
Verification Problem of Maximal Points under

Uncertainty

George Charalambous and Michael Hoffmann

Department of Computer Science, University of Leicester
gc100@mcs.le.ac.uk, mh55@mcs.le.ac.uk

Abstract. The study of algorithms that handle imprecise input data
for which precise data can be requested is an interesting area. In the
verification under uncertainty setting, which is the focus of this paper,
an algorithm is also given an assumed set of precise input data. The aim
of the algorithm is to update the smallest set of input data such that if
the updated input data is the same as the corresponding assumed input
data, a solution can be calculated. We study this setting for the maximal
point problem in two dimensions. Here there are three types of data, a set
of points P = {p1, . . . , pn}, the uncertainty areas information consisting
of areas of uncertainty Ai for each 1 ≤ i ≤ n, with pi ∈ Ai, and the
set of P ′ = {p′1, ..., p

′

k} containing the assumed points, with p′i ∈ Ai.
An update of an area Ai reveals the actual location of pi and verifies
the assumed location if p′i = pi. The objective of an algorithm is to
compute the smallest set of points with the property that, if the updates
of these points verify the assumed data, the set of maximal points of P
can be computed. We show that the maximal point verification problem
is NP-hard, by a reduction from the minimum set cover problem.

1 Introduction

Nowadays more and more information is available. With a flood of sensors con-
nected to a network, such as GPS-enabled mobile phones, up-to-date readings
of these sensors are generally available. Algorithms that perform based on such
information might not have the precise data available to them, as for example
in some situations the traffic of collecting all such information would cause a
problem on its own. In other situations, obtaining the up-date information of
all sensors is costly in time and battery power or even other charges may occur.
A practical solution is to work with slightly out of date data where possible
and only request up to date information where needed. For example a sensor
may automatically send its current measurement if this exceeds some predefined
bounds of the latest send one. Hence based on the last send information a pos-
sible band or area is known where the current measurement of the sensor is
within. If this rough information is not enough then the precise measurement
can be obtained. Therefore an algorithm may have some precise data while at
the same time some uncertain data, for which if needed an update request can
be made and the precise measurement can be obtained. Problems under uncer-
tainty capture this setting. The aim is to make the fewest update requests that

2

allows the calculation to succeed. In the verification under uncertainty setting,
which is the focus of this paper, an algorithm is also given an assumed set of
precise input data. The aim of the algorithm is to update the smallest set of
input data such that if the updated input data is the same as the corresponding
assumed input data, a solution can be calculated.

While mobile devices moving in the plane is a classical example to motivate
the study of geometric problems in the uncertainty setting, its applications are
found in many different areas. For example data is collected in a large number
of databases and distributed systems, such as prices and customer ratings of
products. As the price and rating of a product may vary over time, an algorithm
that has to identify all top items from a collection may work with uncertain data
and only request more accurate prices and ratings if needed. With the idea of
maximal points in mind, top items would be such that there is no other better
in price and rating.

Work in computing under uncertainty falls in three main categories: In the
adaptive online setting an algorithm initially knows only the uncertainty areas
and performs updates one by one (determining the next update based on the
information from previous updates) until it has obtained sufficient information
to determine a solution. Algorithms are typically evaluated by competitive anal-
ysis, comparing the number of updates they make with the minimum number
of updates that, in hindsight, would have been sufficient to determine a solution
(referred to as the offline optimum). In the non-adaptive online setting an algo-
rithm is also given only the uncertainty areas initially, but it must determine a
set U of updates such that after performing all updates in U it is guaranteed
to have sufficient information to determine a solution. Finally, there is the ver-

ification setting that was already described above. It is worth noting that the
optimal update set of the verification setting is also the offline optimum of the
adaptive online setting. Therefore, algorithms solving the verification problem
are also useful for the experimental evaluation of algorithms for the adaptive
online setting.

In this paper, we consider the Maximal Point Verification problem. The max-
imal point problem is a classical problem. Many aspects of the problem have
sparked interesting research. It can be stated as follows: In this paper we con-
sidering the 2-dimensional case. Given a set P of points and a partial order of
the points, return all points where no point in P is higher. Typically the partial
order is based on the coordinates of the points in the following way: a point p is
higher than a point q if px is greater or equal than qx and py is greater or equal
than qy and p 6= q. Such a partial order naturally extends to higher dimensions,
but in this paper we only consider 2-dimensional points.

A formal definition of the Maximal Point Verification problem (MPV) is
given in Definition 2.

Our main result is, as stated in Theorem 1, that by a reduction from the min-
imum set cover problem the MPV problem is also NP-hard. In our construction
of the reduction each uncertain area contains either a single point (e.g the data
is known precisely) or contains just two points. Hence, an MPV problem remains

3

NP-hard even when restricted to areas of uncertainty that contain at most two
points. It remains, however, open if the same holds when each uncertain area is
connected.

The effect of our result is significant for experimental evaluation of algorithms
in the online and verification setting of the maximal point problem under uncer-
tainty. It strengthens the role of constant competitive online algorithms, as they
also represent a constant approximation algorithm for the verification setting.
Finally it gives rise to find new restrictions on the uncertainty areas, such that
the verification problem becomes solvable in polynomial time, and captures a
large variety of applications for maximal points under uncertainty.

Related work:

Kahan [6] presented a model for handling imprecise but updateable input
data. He demonstrated his model on a set of real numbers where instead of the
precise value of each number an interval was given. That interval when updated
reveals that number. The aim is to determine the maximum, the median, or
the minimal gap between any two numbers in the set, using as few updates as
possible. His work included a competitive analysis for this type of online algo-
rithm, where the number of updates is measured against the optimal number
of updates. For the problems considered, he presented online algorithms with
optimal competitive ratio. Feder et al. [4] studied the problem of computing the
value of the median of an uncertain set of numbers up to a certain tolerance. Ap-
plications of uncertainty settings can be found in many different areas including
structured data such as graphs, databases, and geometry. The work presented
in this paper mainly concerns the latter two areas.

Bruce et al. [1] studied the geometric uncertainty problem in the plane. Here,
the input consists of points in the plane and the uncertainty information is for
each point of the input an area that contains that point. They gave a defini-
tion of the Maximal Point under Uncertainty as well as the Convex Hull under
Uncertainty. They presented algorithms with optimal competitive ratio for both
problems. The algorithms used are based on a more general technique called
witness set algorithm that was introduced in their paper.

In [2], Erlebach et al. studied the adaptive online setting for minimum span-
ning tree (MST) under two types of uncertainty: the edge uncertainty setting,
which is the same as the one considered by Feder et al. [3], and the vertex un-
certainty setting. In the latter setting, all vertices are points in the plane and
the graph is a complete graph with the weight of an edge being the distance
between the vertices it connects. The uncertainty is given by areas for the lo-
cation of each vertex. For both settings, Erlebach et al. presented algorithms
with optimal competitive ratio for the MST under uncertainty. The competitive
ratios are 2 for edge uncertainty and 4 for vertex uncertainty, and the uncer-
tainty areas must satisfy certain restrictions (which are satisfied by, e.g., open
and trivial areas in the edge uncertainty case). A variant of computing under
uncertainty where updates yield more refined estimates instead of exact values
was studied by Gupta et al. [5].

4

A different setting of the MST under vertex uncertainty was studied by Ka-
mousi et al. [7]. They assume that point locations are known exactly, but each
point i is present only with a certain probability pi. They show that it is #P-
hard to compute the expected length of an MST even in 2-dimensional Euclidean
space, and provide a fully polynomial randomized approximation scheme for met-
ric spaces.

Structure of the paper. In Section 2 we give formal definitions and pre-
liminaries. In Section 3 we present our construction of an MPV problem out of a
minimum set cover problem. In Section 4 we demonstrate relation between the
solutions of these two problems. In Section 5 we complete the proof of Theorem 1.

2 Preliminaries

The general setting of problems with areas of uncertainty can be described in
the following way: Each problem instance P = (C,A, φ) consists of several com-
ponents. The ordered set of data C = {c1, . . . , cn} is also called a configuration.
A is an ordered set of areas A = {A1, . . . , An}, such that ci ∈ C is an element
of Ai for 1 ≤ i ≤ n. The sets Ai are called areas of uncertainty or uncertainty

areas for C. We say that an uncertainty area Ai that consists of a single ele-
ment is trivial. φ is a function such that φ(C) is the set of solutions for P . (The
function φ is the same for all instances of a problem and can thus be taken to
represent the problem.) The aim is to calculate a solution in φ(C) based on the
information of A. If that is not possible, updates to elements of A can be made.
These updates alter the set A: After updating Ai, the new ordered set of areas
of uncertainty for C is {A1, . . . , Ai−1, {ci}, Ai+1, . . . , An}. Hence the exact value
of ci is now revealed.

In the online setting, the set C is not known to the algorithm; the algorithm
has to request updates until the set A is precise enough to allow the calculation
of a solution in φ(C) based on A. The verification setting is similar. The set C,
however, is now also given to the algorithm. This additional information is not
used to calculate φ(C) directly, but is used to determine which update requests
should be made so that φ(C) can be calculated based on A. Updating all non-
trivial areas would reveal/verify the configuration C and would obviously allow
us to calculate an element of φ(C) (under the natural assumption that φ is com-
putable). A set of updates that reveal enough information of the configuration
C such that an element of φ(C) can be calculated is an update solution. The aim
of the algorithm is to use the smallest possible number of updates. For a given
instance of a problem, we denote an update solution of minimal size also as an
optimal update solution.

We use the uncertainty setting in the context of the Maximal Point problem.
For this all points discussed in the paper are points in the 2D plane. So a point p
may be written in coordinate form (px, py). We say a point p = (px, py) is higher
than a point q = (qx, qy) if px >= qx and py >= qy and p 6= q. Note that this
induces a partial order and leads to the following definition of a maximal point
among a set of points.

5

Definition 1. Let P be a set of points and p be a point in P . The point p is

said to be maximal among P if there does not exist a point in P that is higher

than p. Otherwise p is non-maximal among P .

In the ’under Uncertainty’ setting for the Maximal Point problem the set of
points P = {p1, . . . , pn} is the configuration of the problem. The set of uncer-
tainty areas consists of an area for each point in P . The solution φ(P) is the
index set I such that pi is maximal among P if and only if i ∈ I. Formally,

Definition 2. A Maximal Point Verification problem, MPV for short, is a pair

(A, P), where P is a set of points and A is a set of areas for P . The aim is to

identify the smallest set of areas in A, that when updated verifies the maximal

points among P as maximal based on the information of A and the results of the

updates.

A1

A3

p2

A2={p2}

p3

p1

Fig. 1. Example of an MPV problem

In the example shown in figure 1, the problem consists of three points (p1, p2
and p3) and three areas A1, A2 and A3. The area A2 consist only of the point
p2 and hence A2 is a trivial area and the location of p2 is already verified. For
every point in the area A1 there does not exist a point in A2 or A3 that is
higher. Therefore, regardless of where p1 lies in A1 and where p3 is located in
A3, the point p1 will be maximal in P . Based only on the areas of uncertainty
the point p3 may or may not be maximal in P . So updates have to be requested
to verify some points, and therefore to make the problem solvable based on the
initial areas of uncertainty and the information retrieved by the updates. The
set {A1, A3} is clearly an update solution as after updating these two sets the
location of p1 and p3 are verified and both are maximal points in P . However the
set {A1} is also an update solution as after verifying the location of p1, neither
p1 nor p2 are higher than any point in A3. Hence even without verifying the
location of p3 within the area A3 both p1 and p3 must be both maximal in P .
In this example the set {A2} is also an optimal update solution as without any
update the maximal points can not be calculated. We finish this example by
noting that updating just A3 is not an update solution. While this verifies the
exact location of p3, the area A1 still contains some points that are higher than
p3 and some that are not. So without also verifying the location of p1 it is not
clear whether p3 is a maximal point among P or not.

6

We will use the following notations:
An area A is said to be maximal among a set of areas A if there does not

exist a point in any areas in A−A that is higher than any point in A. Similarly,
an area A is said to be non-maximal among a set of areas A if for every point
p ∈ A there is an area B ∈ A such that every point in B is higher than p.

We also note that an area might be neither maximal nor non-maximal. If
this is the case then the set of maximal points cannot be calculated. In other
words a problem is solved if and only if all areas in A are either maximal or
non-maximal among A.

In the last part of this section we recall the Minimum Set Cover problem.
The Minimum Set Cover (MSC) problem consists of a universe U and a family
S of subsets of U . The aim is to find a family of sets in S of minimal size that
covers U . It was shown by [8] that the problem is NP-Hard. Without loss of
generality we assume that every element in U is found in at least one set of S
and that all sets in S have size of at least 2.

Theorem 1. Solving the Maximal Point Verification problem is NP-hard.

3 MP-construction

In this section we give the construction of an MPV problem out of an MSC
problem. We call the instance of the MSC problem MC = (U,S) with U =
{1, . . . , n} and S = {S1, . . . , Sk}. The instance of the MPV will be denoted by
MP.

The idea behind the construction is to have different types of areas in MP
representing different aspects of MC. A set of areas (B’s) will correspond to
elements of U and another set of areas (A’s) will correspond to elements of each
Sj ∈ S. The areas are positioned that for each area corresponding to an element
of U , at least one area corresponding to the occurrence of i in the set Sj must be
included in any update solution. With the help of another set of areas (D’s), the
areas corresponding to element of a set Sj are linked together. So, if an update
solution contains one area corresponding to an element of a set Sj the update
solution can be modified to include all areas that correspond to elements of Sj

without increasing the size of the update solution.
The construction is done by using three different types of gadgets, which are

all of rectangular shape. These gadgets are placed in the plane in such a way
that no point in one gadget is higher than any point in another gadget. This
can be achieved by placing all gadgets diagonally top-left to bottom-right in the
plane, see figure 2.

Type 1 gadget. For each i ∈ U there exists one gadget of type 1. This
contains the point bi, which is the lower left corner of the gadget, and multiple
disjoint points along the diagonal of the gadget. For each set Sj ∈ S that contains
i, a point aij is placed on the diagonal. See figure 3.

Type 2 gadget. For each set Sj ∈ S there exists one gadget of type 2. This
contains for every i ∈ Sj a point cij along the diagonal of the gadget such that

7

Fig. 2. Placement of gadgets

b i

a

a

a

a

a

j1
i

j2
i

j3
i

i
j4

i
j5

Fig. 3. Type 1 gadget

all points are pairwise disjoint. In addition points d1j , . . . , d
t
j with t = |Sj | − 1

are placed in such a way that for each drj with 1 ≤ r ≤ t there exist exactly

two points cij and ci
′

j that are higher. Furthermore any two neighbouring points

cij and ci
′

j are higher than exactly one type d point. This can be done easily by
placing the type d points along a line that is parallel to the diagonal, and closer
to the bottom-left corner of the gadget than the diagonal. See figure 4.

c

c

c

c

j
i1

j
i2

j
i3

i4
j

c |S |
j

d
j
1

d
j
2

d
j
t

d
j
3

j

Fig. 4. Type 2 gadget

e

e

e

e

j
1

j
2

j
3

t
j

Fig. 5. Type 3 gadget

Type 3 gadget. For each set Sj ∈ S there exists one gadget of type 3.
This gadget just consists of |Sj | − 1 disjoint points e1j , . . . , e

t
j placed along the

diagonal. See figure 5.
The various points placed in the three gadgets, are now used to define the

areas of uncertainty A, and the set of price points P for MP.
Out of the points from the different gadgets we build the following sets where

each set corresponds to an area for MP. For all i ∈ U let Bi be the set containing
only bi. For all i ∈ U and Sj ∈ S with i ∈ Sj let Ai

j be the set containing the

two points aij and cij . For all Sj ∈ S and 1 ≤ r ≤ |Sj | − 1 let Dr
j be the set

containing the two points drj and erj .

8

To handle these sets better in the remaining part of the paper we group some
of these areas together. We say Aj = {Ai

j | i ∈ Sj} and Dj = {D1
j , . . . , D

t
j} with

t = |Sj | − 1. We also note that |Aj | = |Dj |+ 1 = |Sj |.

Further we say B is the set of all areas that correspond to an element of U
(or formally B = {B1, . . . , Bn}), A is the set of all areas that correspond to an
element of any set Sj ∈ S (or formally A = ∪Sj∈SAj) and D is the set of all
areas in any Dj (or formally D = ∪Sj∈SDj).

This allows us to define our instance of the MPV in the following way: MP
= (A, P) with A = B ∪ A ∪D and P = {b1, . . . , bn} ∪ {aij | i ∈ Sj} ∪ {erj | 1 ≤
r ≤ |Sj | − 1}.

We are now analysing the constructed problem MP and highlight properties
that are needed in the further section.

Size of MP. There exist exactly n type 1 gadgets where each contains one
type b point. Each type 1 gadget also contains at most k number of type a points.
There exist exactly k type 2 gadgets. Each contains at most n type c points and
n− 1 type d points. There exist exactly k type 3 gadgets. Each contains at most
n− 1 type e points.

Hence for the MP constructed we have n+ 2k gadgets and at most n ∗ (1 +
k) + k ∗ (2n− 1) + k ∗ (n− 1) = n+ 4nk − 2k points. As each point only lies in
one area of uncertainty also |A| is at most n+4nk− 2k and so the input size of
MP is polynomial in the size of MC.

Maximal points among P . A point aij for some j and i is part of a type
1 gadget and is clearly maximal among all points placed in the gadget. As two
different gadgets are located so that no point of one is higher than a point of
another, all points aij are maximal in P . The same follows for the all points erj
in type 3 gadgets and therefore all such points are also maximal among P .

As for every i ∈ U there must exists at least one Sj ∈ S with i ∈ Sj , by
the construction of the type 1 gadget for i, also the point aij was added to that
gadget. As all such points are higher than bi the point bi is non-maximal among
P .

Maximal areas among A. Each area in A consists of two points aij and

cij . One is located inside a type 1 gadget and the other inside a type 2 gadget.
For both points there is no area in A with a higher point, and therefore even
without any updates all areas in A are maximal.

For each area Bi ∈ B there exist some areas in A with a point above Bi

and one point not above Bi. So among A the area Bi is neither maximal nor
non-maximal and further updates are needed.

Each area in D has two points. One is located in a type 3 gadget which is
clearly maximal; and one located in a type 2 gadget where there are two areas
in A that contain points that are higher. So among A it is neither maximal nor
non-maximal and further updates are needed.

Update solutions for MP. Following from the above analysis of maximal
areas among A we have the following remark:

9

Remark 1. A set of areas is an update solution if and only if it contains for each
i an area Ai

j for some j, and also for each area in D either this area or the two
areas in A that are potentially higher.

Following from this only updates of areas in Aj and Dj will help to identify
areas ofDj to be maximal. Based on the construction of type 2 gadgets, updating
k areas of Aj can at most identify k − 1 areas of Dj as maximal. Hence the
smallest update set that identifies all areas of Dj as maximal is Dj itself. Any
other set of updates must be bigger. Formally:

Remark 2. Let R be an update solution. Then for j the set R must contain
either Dj or it must contain at least |Dj |+ 1 areas of Dj ∪Aj .

This leads to the following Lemma:

Lemma 1. Let R be an update solution for MP and let Aj
i ∈ R for some j and

i be an area. Then R′ = R−Dj +Aj is also an update solution and |R′| ≤ |R|.

Proof. Since R is an update solution, by Remark 1 for every i ∈ U the set R must
contain an area Ai

j′ for some j′. As R′ in constructed by potentially removing

areas of D and adding areas of A the set R′ must also contain the area Ai
j′ .

Let Dr
j′′ ∈ D. Again by Remark 1 either Dr

j′′ ∈ R or the two elements in
A that are higher than Dr

j′′ are in R. If R contains the two areas in A that
are higher than Dr

j′′ then also R′ must contain these areas as no area in A was
removed when creating R′. If Dr

j′′ ∈ R also R′ must contain Dr
j′′ unless j

′′ = j.
In that case as all areas in Aj were added to R′ it must also contain the two
areas in Aj that are higher than Dr

j′′ . Hence by Remark 1 also R′ is an update
solution.

We now show that |R′| ≤ |R|. As Ar
j ∈ R, by Remark 2 R must contain at

least |Dj | + 1 areas out of Dj ∪ Aj . We noted in the construction of MP that
|Aj | = |Dj |+ 1 = |Sj |. So R′ includes exactly |Dj |+ 1 areas out of Dj ∪Aj . As
R and R′ only differ in selection of areas of Dj and Aj we have that |R′| ≤ |R|.

4 Relating Update Solutions to Covers

In this section we show how to construct a cover of MC out of an update solution
of MP and vice versa. We will also note how the size of the update solutions and
covers relate to each other.

From update solution to cover. Let R be an update solution for MP.
Before creating the cover we create a different update solution R′. The set R′

is based on R but for all j such that there exists an i with Ai
j ∈ R all potential

areas of Dj are removed from R and all areas of Aj are added. By Lemma 1, we
have that R′ is also an update solution with no greater size than R. Furthermore
by doing so, the update solution R′ contains for every index j either the set Aj

or Dj but never a mixture.
The cover C is constructed based on R′ in the following way. For each index

j such that Aj ⊆ R′ we choose the set Sj ∈ S to be included in C and otherwise
not.

10

This is denoted as:

C = {Sj ∈ S | Aj ⊆ R′}

We now show that C is a cover, in other words that every element of U is
found in at least one set of C.

Let some i ∈ U for the MC. Then in MP there exists the area Bi. By remark 1
there exists a j with Ai

j ∈ R′. Since this area Ai
j was constructed in the creation

of MP we have that i ∈ Sj . As Ai
j is also in R′ the set Aj must be a subset of

R and Sj ∈ C.
We note that the construction of C is done in polynomial time and the sizes

of R,R′ and C relate to each other in the following way.
By the construction of R′ we have:

|R′| =
∑

Aj⊆R′

|Aj | +
∑

Aj 6⊆R′

|Dj |

As |Aj | = |Dj |+ 1 = |Sj | for all j we get by the construction of C that:

|R′| =
∑

Sj∈C

|Sj | +
∑

Sj∈S−C

(|Sj | − 1)

= |C|+
∑

Sj∈C

(|Sj | − 1) +
∑

Sj∈S−C

(|Sj | − 1)

= |C|+
∑

Sj∈S

(|Sj | − 1)

Since by Lemma 1 we get |R| ≥ |R′| we have:

|R| ≥ |C| +
∑

Sj∈S

(|Sj | − 1)

We summarise our results on the construction of C in the following Lemma:

Lemma 2. Let R be an update solution for MP. Then a cover of MC can be

constructed in polynomial time with |R| ≥ |C|+
∑

Sj∈S

(|Sj | − 1).

From cover to update solution. Similarly to the construction of a cover
for MC out of a given update solution of MP, we now show how to construct an
update solution for MP out of a given cover for MC.

Let C be a cover for MC.
The set R of areas in MP is based on C as follows: For each index j such that

Sj ∈ C we choose the set Aj to be included in R. For each index j such that
Sj ∈ (S − C) we choose the set Dj to be included in R.

This is denoted as:

11

R = (
⋃

Sj∈C

Aj)
⋃

(
⋃

Sj∈(S−C)

Dj)

We note that the following: Firstly, let i ∈ U . Since C is a cover there exists
a j such that Sj ∈ C and i ∈ Sj . Hence, by the construction of MP the area Ai

j

exists in MP. As Sj ∈ C we have that Aj ⊆ R and in particular Ai
j ∈ R.

Secondly, let Dr
j ∈ D. If Sj /∈ C the set R contains Dj and therefore also Dr

j .
Otherwise R contains Aj and therefore also the two areas in Aj that are higher
than Dr

j .
So R satisfies both condition of remark 1 and is hence an update solution for

MP.
We recall from the MP-construction that for every set Sj there is a set Aj

and a set Dj such that |Aj | = |Dj |+ 1 = |Sj |. So,

|R| =
∑

Sj∈C

|Sj | +
∑

Sj∈S−C

(|Sj | − 1)

= |C|+
∑

Sj∈C

(|Sj | − 1) +
∑

Sj∈S−C

(|Sj | − 1)

= |C|+
∑

Sj∈S

(|Sj | − 1)

This leads to the following lemma:

Lemma 3. Let C be a cover of MC. Then there exists an update solution R for

MP with |C| ≤ |R|+
∑

Sj∈S

(|Sj | − 1).

5 NP-Hardness proof

We have shown so far how an instance MP of the Maximal Point Verification
problem can be constructed out of an instance MC of the Minimum Set Cover
problem, how to get a corresponding solution from one problem to the other and
how the sizes of the solutions are related. We now argue that an optimal update
solution corresponds to a minimal cover.

Lemma 4. Let R be an optimal update solution for MP. Then the cover C con-

structed out of R is a minimal cover for MC.

Proof. Let’s assume there exists a cover C for MC such that |C| < |C|.
Let R be the update solution for MP constructed from C as shown in Sec-

tion 4. Then by Lemmas 2 and 3 we have that

|C| ≤ |R| −
∑

Sj∈S

(|Sj | − 1)

12

and
|C| = |R| −

∑

Sj∈S

(|Sj | − 1).

Since |C| < C so must |R| < |R|. This is a contradiction as R was a minimal
update solution. So, C must be a minimal cover of MC.

We are using the established results to prove theorem 1.

Proof. In Section 3 we have presented the construction of a MPV problem for
a given MSC problem. As noted in Section 3 the size of the MPV problem is
polynomial in the size of the MSC problem and the construction can be done in
polynomial time.

By Lemma 4 a solution of the MPV can be used to construct a solution of
the MSC problem. As remarked in Section 4 that construction is polynomial in
the size of the MPV problem.

Hence, if the MPV problem is solvable in polynomial time, then this must
also be the case for the MSC problem. By [8], the MSC problem is shown to be
NP-hard. So, also the MPV problem is NP-hard.

References

1. Richard Bruce, Michael Hoffmann, Danny Krizanc, and Rajeev Raman. Efficient
update strategies for geometric computing with uncertainty. Theory of Computing
Systems, 38(4):411–423, 2005.

2. Thomas Erlebach, Michael Hoffmann, Danny Krizanc, Matús Mihalák, and Rajeev
Raman. Computing minimum spanning trees with uncertainty. In Susanne Al-
bers and Pascal Weil, editors, STACS, volume 1 of LIPIcs, pages 277–288. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, 2008.

3. T. Feder, R. Motwani, L. O’Callaghan, C. Olston, and R. Panigrahy. Computing
shortest paths with uncertainty. Journal of Algorithms, 62(1):1–18, 2007.

4. T. Feder, R. Motwani, R. Panigrahy, C. Olston, and J. Widom. Computing the
median with uncertainty. SIAM Journal on Computing, 32(2):538–547, 2003.

5. Manoj Gupta, Yogish Sabharwal, and Sandeep Sen. The update complexity of
selection and related problems. In IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS 2011), volume 13
of LIPIcs, pages 325–338. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2011.

6. Simon Kahan. A model for data in motion. In Proceedings of the 23rd Annual ACM
Symposium on Theory of Computing (STOC’91), pages 267–277, 1991.

7. Pegah Kamousi, Timothy M. Chan, and Subhash Suri. Stochastic minimum span-
ning trees in Euclidean spaces. In Proceedings of the 27th Annual ACM Symposium
on Computational Geometry (SoCG’11), pages 65–74. ACM, 2011.

8. Richard M. Karp. Reducibility among combinatorial problems. In Complexity of
Computer Computations, pages 85–103, 1972.

