
Efficient strategy for Maximal Points
Verification under Uncertainty

George Charalambous and Michael Hoffmann

Department of Computer Science, University of Leicester
gc100@mcs.le.ac.uk, mh55@mcs.le.ac.uk

Abstract. The study of algorithms that handle imprecise input data for
which precise data can be requested is an interesting area. In the verifi-
cation under uncertainty setting, an algorithm is given a set of imprecise
input data and a set with the corresponding assumed precise data. An
update request on some input reveals its precise value and it is verified if
this matches the corresponding assumed value. The aim of an algorithm
under this setting is to perform the smallest number of such verified re-
quests such that it allows for a solution of the underlying problem to be
calculated. In the classical problem of computing maximal points, a set
of points in 2-dimensional space is given and an algorithm must find all
points that are not dominated by other points. Considering the verifica-
tion under uncertainty setting for the maximal points problem (MPV)
an algorithm is given for each input point a range of possible locations,
together with the corresponding assumed precise location. We call these
ranges the areas of uncertainty. An update request can be made on an
area of uncertainty which reduces the possible locations to a single ele-
ment, and if this is the same as the assumed precise location then the
update is verified. The objective here is to find a minimal set of update
requests such that, given the updates verify the assumed data, the set
of all maximal points can be computed based on the information of the
areas of uncertainty and the results of the updates. It was shown that
the unrestricted problem is NP-hard. In this paper we propose a new
restriction on the accepted input data and introduce an algorithm which
runs in polynomial time with this restriction in place. The restriction is
that each area of uncertainty Ai is composed of all points produced by
the direct product of possible x and y coordinate values.

1 Introduction

Precise input data may not always be easily available. Precision may be expen-
sive, time consuming, require large computational power or for other reasons
even infeasible. Furthermore there are cases where data might change over time,
but only slightly such that the new data is guaranteed to be somewhat close to
the old data. In many cases obtaining an estimate of an input data item, i.e. a
range in which it is guaranteed to lie, may be more cost-efficient and enough to
work with. If a collection of estimates for items is insufficient, then obtaining the

2

precise value in some of these items might be enough for producing an outcome.
Our research focuses around this setting.

Nowadays more and more information is available. With a flood of sensors
connected to a network, such as GPS-enabled mobile phones, up-to-date readings
of these sensors are generally available. Algorithms that perform based on such
information might not have the precise data available to them, as for example
in some situations the traffic of collecting all such information would cause a
problem on its own. In other situations, obtaining the up-date information of
all sensors is costly in time and battery power or even other charges may occur.
A practical solution is to work with slightly out of date data where possible
and only request up to date information where needed. For example a sensor
may automatically send its current measurement if this exceeds some predefined
bounds of the latest send one. Hence based on the last send information a possible
band or area is known where the current measurement of the sensor is within.

Dealing with scenarios of uncertainty where queries/updates are available to
get more precise information is a relatively new topic. Most classical algorithms
produce an output with an assumed precise input. For a problem having this
setting of uncertainty, each input might be given in a rough (uncertain) form
and the precise value of the input can be obtained by requesting to update it at
a cost. An algorithm is asked to act based on the current, possibly uncertain,
information and if the current information is insufficient then updates must be
considered. The task of the algorithm is to request updates until the information
allows for a solution of the underlying problem to be calculated. We call the set
of these updates an update solution and if it is also of minimal size then we refer
to it as an optimal update solution. As each update is entitled to a predefined
uniform cost, and generally the less total cost the better, minimizing the use of
updates is desired.

In the adaptive online under uncertainty setting an algorithm initially knows
only the uncertain information and performs updates one by one (determining
the next update based on the information from previous updates) until it has
obtained sufficient information to determine a solution. Algorithms are typi-
cally evaluated by competitive analysis, comparing the number of updates they
make with the minimum number of updates that, in hindsight, would have been
sufficient to determine a solution.

In the verification under uncertainty setting the algorithm is not only given
the uncertain information, but also an assumed set of precise input data. If after
an update operation the precise value obtained is equal to the corresponding
assumed value, we say that the update verifies the assumed value. The objec-
tive of an algorithm in the verification setting is to produce an optimal update
solution, under the assumption that the updates are verified.

In this paper we consider the Maximal Point Verification (MPV) problem,
which falls in the verification setting of computing under uncertainty. The max-
imal point problem is a classical problem and many aspects of the problem have
sparked interesting research. In its simple form without uncertainty it can be
stated as follows: Given a set of 2-dimensional points, return all points that are

3

not dominated. A point is dominated if there exists a point with one coordinate
greater and the other not lower. Introducing uncertainty to the problem the
idea is that the coordinates of a point may not be known precisely but instead
a region or area of uncertainty is given such that the point is guaranteed to lie
within. Here the areas of uncertainty are restricted to be the direct product of
some x and y coordinate values. In the verification problem we are further given
the assumed precise location for each point, and the objective is to identify a
minimal number of points such that the precise locations of these points together
with the areas of uncertainty can produce the set of all maximal points. A formal
definition is given for the MPV problem in Definition 2, and for the proposed
restriction in Definition 4.

Our contribution is the new restriction to the MPV problem, as defined in
Definition 4, and a polynomial time algorithm that solves it as shown in theorem
1. We further show that the 3 update competitive result for the online adaptive
setting of the problem, as obtained by Bruce et al. in [2], carries over with this
newly introduced restriction.

The effect of our result is significant for experimental evaluation of algorithms
in the online adaptive setting of the maximal point problem under uncertainty.
A polynomial time algorithm can be implemented and the results obtained can
be used as a baseline to compare against online algorithms.

Related work:

Kahan [8] presented a model for handling imprecise but updateable input
data. He demonstrated his model on a set of real numbers where instead of the
precise value of each number an interval was given. That interval when updated
reveals that number. The aim is to determine the maximum, the median, or
the minimal gap between any two numbers in the set, using as few updates as
possible. His work included a competitive analysis for this type of online algo-
rithm, where the number of updates is measured against the optimal number
of updates. For the problems considered, he presented online algorithms with
optimal competitive ratio. Feder et al. [6] studied the problem of computing the
value of the median of an uncertain set of numbers up to a certain tolerance. Ap-
plications of uncertainty settings can be found in many different areas including
structured data such as graphs, databases, and geometry. The work presented
in this paper mainly concerns the latter two areas.

Bruce et al. [2] studied the geometric uncertainty problem in the plane. Here,
the input consists of points in the plane and the uncertainty information is for
each point of the input an area that contains that point. They gave a defini-
tion of the Maximal Point under Uncertainty as well as the Convex Hull under
Uncertainty. They presented algorithms with optimal competitive ratio for both
problems. The algorithms used are based on a more general technique called
witness set algorithm that was introduced in their paper.

Charalambous and Hoffmann [3] further studied the Maximal Point under
Uncertainty problem for the verification setting, showing that the unrestricted
problem is NP-Hard by a reduction from the Minimum Set Cover problem. Their
proof uses disconnected areas of uncertainty containing at most two points. The

4

open question was raised if a restriction that captures real life examples could
be put il place such that the problem becomes polynomial. This motivated the
research to obtain the results for this paper.

In [5], Erlebach et al. studied the adaptive online setting for minimum span-
ning tree (MST) under two types of uncertainty: the edge uncertainty setting
and the vertex uncertainty setting. In the latter setting, all vertices are points
in the plane and the graph is a complete graph with the weight of an edge be-
ing the distance between the vertices it connects. The uncertainty is given by
areas for the location of each vertex. For both settings, Erlebach et al. presented
algorithms with optimal competitive ratio for the MST under uncertainty. The
competitive ratios are 2 for edge uncertainty and 4 for vertex uncertainty, and
the uncertainty areas must satisfy certain restrictions (which are satisfied by,
e.g., open and trivial areas in the edge uncertainty case). A variant of com-
puting under uncertainty where updates yield more refined estimates instead of
exact values was studied by Gupta et al. [7].

In [4] Erlebach et al. further worked on MST for both edge and vertex uncer-
tainty this time studying the verification problem. They give a polynomial-time
optimal algorithm for the MST verification under edge uncertainty problem by
relating the choices of updates to vertex covers in a bipartite auxiliary graph.
For MST verification under vertex uncertainty they show that the problem is
NP-hard even if the uncertainty areas are trivial or open disks. The proof is
by reduction from the vertex cover problem for planar graphs with maximum
degree 3.

Structure of the paper. In Section 2.1 we give formal definitions and
preliminaries. In Section 3 we give in detail the algorithm and complete the
proof of Theorem 1.

2 Preliminaries

2.1 Maximal Points under Uncertainty

Within the wider field of problems under uncertainty we consider the Maximal
Point Verification (MPV) under uncertainty problem. We begin with establishing
the classic problem.

The classic problem of finding maximal points in the plane has as input a
set of points. All points discussed in the paper are points in the 2D plane, so a
point p may be written in coordinate form (px, py). We say a point p = (px, py)
is higher than a point q = (qx, qy) if px ≥ qx and py ≥ qy and p 6= q. This may
also be written as p > q. We are interested in finding all points such that there
does not exist a point higher, that is find all points in the set that are maximal.
Note that this induces a partial order and leads to the following definition of a
maximal point among a set of points.

Definition 1. Let P be a set of points and p be a point in P . The point p is
said to be maximal among P if there does not exist a point in P that is higher
than p. Otherwise p is non-maximal among P .

5

We use the uncertainty setting in the context of the Maximal Point problem.
The idea is that the coordinates of a point pi may not be known precisely but
instead a region or area of uncertainty Ai is given such that pi ∈ Ai. So we
have the set of points P = {p1, . . . , pn} and the set of areas of uncertainty
A = {A1, . . . , An} for each 1 ≤ i ≤ n, with pi ∈ Ai. If an uncertainty area Ai

consists of a single possible location, we call this area trivial and Ai = {pi}. The
aim is to be able to produce the set of all points that are maximal among P
based on the information of A. If this is insufficient then update operations can
be made on items of A which will reduce the uncertain areas to trivial size, i.e.
Ai = {pi} for the selected update of i.

In the online adaptive setting the algorithm does not know the actual location
of a point in P , until it chooses to update it. Therefore it takes as input the set
A, and this set is modified after every update by reducing the selected area to
trivial size. A set of updates that reveal enough information to calculate the set
of all maximal points is called, as stated earlier, an update solution. Updating
all non-trivial areas would reveal the precise location for all points and therefore
this would obviously be an update solution. For a given instance of a problem,
we denote an update solution of minimal size also as an optimal update solution.

In the verification setting the algorithm is also given the set of assumed
precise locations P ′ = {p′1, . . . , p′n} and therefore knows what the location of a
point in P will be without modifying A, under the assumption that p′i = pi for
an update 1 ≤ i ≤ n. As such the aim here is to select a minimal number of
updates such that when A is modified with the updates, the set of all maximal
points can be calculated based on the information of the modified set A.

Definition 2. A Maximal Point Verification problem, MPV for short, is a pair
(A, P), where P is a set of points and A is a set of areas for P . The aim is to
identify a minimal set of areas from A, that when updated verifies the maximal
points among P as maximal based on the information of A and the results of the
updates.

��
��
��
��

��

��
��
��
��

y

x

A

A

A

p

p

p

1

2

2

1

3

3

Fig. 1. Example of an MPV
problem

��
��
��
��

��

��
��
��
��

y

x

A
={ }
p

p

1 2

A2

1

p
2

={ }
p 3

A3 p
3

Fig. 2. Updating A2,A3

��
��
��
��

��

��
��
��
��

y

x

A ={ }

A

A

p

p

p

2

2

3

3

1
1

p 1

Fig. 3. Updating A1

6

In the example shown in figure 1, the problem consists of three points (p1, p2
and p3) and three areas A1, A2 and A3 such that A = {A1, A2, A3} and P =
{p1, p2, p3}. Note that the areas could be overlapping with each other and dis-
connected (as area A3 is). We can see that points p2 and p3 are maximal among
P since there is no other point in P that is higher. Also p1 is non-maximal among
P since at least p2 or p3 is higher. However without verifying any of the points
in P (i.e. updating an area that the point is contained), each of the points in P
may or may not be maximal based only on the areas of uncertainty. We can also
observe that by updating every area except of A1 the problem will not be solved
since point p1 could still potentially be maximal or non-maximal based on the
initial areas of uncertainty and the information retrieved by the updates. (figure
2). Updating only A1 on the other hand validates that p1 is indeed non-maximal
since A1 is now trivial and wherever p2 lies in A2 (or p3 lies in A3), the point p2
will always be higher. This brings us to figure 3 having performed one update
so far that the problem could not have been solved without. Now we can also
see that p2 is maximal regardless where it lies in A2 since there is no longer an
area containing a potential location point higher than a potential location of p2.
It is therefore only left to show that p3 is maximal and we now have a choice.
Further updating either A2 or A3 will achieve this with a similar reasoning as
before. So the problem has so far two potential update solutions {A1, A2} and
{A1, A3} which are also optimal. We finish this example by noting that the set
{A1, A2, A3} is also an update solution for the problem but it is not optimal
since there exists another update solution of smaller size.

We will use the following notations:
An area A is said to be maximal among a set of areas A if there does not

exist a point in any areas in A−A that is higher than any point in A. Similarly,
an area A is said to be non-maximal among a set of areas A if for every point
p ∈ A there is an area in B ∈ A such that every point in B is higher than p.

We also note that an area might be neither maximal nor non-maximal among
a set of areas, whereas a point is either maximal or non-maximal among a set
of points as defined earlier. If this is the case then the set of maximal points
cannot be calculated. In other words a problem is solved if and only if all areas
in A are either maximal or non maximal among A.

The areas which are neither maximal nor non-maximal can be further divided
into the two following categories. Area A is partly among the set A if A is neither
maximal nor non-maximal and further contains a point p such that there does
not exist a point in any areas in A − A that is higher than p. If such point p
does not exist then area A is dependent among the set A.

For further convenience we say an area A interferes with an area B if there
exists a point in A higher than a point in B.

2.2 New Model

The problem of finding maximal points under uncertainty was introduced by
Bruce et al. in [2] and an update optimal strategy was given for the restricted
online problem, as also it was shown that a constant update competitive ratio is

7

impossible for unrestricted areas. The proposed restriction they gave is to have
only areas which are either trivial or closures of connected, open areas.

Although the restricted problem as studied by Bruce et al. yields nice results,
it does not capture scenarios where the uncertain information about an item may
contain disconnected values. For example when comparing products a product
may have an uncertain price in disconnected ranges depending on availability
from different sellers, time of purchase, combination of products purchased, etc.
As the restriction by Bruce et al. does not cover situations like this, we wish to
have a model where the categorized information does not have to be continuous
but instead it can be gradually moving.

Further study of the problem by Charalambous and Hoffmann [3] has shown
that the verification problem is NP-hard if there are no restrictions on the areas
of uncertainty. This is shown to be the case even if the areas of uncertainty
contain at most two points.

The results of the work of Bruce et al. and Charalambous and Hoffmann
gave rise to even further study of the verification problem. There was the expec-
tation of restricting the accepted input set A such that: an algorithm can solve
the verification problem in polynomial time, an algorithm can solve the online
problem with the 3-update competitive strategy of Bruce et al., and also accept
other types of uncertain areas which the restriction by Bruce et al. was unable
to do so.

Although uncertain information about an item may contain disconnected
values, usually this information is categorized such that the properties of the
item are independent of each other. For example when comparing products the
price of a product should not affect its rating. With the maximal points under
uncertainty in mind, independence between the x and y axes can be modelled
as constructing an area of uncertainty from the direct product of two sets, one
contain x coordinate values and another containing the y coordinate values. This
further allows disconnected values. This kind of restriction captures problems
such as finding the top products from a list where each product is given price
and rating in independent ranges, but also each range may have disconnected
values. It is an interesting idea for a new model for studying the maximal points
under uncertainty problem, provided that efficient algorithms for both the online
and verification settings are possible.

Following the above we introduce the following restriction for the accepted
input areas for the verification problem. Given that we are still studying the prob-
lem in 2-dimensional euclidean space only, a point has two coordinates namely
x and y. The areas of uncertainty may only be composed of all points made up
by the direct product of possible x and y values. Formally:

Definition 3. The input pair (A, P) of the MPV problem is such that A =
{A1, . . . , An} and Ai = {Ax

i ×Ay
i } where Ax

i is a set of x values, Ay
i is a set of

y values and 1 ≤ i ≤ n.

Given for example uncertain values for x-coordinate Ax
i = {1, [2, 4]} and y-

coordinate Ay
i = {2, [4, 6]} the area of uncertainty Ai can be depicted as shown

in the following figure.

8

1

2

3

4

5

6

7

8

0
1 2 3 4 5 6 7 8

y

x

Fig. 4. Example of area Ai = {1, [2, 4]} × {2, [4, 6]}

We now show that the 3-update competitive witness algorithm result of Bruce
et al in [2] also applies for the online setting problem of our model. It is interesting
that our restriction allows some disconnected areas, whereas this is not the case
in the restriction proposed by Bruce et al. They have the restriction for areas
of uncertainty such that they are either trivial or closures of connected open
areas. Their Lemma 4 makes use of the restriction and shows that if a vertical
or horizontal line splits two areas then they cannot both be maximal among A.
Furthermore in their Lemma 5 they establish the witness set of size 3. The rest
of the reasoning used by Bruce et al is elementary to follow with our model in
mind as no use of a restriction is necessary. Therefore we show a similar reasoning
below applied to our restriction that is equivalent to their reasoning for those 2
Lemmas, and also a slightly different definition when a line splits an area. This
suffices to establish that their result applies here as well. We have that:

Definition 4. Let A be a non-trivial area. If l is a vertical line at X and there
exist points a, b ∈ A such that ax ≥ X and bx < X then we say l splits A.
Similarly if l is a horizontal line at Y and there exist points a, b ∈ A such that
ay ≥ Y and by < Y then we say l splits A.

If there exists an area that is partly among A then as by Lemmas 2 and 3
of Bruce et al. there exists a witness set of size at most 2. We now prove the
following two lemmas using similar reasoning as in Bruce et al. Lemmas 4 and
5, but using our version of the Lemma 1:

Lemma 1. A horizontal or vertical line can split at most one area that is max-
imal among A.

Proof. Let l be a vertical line at X and let Ai, Aj be areas maximal among A.
Further let l split Ai, Aj such that there exist points ai, bi ∈ Ai and aj , bj ∈ Aj

with axi , a
x
j ≥ X and bxi , b

x
j < X.

9

We have that either ai > bi or ai ≯ bi. If ai > bi then we choose point ci = ai.
Otherwise we choose point ci = (axi , b

y
i). As by the restriction of direct products

we have that ci must exist in Ai, and we note in both cases we have that ci > bi.
Further as ci > bi and cxi > bxi then we have cyi ≥ byi .

With the same reasoning we choose cj ∈ Aj such that cj > bj , c
x
j > bxj and

cyj ≥ byj .
We now have that either cyi ≥ cyj ≥ byj or cyj ≥ cyi ≥ byi . As ci, cj lie on or

to the right of l and bi, bj lie to the left of l, then it follows that either cj > bi
or ci > bj . This is a contradiction as both Ai, Aj are maximal among A and
therefore there must be no point in areas A−Ai dominating bi, and no point in
areas A− Aj dominating bj . As such if l splits Ai and Aj , one of them cannot
be maximal among A.

In a similar way if l is a horizontal line at Y and splits areas Ai, Aj , then there
exist points ci, bi ∈ Ai and cj , bj ∈ Aj such that cxi ≥ cxj ≥ bxj or cxj ≥ cxi ≥ bxi
holds. As ci, cj would lie on or above of l and bi, bj below l, then it follows that
either cj > bi or ci > bj . Therefore Ai and Aj cannot be both maximal among
A.

ut

Lemma 2. If there are no party areas among A but there exists a dependent
area, then there exists a witness set of size at most 3.

Proof. Let Ai be a dependent area among A such that no other dependent area
contains a point higher than Ai. Further let hi be the highest point in Ai made
by the upper limits of the coordinate sets that make the direct product of area
Ai. We note that either hi ∈ Ai or hi /∈ Ai. Further let l1 be the vertical line
starting at hi and going upwards, and l2 be the horizontal line starting at hi

and going to the right. Let Q be the top right quadrant of l1 and l2 including
l1 and l2. Further if hi ∈ Ai then let hi /∈ Q, and if hi /∈ Ai then let hi ∈ Q. In
both cases any point in Q is higher than every point in Ai.

Since there is no other dependent area with a point higher than Ai as also
there are no partly areas, every point that is in Q and contained in an area of
A is maximal among P . Since Ai is dependent there exists an area Aj with a
point in Q and a point not in Q. Since Aj contains a point in Q which can only
be maximal among P , as also because there are no partly areas, Aj must be
maximal among A. Since Aj is maximal among A, by Lemma 1, there are at
most two areas that contain a point higher than Ai, one split by l1 and one split
by l2. Let the other area be Ak. So we have to show whether Ai is maximal
among A or not. If we need to show that Ai is maximal among A then we have
to at least update both Aj and Ak, as otherwise there are points in Aj and Ak

that remain in Q. If we need to show that Ai is not maximal among A then we
have to at least update one of {Aj , Ak, Ai} to show either Aj > Ai or Ak > Ai.
Therefore we have a witness set of size at most 3 with {Aj , Ak, Ai}.

ut

This concludes the 3-update competitive witness algorithm proof for the
online problem under the direct product restriction. The verification problem of

10

this new model brings us to the following theorem which we will prove at the
end of the next section:

Theorem 1. There exists a polynomial time algorithm for solving the Maximal
Point Verification problem if each area of A is the direct product of x and y
coordinate values.

3 Verification Problem Algorithm

In this section we present a polynomial time algorithm that finds a solution
for the MPV problem, under the restriction that each area of the input set A
consist only of points produced by the direct product of a set of x and a set of
y coordinate values.

As mentioned earlier the unrestricted problem is NP-Hard, even if the un-
certain areas contain at most 2 points, and the proof for the NP-Hardness takes
advantage of the dis-connectivity of the areas[*].

We will show that after the proposed algorithm has finished execution, all
areas have a status of either maximal or non-maximal among A which is enough
to distinguish all maximal points. Furthermore the set of updates performed will
be of minimal size and hence solve the MPV problem. Finally we show that all
steps of the algorithm can be done in polynomial time and hence theorem 1 is
satisfied.

As introduced in the previous section, P = {p1, . . . , pn} is the set of points
and A = {A1, . . . , An} is the set of areas with pi ∈ Ai for all 1 ≤ i ≤ n. In
contrast to the online setting, both sets P and A are given to the algorithm and
therefore the algorithm can look up at the effect of including or not including a
particular area to be part of an update solution. Recall that a set of areas that
is a solution for the MPV problem may also be referred to as an optimal update
solution, and an update solution, although it distinguishes all maximal points,
is not necessarily a solution for MPV.

The algorithm runs in two phases over viewed as follows. In phase 1 the
algorithm collects and performs updates as deemed necessary, hence changing
the set A, and also collects a series of choices between updates all of which every
update solution would need to satisfy. The second phase then establishes an
optimal way to satisfy all the choices collected from phase 1 and thus the set
of updates from phase 1 together with the set of updates satisfying the choices
together form an optimal solution for the problem.

As stated earlier areas are classified into maximal, non-maximal, partly and
dependent among A, as also their precise location is classified as either maximal
or non maximal among P . Also during the run of the algorithm as updates are
simulated, the classification of the areas and their precise location together with
the information of A changes. To emphasize this we combine the two classifi-
cations into one, for example an area Ai is D-M if Ai is dependent among the
current set A and the precise location pi ∈ Ai is maximal among P . In the
same way we have the following types: D-N if Ai is dependent among A and

11

pi is non-maximal among P , P-M if Ai is partly among A and pi is maximal
among P , and P-N if Ai is partly among A and pi is non-maximal among P .
Note that there are also areas of type M-M (Ai maximal among A, pi max-
imal among P) and N-N (Ai non-maximal among A, pi non-maximal among
P) which the algorithm does not deal with. This is because, as mentioned ear-
lier, when the current state of A does not contain partly or dependent areas
no more updates are needed, and therefore we will show how each of the types
D-M/D-N/P-M/P-N is dealt by the algorithm.

We also define the self determined areas. A self determined area Ai belongs to
one of the four types D-M/D-N/P-M/P-N but it also has the following property
which makes it mandatory to be included in every update solution. If after
updating every area in A except from Ai itself, area Ai is partly among the new
set A then Ai must be updated.

The outline of the algorithm is as follows:

Phase 1

Update all self determined areas

(eliminates all D-M,P-N areas and some D-N,P-M areas)

Focus on remaining D-N areas: Discard areas, update clear

better ones, record choices

Focus on remaining P-M areas: Record choices

Phase 2

Sort all maximal areas found within the choices by their

precise location top-left to bottom-right

Split all recorded choices in chains

Update every second area in every chain

3.1 Phase 1

Overview.
The algorithm first establishes in 5 steps a set of updates that have to be in

every update solution and flags areas that are not relevant for an update solution.
Then a series of choices between updates are encountered in the following way.
If out of the choices there is a clear better one, i.e. there exist an update which
yields at least as much new information as the other matched choices, then this
update is chosen and otherwise the choice between some updates is recorded.
First phase simulates the selected updates and hence the areas in A change
accordingly. All these updates are recorded and will be part of the output optimal
update solution when the algorithm finishes execution.

Step 1.
For the first step we establish a set of updates that has to be a subset of any

update solution as by the following Lemma:

Lemma 3. Let A − Ai not be an update solution. Then every update solution
must contain Ai.

12

Let Ai ∈ A be an area such that after updating every area in A except Ai

does not solve the problem. Formally, A − Ai is not an update solution and so
any update solution must contain Ai as by Lemma 3. The update of all such
areas in this step is simulated by the algorithm, and therefore set A is
now modified with the updated data. As by Lemma 3, and as an effect of the
action performed we have the following:

Remark 1. All updates performed in step 1 are needed in every update solution.

Lemma 4. After the updates of step 1 there are no D-M and P-N areas in A.

Proof. Let’s assume there exists an area Ai such that it is D-M after step 1.
As Ai is dependent among A there exists an area Aj such that there is a point
qj ∈ Aj and qj > Ai. As the precise location point pi is maximal among P ,
therefore pj 6> pi. Without updating Aj , though, area Ai cannot be identified as
maximal among A since qj remains in Aj . So A−Aj is not an update solution
and therefore Aj must have been updated by step 1. This is a contradiction since
Aj is non trivial as qj ∈ Aj , pj ∈ Aj and pj 6= qj .

Let’s assume that after step 1 there exists a P-N area Ai. As Ai is partly
among A it cannot be trivial and it must contain a point qi such that no point
in any other area is higher than qi. Furthermore the precise location point pi is
non-maximal among P . Without updating Ai itself, the area cannot be identified
as non-maximal among A as the point qi would remain in Ai. So A−Ai is not
an update solution and therefore Ai must have been updated by step 1. This is
a contradiction as Ai is non trivial.

ut

Steps 2 and 3.
In the second and third steps we focus on dependent areas with non-maximal

precise locations (D-N). Some D-N areas might have already changed their status
after step 1. We now focus on the remaining D-N areas. Let Ai be a D-N area
after step 1 is performed. As Ai is D-N then pi is not maximal in P and therefore
there exists pj in P such that pj > pi. Note that for area Ai there may be another
D-N area with precise location higher than Ai. We will only take action when
this is not the case and we will show why this suffices for not leaving any D-N
areas unhandled. At this stage there exist either one or two areas with precise
location higher than every point in Ai. Formally:

Lemma 5. Let Ai be a D-N area after the updates of step 1, such that there
does not exist another D-N area with precise location higher than Ai. Then there
exist either one or two areas with precise location higher than Ai.

Proof. Recall the restriction proposed earlier for the uncertainty areas. As by
the restriction area Ai is made by the direct product of a set Ax

i and a set Ay
i .

Let hi = (hx, hy) where hx is the upper limit of Ax
i and hy is the upper limit

of Ay
i . We note the point hi may or may not be in Ai and all other points in

Ai are dominated by hi. Further Ai does not contain a point that is maximal

13

among P as otherwise the instance cannot be solved without updating Ai and
hence Ai would have been updated in step 1.

Case hi ∈ Ai: As Ai does not contain a point that is maximal among P then
hi is also not maximal among P . As hi is not maximal in P there exists a pj in
P that is higher than hi and also pj > Ai.

Case hi /∈ Ai: As hi is made by the upper limits of Ax
i and Ay

i , either the
upper limit of Ax

i is not in Ax
i or the upper limit of Ay

i is not in Ay
i , or both

limits are not in their sets. As Ai does not contain any point that is maximal
among P , there must exist a point pj in P that is higher or equal than hi. As
pj ≥ hi and hi /∈ Ai then also pj > Ai.

By the condition of this lemma Aj , the area in which pj is the precise location,
cannot be a D-N area. Furthermore it cannot be a N-N area as pj would be a
non maximal point with respect to the current uncertain information and hence
Ai would also be N-N instead of D-N since pj > Ai. Also Aj cannot be P-N area
by Lemma 4. So Aj is either an M-M, P-M or D-M area. In all cases the point
pj is maximal in P .

As area Ai is dependent, the area Aj must contain a point q′j that is not
higher than Ai. We now choose a point qj ∈ Aj with either qj = (q′xj , pyj) or

qj = (pxj , q
′y
j) such that qj 6> Ai and qj < pj . As Aj is a product of possible x

and y values point qj exists in Aj . We note that as qj 6> Ai, it is also not higher
than hi. The figure below shows these properties.

A i

p jh i

q j q’j A i

p j

h i

q j

q’j

Fig. 5. D-N area Ai with qj = (pxj , q
′y
j) or qj = (q′xj , pyj)

Let ln1 and ln2 be horizontal and vertical lines respectively such that they
cross at point hi. The two points pj and qj are separated by either ln1 or ln2 or
both. Due to symmetry, without loss of generality lets assume they are separated
by ln1 (the horizontal line through hi).

Let’s assume there exists another area Ak such that pk is also higher than
Ai. With the reasoning as for Aj , the point pk is maximal in P ; there exists qk
in Ak such that qk 6> Ai and qk < pk.

Further let’s assume pk and qk are also separated by ln1. Then either pxk ≥
pxj ≥ qxj or pxj ≥ pxk ≥ qxk . As pk and pj lie on or above ln1 and qk and qj lie
below ln1 we have that either pk > qj or pj > qk. So one of the areas Aj or
Ak must contain a point that is dominated by a point in P from another area

14

while its precise location point is maximal in P . Hence that area would have
been updated by step 1 as by Lemma 3.

A

A j

i
ln1

p j

p i

h i

q j q j’

Ak

p k

q k q k’

Fig. 6. Example of D-N area Ai. Step 1 of the algorithm would update area Aj

So qk and pk cannot be separated by ln1 and must therefore be separated
by ln2. Following the same argument, there cannot be any further areas with
precise location above hi.

Hence there exist at most two areas with precise location higher than Ai, one
separated by a horizontal line crossing hi and another separated by a vertical
line crossing hi. The figure below shows the formation.

A

A

A j

k

i
ln

ln

1

2

pk

p j

p i

h i

q
k

q j

q’
k

q j’

Fig. 7. D-N area Ai after step 1 of the algorithm where pj ∈ Aj and pk ∈ Ak such
that pj , pk > Ai

ut

As an extension of Lemma 5 we also note the following property for the case
when there are two areas with precise location higher than Ai, which will be
essential in a later step in phase 2:

Remark 2. If after step 1, Ai is a D-N area such that there does not exist another
D-N area with precise location higher than Ai, and there exist two areas with

15

precise location higher than Ai then these two areas are neighbouring areas with
precise locations maximal in P . In other words when all maximal areas are sorted
by either x or y coordinate value of their precise location, one will be found right
after the other.

We separate the cases where there is one such area (step 2) and where there
are two such areas (step 3).

Step 2. Let Ai be a D-N area such that there exists exactly one area Aj with
precise location pj such that pj > Ai. As Ai is a dependent area then Aj must
contain at least one point that is not greater than all points in Ai. As pj is the
only point in P that is greater than Ai, without updating neither Ai nor Aj the
area Aj remains dependent among A. So any update solution must contain at
least either Ai or Aj . The action the algorithm takes here is to update
Aj , and therefore set A is now modified with the updated data.

At this point we give the definition of a choice that is recorded by steps 3,4
and 5 of the algorithm:

Definition 5.
A choice Ci is an update decision that has to be made between two sets of

areas.
A set of updates S satisfies a choice Ci if S contains at least all the areas

found in either of the two sets of Ci.
There are two types of choices: type A and type B. In type A both sets of

areas are of size one, whereas in type B one set is of size one and the other is
of size two.

Step 3. Let Ai be a dependent area such that there exist exactly two areas
Aj and Ak with pj > Ai and pk > Ai. Similar to the arguments in step 2 every
update solution must contain at least one of the three areas Ai, Aj and Ak. At
this stage no updates are simulated but instead the algorithm records the
choice between Aj and Ak (type A choice).

We will use the following two Lemmas to justify the actions taken for step 2
and 3:

Lemma 6. Let U be an update solution with Ai ∈ U . If Ai is non-maximal
among A after the updates of U−{Ai} then U−{Ai} is also an update solution.

Proof. Assume U − {Ai} is not an update solution. So there exists an area Aj

that, after the updates of U − {Ai} are performed, is neither maximal nor non-
maximal among A. However after further updating Ai, the area Aj must become
either maximal or non-maximal, as U is an update solution. Area Aj cannot be
the same area as Ai since the updates of U − {Ai} make Ai non-maximal and
make Aj neither maximal nor non-maximal among A.

If the further update of Ai changes Aj to maximal among A then there must
have been at least one point in Ai that was higher than a point in Aj before the
update. This point in Aj is non maximal as area Ai is non-maximal among A
and any point lower must also be non maximal. This is a contradiction so Aj

cannot change to maximal among A .

16

If the further update of Ai changes Aj to non-maximal among A, then point
pi is higher than all points in Aj . As Ai is non-maximal among A after the
updates of U − {Ai}, the point pi is also non maximal and since pi is higher
than any point in Aj it follows that Aj must have already been non-maximal
among A before updating Ai. This is a contradiction so Aj cannot change to
non-maximal among A.

ut

Lemma 7. Let Ai be a dependent area and Aj be another area such that pj is
higher than every point in Ai. If there exists a set of areas U that is an update
solution with Ai ∈ U then (U

⋃
{Aj})− {Ai} is also an update solution.

Proof. Since U is an update solution the set U
⋃
{Aj} is also an update solution.

As Ai ∈ U , it follows that Ai ∈ U
⋃
{Aj}. Since point pj is higher than any point

in area Ai and pj ∈ Aj , after updating area Aj , the area Ai will change status to
non-maximal among A. This is also the case after updating (U

⋃
{Aj}) − {Ai}

since Aj ∈ (U
⋃
{Aj})−{Ai}. Finally since U

⋃
{Aj} is an update solution, Ai ∈

U
⋃
{Aj} and Ai is non-maximal among A after updating (U

⋃
{Aj})−{Ai}, by

Lemma 6, (U
⋃
{Aj})− {Ai} is also an update solution.

ut

For step 2, as by Lemma 7, every update solution containing Ai can be
modified by replacing Ai with Aj and the set resulted will still be an update
solution. The size does not increase since we are considering replacing only one
element with another and so the update of Aj is not in every update solution but
there must be an update solution of minimal size that includes Aj . For step 3, as
by Lemma 7, every update solution containing Ai can be modified by replacing
Ai with either Aj or Ak and the set resulted will still be an update solution. The
size again does not increase and so there must be an optimal update solution
that contains either Aj or Ak. These bring us to the following conclusions for
step 2 and 3:

Remark 3. There exists an optimal update solution that contains the updates
of step 2 and satisfies all choices of step 3.

Lemma 8. After the updates of step 2 and the updates of a set that satisfies all
recorded choices of step 3, a D-N area does not exist.

Proof. Let’s assume there exists an area Ai such that it is D-N after the updates
of step 2 and after a set of updates that satisfies the choices of step 3.

If Ai contains a point that is maximal among P then A − Ai would not be
an update solution and therefore, by Lemma 3, updated in step 1 and no longer
contain that point.

So it does not contain a point maximal in P , and we now have two cases:
either there does not exist another D-N area with precise location higher than
every point of Ai (case 1) or there exists one (case 2).

Case 1: A by Lemma 5 there exists either one or two areas with precise
location higher than Ai. If there is one then step 2 would update an area Aj

17

such that pj > Ai and therefore Ai would change status to N-N. So there must
exist two areas with precise location higher than Ai. As the choices of step 3 are
satisfied then again an update must have been made on at least one of the two
areas with precise location higher than Ai, which again changes the status of Ai

to N-N. So Ai cannot be dependent, contradiction.
Case 2: There must exist some other D-N area which falls to case 1 and has

precise location higher than Ai. As the other D-N area falls in case 1 it would
have change status to N-N. Therefore this case will also be managed indirectly
as any point lower than a non-maximal point is also non-maximal. So Ai cannot
be dependent, contradiction.

ut
Steps 4 and 5.

In the fourth and fifth steps the remaining partly areas with maximal precise
location (P-M) are considered. After step 3 for each P-M area there exist either
one or two areas interfering with it, formally:

Lemma 9. Let Ai be a P-M area with precise location pi. Further let R be the
set of all areas interfering with Ai. Set R contains either one or two areas.

Proof. Recall the restriction proposed earlier for the uncertainty areas. As by
the restriction area Ai is made by the direct product of a set Ax

i and a set Ay
i .

Let li = (lx, ly) where lx is the lower limit of Ax
i and ly is the lower limit of

Ay
i . We note the point li may or may not be in Ai and it is dominated by all

other points in Ai. Formally if li ∈ Ai then qi ≥ li for every point qi ∈ Ai, and
if li /∈ Ai then qi > li for every point qi ∈ Ai.

Furthermore each point in Ai is maximal among P as otherwise the instance
cannot be solved without updating Ai and hence Ai would have been updated
in step 1.

Also as Ai is partly there must exist an area Aj such that it contains a point
q′j with q′j > qi for some qi ∈ Ai, and has the precise location pj 6> qi as each
point in Ai is maximal among P . We now choose a point qj ∈ Aj with either
qj = (q′xj , pyj) or qj = (pxj , q

′y
j) such that qj > qi and qj > pj (see figure below).

As Aj is a product of possible x and y values point qj exists in Aj . We note that
also qj > li as qi ≥ li. The figure below shows these properties.

A i

p j

li

q jq’j
q i

A i

p j

li

q j

q’j

q i

Fig. 8. P-M area Ai with qj = (pxj , q
′y
j) or qj = (q′xj , pyj)

Area Aj cannot be N-N as it contains a point higher than a point in Ai. If
Aj was N-N then there must have been a point in P higher than Aj , which in

18

turn would also be higher than a point in Ai and contradict the fact that each
point in Ai is maximal among P . Furthermore by Lemma 8 it cannot be D-N
after the updates of step 2 and the set of updates that satisfy the choices of step
3. Also Aj cannot be D-M or P-N as by Lemma 4 after the updates of step 1
there are no D-M and P-N areas left. So Aj is either a M-M or P-M area. In all
cases the point pj is maximal in P .

In both cases li ∈ Ai and li /∈ Ai for every point qi ∈ Ai we have that pj 6> qi,
as Ai only contains points that are maximal among P .

Case li ∈ Ai: As pj 6> qi for all qi ∈ Ai then also pj 6> li.

Case li /∈ Ai: As li is made by the lower limits of Ax
i and Ay

i , either the lower
limit of Ax

i is not in Ax
i or the lower limit of Ay

i is not in Ay
i , or both limits are

not in their sets. As pj 6> qi and qi > li for all qi ∈ Ai, if pxj > lxi then pyj ≤ lyi
and if pyj > lyi then pxj ≤ lxi . Otherwise pj 6> li.

Let ln1 and ln2 be horizontal and vertical lines respectively such that they
cross at point li. The two points pj and qj are separated by either ln1 or ln2.
Due to symmetry, without loss of generality lets assume they are separated by
ln1 (the horizontal line through li).

Let’s assume there exists another area Ak such that it contains a point qk
with qk > qi for some qi ∈ Ai. With the reasoning as for Aj , we have qk > pk
and pk 6> qi for all qi ∈ Ai.

Further let’s assume pk and qk are also separated by ln1. Then either pxk ≥
qxj ≥ pxj or pxj ≥ qxk ≥ pxk. As pk, pj lie below ln1 (or on ln1 for case li /∈ Ai)
and qk, qj lie above ln1 (or on ln1 for case li ∈ Ai) we have that either qk > pj
or qj > pk. So although one of the areas Aj or Ak has the precise location
point maximal in P , without updating the area that interferes with this precise
location there cannot be an update solution. Hence that area would have been
updated by step 1.

A i

p j

li

q jq’j
q i

p k

q kq’k

p i Aj Ak

ln1

Fig. 9. Example of P-M area Ai. Step 1 of the algorithm would update area Aj

So qk and pk cannot be separated by ln1 and must therefore be separated by
ln2. Following the same argument, there cannot be any further areas containing
a point higher than a point in Ai.

19

Hence there exist at most two areas with precise location higher than Ai, one
separated by a horizontal line crossing hi and another separated by a vertical
line crossing hi.

A

A

A j

k

i

ln

ln

1

2

j

p i

kp

q

pj

q k

il

q
i

q’k

jq’

Fig. 10. P-M area Ai after step 1 of the algorithm where qj ∈ Aj and qk ∈ Ak such
that qj , qk > qi

ut

By Lemma 9, at this point, a partly area Ai with maximal point can have
either one or two areas interfering with it, and the precise locations of which
are not higher than any point in Ai. Again we separate these cases accordingly
(Step 4 for one area and Step 5 for two areas.)

Step 4. Let Ai be a partly area such that there exists exactly one area,
namely Aj , interfering with Ai. As the precise location of Aj is not higher than
any point in Ai, updating Aj will change the status of Ai to maximal among
A. Furthermore by updating Ai this is also the case as there is no point higher
than the precise location of Ai. As Aj contains at least one point higher than a
point in Ai, without updating neither Ai nor Aj , area Ai will remain partly and
hence any update solution must contain at least one of the two. At this stage an
update cannot be simulated and therefore the algorithm records the choice
between Ai and Aj (type A choice).

Step 5. We now consider two areas namely Aj and Ak which interfere with
area Ai. With a similar reasoning as in step 4 we have that without updating
neither Ai nor both Aj and Ak area Ai remains partly and so every update
solution must contain at least either Ai or both Aj and Ak. Again an update will
not be simulated and therefore the algorithm records the choice between
area Ai and the set of areas consisting of Aj and Ak (type B choice).

With the collection of all choices of steps 4 and 5 we have the following:

20

Remark 4. Every update solution must satisfy all choices collected by step 4 and
step 5.

Lemma 10. Any set of updates that satisfies all choices of step 4 and step 5
does not leave any partly areas of maximal points (P-M).

Proof. Let’s assume there exists an area Ai such that it is P-M after satisfying
the choices of steps 4 and 5.

As Ai is partly among A it contains at least two points and there exists an
area Aj with a point qj ∈ Aj such that qj is higher than a point qi ∈ Ai. Also
as pi is maximal among P then pj 6> pi.

We have that either pj > qi (case 1) or pj 6> qi (case 2).
Case 1: If this is the case then A−Ai is not an update solution and therefore

Ai would have been updated in step 1 and it would have trivial size. As pi, qi ∈ Ai

and pi 6= qi this is a contradiction.
Case 2: In this case as by steps 4 and 5 either Ai itself must be updated

to satisfy the choice or all areas interfering with Ai must be updated. As Ai is
partly and not trivial then all areas interfering with Ai must have been updated.
Since qj > qi and pj 6> qi then pj 6= qj . As pj , qj ∈ Aj and pj 6= qj then Aj was
not updated and therefore the choice was not satisfied, contradiction.

ut

We also note by the following Lemma 11 for P-M areas, a property that is
essential in phase 2.

Lemma 11. Let Ai be a partly area and let set R contain the areas interfering
with Ai. Then Ai and the areas in R are neighbouring areas, with Ai being in
the middle if R is of size 2.

Proof. Let Aj and Ak be the areas inR, with pi and pj being the precise locations
of Aj and Ak respectively. Further let area Aj be located to the top left side of
pi and Ak be located to the bottom right side of pi.

Finally let lh1 and lv1 be horizontal and vertical lines respectively intersect-
ing on point pi, and similarly let lines lh2 and lv2 intersect on pj . Then lh1
must also intersect with lv2, and lv1 with lh2. The resulting rectangle forms the
region between Ai and Aj , where no other area can have a point into except on
lines lv2 and lh1.

If there was an area Ap which had every point higher than the point of
lv1∩ lh2, and still had a point in the rectangle, then at least one of the following
scenarios would occur which the algorithm would have managed in a previous
step: Ap would be P-M or D-M such that A−Ap is not an update solution and
therefore updated in step 1, or Ai would be dependent instead of partly among
A.

If the whole area Ap was not higher than the point of lv1 ∩ lh2 but still had
a point higher than lv1∩ lh2, and not on the lines of lv1 and lh2, then Ap would
be self determined and the algorithm would have updated it in step 1.

This proves that no area can be found between Ai and Aj .

21

In a similar way a rectangle can be constructed between pi and pk and it can
be shown that no area can be found between Ai and Ak.

Since there is no area found between Ai and Aj and no area found between
Ai and Ak it follows that Ai can only be in the middle of Aj and Ak. ut

Having analysed the steps of phase 1 we now combine the results to show
the desired outcome:

Lemma 12. a) All updates made in phase 1 together with a set of updates that
satisfies the choices collected is an update solution.

b) All updates made in phase 1 together with a minimal set of updates that
satisfies the choices collected is an optimal update solution.

c) Phase 1 runs in polynomial time.

Proof. a) It was shown after updating various areas and satisfying the collected
choices how each of the types D-M/D-N/P-M/P-N is eliminated, therefore
leaving only the types M-M and N-N as needed to have an update solution.

b) Furthermore at actions which perform updates it has been shown that either
the updates must be in every update solution (step 1) (use of Lemma 3) or
the updates must be in at least one optimal update solution (step 2) (use
of Lemmas 6 and 7). Hence the set of updates so far are minimal. It is also
shown that if one further satisfies all the collected choices (from steps 3,4,5)
(use of Lemmas) with another minimal set of updates then the two sets
together form an optimal update solution.

Moreover if there is a set of updates that does not satisfy all choices, then
it is not an update solution of minimal size, as explained in steps 3,4,5 and
by the definition of choices.

c) We now show the time complexity for the various steps.

Classifying all areas to the types D-M/D-N/P-M/P-N takes at most n2 to
compare each area against all others. This needs to be done before the ex-
ecution of the algorithm, and also after each step that performs updates,
specifically after steps 1 and 2 of phase 1.

For step 1 the algorithm needs to compare each area against all others and
find out if Lemma 3 holds and perform updates if that is the case. There is
n number of areas and therefore this takes at most n2 times.

For Steps 2 and 3 the algorithm needs to find the one or two areas which
interfere with each dependent area, as by Lemma 5. There are at most n
dependent areas and therefore we have at most n2 iterations to find the
areas that interfere with the dependent areas.

For steps 4 and 5 the algorithm needs to find the one or two areas which
interfere with each partly area, as by Lemma 9. There are at most n partly
areas and therefore we have at most n2 iterations to find the areas that
interfere with the partly areas.

After this phase 1 finishes and therefore it runs in polynomial time.
ut

22

3.2 Phase 2

After the completion of phase 1 a set of updates and a of set choices have
been established. The set of updates so far is minimal and it remains to further
choose a minimal number of updates to satisfy all the recorded choices, in order
to provide an optimal update solution. Recall that the choices only contain areas
with precise location maximal among P . These choices are then split into chains
and all areas within the choices are sorted top-left to bottom-right. This can be
done just in the order of increasing x. The properties of choices and chains are
as follows:

Remark 5.

Steps 3 and 4 of the algorithm produce type A choices.

Step 5 of the algorithm produces type B choices.

As stated earlier, choosing neither of the two update sets of a choice does
not produce an update solution. Furthermore choosing either of the two update
sets of a choice is enough to satisfy the choice.

Definition 6. A choice C1 overlaps with a choice C2 if there exists an area A
such that A ∈ C1 and A ∈ C2.

Definition 7. A chain is a sequence of choices (C1, . . . , Ck) where Ci overlaps
with Ci+1 for all 1 ≤ i ≤ k − 1 and the sequence is of maximal length.

We have also establish in Lemmas 2 and 11 that the choices are between
neighbours. That is for type A a choice has to be made between 2 areas that
are next to each other, and for type B a choice has to be made between the
middle area and the 2 side areas. An example of a chain with the different kind
of choices is show below.

23

step 5, type B

step 4, type A

step 3, type A

step 4, type A

step 5, type B

Fig. 11. Example of a chain of choices

By sorting the areas in the chains the following Lemma takes place:

Lemma 13. By choosing the second and every other area in a chain, all choices
in the chain are satisfied. Furthermore no two consecutive areas in a chain can
be left out of an update solution.

Proof.
By choosing all even areas in the chain, for every choice in the chain either

every odd or every even area is chosen.
For a choice of type A choosing the odd or the even area satisfies the choice.
Hence by choosing each even area in a chain all choices of the chain are

satisfied.
By Definition 7 two consecutive choices in a chain are overlapping.
If they form a type A choice then they cannot both be left out of an update

solution.
If they are part of a type B choice then we have that the middle area is the

one element of the choice and the leftmost and rightmost areas form the other
element of the choice. Hence by leaving out either the leftmost and middle or
the middle and rightmost areas no valid element of choice remains and therefore
they cannot both be left out of an update solution.

ut

As by Lemma 13, by updating every second area in every chain all choices are
satisfied and when combined with the simulated updates of phase 1 an optimal
update solution is produced. Lemma 12 further shows the time complexity of
the algorithm.

24

The time complexity in phase 2 is follows. To sort the areas a basic sorting
algorithm will take O(n2). Each choice is then compared against the next one
to decide if the next one belongs in the same chain or a new chain needs to be
created. This will take at most n iterations, in the case there is n number of
areas in total for all choices. Satisfying the chains of choices and returning the
collection of every second area in a every chain takes at most n/2 iterations.

As all phases of the algorithm run in polynomial time and the output is an
optimal update solution theorem 1 is satisfied.

25

References

1. Susanne Albers and Pascal Weil, editors. STACS 2008, 25th Annual Symposium
on Theoretical Aspects of Computer Science, Bordeaux, France, February 21-23,
2008, Proceedings, volume 1 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, Germany, 2008.

2. Richard Bruce, Michael Hoffmann, Danny Krizanc, and Rajeev Raman. Efficient
update strategies for geometric computing with uncertainty. Theory of Computing
Systems, 38(4):411–423, 2005.

3. George Charalambous and Michael Hoffmann. Verification problem of maxi-
mal points under uncertainty. In Thierry Lecroq and Laurent Mouchard, edi-
tors, IWOCA, volume 8288 of Lecture Notes in Computer Science, pages 94–105.
Springer, 2013.

4. Thomas Erlebach and Michael Hoffmann. Minimum spanning tree verification under
uncertainty. 2014.

5. Thomas Erlebach, Michael Hoffmann, Danny Krizanc, Matús Mihalák, and Rajeev
Raman. Computing minimum spanning trees with uncertainty. In Albers and Weil
[1], pages 277–288.

6. T. Feder, R. Motwani, R. Panigrahy, C. Olston, and J. Widom. Computing the
median with uncertainty. SIAM Journal on Computing, 32(2):538–547, 2003.

7. Manoj Gupta, Yogish Sabharwal, and Sandeep Sen. The update complexity of
selection and related problems. In IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS 2011), volume 13
of LIPIcs, pages 325–338. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2011.

8. Simon Kahan. A model for data in motion. In Proceedings of the 23rd Annual ACM
Symposium on Theory of Computing (STOC’91), pages 267–277, 1991.

