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Abstract. The notion of a meaningless set has been defined for infini-
tary lambda calculus axiomatically. Standard examples of meaningless
sets are sets of terms that have no head normal form, the set of terms
without weak head normal form and the set of rootactive terms. The
collection of meaningless sets is a lattice. In this paper, we study the
way this lattices decompose as union of more elementary key intervals.
We also analyse the distribution of the sets of meaningless terms in the
lattice by selecting some sets as key vertices and study the cardinality in
the intervals between key vertices. As an application, we prove that the
lattice of meaningless sets is neither distributive nor modular. Interest-
ingly, the example translates into a counterexample that the lattice of
lambda theories is not modular.

1 Introduction

Classical, finite lambda calculus [1] considers only finite terms. It can not ex-
press inside the calculus that certain terms have an infinite normal form. For
example, the term MM where M = λx.f(xx) has the infinite normal form
f(f(f(. . .))) which is the limit of the reduction sequence MM →β f(MM)→β

f(f(MM)) →β . . .. Infinitary lambda calculus aims to treat finite and infinite
terms in one notational framework with notation for finite and infinite reduc-
tions. It allows us to express that the above reduction sequence has the infinite
term fω as limit. However, the natural extension of finite lambda calculus with
infinite terms and infinite reductions ruins the confluence property [7]. For ex-
ample, the term NN , where N = λx.I(xx) and I = λx.x reduces both to Iω and
Ω = (λx.xx)(λx.xx), which can only reduce to themselves and not be joined by
even infinite reductions.

Needed to restore the confluence property [7, 6, 8, 5] is a designated set of
meaningless terms (for short meaningless set), that is, a set satisfying the Ax-
ioms of Meaninglessness [10, 5] together with a new rewrite rule that allows any
meaningless terms to be rewritten to a fresh symbol ⊥. Those Axioms are general
assumptions needed to prove confluence of the infinitary lambda calculus [10, 5].
By changing the meaningless set, we obtain different notions of ⊥-reduction and
different infinite extensions. Each of these extensions is normalising and conflu-
ent, so that the set of its normal forms becomes a model of lambda calculus.

A standard example of a meaningless set is the setHN of terms without head
normal form. The normal forms of the corresponding infinitary extension of finite
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Fig. 1. Lattice of Meaningless Sets extended with an auxiliary vertex. The
arrow U1

n→ U2 indicates that U1 ⊃ U2. The label n shows the cardinality of the class
of sets of meaningless terms between U1 and U2. NB: of all vertices, the vertex R∪SIL
is not a meaningless set.

lambda calculus are precisely the Böhm trees, but now their definition is within
the syntax of infinite lambda calculus, whereas [1] needed to develop a special
notational machinery. Similarly the choice of the setWN of terms without weak
head normal forms as set of meaningless terms leads to the Lévy-Longo trees [6,
8, 5], and the choice for the set R of rootactive terms recaptures the Berarducci
trees [3, 6, 8, 5]. Although in the initial papers [6, 8, 10, 5] on infinite lambda cal-
culus only those three sample sets were presented as set of meaningless terms,
these sets are not the only sets of meaningless terms. Only in the more recent
papers [14, 15, 9] some aspects of the rich lattice of the sets of meaningless terms
have been explored.

The set of all sets of meaningless terms forms a complete lattice as depicted
in Figure 1. We say U1 → U2 when U1 ⊃ U2. The bottom element is the set R
and the top element is the set Λ∞ of finite and ⊥-free infinite lambda terms.
The meet operation u is intersection and the join t of two sets of meaningless
terms is the smallest meaningless set that contains the two sets.

The purpose of the current paper is to analyse the distribution of the sets
of meaningless terms in the lattice by selecting some sets as key vertices and
study the cardinality in the intervals between key vertices. The key vertices are
all depicted in Figure 1. All key vertices stand for sets of meaningless terms
except for the vertex R ∪ SIL. We included this set in the figure to provide a
complete picture of the lattice. Because, despite the fact that R ∪ SIL itself is
not meaningless, there are infinitely many sets of meaningless terms between R
and R ∪ SIL. The other vertices in Figure 1 represent all sets of meaningless



terms that decompose as the disjoint union of one or more of the basic sets R,
SIL, IL, SA, HA and O [15].

We consider intervals [U1, U2] = {U | U1 ⊆ U ⊆ U2 and U is meaningless}
between two arbitrary sets U1 and U2. In particular, we will distinguish between
key intervals which are intervals between any two key vertices and elementary key
intervals which are key intervals between two consecutive key vertices. We study
the cardinality of the elementary key intervals. The cardinalities are shown as
labels above the arrows of Figure 1. Some intervals have cardinality 2 and contain
only both extremes. Only one of them has cardinality 1 which is [R∪SIL,SA∪
SIL] which contains only the right extreme. All others are uncountable and have
cardinality 2c where c is the cardinality of the continuum.

We show that the elementary key intervals with cardinality 2c cannot be
finitely decomposed. In other words, the uncountable intervals cannot be further
decomposed as union of finite subintervals. We also study how the key intervals
are decomposed as union of elementary key intervals. We prove that all key
intervals which are above the set SA andR∪SIL can be decomposed as union of
elementary key intervals. For example, [SA,HA∪O] = [SA,HA]∪[HA,HA∪O].
Not all the key intervals have this nice property. We show that the interval
[R,SA∪SIL] can not be decomposed as union of elementary key intervals. For
this, we show that there are 2c many sets of meaningless terms which are in
[R,SA ∪ SIL] and are not in either [R,SA], [SA,SA ∪ SIL] or [R,R∪ SIL].
This is depicted in Figure 1 by an arrow from SA ∪ SIL to R labelled by 2c.

We conclude with the observation that the lattice of sets of meaningless sets
is neither modular nor distributive. Interestingly, the example translates into a
simple counterexample that the lattice of lambda theories is not modular.

2 Infinitary Lambda Calculus

We will now briefly recall some notions and facts of infinitary lambda calculus
from our earlier work [6, 8, 5, 13, 16]. We assume familiarity with basic notions
and notations from [1]. Let Λ be the set of λ-terms and Λ⊥ be the set of finite λ-
terms with ⊥. The set Λ∞⊥ of finite and infinite λ-terms is defined by coinduction
from the grammar: M ::= ⊥ | x | (λxM) | (MM) where x is a variable from
some fixed set of variables V. The set Λ∞ is the subset of ⊥-free terms. The set
(Λ∞)0 is the subset of closed terms (without free variables) in Λ∞.

We follow the usual conventions on syntax. We will also use the following
abbreviations for terms:

I = λx.x O = λx1.λx2.λx3. . . .
ωM = (((. . .)M)M)M

K = λxy.x Ω = (λx.xx)(λx.xx) Fix = (λxy.y(xxy))(λxy.y(xxy))

The set Λ∞⊥ contains all Böhm, Lévy–Longo and Berarducci trees. These latter
notions are usually defined as trees but in the infinitary setting they can equiv-
alently be as terms in Λ∞⊥ . In [8, 10, 5] an alternative definition of the set Λ∞⊥ is
given using a metric. The coinductive and metric definitions are equivalent [2].



We define the β-rule on the set Λ∞⊥ of finite and infinite terms:

(λx.M)N →M [x := N ] (β)

The reduction →β is defined as the smallest binary relation containing β and
closed under contexts. The βh-reduction is the restriction of the β-reduction to
head redexes. Let U ⊆ Λ∞ where Λ∞ is the set of terms in Λ∞⊥ that do not
contain ⊥. We define the ⊥U -rule rule on Λ∞⊥ as follows:

M [⊥ := Ω] ∈ U M 6= ⊥
(⊥U )

M → ⊥

When there is no danger of confusion, we denote ⊥U by ⊥. The reduction→β⊥U

is defined as the smallest binary relation containing β and ⊥U and closed under
contexts. Each set U of meaningless terms gives rise to a different infinitary
lambda calculus λ∞U = (Λ∞⊥ ,→β⊥U

).
In infinitary lambda calculus we consider strongly converging reduction se-

quences. These can be of any countable, transfinite length α: M0 →ρ M1 →
. . .Mω →Mω+1 → . . .Mω+ω →Mω+ω+1 → . . .Mα, where → stands for a β- or
⊥-reduction step. The rough idea is that in such reductions for each limit ordinal
λ, the term Mλ is defined as the Cauchy limit of the preceding reduction. These
limits can then be further reduced. In addition the depth of the contracted re-
dexes goes to infinity at each limit term. We use the following notation: M → N
denotes a one step reduction from M to N ; M →→ N denotes a finite reduction
from M to N ; M →→→ N denotes a strongly converging reduction from M to N .
When λ∞U is confluent and normalising, the normal form of a term M in λ∞U is
denoted by nfU (M). Each confluent and normalising λ∞U gives rise to a λ-model
MU and a λ-theory λ∞U of the finite lambda calculus, as explained in the next
definition.

Definition 1. Let U ⊆ Λ∞ and λ∞U be confluent and normalising.

1. The λ-model MU induced by the infinitary lambda calculus λ∞U is defined
as follows. The domain of MU is the set nfU (Λ) of normal forms of finite
terms. We interpret a lambda term M ∈ Λ by its normal form nfU (M) and
we define application simply by nfU (M) • nfU (N) = nfU (M •N).

2. The λ-theory induced by the infinitary lambda calculus λ∞U is denoted by TU
and defined as TU = {M = N |M,N ∈ Λ0 and nfU (M) = nfU (N)}.

It is easy to show that MU is indeed a λ-model and TU is indeed a λ-theory of the
finite lambda calculus [1, 11]. Recall that the set of λ-theories of the finite lambda
calculus forms a complete lattice where the meet u is defined by intersection and
the join t of two sets is defined as the smallest theory containing those sets.

We will now define the notion of set of meaningless term. We follow the
definition of [9]. This definition differs slightly from the earlier definition in [8,
10, 5] in that the axiom of closure under β-expansion has been added. This
addition has a number of useful consequences. The first is, as observed in [9],



that with the extra axiom the calculus λ∞U is not only confluent and normalising,
but also ω-compressible, just as the three standard instances that give rise to
respectively the Böhm, Lévy–Longo and Berarducci trees. The second is that
for any set of meaningless terms U the models MU and MÛ coincide, where

Û denotes the expansion {M ∈ Λ∞ | M →→→β N & N ∈ U} of U . This is
because λ∞U and λ∞

Û
induce the same reduction relations →→→β⊥U

and →→→β⊥Û
.

From this follows thirdly that the lambda theories λ∞U and λ∞
Û

are equal. This
last consequence is pertinent for the current paper.

Notation 2 Let M
U↔ N denote that N is obtained from M by replacing some

(possibly infinitely many) subterms in U by other terms in U .

Definition 3. [10, 5] We say that U ⊆ Λ∞ is a set of meaningless terms (also
called a meaningless set) if it is a set satisfying the axioms of meaninglessness:

1. Rootactiveness. R = {M ∈ Λ∞ |M is rootactive} ⊆ U (see Definition 5).
2. Closure under β-reduction. For all M ∈ U , if M →→→β N then N ∈ U .
3. Closure under substitution. For all M ∈ U , Mσ ∈ U .
4. Overlap. For all λx.M ∈ U , (λx.M)N ∈ U .
5. Indiscernibility. For all M,N ∈ Λ∞, M ∈ U if and only if N ∈ U .
6. Closure under β-expansion. For all N ∈ U , if M →→→β N , then M ∈ U .

Note that Ω ∈ U for all set U of meaningless terms because Ω is rootactive.
Note also that even without requiring closure under β-expansion, we have that
meaningless sets contain certain β-expansions: for instance just from rootactive-
ness and indiscernibility it follows that I(IM) ∈ U and KMN ∈ U whenever
M ∈ U .

Theorem 4. [8, 10, 5] If U is a set of meaningless terms then λ∞U is confluent
and normalising.

We will now define the sets of meaningless terms that occur in Figure 1. To
define these sets, we will first need to introduce new forms of terms analogous to
the notions of head, weak head and top normal forms and define certain specific
subsets of Λ∞ containing the respective forms [15].

Definition 5. We define that

1. R = {M ∈ Λ∞ | M is rootactive} where M is a rootactive form if for all
M →→→β N there exists a redex (λx.P )Q such that N →→→β (λx.P )Q.

2. SA = {M ∈ Λ∞ | M →→β N and N is a strong active form} where M is a
strong active form if M = RP1 . . . Pk and R is rootactive.

3. HA = {M ∈ Λ∞ | M →→β N and N is a head active form} where M is a
head active form if M = λx1 . . . xn.RP1 . . . Pk and R is rootactive.

4. SIL = {M ∈ Λ∞ | M →→→β N and N is a strong infinite left spine form }
where M is a strong infinite left spine form if M = (. . . P2)P1.

5. IL = {M ∈ Λ∞ | M →→→β N and N is an infinite left spine form} where M
is an infinite left spine form if M = λx1 . . . xn.(. . . P2)P1.



6. HN = {M ∈ Λ∞ | M →→β N and N is a head normal form} where M is a
head normal form (hnf) if M = λx1 . . . xn.yP1 . . . Pk.

7. WN = {M ∈ Λ∞ | M →→β N and N is a weak head normal form} where
M is a weak head normal form (whnf) if M is a hnf or M = λx.N .

8. T N = {M ∈ Λ∞ | M →→β N and N is a top normal form} where M is a
top normal form (tnf) if it is either a whnf or an application (NP ) if there
is no Q such that N →→β λx.Q.

9. O = {M ∈ Λ∞ |M →→→β O}.

Theorem 6. [10, 15] The sets R, SA, HA, HA∪O, SA∪SIL, HA∪IL, and
HA∪ IL ∪ O are sets of meaningless terms.

As already said in the introduction, by HN , WN and T N we denote the
complements in Λ∞ of HN , WN and T N respectively. As it happens, a term is
rootactive if and only if it has no top normal form. Hence T N = R.

Definition 7. We define the Berarducci tree of a term M (denoted by BerT(M))
by co-recursion as follows.

1. BerT(M) = ⊥, if M is rootactive.
2. BerT(M) = λx.BerT(N), if M →→β λx.N .
3. BerT(M) = BerT(N)BerT(P ) if M →→β NP and there is no Q such that

N →→β Q and Q is an abstraction.

The Berarducci tree BerT(M) of a term M is the normal form of M in λ∞U
where for U we take R [3, 8].

Definition 8. We define the Lévy-Longo tree of a term M (denoted by LLT(M))
by co-recursion as follows.

1. LLT(M) = ⊥, if M has no weak head normal form.
2. LLT(M) = y LLT(M1) . . . LLT(Mm), if M →→β yM1 . . .Mm.
3. LLT(M) = λx.LLT(N), if M →→β λx.N .

The Lévy Longo tree LLT(M) of a term M is the normal form of M in the
calculus λ∞WN . It is easy to see that WN = SA ∪ SIL [8].

Definition 9. We define the Böhm tree of a term M (denoted by BT(M)) by
co-recursion as follows.

1. BT(M) = ⊥, if M has no head normal form and
2. BT(M) = λx1 . . . λxn.y BT(M1) . . .BT(Mm), if M has a finite β-reduction

to λx1 . . . λxn.yM1 . . .Mm.

The Böhm tree BT(M) of a term M is the normal form of M in the calculus
λ∞HN . It is easy to see that HN = HA∪ IL ∪ O [1, 8].

Notation 10 Let X ⊆ Λ∞⊥ . We use the following notation: BerT(X) = {BerT(M) |
M ∈ X}, LLT(X) = {LLT(M) |M ∈ X} and BT(X) = {BT(M) |M ∈ X}.



Remark 11. Not all (combinations of) basic sets give rise to a meaningless set.

1. The sets SIL, IL and O do not satisfy rootactiveness.
2. The sets R ∪ SIL and R ∪ IL do not satisfy indiscernibility: The term

ωI = ((. . .)I)I belongs to both sets SIL and IL. Since ωI = (ωI)I, a set
satisfying indiscernibility should contain ΩI as well. However, ΩI does not
belong to neither SIL nor IL.

3. The setR∪O is not meaningless. Because any set containing O must contain
λx.Ω by indiscernibility since O = λx.O.

Definition 12. 1. The key vertices are the sets that appear in Figure 1, i.e.
R,SA,HA,HA∪O,R∪SIL,SA∪ SIL,HA∪ IL,HA∪O ∪ IL and Λ∞.
The set of key vertices is denoted by K.

2. The set IK of key intervals is the set of intervals whose extremes are only
some of the sets in K, i.e. IK = {[U1, U2] | U1, U2 ∈ K}.

3. An elementary key interval is an interval [U1, U2] in K such that U1 ⊂ U2

and there is no other set U ∈ K between U1 and U2.

The sets in IK are all meaningless except for R∪SIL. Note that [SA,SA∪
SIL] is an elementary key interval, but [R,SA ∪ SIL] is not.

3 The Elementary Key Intervals of Finite Cardinality

We will now prove that the intervals [SA,HA], [HA,HA∪O], [SA∪SIL,HA∪
IL], [HA∪IL,HA∪IL∪O] and [HA∪IL∪O,Λ∞] contain only the extremes
and have cardinality 2 and the interval [R∪ SIL,SA ∪ SIL] has cardinality 1.

Theorem 13. The interval [HN ,Λ∞] has cardinality 2.

Proof. By Lemma 45 the only sets in [HN ,Λ∞] are HN and Λ∞. ut

Theorem 14. The intervals [SA,HA] and [HA,HA∪O] have cardinality 2.

Proof. We prove that HA is the only meaningless set between SA and HA∪O.
Suppose there exists a set U of meaningless terms such that SA ⊂ U ⊂ HA∪O.
Then there exists M ∈ (HA ∪ O) − SA. Then M should reduce to a term N
either of the form O or λx1 . . . xn.RP1 . . . Pk with n ≥ 1. By Lemma 46(2), in
both cases we have HA ⊆ U . Since, U ⊂ HA ∪O, we get U = HA. ut

Theorem 15. The intervals [SA∪SIL,HA∪IL] and [HA∪IL,HA∪IL∪O]
have cardinality 2.

Proof. To prove thatHA∪IL is the only meaningless set between SA∪SIL and
HA∪IL∪O, we follow the proof of Theorem 14 using Lemma 46(3) instead. ut

Theorem 16. The interval [R∪ SIL,SA ∪ IL] has cardinality 1.

Proof. It follows from Lemma 47 that the only meaningless set in [R∪SIL,SA∪
IL] is SA ∪ SIL. ut



As a consequence of Lemma 46 and Theorems 14, 15 and 47, we have that:

Theorem 17. All the key intervals above SA and also above R ∪ SIL can be
decomposed as unions of elementary key intervals.

In particular, we have that:

[SA,Λ∞] = [SA,HA∪ IL ∪ O] ∪ [HA∪ IL ∪ O,Λ∞]
[SA,HA∪ IL] = [SA,SA ∪ SIL] ∪ [HA,HA∪ IL]

[SA,HA∪ IL ∪ O] = [SA,SA ∪ SIL] ∪ [HA,HA∪ IL] ∪ [HA∪O,HA∪ IL ∪ O]
[HA,HA∪ IL ∪ O] = [HA,HA∪ IL] ∪ [HA∪O,HA∪ IL ∪ O]

4 The Indecomposable Key Interval [R,SA ∪ SIL]

We will show that the key interval [R,SA∪SIL] cannot be decomposed as union
of elementary key intervals. For this, we will first show that there are 2c many sets
of meaningless terms in [R,SA∪SIL]−([R,SA]∪[SA,SA∪SIL]∪[R,R∪SIL]).
As a consequence, we have that

[R,SA ∪ SIL] 6= [R,SA] ∪ [SA,SA ∪ SIL] ∪ [R,R∪ SIL]

We will also show a stronger property which is that the interval [R,SA∪SIL]
cannot be finitely decomposed, not even by taking intervals with other extremes
apart from the sets of Figure 1.

Definition 18. Let M ∈ Λ∞ and X ⊆ Λ∞.

1. M is a strong infinite left spine form relative to X (X-sil) if M = ((. . .)P2)P1

and Pi ∈ X for all i.
2. SILX = {M ∈ Λ∞ |M →→→β N and N is a X-sil}.

Remark 19. 1. SILX is not a set of meaningless terms since it does not satisfy
rootactiveness. Neither R ∪ SILX is a meaningless set since it does not
satisfy indiscernibility. Let M ∈ X. The term ωM = ((. . .)M)M ∈ SILX
but ΩM does not belong to R∪ SILX .

2. SA∪SILX is not a meaningless set since it does not satisfy indiscernibility.
Consider a term P ∈ Λ∞ − X and M ∈ SILX . The term ΩP ∈ SA but
MP 6∈ SILX .

The above remark motivates the following definition:

Definition 20. Let M ∈ Λ∞ and X ⊆ Λ∞.

1. M is a strong active form relative to X (X-saf) if M = RP1 . . . Pk and R
is rootactive and P1, . . . , Pk ∈ X.

2. SAX = {M ∈ Λ∞ |M →→→β N and N is a X-saf}.

Theorem 21. [9] Let X ⊆ LLT(Λ∞) ∩ (Λ∞)0. Then, SAX ∪ SILX is a set of
meaningless terms.



Corollary 22. There are 2c many sets of meaningless terms between R and
SA∪SIL which are not in either [R,SA], or [SA,SA∪SIL] or [R,R∪SIL].

Corollary 23. The interval [R,SA ∪ SIL] is not finitely decomposable.

Proof. Clearly, the class {SAX ∪SILX | X is singleton} of meaningless sets are
all unrelated to each other. They all appear in ”parallel intervals”. ut

5 The Elementary Key Intervals of Infinite Cardinality

We will now show that the intervals [R,SA], [R,R ∪ SIL], [SA,SA ∪ SIL],
[HA,HA∪ IL], and [HA∪O,HA∪ IL ∪O] have cardinality 2c where c is the
cardinality of the continuum. We can deduce that all these intervals are not
finitely decomposable by taking singleton sets as in the proof of Corollary 23.

5.1 The interval [R,SA]

We will show that there are 2c sets of meaningless terms between R and SA.

Theorem 24. [15] Let X ⊆ BerT(Λ∞) ∩ (Λ∞)0. Then, SAX is a set of mean-
ingless terms.

Corollary 25. The interval [R,SA] has cardinality 2c and is not finitely de-
composable.

5.2 The interval [R,R ∪ SIL]

To build a set U of meaningless terms between R and SIL, we have to ex-
clude from U those strong infinite left spines that are prefix of themselves. For
instance the assumption ((. . .)I)I ∈ U that would otherwise imply ΩI ∈ U
(see Remark 11). The set R ∪ {((. . .)I)I)K} is a set of meaningless terms but
R∪ {((. . .)I)I} is not.

Definition 26. Let M ∈ Λ∞ and X,Y ⊆ Λ∞.

1. M is a strong infinite left spine form relative to X and Y (X,Y -silf) if
M = NP where N is a strong infinite left spine relative to X and P ∈ Y .

2. SILYX = {M ∈ Λ∞ |M →→→β N and N is a X,Y -silf}.

Theorem 27. Let X,Y ⊆ LLT(Λ∞)∩ (Λ∞)0 and X ∩ Y = ∅. Then, R∪SILYX
is a meaningless set.

Corollary 28. The interval [R,R∪ SIL] has cardinality 2c and is not finitely
decomposable.



5.3 The interval [SA,SA ∪ SIL]

Let U be a meaningless set. As ΩP1 . . . Pn ∈ SA ⊂ U we obtain from indiscerni-
bility that MP1 . . . Pn ∈ U for any M ∈ U and P1, . . . Pn ∈ Λ∞ This motivates:

Definition 29. Let M ∈ Λ∞ and X ⊆ Λ∞.

1. M is a segmented strong infinite left spine form relative to X (X-ssf) if
there exists a finite set {P1, . . . , Pn} ⊆ Λ∞⊥ (possible empty) such that M =
NP1 . . . Pn and N is a strong infinite left spine relative to X.

2. SSX = {M ∈ Λ∞ |M →→→β N and N is a X-ssf }.

Theorem 30. [9] Let X ⊆ LLT(Λ∞)∩(Λ∞)0. Then, SA∪SSX is a meaningless
set.

Corollary 31. The interval [SA,SA∪SIL] has cardinality 2c and is not finitely
decomposable.

5.4 The intervals [HA,HA ∪ IL] and [HA ∪ O,HA ∪ IL ∪ O]

A set U of meaningless terms containing HA is closed under arbitrary applica-
tions and abstractions, i.e. if M ∈ U and P1, . . . Pn ∈ Λ∞ we should also have
that λx1 . . . xk.MP1 . . . Pn ∈ U because λx1 . . . xk.ΩP1 . . . Pn ∈ HA ⊂ U . This
motivates the definition:

Definition 32. Let M ∈ Λ∞ and X ⊆ Λ∞.

1. M is a segmented infinite left spine form relative to X (X-sf) if there
exists a finite set {P1, . . . , Pn} ⊆ Λ∞⊥ (possible empty) such that M =
λx1 . . . xk.NP1 . . . Pn and N is a strong infinite left spine relative to X.

2. SX = {M ∈ Λ∞ |M →→→β N and N is a X-sf}.

The first item of the following theorem is as Theorem 47 in [9] but the
hypothesis of the second item has been restricted.

Theorem 33. The following sets are sets of meaningless terms:

1. HA∪ SX provided X ⊆ LLT(Λ∞) ∩ (Λ∞)0.

2. HA∪O ∪ SX provided X ⊆ BT(Λ∞) ∩ (Λ∞)0.

Corollary 34. The intervals [HA,HA∪IL] and [HA∪O,HA∪IL∪O] have
cardinality 2c and they are not finitely decomposable.



6 Non-modularity and non-distributivity

In this section we prove that the lattice of meaningless sets is neither modular
nor distributive by applying the M3-N5 Theorem of [4] and the previous theory.

Definition 35. Let M ∈ Λ∞ and X ⊆ Λ∞.

1. M is a segmented ωKI-term relative to X (X-stf) if there exists a finite set
{P1, . . . , Pn} ⊆ X (possible empty) such that M = ωKIP1 . . . Pn.

2. KIX = {M ∈ Λ∞ |M →→→β N and N is a X-stf}.

Lemma 36. Let X ⊆ LLT(Λ∞) ∩ (Λ∞)0. Then, SAX ∪ KIX is a meaningless
set.

Theorem 37. The lattice of sets of meaningless sets is neither modular nor
distributive.

Proof. The key interval [T N ,SA∪SIL] contains a sublattice isomorphic to N5.

U5 = SA{I,K} ∪ KI{I,K}

''OOOOOOOOOOOOOOO
ssggggggg

U4 = SA{I} ∪ KI{I}

��

U3 = SA{K} ∪ SIL{K}

wwooooooooooooooo

U2 = R∪ SIL{I}{K}
++WWWWWWWW

U1 = R

By Theorem 27, U2 = R∪ SIL{I}{K} is the smallest meaningless set closed under

β-expansions containing ωKI. By Theorem 21, U3 = SA{K} ∪ SIL{K} is the
smallest meaningless set closed under β-expansions containing ΩK and ωK.
By Theorem 36, U4 = SA{I} ∪ KI{I} is the smallest meaningless set that is
closed under β-expansions and contains ΩI and ωKI. By Theorem 36, U5 =
SA{I,K} ∪ KI{I,K} is the smallest meaningless set closed under β-expansions
containing ΩI, ΩK and ωKI.

To prove that the above five sets form a sublattice of the lattice of sets of
meaningless terms, we have to prove that the sublattice is closed under the join
and meet operations, i.e. U5 = U3 t U4 and U1 = U2 u U3. The latter is trivial
because the meet u is intersection. For the first equation, it is not difficult to
show that U5 is the smallest set of meaningless terms that contains U3 and U4.

ut

Corollary 38. Let U1, U2, U3, U4 and U5 be sets of meaningless terms as used
in the proof of Theorem 37.

1. For all 1 ≤ i ≤ 5, the infinitary lambda calculus λ∞Ui
is confluent and nor-

malising.



2. For all 1 ≤ i ≤ 5, the theory TUi
induced by λ∞Ui

is consistent.

Part (1) follows from Theorem 4. Part (2) follows from the fact that these
five calculi have at least two different normal forms which are I and K.

In the following lemma, Pn denotes the truncation of P at depth n.

Lemma 39. Let U2 and U3 be the sets of meaningless terms used in the proof of
Theorem 37. For all n, P,Q ∈ BerT(Λ∞⊥ ), if nfU2

(P ) = nfU2
(Q) and nfU3

(P ) =
nfU3(Q) then Pn = Qn.

Proof. We prove it by induction on n. If n = 0 then P 0 = ⊥ = Q0. Suppose now
that n > 0. The proof proceeds by cases.

1. Case P = xP1 . . . Pk. Since P and Q have the same nfU2 ,

nfU2
(Q) = nfU2

(P ) = x nfU2
(P1) . . . nfU2

(Pk)

The term Q being in β⊥R-normal form can β⊥R-reduce to a head nor-
mal form only if it is a head normal form itself. Hence, we have that Q =
xQ1 . . . Qk. Since P and Q have the same nfU2 and the same nfU3 , so do Pi
and Qi for all 1 ≤ i ≤ k. Suppose n > k. Then,

Pn = xPn−k1 . . . Pn−1k

= xQn−k1 . . . Qn−1k by induction hypothesis
= Qn

Suppose n ≤ k. Let i = k − n. Then,

Pn = ⊥P 0
i . . . P

n−1
k

= ⊥Q0
i . . . Q

n−1
k by induction hypothesis

= Qn

2. Case P = ⊥P1 . . . Pk. In this case, we have that Q = ⊥Q1 . . . Qk because U2

does not contain any head active form. Then, we proceed as in the previous
case.

3. Case P = λx.P0. In this case, we have that Q = λx.Q0 because U2 does not
contain any abstraction. P0 and Q0 have the same nfU2

and the same nfU3
.

Then, by induction hypothesis, Pn−10 = Qn−10 . Hence, Pn = λx.Pn−10 =
λx.Qn−10 = Qn.

4. Case P = ((. . .)P2)P1 is a strong infinite left spine. We have two cases:
(a) Case P = ((((ωKI)Pk) . . .)P2)P1 for some k ≥ 0. Since P and Q have

the same nfU2
and the same nfU3

,

nfU2(Q) = nfU2(P ) = ⊥ nfU2(Pk) . . . nfU2(P1)
nfU3(Q) = nfU3(P ) = ⊥ I nfU3(Pk) . . . nfU3(P1)

This is possible only if Q = (ωKI)Qk . . . Q1. Since P and Q have the
same nfU2

and the same nfU3
, so do Pi and Qi for all 1 ≤ i ≤ k. Suppose

n ≤ k. Then,

Pn = ⊥P 0
n . . . P

n−1
1

= ⊥Q0
n . . . Q

n−1
1 by induction hypothesis

= Qn



Suppose n > k. Then,

Pn = (KI)n−kPn−kk . . . Pn−11

= (KI)n−kQn−kk . . . Qn−11 by induction hypothesis
= Qn

(b) Otherwise, P is not of the form ((((ωKI)Pk) . . .)P2)P1 for any k ≥ 0.
In this case, we have that Q = ((. . .)Q2)Q1 is also a strong infinite left
spine because U2 does not contain P . Since P and Q have the same nfU2

and the same nfU3 , so do Pi and Qi for all 1 ≤ i ≤ k. Then,

Pn = ⊥P 0
n . . . P

n−1
1

= ⊥Q0
n . . . Q

n−1
1 by induction hypothesis

= Qn

ut

Theorem 40. Let U2 and U3 be the sets of meaningless terms used in the proof
of Theorem 37. We have that nfR(M) = nfR(N) if and only if nfU2

(M) =
nfU2(N) and nfU3(M) = nfU3(N).

Proof. (⇒) Suppose nfR(M) = nfR(N). Then,

nfU2
(M) = nfU2

(nfR(M)) = nfU2
(nfR(N)) = nfU2

(N)

by Corollary 38 and because R ⊆ U2. Similarly, nfU3(M) = nfU3(N).

(⇐) Suppose nfU2
(M) = nfU2

(N) and nfU3
(M) = nfU3

(N). Let P = nfR(M) =
BerT(M) and Q = nfR(N) = BerT(N) (see Definition 7). By Corollary 38 and
the fact that R ⊆ U2, U3, we have that

nfU2
(P ) = nfU2

(M) = nfU2
(N) = nfU2

(Q) and
nfU3

(P ) = nfU3
(M) = nfU3

(N) = nfU3
(Q).

By Lemma 39, Pn = Qn for all n. Hence, P = Q. ut

Corollary 41. TU2 ∩ TU3 = TR.

Theorem 42. Let U3 and U4 be the sets of meaningless terms used in the proof
of Theorem 37. We have that nfR(M) = nfR(N) if and only if nfU3

(M) =
nfU3

(N) and nfU4
(M) = nfU4

(N).

The previous theorem is proved similarly to Theorem 41.

Corollary 43. TU3
∩ TU4

= TR

The next result is also proved in [12] using a different counterexample.

Theorem 44. The lattice of lambda theories is neither modular nor distributive.



Proof. The lattice of λ-theories contains the following sublattice isomorphic to
N5.

T5 = TR + {Ω = Fix(λx.xK), Ω = ΩI, Ω = ΩK}

��
??

??
??

??
??

??
??

?

wwooooooooo

T4 = TR + {Ω = (Fix(λx.xK))I, Ω = ΩI}

��

T3 = TR + {Ω = Fix(λx.xK), Ω = ΩK}

����
��

��
��

��
��

��
�

T2 = TR + {Ω = (Fix(λx.xK))I}

''OOOOOOOOO

T1 = TR

Note that the infinite normal form of Fix(λx.xK) is ωK and the infinite
normal form of (Fix(λx.xK))I is ωKI.

We have that {Ti | 1 ≤ i ≤ 5} are all consistent because for all 1 ≤ i ≤ 5,
Ti ⊆ TUi

and TUi
is consistent by Corollary 38.

To prove that the above five theories form a sublattice of the lattice of λ-
theories, we have to prove that it is closed under the join and meet operations,
i.e. T5 = T3 t T4 = T2 t T3 and T1 = T2 u T3.

We first prove that T5 = T3tT4. It is clear that T3,T4 ⊆ T5. For any T such
that T3,T4 ⊆ T, it is not difficult to prove that T5 `M = N implies T `M = N
by induction on the derivation. The derivation rules are the ones of Definition
2.1.4 of [1] extended to include the axioms of TR, Ω = Fix(λx.xK), Ω = ΩI
and Ω = ΩK. Hence, T5 ⊆ T and T5 is the smallest theory that contains T3

and T4. The equality T5 = T2 t T4 is proved similarly.
We now prove that T1 = T2 u T3, i.e. T1 = T2 ∩ T3. It is clear that T1 ⊆ T2

and T1 ⊆ T3. Hence, T1 ⊆ T2 ∩ T3. On the other hand, we have that T1 ∩ T2 ⊆
TU1 ∩TU2 = R by Corollary 41. The proof of the equality T1 = T3uT4 is similar
using Corollary 43.

ut

7 Conclusions

In spite of the fact that the interval [R,Λ∞] of all sets of meaningless terms
cannot be decomposed as union of elementary key intervals (because of [R,SA∪
SIL]), the problem of studying the whole lattice can be reduced to the problem
of studying only three intervals: [R,SA ∪ SIL], [HA,HA ∪ IL] and [HA ∪
O,HA ∪ IL ∪ O]. We plan to investigate further what happens in these three
intervals. There are far more sets of meaningless terms in these three intervals
than the ones shown in this paper. The set {RM1 . . .M2n | R ∈ R,M2i =
I and M2i+1 = K} is a simple example of a meaningless set in [R,SA] which is



not of the form SAX for any X. And we plan to study the relation between the
lattice of meaningless sets and the lattice of lambda theories [11].

Acknowledgements. We would like to thank the reviewers for their detailed
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A Some Basic Lemmas

Lemma 45. Let U ⊆ Λ∞ satisfy closure under substitution and β-reduction. If
xP1 . . . Pn ∈ U then U = Λ∞.

Proof. M = xP1 . . . Pn ∈ U . Let N ∈ Λ∞ be arbitrary and z1 . . . zk variables
which are not in N . By the closure under substitution and reduction axioms,
M [x := λz1 . . . zn.N ]→→β N ∈ U . ut

Lemma 46. Let U be a meaningless set.

1. If λx.M ∈ U then M ∈ U .
2. If λx.M ∈ U then HA ⊆ U . In particular, if O ∈ U then HA ⊂ U .
3. If λx.M ∈ U then U is closed under abstractions, i.e. for all P ∈ U , we have

that λx.P ∈ U .

Proof. 1. By the overlap and closure under β-reduction axioms, (λx.M)x →β

M ∈ U .
2. By the overlap axiom, (λx.M)Q ∈ U for all Q ∈ Λ∞. By indiscernibil-

ity we have that RQ ∈ U for R ∈ R and also RQ1 . . . Qk ∈ U for all
Qi ∈ Λ∞. By the previous part and indiscernibility, λx.R ∈ U and hence
λx1 . . . xn.RQ1 . . . Qk ∈ U .

3. If λx.M ∈ U then M ∈ U . By indiscernibility, λx.P ∈ U for any P ∈ U .
ut

Lemma 47. 1. If SIL ⊆ U then SA ⊆ U . Hence, the minimal meaningless
set containing SIL is SA ∪ SIL.

2. If IL ⊆ U then HA ⊆ U . Hence, The minimal meaningless set containing
IL is HA∪ IL.

Proof. 1. Let ωQ = ((. . .)Q)Q). We have that ωQ = ωQQ ∈ U By indiscerni-
bility, RQ ∈ U for any R ∈ R and also RQ1 . . . Qk ∈ U for all Qi ∈ Λ∞.

2. λx1 . . . xn.
ωPQ1 . . . Qk ∈ U . By indiscernibility, λx1 . . . xn.RQ1 . . . Qk ∈ U .

ut

As a consequence of the previous lemma, there is no meaningless set between
R ∪ IL and HA ∪ IL (hence, there is no point in including R ∪ IL as a key
vertex).

B Checking that a Set is Meaningless

In this section we show the proof of Theorem 33 part 1. The rest of the theorems
about meaningless sets are proved similarly. We give a criterion for proving
that a set is meaningless where indiscernibility has to be checked only on terms
whose common structure is a Berarducci tree. Checking this condition on some
restricted set of terms will be enough provided the set U is closed under β-
expansions. This criterion differs from the one in [15] on the fact that the common
structure is now a Berarducci tree and not a skeleton.



Definition 48. Let U ⊆ Λ∞, P,M,N ∈ Λ∞⊥ .

1. P �U M if P is obtained from M by replacing some subterms of M which
belong to U by ⊥.

2. We say that P is a common structure for M and N relative to U if P �U M
and P �U N .

E.g. ⊥⊥ is a common structure for ΩΩ and Ω(ΩΩ) with respect to SA.

Definition 49. [15] The skeleton of a term M ∈ Λ∞⊥ is defined by coinduction.

skel(M) = y if M →→β y
skel(M) = ⊥ if M →→β ⊥
skel(M) = λx.skel(N) if M →→β λx.N
skel(M) = skel(N) skel(P ) if M →→β NP and there is no Q such that N →→β λx.Q
skel(M) = M if M does not have a top normal form

The skeleton of a term is essentially the Berarducci tree of a term but instead
of replacing rootactive terms by ⊥, we leave rootactive terms untouched.

Lemma 50. Let M ∈ Λ∞⊥ . Then M →→→β skel(M) and skel(M) is either a head
normal form, ⊥P1 . . . Pk, a head active form, an infinite left spine or O.

Note that BerT(M) = BerT(skel(M)) �U skel(M) for any set U ⊇ R.

Lemma 51. Let U be closed under substitution. If M �U N and M →→→β M
′

then N →→→β N
′ and M ′ �U N ′ for some N ′.

Proof. This is proved by induction on the length of the reduction sequence. ut

If the set U contains abstractions, from M �U N and N →→βh
N ′, we may

not be able to find M ′ such that M →→βh
M ′ and M ′ �U N ′. For example,

suppose U contains λx.Ω. Then, ⊥I �U (λx.Ω)I →→βh
Ω but ⊥I cannot be

obtained from Ω by replacing terms in U by ⊥.

Lemma 52. Let U be closed under substitution and β-reduction. If M �U N
and N →→βh

N ′, then we have two cases:

1. M →→βh
M ′ and M ′ �U N ′ for some M ′,

2. M →→βh
λx1 . . . xk.⊥Q1 . . . Qn with n ≥ 1 and U contains some abstraction.

Proof. We prove it for one step of βh-reduction. Suppose

N = λx1 . . . xk.(λx.Q0)Q1 . . . Qn and
N ′ = λx1 . . . xk.Q0[x := Q1]Q2 . . . Qn.

Then we have four cases:

1. M = λx1 . . . xi.⊥. Then M �U N ′.
2. M = λx1 . . . xk.⊥Q1 . . . Qn. This case is possible only if U contains the

abstraction λx.Q0 ∈ U which has been replaced by ⊥.



3. M = λx1 . . . xk.(λx.Q
′
0)Q′1 . . . Q

′
n with Q′i �U Qi for all 0 ≤ i ≤ n. Then

M ′ = λx1 . . . xk.Q
′
0[x := Q′1]Q1 . . . Q

′
n �U N ′

= λx1 . . . xk.Q0[x := Q1]Q1 . . . Qn

This is because U is closed under substitutions and we have that Q′0[x :=
Q1] �U Q0[x := Q1].

4. M = ⊥Q′i . . . Q′n for 2 ≤ i ≤ n. In this case (λx.Q′0)Q′1 . . . Q
′
i−1 ∈ U has been

replaced by ⊥. Since U is closed under β-reduction, Q′0[x := Q′1] . . . Q′i−1 ∈ U
and hence M �U Q′0[x := Q′1] . . . Q′n.

ut

Lemma 53. Let U be closed under substitution and β-reduction. If M �U N
and M rootactive then N is rootactive.

Proof. Suppose N is not rootactive. Then N →→βh
N ′ and N ′ is a top normal

form. By Lemma 52, we have two cases

1. either M →→βh
λx1 . . . xk.⊥Q1 . . . Qn. Since M is rootactive, this case is not

possible.
2. or we have that there exists M ′ such that M →→βh

M ′ and M ′ �U N ′. If N ′

is a head normal form or an abstraction, so is M ′. Then, these cases are not
possible because M is rootactive. Now, suppose that N ′ is an application
of the form N1N2 where N1 does not reduce to an abstraction. Then M ′ =
M1M2 with M1 �U N1 and M2 �U N2. Suppose towards a contradiction
that M1 reduces an abstraction λx.M0. By Lemma 51, N1 reduces to a term
N3 such that λx.M0 �U N3. Then, N3 should be an abstraction as well.

ut

Lemma 54. Let U satisfy rootactiveness, be closed under substitution and β-
reduction. Let P be a skeleton, i.e. skel(P ) = P . If P �U M then BerT(P ) �U
M .

Proof. BerT(P ) is obtained from P by replacing all the rootactive subterms
of P by ⊥. We prove that (BerT(P ))n �U Mn for all n where Mn denotes
the truncation of M at depth n. Since (BerT(P ))n is finite, we can proceed by
induction on the number of symbols of (BerT(P ))n. We show only the case when
P = P0 . . . Pk and P0 is rootactive. Then M = M0 . . .Mk and Pi �U Mi for
0 ≤ i ≤ k. By Lemma 53, Mo is rootactive. Since M0 does not contain ⊥’s,
we have that ⊥ �U M0. By Induction Hypothesis, (BerT(Pi))

n �U Mn
i for

1 ≤ i ≤ k. Hence, (BerT(P ))n �U Mn. ut

Definition 55. Let U ⊆ Λ∞. We say that U satisfies the axiom of weak indis-
cernibility if for all P ∈ BerT(Λ∞⊥ ) such that P �U M and P �U N , we have
that M ∈ U if and only if N ∈ U .

Theorem 56. Suppose U ⊂ Λ∞ satisfies: closure under β-reduction, closure
under β-expansion, closure under substitution, rootactiveness and weak indis-
cernibility. Then U satisfies indiscernibility. If in addition U satisfies overlap,
then U is a meaningless set.



Proof. We prove indiscernibility. Let M
U↔ N . Then there exists P such that

P �U M and P �U N . By Lemma 50 and Lemma 51, we have that skel(P ) �U
M ′ and skel(P ) �U N ′ for some M ′, N ′ such that M →→→β M ′ and N →→→β

N ′. By Lemma 54, BerT(skel(P )) �U M ′ and BerT(skel(P )) �U N ′. By weak
indiscernibility, M ′ ∈ U if and only if N ′ ∈ U . Since U is closed under β-
reduction and β-expansion, we have that M ∈ U if and only if N ∈ U . ut

The following lemma will be used in the next proof of Theorem 33 part 1.

Lemma 57. Suppose U satisfies the first four axioms of meaningless. Let P ∈
BerT(Λ∞⊥ ) and P �U M . If M →→→β M

′ and M ′ does not contain any subterm
in U then P = M = M ′.

Proof. This is proved by induction on the length of the reduction sequence
M →→→β M

′. We prove the case when the length is 1. Let M = C[(λx.M0)M1]
and M ′ = C[M0[x := M1]]. Since M ′ does not have any subterm in U , we have
that M0[x := M1] 6∈ U . By closure under substitutions, M0 6∈ U . By overlapping
(λx.M0) and (λx.M0)M1 6∈ U . Then P should contain a β-redex of the form
(λx.P0)P1 where P0 �U M0 and P1 �U M1. But this contradicts the fact that
P is in β⊥-normal form. ut

We now prove Theorem 33 part 1.

Proof. We apply Theorem 56. We have to prove weak indiscernibility for U =
HA∪ SX . Suppose P ∈ BerT(Λ∞⊥ ) and P �HA∪SX M,N .

1. If P is either a head normal form or O, so are M and N . Hence, M,N 6∈
HA ∪ SX .

2. Suppose P = λx1 . . . λxn.⊥P1 . . . Pk is a head bottom form. Then,

M = λx1 . . . xn.MoM1 . . .Mk and N = λx1 . . . xn.N0N1 . . . Nk

where Mo, N0 ∈ HA∪SX and Pi �HA∪SX Mi, Ni for 0 ≤ i ≤ k. We have two
options for N0. If N0 ∈ HA then N ∈ HA. And if N0 ∈ SX then N ∈ SX .

3. Suppose P = λx1 . . . xn.((. . .)P2)P1 is an infinite left spine. Then,

M = λx1 . . . xn.((. . .)M2)M1 and N = λx1 . . . xn.((. . .)N2)N1

where Pi �HA∪SX Mi, Ni for all i. If M ∈ SX then there exists l such that
for all m ≥ l, Mm reduces to a Lévy Longo tree without ⊥. Hence LLT(Mm)
does not contain any subterm in HA ∪ SX . By Lemma 57, we have that
LLT(Mm) = Mm = Pm. Since Pm does not contain ⊥’s, we also have that
Mm = Pm = Nm. Then, N ∈ SX .


