B(x)→ x and the term A(B(A(B(. . .)))),
which reduces to both A(A(A(. . .))) and B(B(B(. . .))), each of which reduces
only to itself. The only obstacle to confluence lies with the hypercollapsing
terms. All of the terms in the example are hypercollapsing.

Lemma 14 ([KKSdV95], Theorem 7.4, [KKSdV97], Theorem 57) Transfi-
nite orthogonal TRSs and lambda calculus are confluent up to H.

For lambda calculus, Theorem 57 of [KKSdV97] in fact proves confluence
modulo H. [KKSdV95] omits to do this for term rewriting, but our results
later imply that transfinite orthogonal TRSs are in fact confluent modulo
H.

15
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Corollary 2 Transfinite orthogonal TRSs and lambda calculus are confluent
up to any U satisfying Axiom 4(1).

6.2 Basic properties

We now establish, for transfinite left-linear term rewriting, counterparts of
the lemmas we proved for finite rewriting, and counterexamples where the
lemmas do not extend.

Lemma 15 If Axiom 5 holds, then
U
↔ is transitive.

Proof of Lemma 15 The proof in Lemma 1 is still valid for this direction
of the implication.

Proof of Lemma 15 2

The proof in Lemma 1 of the reverse implication is not valid. The choice
of r as “a member of U containing no proper subterm in U” may not be
possible, for example, if U is the set of all infinite terms.

Lemma 16 Lemma 2 holds for transfinite term rewriting.

Proof of Lemma 16 The proof requires little more than the original proof
of Lemma 2. We need only note that in each of the four parts, each step of

the given sequence s′ out U
−→−→ t is at the same position as the corresponding step

of the constructed sequence s→→ t′. This establishes that it is strongly con-
vergent. From that it follows that the set A associated with the substitution
of subterms of s′ has a set of residuals A′ in t. In part (4), strong convergence

of t′
in U
−→−→ t follows from the fact that it is an interleaving of disjoint copies

of strongly convergent reductions of subterms of s.

Proof of Lemma 16 2

Lemma 17 Lemma 3 holds for transfinite term rewriting.

Proof of Lemma 17 Suppose U satisfies Axioms 1 and 2. Let s →→ t. By
the Compression property, this reduction can be assumed to have length
at most ω. It can then be expressed as an alternation of at most ω many
out U
−→−→ and

in U
−→−→ segments. Our aim is to construct the diagram of Figure 2,

in which the zig-zag path from s to t down the lower edge of the figure is

16
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Figure 2: Diagram for the proof of Lemma 17

the given sequence, and where every horizontal sequence is
out U
−→−→ and every

vertical sequence is
in U
−→−→. Each square of the diagram can be constructed by

Lemma 16(4). To construct the right edge, the reduction of r to t, we must
show that each of the horizontal sequences is strongly convergent, and that
their limits can be joined by suitable vertical segments whose concatenation
will strongly converge to t.

From the construction of Lemma 16(4), each step of each horizontal se-
quence of the diagram is at the same depth as the corresponding horizontal
step in the zig-zag. Since by hypothesis the latter is strongly convergent, so
is the former.

Each segment of the right edge exists by the same argument as used in
Lemma 16(4).

Finally, we prove strong convergence of the whole right edge. Choose
any depth d. By strong convergence of the given sequence, there is an n

such that every step of the zig-zag after the nth
out U
−→−→ segment has depth

greater than d. Therefore, every step of the top row after the nth segment
has depth greater than d, as do all the horizontal segments below those.
Therefore, every segment of the right edge after the nth is the projection of
one sequence of depth greater than d over another and, therefore, has depth

17
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greater than d. Therefore, the right edge is strongly convergent.
Furthermore, after n segments, the terms of the right edge are within

a distance of 2−d of the corresponding terms of the zig-zag. Therefore, the
right edge has the same limit as the given sequence, t.

Proof of Lemma 17 2

Lemma 18 Lemma 4 holds for transfinite term rewriting.

Proof of Lemma 18 This follows from Lemma 17 in the same way as
Lemma 4 followed from Lemma 3.

Proof of Lemma 18 2

Lemma 19 Lemma 5 holds for transfinite term rewriting.

Proof of Lemma 19 The proof is as for Lemma 5, using Lemmas 18 and 16
instead.

Proof of Lemma 19 2

Lemma 20 Suppose U satisfies Axiom 1. Then
in U

−→∗ is a subrelation of
U
= .

If Axiom 5 holds, then
in U
−→−→ is a subrelation of

U
↔.

Proof of Lemma 20 For the first part, the proof is as for Lemma 6.

For the second part, assume Axioms 1 and 5, and suppose s
in U
−→−→ t. Let

A be the set of positions of maximal subterms of s in U . Suppose that some
step of the sequence is performed at a position of which no member of A is

a prefix. There must be a first such step s′ in U
−→ t′. Let its position be u.

Since this is a
in U
−→-reduction, s′|u ∈ U . Since all previous steps are within

subterms at positions in A, Axiom 1 implies that s′|u
U
↔ s|u. By Axiom 5,

s|u ∈ U . But this implies that some member of A is a prefix of u, contrary
to the choice of u. Therefore, the entire reduction of s to t happens within
the subterms at positions in A. By Axiom 1, those subterms of t are also in

U , and s
U
↔ t.

Proof of Lemma 20 2

18
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Unlike the finite case, Axiom 5 is necessary. Without it, there is a coun-

terexample to
in U
−→−→ being a subrelation of

U
= . Take a nullary symbol A, a

unary symbol F , and a binary symbol B. Let there be a rule F (A) → A.
Let U = {F (A), A}. U satisfies every axiom except Axiom 5. Consider the
infinite term s = B(A, B(F (A), B(F (F (A)), B(F (F (F (A))), . . .)))). This

rewrites by
in U
−→−→ to t = B(A, B(A, B(A, B(A, . . .)))). But s and t are not

related by
U
= .

Lemma 21 Suppose U satisfies Axioms 1 and 2. If s
U
= r →∗ t, then for

some q, s→∗ q
U
= t.

If Axiom 5 also holds, then if s
U
= r →→ t, then for some q, s→→ q

U
= t.

Proof of Lemma 21 The proof is as for Lemma 7, using Lemmas 17, 16,
and 20 (where the extra hypothesis of Axiom 5 is needed).

Proof of Lemma 21 2

6.3 Genericity, confluence and consistency for trans-
finite term rewriting

With the lemmas just proved, the proofs of genericity and consistency for
finite term rewriting carry over exactly to the transfinite case.

Lemma 22 (Transfinite Genericity) In a left-linear transfinite term re-
write system, every set U satisfying Axioms 1 and 2 is generic.

Lemma 23 (Confluence) In an orthogonal term rewrite system, if U sat-
isfies Axioms 1, 2, 4(1), and 5, then the system is confluent modulo U .

Proof of Lemma 23 See Figure 3. (1) and (3) are given by Axioms 1, 2,
and 5, and Lemma 21. (2) is given by Axiom 4(1) and Lemma 14.

Proof of Lemma 23 2

In a transfinite TRS, U can satisfy every axiom except Axiom 5, and
the system can fail to be confluent modulo U . For an example, take U =
{A, F (A), B} and rules A→ F (A) and C(x)→ D(x, C(x)).

The terms F (A) and F (B) show that Axiom 5 is false. We have F (A)
U
↔

F (B), F (A) ∈ U , but F (B) 6∈ U . All the other axioms are satisfied.
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Figure 3: Diagram for the proof of Lemma 23

s = C(B)
U
↔ C(A) →→ D(A, D(F (A), D(F (F (A)), . . .))) = t, but there

is no term t′ such that s →→ t′
U
= t. Therefore, the system is not confluent

modulo U .

Lemma 24 Suppose U satisfies Axioms 1 and 2 and the rewrite system is
confluent up to U . Then the system is relatively consistent with respect to U .

Corollary 3 (Transfinite relative consistency) In an orthogonal trans-
finite term rewrite system, suppose that U satisfies Axioms 1, 2 and 4(1).
Then the system is relatively consistent with respect to U .

Proof of Corollary 3 From Corollary 2 and Lemma 14.

Proof of Corollary 3 2

6.4 Genericity, confluence, and consistency for trans-
finite lambda calculus

For transfinite lambda calculus, the Genericity, Confluence, and Consistency
Lemmas carry over by taking the union of the axioms required for the cases
of finite lambda calculus and transfinite term rewriting.

Thus, with the additional hypothesis of Axiom 3, transfinite lambda cal-
culus satisfies the lemmas of Section 6.2. We conclude that with Axiom 3 it
satisfies Lemma 11, and with Axioms 3 and 4, it satisfies Lemma 12.
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7 Böhm trees

In lambda calculus we have the notion of a Böhm tree [Bar84]. This is a
possibly infinite lambda term in normal form that may also contain the con-
stant ⊥, which represents undefinedness. We can generalise this concept to
other rewrite systems, and show that, given suitable constraints on the no-
tion of undefinedness, the Böhm trees relative to that notion form a semantic
domain for the rewrite system, and that the computation of the ‘value’ of a
term consists of computing its normal form in a transfinite extension of the
rewrite system. For terms to have unique Böhm trees, confluence up to U is
required, so we will only consider orthogonal TRSs in this section. As Böhm
terms are closely connected with transfinite rewriting, we also consider only
transfinite rewrite systems.

Definition 6 The Böhm terms are obtained by adjoining the nullary func-
tion symbol ⊥ to a rewrite system. Böhm terms are partially ordered by stip-
ulating that ⊥≤ s for every term s, and that all the term-forming operations
are monotonic.

The set of Böhm terms is an algebraic domain in which the order-finite
terms are the finite Böhm terms. The maximal elements of the domain are
the terms not containing ⊥, i.e., the original terms of the system.

There is a natural way of extending a set U of terms of the original system
to a set of Böhm terms.

Definition 7 If t is a Böhm term, a ⊥-instance of t is a term t′ that can be
obtained from t by replacing every occurrence of ⊥ by a term in U . (Different
occurrences of ⊥ may be replaced by different terms.)

Definition 8 U⊥ is the set of Böhm terms having a ⊥-instance in U .

The following lemma makes U⊥ easier to work with.

Lemma 25 Let U satisfy Axiom 5. If some ⊥-instance of t is in U , then
every ⊥-instance is.

For each of Axioms 1–5, if U satisfies that axiom, then so does U⊥.

Proof of Lemma 25 Let t′ and t′′ be ⊥-instances of t. t′ and t′′ differ only
by substitution of subterms in U . By Axiom 5, t′ ∈ U if and only if t′′ ∈ U .
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For the second part, we prove Axiom 2 as an example. Proofs for the
others are equally simple. Let t ∈ U⊥, and let C[t] be a redex whose pattern
includes the root of t. Let t′ ∈ U result from a substitution of members of U
for ⊥ in t. Let C ′[ ] result from C[ ] by making some substitution of members
of U for occurrences of ⊥. Then C ′[t′] is a redex whose pattern overlaps the
root of t′. By Axiom 2 for U , C ′[t′] ∈ U . Therefore, C[t] ∈ U⊥.

Proof of Lemma 25 2

Definition 9 Böhm reduction is reduction by the rules of the system together
with the ⊥-rule: t →⊥ if t is not ⊥ and t ∈ U⊥. We write →B for a Böhm
reduction step, and →⊥ for a reduction by the ⊥-rule.

A Böhm normal form or Böhm tree (e.g., a set U) is a term that is in
normal form with respect to Böhm reduction.

Theorem 1 If U satisfies Axiom 4(2), then every term has at least one
Böhm normal form.

Proof of Theorem 1 Let t be a term. If t is not root-active, it is reducible
to a root-stable term t′. Apply the same argument recursively to the imme-
diate subterms of t′. This gives a strongly convergent reduction sequence,
ending with a term t′′ having the property that every redex is contained in
a root-active subterm. By Axiom 4(2), these subterms are all in U . Hence,
if all the outermost redexes by the ⊥-rule in t′′ are reduced, the result is a
Böhm normal form.

Proof of Theorem 1 2

Lemma 26 Let U satisfy Axiom 5. Then the ⊥-rule is transfinitely Church–

Rosser, and if s
U⊥= t, then s and t have a common reduct by →→⊥.

Proof of Lemma 26 Suppose that p reduces to q by the ⊥-rule. It follows
from Axiom 5 that if every outermost subterm of p and q is replaced by ⊥,
the results must be identical. Therefore, if p is ⊥-reducible to q0 and q1, then
q0 and q1 reduce to the same term by outermost ⊥-reduction. That is, the
⊥-rule is transfinitely Church–Rosser.

If s
U⊥→ t, then it is clear that s and t have a common reduct by ⊥-

reduction. Therefore, if s
U⊥= t, then s and t are convertible by ⊥-reduction.

By the first part of the lemma, they have a common reduct by →→⊥.

Proof of Lemma 26 2
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Lemma 27 If s→→B t, then s→→→→⊥ t, provided that, in the case of lambda
calculus, U satisfies Axiom 3.

Proof of Lemma 27 Let the steps of s→→B t be sβ →B sβ+1, where s = s0

and t = sα.
Define a new sequence by transfinite induction thus.

Base case: s′
0 = s0.

Successor case: Suppose s′
β has been defined. If sβ →B sβ+1 is a ⊥-

reduction, define s′
β+1 = s′

β. Otherwise, let it be a reduction by a
rewrite rule applied at position u. Define s′

β → s′
β+1 by reduction at u.

Limit case: If s′
β has been defined for all β less than a limit ordinal λ, define

s′
λ to be the limit of the sequence.

To prove that this defines a reduction sequence, we must show that in the
successor case, s′

β has a redex at u, and in the limit case, the limit s′
λ exists.

We will also need to know that for all β, s′
β →→⊥ sβ. These can be proved

simultaneously by induction. Clearly, if s′
β →→⊥ sβ and sβ → sβ+1, then s′

β

has a redex everywhere that sβ does (which requires Axiom 3 in the case of
lambda calculus), and s′

β+1 →→⊥ sβ+1. Since s′
β → s′

β+1 takes place at the
same place as sβ → sβ+1, the constructed sequence is strongly convergent,
and, therefore, s′

λ exists.
This also shows that s′

α →→⊥ sα = t.

Proof of Lemma 27 2

Theorem 2 Let U satisfy Axioms 1, 2, 4(2), and 5 (and 3 in the case of
lambda calculus). Then Böhm reduction has the transfinite Church–Rosser
property.

Proof of Theorem 2 See Figure 4. We are given Böhm reductions from s
to t0 and t1. By Axiom 4(2) and Theorem 1 we can extend these to reach
Böhm normal forms u0 and u1. Squares 1 and 3 in the figure are given by
Lemma 27 (requiring Axiom 3 in the case of lambda calculus).

The ⊥-reductions of v0 and v1 to u0 and u1 can be performed by replace-
ment of the maximal undefined subterms of v0 and v1 by ⊥. Let these be at
sets of positions A0 and A1, respectively.
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Figure 4: Proof of CR∞ for Böhm reduction

By Lemma 14, v0 and v1 are reducible (by ordinary reduction) to terms

w0 and w1, which are related by
H
= and hence, by Axiom 4(1), by

U⊥= . This
gives the pentagon 2.

v0 and v1 contain no redexes outside subterms at A0 and A1. Axiom 5
implies that no (ordinary) reduction of v0 or v1 can create any redexes outside
those subterms. Therefore, the reductions of v0 and v1 to w0 and w1 lie

entirely inside them. By Axiom 1, v0

U⊥↔ w0 and v1

U⊥↔ w1.
The ⊥-reductions of v0 and v1 to u0 and u1 can be performed by replacing

every subterm in A0 and A1 by ⊥. Therefore, v0

U⊥↔ u0 and v1

U⊥↔ u1.

Putting these together, we find that u0

U⊥= u1. By Axiom 5 and

Lemma 15,
U⊥↔ is transitive, therefore u0

U⊥↔ u1. Since u0 and u1 are Böhm
normal forms, this implies that u0 = u1.

Proof of Theorem 2 2

Corollary 4 Under the same hypotheses, every term has a unique Böhm
tree.

The Böhm tree of a term can be considered to be its meaning in the
domain of Böhm trees. Thus any set of terms U satisfying the axioms gives a
denotational semantics for the rewrite system, where the meaning of a term
is its normal form with respect to transfinite Böhm reduction.
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8 Sets of meaningless terms

8.1 Sets of meaningless terms in term rewriting

We now check our axioms for some sets of first-order terms that seem in-
tuitively good candidates. These include all the examples in [AKK+94].
Although our genericity theorems apply to all left-linear TRSs, most of the
following notions are only defined for orthogonal TRSs.

8.1.1 False, True

The empty set and the set of all terms (i.e., the predicates ‘false’ and ‘true’
on terms) satisfy all the axioms, except that the empty set fails Axiom 4(1)
or Axiom 4(2) if there are any hypercollapsing or root-active terms, respec-
tively. Hence, they satisfy the Genericity and (with the same exception) the
Consistency Lemmas. Note that the Consistency Lemma is vacuous when U
is the set of all terms, since there are then no totally meaningful terms.

8.1.2 Has no normal form/Has an infinite rewrite

In general, neither the set of terms without normal form nor the set of terms
having an infinite rewrite is generic, even for orthogonal systems. The former
violates Axiom 2 for the rules {A→ A, G(H(x))→ B}. The term H(A) has
no normal form, but replacing H(A) by B in G(H(A)) changes the normal
form of the latter term from B to G(B). The set of terms having an infinite
rewrite violates Axiom 1, as is shown by the system {A → A, B(x) → C}.
B(A) has an infinite rewrite, but its reduct C does not.

However, for finitary orthogonal non-erasing TRSs — that is, where every
variable occurring on the left of a rule also occurs on the right of that rule
(cf. [Klo92, p. 75]) — the two classes coincide and are generic. Axiom 4(2)
holds, since root-active terms have no normal form. Axiom 5 holds because
in a non-erasing system, if a subterm of a term has no normal form, then
neither does the whole term.

In the transfinite case, the natural analogues of these concepts are the
class of terms having no normal form (by transfinite reduction) and the class
of terms having an infinite non-strongly convergent rewrite. These two classes
do not coincide, even in non-erasing systems, as demonstrated by the rules
{A → A, G(H(x)) → J(G(H(x)))}. H(A) does not have a normal form.
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G(H(A)) has the normal form J(J(J(. . .))) (the troublesome subterm H(A)
is “pushed into infinity”). As a result, neither class is generic.

We can strengthen the concept of non-erasingness for transfinite systems,
by calling a system transfinitely non-erasing if for any reduction t→→ t′, every
subterm of t has at least one residual in t′. For transfinitely non-erasing
TRSs, the property of having an infinite rewrite is once more equivalent to
the property of having no normal form. (However, unlike non-erasingness,
transfinite non-erasingness is not a decidable property.) For such TRSs, this
class of terms satisfies Axioms 1, 2, 4(2), and 5, and so the genericity and
consistency lemmas hold, and there is a Böhm model. An example of the
distinction is given by the rule A(x) → B(A(x)). This rule is non-erasing,
but an infinite reduction from the term A(C) gives the term B(B(B(. . .))),
which contains no residual of the subterm C. Therefore it is not transfinitely
non-erasing.

8.1.3 Opaque

This is a concept that applies to orthogonal rewrite systems. A closed term
is opaque if no term reachable from it is overlapped by any redex2. A general
term is opaque if every closed instance is opaque.

In an orthogonal system, every root-active term is opaque, but in general
there may be more opaque terms, and it is even possible for the class to
include some normal forms. An example is Head(Nil), given only the rule
Head(Cons(x, y))→ x.

Axiom 1 holds by definition in the finitary case, and the infinitary version
then follows from the fact that left-hand sides of rules are finite. Axiom 2 is
trivially true, since a proper subterm overlapping with a redex is not opaque.
Axiom 4(2) is immediate from orthogonality. To prove Axiom 5, suppose

that s
U
↔ t and that s is not opaque. Then s →→ q for some term q that is

overlapped by a redex. Since this property of q depends only on some finite
prefix of q, it follows (from the Compressing Lemma 13 and the finiteness of
the left-hand side of a rule) that there is a finitely long reduction of s to some

term q′ having the same property. From Lemma 21 we have t→→ q′ U
= q. By

Axiom 2, q′ must also be overlapped by a redex; therefore, t is not opaque.

2In [AKK+94] the definition of opaqueness is stated erroneously, but this was the
concept intended.
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8.1.4 ω-undefined

A finite term is ω-undefined if all terms reachable from it can be decomposed
into ‘redex compatible’ parts [Klo92, Def. 3.3.15]. We add a nullary symbol
ω, and define a partial ordering on terms containing ω by stipulating that
ω ≤ t for all t, and that all function symbols are monotonic. Say that a term
t (which may contain ω) is a partial redex if t ≤ t′ for some redex t′. Define
the ω-rule: t → ω if t is a partial redex other than ω. It is easy to show
that every finite term t has a unique normal form ω(t) by this rule. For an
infinite term t, define ω(t) to be the least upper bound of ω(t′) for all finite
terms t′ < t. A term t is ω-undefined if for every reduct t′ (by the ordinary
rewrite rules of the system) of every instance of t, ω(t′) = ω.

It is clear that every root-active term is ω-undefined. There are many
other ω-undefined terms. For example, given the rule Head(Cons(x, y))→ x,
Head(t) will be ω-undefined whenever t is. The infinite term Head(Head(
Head(. . .))) is also ω-undefined (even though it is a normal form).

Axiom 2 is immediate. Axiom 1 is immediate in the finitary case and is
simple to prove in the transfinite case. Axiom 4(2) follows from orthogonality.
To prove Axiom 5, suppose that s and t are ω-undefined, and C[s] is not.
Then some instance C[s][x := r] = C[x := r][s[x := r]] is reducible to
a term q for which ω(q) 6= ω. Since this property of q is determined by
some finite prefix of q, there is a finite reduction C[s][x := r] to some q′ for
which ω(q′) 6= ω, by the same argument as for the case of opaque terms.

C[x := r][s[x := r]]
U
= C[x := r][t[x := r]] = C[t][x := r]; therefore, from

Lemma 21 it follows that for some q′′, C[x := r][t[x := r]] →→ q′′ U
= q′. This

implies that ω(q′′) 6= ω, and hence that C[t] is not ω-undefined.

8.1.5 Hypercollapsing, root-active

If U is the set of hypercollapsing terms or the set of root-active terms in an
orthogonal term rewrite system, then Axiom 1 holds since by the parallel
moves lemma, projecting an infinite rewrite over finitely many steps can
erase only finitely many root-reductions. Axiom 2 holds by orthogonality.
Axiom 4(1) is true for both, and Axiom 4(2) for the root-active terms, by
definition. Axiom 5 follows by an argument similar to the cases of opaqueness
and ω-undefinedness.

For non-orthogonal systems the genericity lemma fails, as witnessed by
{A(x) → x, B(x) → x, G(A(x)) → C}. The hypercollapsing terms are all
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terms of the form f0(f1(f2(. . .))), where each fi is A or B. G(Aω) reduces
to the totally meaningful term C, but G(Bω) does not. Clearly, Axiom 2 is
false.

8.2 Sets of meaningless lambda terms

The axioms are easily checked for many known notions of meaninglessness
in lambda calculus. Some other classes known not to be good notions of
meaninglessness violate one or more of the axioms.

8.2.1 Has no normal form/Has an infinite rewrite

As for the case of TRSs, neither the class of terms having no normal form
nor the class of terms having an infinite rewrite is generic. When lambda
terms are restricted such that each abstracted variable occurs at least once
in the body of the lambda term (Church’s λI-calculus [Chu41]), then the
two classes coincide and are generic, by an argument similar to the one for
non-erasing orthogonal TRSs.

In the transfinite λI-calculus this does not hold, because of the same
phenomenon of ‘pushing to infinity’ that we saw for transfinite TRSs. Let
Ω =def (λx.xx)(λx.xx) and Y = λf.(λx.f(xx))(λx.f(xx)). Then the func-
tion part of the redex (λy.yxΩ)Y does not have a normal form, but the whole
redex transfinitely reduces to the infinite normal form x(x(x(. . .))).

8.2.2 Non-simply typable λ-terms

The set of non-simply typable λ-terms is not generic. For example, the term
(λx.xx)I reduces to the totally meaningful term I, but if its non-typable
subterm λx.xx is replaced by λx.λy.yx, the whole term reduces to the totally
meaningful term λy.yI. All the axioms hold except for Axiom 1, as the non-
simply typable terms are clearly not closed under reduction (even in the
λI-calculus).

8.2.3 ΩM

For any n ≥ 0, the set Ωn of terms of the form ΩM1 . . . Mn satisfies all the
axioms except Axiom 4(1). Each of these classes is therefore generic and
consistent but does not give a Böhm model.
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8.2.4 Zero terms

A zero term [Bar92] is a term that cannot be reduced to an abstraction. The
terms, all of whose instances are zero terms, are the opaque terms of lambda
calculus. These are easily shown to satisfy Axioms 1, 2, 3 and 4(2).

To prove Axiom 5, the argument is similar to the way this was proved
for notions of undefinedness in TRSs. Suppose that every instance of s
and t is a zero term, but some instance of C[s] is not, say, C[s][x := r] =
C[x := r][s[x := r]]. Then C[x := r][s[x := r]] reduces to an abstraction
λy.r and, therefore, does so in finitely many steps. By the lambda-calculus
equivalent of Lemma 21, C[x := r][t[x := r]] is reducible to a term q such that

λy.r
U
= q. Since abstractions are not zero terms, q must be an abstraction.

Therefore C[x := r][t[x := r]] is not a zero term, and C[t] is not in the class
of meaningless terms.

8.2.5 Easy terms

t is an easy term if for every closed term s, the λβ-calculus plus the equation
t = s is consistent [JZ85]. It is immediate that Axiom 1 holds for the class
of easy terms. Axiom 3 holds, since t[x := r] = s follows from t = s if
s is closed. To prove Axiom 4(2), suppose that t is root-active and s is
closed, and that adding the axiom t = s allows a proof of K = I (where
K = λx.λy.x and I = λx.x). By confluence of beta reduction, such a proof
must exist that begins with a series of beta-expansions on K, then uses the
axiom t = s to replace some instance of t (or more generally, some reduct
of some instance) by s, and then continues with more proof steps ending
with I. Consider that use of the axiom and the beta expansion preceding
it. We have r ←β C[t′] = C[s]. If the beta reduction takes place within t′,
then we can go from r to C[s] by a single application of the axiom. If it
takes place outside t′, then the redex is also present in C[s], and we can get
from r to C[s] by first applying the axiom t = s to each residual of t′ in r,
and then beta-expanding to s. The redex cannot overlap t′, since a reduct
of an instance of a root-active term cannot be an abstraction. Therefore,
in all cases, the first application of the axiom in a proof of K = I can be
moved closer to the beginning. But the first step in such a proof cannot be
an application of the axiom, since K contains no easy subterms. To check
Axiom 2, we must show that if an abstraction λx.t is easy, then so is (λx.t)s
for any s. (λx.t)s = r follows from t[x := s] = r. But t[x := s] is easy;
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therefore, so is (λx.t)s. We do not know the status of Axiom 5.

8.2.6 Unusable

Consider the lambda calculus λδ with δ-rules of [Kup94, Sec. 7.2] and
[Kup95]. Define the notion of strict context thus: The empty context [ ]
is a strict context, and if C[ ] is a strict context, then so are C[ ]s, λx.C[ ]
and FC[ ], for any term s, variable x, and constant F . Then, a term s
is usable if C[s] has a normal form for some strict context C[ ]. Axiom 1
holds by definition and confluence. Axiom 2 for λδ-redexes holds because
this amounts to showing that if s is unusable, then st is unusable, which
follows directly from the definition of strict context. Axiom 3 holds because
if s[x := t] is usable, then (λx.s)t is, and by the definition of strict context,
so is s. Axiom 4(2) holds since the unusable terms include the unsolvables,
and root-active terms are unsolvable. Axiom 5 is proved as before.

8.2.7 abc-active

(cf. [KKSdV97]) Given a string of three binary digits abc, there is a measure
Dabc(s, φ) of length of a position φ of a term s:

Dabc(s, ε) =def 0

Dabc(λx.s, 0φ) =def a + Dabc(s, φ)

Dabc(st, 0φ) =def b + Dabc(s, φ)

Dabc(st, 1φ) =def c + Dabc(t, φ)

Any of these measures can be used instead of the usual “syntactic” measure
of depth of a subterm (which is D111), to give seven different versions of
infinitary lambda calculus, plus the finitary lambda calculus as the case D000.

A term is (abc-)stable if it cannot be reduced to a term having a redex
at abc-depth 0. It is (abc-)active if it cannot be reduced to a abc-stable
term. Three particular instances of these abstract concepts are well-known:
111-active is just another formulation of root-active, the 001-stable terms are
exactly the terms having a head normal form, and the 101-stable terms are
exactly the terms having a weak head normal form. For all depth measures,
Axioms 1 and 2 are immediate from the definitions. For depth measures 001,
101, and 111, the other axioms all hold. For all the other measures, at least
one of them fails. (Detailed proofs for each axiom and depth measure are
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given in the appendix.) From this we conclude that Genericity, Consistency,
and the existence and uniqueness of Böhm trees hold for the measures 001,
101, and 111, for both finite and transfinite lambda calculus. This confirms
the conclusion of [KKSdV97] that these are the only measures that yield
well-behaved versions of infinitary lambda calculus.

8.2.8 Unsolvable/ω-undefined/001-active

A lambda term s is solvable [Bar84] if there exist tuples x of variables and t of
terms such that (λx.s)t→→ I. Taking the same definition of ω-undefinedness
as for TRSs, it is not difficult to check that the unsolvable terms coincide
with the ω-undefined ones. It is well known that the unsolvable terms are
exactly the terms without head normal form. This implies that unsolvability
is equivalent to 001-active, treated above. Hence all axioms hold.

8.2.9 Strongly unsolvable/101-active

A term is strongly unsolvable [Ong88, Sec. 2.1.1–2] if it is a zero term and
it is not convertible to a term of the form xs. That is, it has no weak head
normal form, or equivalently it is a 101-active form, treated above. Hence
all axioms hold.

8.2.10 Mute/hypercollapsing/root-active/111-active

A term is mute if it is a zero term that cannot be reduced to a variable or to
an application of a zero term to any term [Ber]. This definition is equivalent
to the properties of being hypercollapsing or being root-active, which in turn
are equivalent to 111-activeness. All axioms hold.
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Appendix abc-active terms in transfinite

lambda calculus

Theorem 3 In transfinite lambda calculus, Axiom 2 holds for all measures
except 0∗0 (i.e., 000 and 010). Axiom 3 is false for ∗∗0, and true for ∗∗1.
Axiom 5 is false for ∗∗0 and 011, and true for 001, 101, and 111.

Proof of Theorem 3 Axiom 2 is false for 0∗0 (i.e., 000 and 010). A coun-
terexample is the term (λx.xΩ)(KI). λx.xΩ is 0∗0-active, but the whole
term reduces to the normal form I. It is true for 1∗∗, since λx.s cannot be
1∗∗-active. The remaining depth measures are 0∗1. For these we argue thus:
if (λx.s)t is reducible to a 0∗1-stable term, then so is s[x := t]. By Axiom 3
(proved below), this implies that s is also.

Axiom 3 is false for ∗∗0. A counterexample is xΩ. This is ∗∗0-active, but
its instance KIΩ is not. The axiom is true for ∗∗1. Let s be ∗∗1-active, and
consider any reduction d of s[x := t] to a term r. We must prove that r is
reducible to a redex. The proof is rather tedious3, and it is summarized in
Figure 5. We split the reduction into two segments: first a reduction e′ of
s[x := t] to a term r′ = r′′[x := t], which performs reductions only outside the
copies of t, followed by a reduction f ′ of r′ to r, which performs reductions
only within subterms of the form tp0 . . . pn.

For each term si in the reduction of s[x := t] to r, we construct a set of
positions Ai and a term s′

i. A0 is the set of positions of maximal subterms
of s[x := t] of the form xp. s′

0 is s. Given s′
k and Ak, let u be the position

of the reduction from sk to sk+1. If u is inside a member of Ak, then take
Ak+1 = Ak and s′

k+1 = s′
k. If u is outside every member of Ak, then s′

k is
obtained by reducing s′

k at u. For each residual v of each member of Ak by
this reduction, take the minimal position v′ such that s′

k|v is at the bottom
end of a left-branching chain of applications whose top end is at v′. (If the
chain is empty, then, of course, v′ = v.) The minimal elements of the set of
all such v′ for the set Ak+1.

Let r′′ be the final term in the sequence of terms s′
k, and A the corre-

sponding set of positions of s′. We thus have a reduction e of s to r′′ and a
reduction e′ of s[x := t] to r′ = r′′[x := t], such that r′ is reducible to r by a
reduction f ′ operating only within the subterms at A.

3There does not exist a syntactic characterisation of the 011- or 111-stable terms,
making proofs like [Bar84, Cor. 11.4.8] impossible.
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s
e

-- r′′

g
-- p′′

r′′[x := t] ≡ r′

g′
-- p′′[x := t] ≡ p′
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e′
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s[x := t]

d
-- r -- •

Figure 5: Axiom 3 for **1 depth in lambda calculus

By Axiom 1, r′′ is ∗∗1-active. Therefore, there is a reduction g of r′′ to a
term p′′ having a redex at zero ∗∗1-depth. This gives a reduction g′ of r′ to
the term p′ = p′′[x := t], which also contains a redex at zero ∗∗1-depth. Since
every redex of r′′ below positions in A is in a subterm of the form xp, and x
is free in r′′, no residual of any such redex can be at zero ∗∗1-depth in the
reduction to p′′. The reduction f ′ reduces only redexes within the subterms
at A. Therefore, the canonical projection of f ′ over g′ preserves the redex at
depth zero of p′. Thus the canonical projection of g′ over f ′ reduces r to a
term having a redex at zero ∗∗1-depth, a contradiction.

Axiom 5 is false for ∗∗0, by the same counterexample as Axiom 3. xΩ
and Ω are both ∗∗0-active, but in the context (λx.[ ])(KI), only the second
yields a ∗∗0-active term. A counterexample for 011 is given by the terms
(λx.Ω)y and Ωy. These differ by substitution of λx.Ω for Ω, both of which
are 011-active, but (λx.Ω)y is 011-active and Ωy is not. For the other three
∗∗1 measures, the usual argument based on Lemma 21 goes through, since
Axioms 1, 2, and 3 all hold, and when a term is reducible to abc-stable form,
it is so reducible in finitely many steps.

Proof of Theorem 3 2

These results establish the positive parts of the following theorem, and
the counterexamples given above also demonstrate the negative parts.

Theorem 4 The Genericity and Consistency properties hold for ∗∗1- and
fail for ∗∗0-active terms. The unique existence of the Böhm normal form
holds for the 111-, 101-, and 001-active terms, and fails for the other depth
measures.
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