
University of Sheffield

Department of Computer Science

The Theory and Practice
of Specification Based

Software Testing

Gilbert Thomas Laycock

Submitted towards the degree of

Doctor of Philosophy

September 1992, April 1993



The Theory and Practice

of Specification Based Software Testing
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Abstract

In this thesis my aim is to examine the common ground between formal methods and testing, and the
benefits the two fields bring to one another. All too often they are regarded as mutually exclusive
approaches in the development of software systems.

The thesis begins with an examination of the motivation behind software testing, a summary of its
development over the past few decades, and a survey of existing techniques. This involves a detailed
discussion of some of those techniques, and leads on to an extensive case study.

The case study shows how the use of a formal specification enables an existing “partition” based testing
method to be used with far greater precision, but also highlights some of the limitations of the partition
based techniques.

The thesis continues with a comprehensive look at the development of theoretical models of testing
since the mid 1970’s, and the way they have used successively more complex software models in order
to be able to adequately describe suitable test cases.

The remainder of the thesis is concerned with the introduction and use of Eilenberg’s X -machines as
a formal model for the description of software specifications. The goal is to develop the X -machine
model to the point where it is both useful and use-able as a tool for system specification, and at the
same time the basis for a model of software testing so that test cases can be derived directly from the
specification. To this end some of the theoretical properties of X -machines are examined, and some
simple but very relevant results proved. The work is grounded on further case studies.
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Chapter 1

Introduction

1.1 Correctness: a reason to test.

The common factor amongst system development activities is the presence of two objects—a specific-
ation and an implementation. These terms can be applied to any stage in the conventional life-cycle
model of software development. For instance, for the design stage, the specification is a system specific-
ation document, and the implementation is a detailed system design. Alternatively, the terms can be
applied to the development process as a whole, with the specification being the system requirements,
and the implementation the system implementation.

At the highest level, the specification must accurately represent the real requirements of the system’s
users. This is unrealistic, but subsequent stages in the development of a system have little alternative
but to assume it is true, until shown otherwise. This is true for “rapid prototyping” techniques as well
as more traditional methods.

Most of the development activities concern the conversion of the specification into an implementation.
But others are concerned with evaluating how well the implementation satisfies the specification.

The idealised goal is that the implementation satisfy the specification in every way—that the imple-
mentation can be shown to be correct with respect to the specification.

In many cases, “correct” is taken to mean equivalent, and the goal would certainly be met by a general
technique for determining equivalence. However, this is impossible, since any such method would also
be able to solve Turing’s halting problem:

Theorem 1.1.1 There is no Turing machine E which, for any two Turing machines p1 and p2, has
the property:

E (p1, p2) = true iff p1 is equivalent to p2.

Proof (From Howden’s book [27, chapter 4].)

If such a machine E exists, then it can be used to solve the halting problem. Given any machine p,
use it to construct h as follows:

machine h(x );

y = p(x ); return (0);

endmachine.

i.e. h(x ) = 0 if p(x ) terminates and doesn’t terminate if p(x ) doesn’t terminate.

Let z (x ) = 0 for all x , and terminate for all x . Now E (h, z ) iff p terminates for all x . Thus knowledge
of E implies knowledge of the halting problem for arbitrary p. 2
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1.1.1 A few definitions.

One potentially confusing issue is the variety of definitions for the related concepts of failure, fault and
error. The following definitions broadly match with IEEE standard definitions [30].

Definition 1.1.2 Given an implementation, I , of a specification, S , a failure occurs if for an input, i ,
the output produced by the implementation is unacceptable compared to the output produced by the
specification.

If the S and I are functions, then this can be written as

S (i) 6= I (i).

3

Definition 1.1.3 Any part of the system state that could lead to failures is a fault. For instance a
textual mistake in a program is a fault, which could lead to a number of individual failures. Until
these failures actually manifest themselves, the fault is latent.

If I is a faulty implementation of S , this can be written as

S 6≡ I .

3

Definition 1.1.4 Given an input, i , and a fault, F , in an implementation, then F affects i if it leads
to a failure when i is input. 3

Definition 1.1.5 An error is the direct cause of a fault. In the case of a program fault, the error
is often a mistake by the programmer. Alternatively, it could be a damaged storage device, which
corrupts the stored program. 3

NB The distinction between faults and errors is fine, and many authors (such as Weyuker and
Ostrand [59]) refer only to “errors”, but mean “faults” according to the definitions above.

Other authors (such as Laprie [34]) swap the meanings of “fault” and “error”.

I shall use the definitions given here, even if discussing work where different definitions were originally
used. 3

Definition 1.1.6 Given these definitions, a correct implementation of a specification will contain no
faults. 3

A correct implementation can be achieved by either constructing it without making any errors, or by
detecting and removing all the faults.

1.1.2 Correctness via proofs.

One route to correctness is to use proofs.

Attempts to prove implementations satisfy their specifications after the implementation is complete
are rarely successful. Instead, a process of refinement can be used (for instance, as described by
Morgan [39]). The specification, represented in some suitable formal notation is converted into an
implementation using a series of simple refinements, each of which is easy to prove. In this way, there
should be no faults present in the implementation.

However, there are a number of difficulties.

If the proof is constructed “by hand”, there is no guarantee that there will be no errors made in
constructing the proof, and so guarantee that no faults are introduced into the implementation.

To an extent, these problems can be overcome by peer reviews of the proofs involved. After all, this
is the way that all classical mathematical proofs are authenticated.
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Alternatively, an automatic proof system could be used to aid a human in the construction of a proof,
or ultimately to perform the entire proof construction. Systems such as the BTool [1] can be used in
this way. However, there is still a major drawback, in that the automatic proof system and the system
of axioms used in it must be known to be correct; the tool must have been proved at some point.

In addition there must be a formal description of the environment, right down to the hardware level,
and the actual physical environment must be be proved consistent with this formal model.

1.1.3 Correctness and testing.

Testing attempts to achieve correctness by detecting all the faults that are present in an implement-
ation, so that they can be removed. In many cases the act of designing a test case that would be
affected by a particular fault means that the error leading to that fault is not made when construct-
ing the implementation, or leads to the detection of that fault without having to actually execute the
implementation and observe a failure.

Testing of a system will only guarantee correctness, if the following hold:

1. The test set used is proved to be adequate, in that it will reveal any of the faults that could possibly
occur in the implementation. The proof of adequacy must take into account the environment
that the implementation is to exist in, and all of the limitations attached to proofs in general still
hold.

The most obvious way to achieve this is to include every possible input in the test set—exhaustive
testing. But this is impractical in virtually all cases.

2. The result in each case is compared with the expected result and found to be satisfactory.

Testing and proving for correctness, as just described, are almost equally unattainable (see [17]). In
practice both activities have their part to play in the production of implementations that are close to
correct. In particular, since there is little prospect of eradicating all sources of errors, there will always
be a justification for testing, in order to try to reveal the resulting faults.

1.2 What is testing?

The basic principle of testing for correctness is the selection of test cases that satisfy some particular
criterion. The particular criterion used for testing computer systems have changed considerably in
nature and scope as computer systems, and our knowledge of their behaviour, has developed.

1.2.1 A brief history of software testing.

A concise history of software testing is given in Gelperin & Hetzel’s paper [13], which I summarise in
this section. They identify the following periods.

Evolution of testing
- 1956 The debugging-oriented period

1957 - 1978 The demonstration-oriented period
1979 - 1982 The destruction-oriented period
1983 - 1987 The evaluation-oriented period
1988 - The prevention-oriented period

The methods were (are) “state of the art” during the periods shown, but, of course, continue in
widespread use afterwards.
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Debugging-oriented testing:

Programs are written, and then simply “checked out” by the programmers until they are satisfied that
all the bugs had been identified and removed. Some or all of the identification and removal activities
are described as “testing”; there is no real consensus as to what the “testing” part is.

The criteria used for selecting test cases are entirely ad hoc, and based on the programmers’ experience
and their understanding of the system being built.

Demonstration-oriented testing:

Debugging and testing are identified as separate activities:

Debugging (or “sanity” testing) consists of ensuring that the system runs (i.e. doesn’t
crash).

Testing consists of ensuring that the system does what it is supposed to.

Testing is performed with the aim of showing that the system conforms to its requirements.

Destruction-oriented testing:

This view of testing gained acceptance with the publication of Myers’ book The Art of Software
Testing, [42], which described testing as

“the process of executing a program with the intention of finding errors.”

The meanings of the words testing and debugging are different again:

Testing is concerned with revealing the presence of faults in the system.

Debugging is concerned with locating and correcting those faults.

The criterion for test selection chooses test cases that reveal particular faults if they are present in the
system.

Aside These last two periods separate testing out from other parts of software development, as a
distinct and final stage in the life cycle model. The emphasis is on the actual execution of the test
cases by the implementation of the system.

Evaluation-oriented testing:

Along with other analysis and review techniques, testing is integrated into an evaluation phase at the
end of every stage of the life cycle. This period began with the publication of [43] in 1983 by the
National Bureau of Standards (USA), and the realisation that the earlier in the life cycle a fault is
detected, the less costly it is to correct.

For every stage in the life cycle there are requirements and products. The collective goal of the
evaluation phase is to attempt to measure how well the products meet their requirements.

Prevention-oriented testing:

This approach to testing was initiated by Hetzel and Gelperin, who generalised methods for unit
testing, and developed a comprehensive methodology for practical test management in [22].

The philosophy is to prevent errors in each stage of the life cycle model by using testing and other
evaluation techniques as the stage progresses. (cf. the evaluation period, where testing and other
evaluation techniques were only used at the end of each life cycle phase.) The criterion is now directed
at finding places where errors might be made.
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1.2.2 Summary.

Summarising from the above history, the following are the most important characteristics for the test
case selection criterion to have:

• Test cases should be fault revealing. These test cases will give results contradicting the require-
ments if faults are present.

• Testing should be integrated into the life cycle model, so that each phase generates its own tests.
The effort needed to produce test cases during each phase will be less than the effort needed to
produce one huge set of test cases of equal effectiveness in a separate life cycle phase, just for
testing.

There are a lots of existing testing methods, and almost as many ways of classifying them. One
classification is into program based techniques, and functional techniques.

1.3 Program based testing.

These techniques are also known as structural and white-box testing.

1.3.1 Basic Principles.

Program based testing methods base their test case selection criterion on the structure of the finished
code. There is a well defined hierarchy of criteria, which are described here, in ascending order of
strength (see Ntafos’ paper [45]):

Statement (or segment) coverage: If the test set causes every statement of the code to be executed
at least once, then statement coverage is achieved.

A segment is an indivisible piece of code; no part of it can be executed without all of it being
executed, i.e. a piece of code with no branch statements.

Branch coverage: If the test set causes every branch to be executed at least once, then branch
coverage is achieved. In other words, for every branch statement, each of the possibilities must
be performed on at least one occasion.

Path testing: If the test set causes every distinct execution path to be taken at some point, then path
coverage is achieved. E.g, in the case of a loop, there are paths for each number of iterations of
the loop. Even for quite short and simple programs, this level of coverage can be infeasible.

In between these coverage levels, there are all manner of other coverage measures, designed to approach
path coverage without being infeasible. Two examples are:

Boundary-interior path coverage:

An overview of this technique is given by Ntafos in [45].

The number of paths through each loop is limited as follows. For each loop, identify these classes of
path:

1. paths which enter the loop but don’t iterate it (these are boundary paths for the loop);

2. paths which enter the loop and iterate it at least once (these are interior paths for the loop).

For class 1, perform those paths which take different paths through the loop. For class 2, perform
those paths which take different paths through the loop on the first iteration.
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Data-flow analysis techniques:

These techniques (described by Ntafos [45], and in more depth by Howden [27, chapter 5]) examine
definitions of program variables and the subsequent use of these variables. The idea is to test all the
statements with a data-flow relationship, on at least one occasion.

Suppose statement s1 assigns a value to x , which statement s2 then uses. Then s1 and s2 have a
data-flow relationship. There should be a test involving the execution of s1 followed, at some stage by
the execution of s2.

There are many variations on this theme. Some extend it to whole chains of definition-reference pairs,
k -dr chains, where every chain of length k must be executed by at least one test case.

Others variations differentiate between different types of variable use: predicate use (p-use), as in
branch statements, and computation use (c-use), as in the right hand side of an assignment statement.
The test set must then satisfy a condition on these p and c uses, such as all c-uses, some p-uses.

1.3.2 Limitations of program based testing.

None of these program based methods use the requirements of the system in their test selection cri-
terion. Instead, they all make the assumption that the implementation matches the requirements in
its broad structure. This can be a very severe limitation if you consider the ultimate goal of testing,
which is to compare the implementation with its requirements.

Errors corresponding to missing paths in the code will not generally be detected.

Weyuker, in [58], has given a list of properties and axioms for use in the evaluation of program-based
test selection criteria. Despite being incomplete, the list of properties cannot be fulfilled by many of
the program-based test selection criteria.

Another drawback of program based testing is that you have to wait until there is some of the actual
code before you can even begin to construct tests. This is unsurprising given the techniques’ origins
in the demonstration and destruction oriented eras of testing. Testing was then carried out in its own
phase of the software life cycle. More modern approaches call for testing to be integrated into all of
the life cycle phases.

Nevertheless, program based testing methods are still in widespread use (see Gelperin & Hetzel [13]
or one of the testing standards, such as [2]), and undoubtedly reveal a great many errors that might
otherwise escape.

Secondly, the coverage levels provide a good measure of the effectiveness of tests generated in some
other way. If the criterion selects test cases that do not achieve, say, statement coverage, then the
criterion is probably inadequate.

1.3.3 Automation of program-based testing.

Program based testing provides a lot of scope for automating the testing procedure. This can be
simple coverage analysers that are used whilst the testing is carried out, and report on the degree of
coverage achieved by the test set. Other tools are a great deal more sophisticated. For instance, Roper
& Smith [52], built a tool that accepts the detailed design of the program in the form of a Jackson
Structure diagram, and produces test sets suitable for use on the actual code. This is particularly
interesting, as it highlights the need for there to be something to compare the implementation with, in
this case a JSP design.

1.3.4 Mutation testing.

Mutation testing (see Woodward’s summary [60]) is based around making large numbers of minor
changes to the implementation under test. Each modified piece of code is a mutant. A test set is
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applied to the mutants, and the output compared to that from the original. For a given mutant, if
the output from the test differs from that from the original, then the mutant has been killed. Those
mutants indistinguishable from the original by the test set are said to be live. If there is a live mutant
after a test, there are two possibilities:

• the test was not good enough; an improved version should be devised that kills the mutant, or
reveals the original to contain a fault;

• the mutant is, in fact, equivalent to the original.

There are several versions of mutation testing, according to how the mutants are generated.

Strong mutation testing, as described by DeMillo et al. in [6], involves the systematic
mutation of all the operators in a program, and the running of the complete test set on
each mutant. This is computationally expensive, so, in some cases, restricted subsets
of the operators are mutated instead.

Weak mutation testing, proposed by Howden [26], aims to cut down on the computational
cost, by combining several mutants into a single new version of the program. In this
way, it is not necessary to run the complete test set for every mutant. However, there
is a risk that mutants will “cancel one another out”.

Firm mutation testing, suggested by Wu et al. in [61], is an intermediate strategy. It takes
advantage of an interactive development environment to allow code fragments to be
mutated and executed in partial isolation from the rest of the code.

1.4 Functional Testing.

These methods are also known as black-box methods.

Functional testing methods base their test case selection criteria largely on the intended functionality
of the implementation, i.e. on the specification, or requirements. This fits in well with the goal of
comparing implementations with their requirements.

1.4.1 The Category-Partition method.

A large number of functional test methods are based on the idea of partitioning the input domain.
These methods have a great deal in common, so I will only discuss one in detail, the category-partition
method.

This method was presented by Ostrand and Balcer [46]. It was designed to be used in conjunction
with a tool that they had developed. The required tests are described using the Test Specification
Language, and the tool then generates test frames which describe individual test cases.

As in almost all such methods, there is the assumption that the requirements and specification are
informal and presented in natural language. There are several steps to the method.

Analysis of the specification:

Identify functional units that can be individually tested; either top level user commands or functions
that are called by them, or lower level functions. Several stages of decomposition may be required.

For all the functions identified, find the parameters (i.e. explicit inputs to the functional unit, either
by the program or by the user) and environment conditions (i.e. characteristics of the system state at
the time the function is executed) that affect the function’s behaviour.
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Example: Consider the specification of a sorting program.

The program is to accept an array of variable length and containing items of arbitrary
type. The output is to be a permutation of the input array, but with the values correctly
ordered (with respect to a total ordering). Further, the program is to output the maximum
and minimum elements in the array.

Then, the only parameters are the unsorted array as input, the sorted array as output, and the values
of the maximum and minimum elements respectively.

Categorise the parameters and environment conditions:

For each parameter and environment condition, identify properties and characteristics that have partic-
ular effects on the function’s behaviour. Classify the characteristics of the parameters and environment
conditions into categories that characterise the behaviour of the function. This is best illustrated by
example.

This process can uncover many ambiguities and mistakes in the original specification.

Example: For the sort program, the categories are as follows:

• the array’s size;

• the type of the elements;

• the value of the maximum in the array;

• the value of the minimum in the array;

• the positions of these values in the unsorted array;

• the positions of these values in the sorted array;

• the order of the unsorted array.

Partition the categories into choices:

Determine the different significant cases that can occur within each parameter or environment condition
category. These cases are choices. Each choice consists of a subset of the category’s values, which will
all lead to the same sort of behaviour. The choices must be mutually exclusive.

The partitioning is based on the specification, the implementation, or any other design documents that
are available, and the tester’s past experience of selecting test cases.

Example: Using the “position of maximum element of the unsorted array” partition from above,
the choices might be for:

• maximum element at first position in the unsorted array;

• maximum element at last position of the unsorted array;

• maximum element somewhere in the middle of the unsorted array;

• more than one element with the maximum value in various positions in the unsorted array.
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TestSpec ::= 〈FunctionSpec〉
FunctionSpec ::= Function : FunctionName\n

ParamSpec
{EnvSpec}

EndFunction; \n
ParamSpec ::= Parameters : \n

〈AParameter〉
EnvSpec ::= Environments : \n

〈AnEnvironment〉
AParameter ::= Number ParamName\n

〈Choice〉
AnEnvironment ::= Number EnvironmentName\n

〈Choice〉
Choice ::= • ChoiceName{{[ifCondition]}{[propertyPropertyName]}}

{[single] | [error]}\n

〈. . .〉 indicates repetition (at least once) of an item
{. . .} indicates an optional item

. . . | . . . indicates alternative items
this font indicates literal text, and
\n indicates a (literal) new line.

Figure 1.1: BNF syntax for TSL

Determine constraints among the choices:

Decide what effect choices from one category will have on those from another. Look for mutual
exclusion, special restrictions and so on.

Also, mark any choices that are expected to generate an error with [error]. Further, choices that
are, in some way, special or redundant can be marked [single] (this should be done very carefully).
Both these marks will cause the test frame generator to produce only simple test frames for these
choices—they need not be combined with all the other choices.

Example: If the array size partition were chosen to be one, then there can be only one maximum
element in the array; there is no point trying to devise tests in which there are more than one element
with the maximum value.

Write and process the test specification:

The test specification consists of the categories, the choices within the categories and the constraints
on the choices. These are prepared in a standard format, the Test Specification Language (TSL), and
fed into a test frame generation tool, which then generates test frames (i.e. a set of choices from the
test specification; each category supplies either exactly one or none of its choices) for that functional
unit. Ostrand & Balcer did not precisely describe the TSL; in figure 1.1 I introduce a syntax that is
consistent with the way TSL is used in [46].

Examine the generated test frames:

The test frames generated by the tool are evaluated. If they are unsatisfactory, go back to the constraint
determining step. Unsatisfactory could mean any of the following:
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• There are some test frames that are obviously missing.

• There are some test frames that are obviously impossible.

• There are far too many or far too few test frames.

Transform the test frames into test scripts:

Convert each test frame into an actual test case. Do this by selecting an actual value from each of the
choices in the test frame. At the same time calculate the expected output for the test case. Organise
these cases into scripts, suitable for execution by the implementation.

Advantages of the method.

1. The test specifications are given in a concise and uniform way, which is valuable for quality
analysis activities, and is often required by test standards.

2. The process of working through all the details of the method may well reveal limitations of
the design specification. If so, these should of course be addressed, and then the implications
considered for the parts of the testing process already carried out.

3. The test specifications can be started early in the development process.

4. The test specifications can be easily modified as the system evolves.

5. The number of tests can be controlled in a relatively reliable way.

6. The test frame generation tool eliminates many of the possibilities for human error in the testing
procedure.

Limitations of the method.

1. It is difficult to describe the early stages of the method formally. The test selection criterion
is that every possible combination of unconstrained choices is represented by some particular
test frame. Each test frame must have exactly one or none of the choices from each category.
However, any further formal analysis is hampered by the lack of a formal definition of either
categories or the partition of categories into choices.

2. As a result, the method relies heavily on the experience of the tester. This could lead to non-
uniform tests.

3. Although work can start on the testing at an early stage, none of the tests can actually be carried
out until there is a completed version of the implementation.

1.4.2 Other partitioning methods.

Several other functional testing methods are broadly similar to the category-partition method just
discused. The basic principle has doubtless been used in an ad hoc manner for as long as systems have
been developed.
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Condition tables.

One of the first techniques to be documented, this was presented by Goodenough and Gerhart [17], at
the same time as their theoretical basis of testing (which is discussed in chapter 3), so it is also one
of the most formally developed methods. It explicitly links the theory with the concept of correctness;
they show that it is just as difficult to guarantee correctness via testing as via proof.

Instead of categories, there are conditions, which determine the behaviour of the system. Instead of
partitioning into choices, the possible values that the condition could take are considered.

This information is laid out in a table, with a row for each condition, and a column for each possible
combination of values. Thus each column corresponds to a test frame.

There is a limited use of constraints between conditions, but this is only to indicate when they are
mutually exclusive. There is no way to reduce an overly large set of test cases by putting in some
extra restraints.

Revealing subdomains.

This was suggested by Weyuker and Ostrand [59]. They point out some limitations in the theory of
Goodenough and Gerhart [17], and some of the difficulties of applying it to real systems. They develop
this new method and extend the theory.

The idea is to split the input domain of the program into revealing subdomains. All of the elements
in a revealing subdomain will either be processed correctly or incorrectly, and so only one element
from the subdomain is needed as a test case. As it stands, this is just as impractical as a proof. So
the subdomains need only be revealing with respect to a particular fault. This is very similar to the
situation where you have found the categories of a function and partitioned them into choices.

Cause-Effect Graphing.

Elmendorf [11] introduced this method, but Myers illustrated it, and brought it to wider attention [40,
42].

Choose the function that is to be tested. Identify all the implicit and explicit causes (input conditions)
and effects (output actions) for the function, using the specification. (cf. identifying categories and
splitting them into choices in the Category-Partition method.) Next, build the graph. Causes and
effects are nodes in the graph, linked by arcs representing relationships between causes and effects.
For instance, if some of the causes must all be present in order for a particular effect to occur, there
are arcs from the causes to the effect, labelled with an and. Similarly, arcs can be labelled with or or
not. If the relationships are particularly complicated, intermediate nodes can be introduced.

Once the graph has been built, construct a decision table. For each effect, find all the different
combinations of causes that lead to it. Each of these will form a test frame. At the same time, list the
states of the other effects for each of the combinations of causes. This gives you information on the
expected output for each of the frames.

This method is criticised by Ostrand & Balcer for the complexity of the graphs produced, and the diffi-
culty of altering them after they have been constructed. However, with a suitable tool for constructing
and editing such a graph, this method would become quite practical.

Limitations of these “partitioning” methods.

All of these methods attempt to split the input domain of a function or program into subsets the
elements of which will behave in a broadly similar fashion. The assumption is that the presence of a
fault will affect every element of a subset. This is intuitively appealing and meets with some success in
practice. However, the partitioning process is difficult to describe formally, and so it is hard to assess
the criteria for their adequacy.

Also, see section 1.5 on the confidence building properties of partition testing.
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1.4.3 Other functional methods.

All of the preceding methods are directed largely at dynamically testing actual code. Given that
modern quality standards require testing throughout the development process (see [44, 13]) there is a
need for some higher level testing methods.

Testing specification refinements.

Some work has been done in the area of using formal function definitions for testing purposes. There
is a split between those using model type specifications, like Z (Hayes [21]), and those using axiom
based specifications, like OBJ (Gerrard et al. [15]).

The general idea is to use the pre, post and invariant conditions of the specification, which would not
normally be used other than for a proof, for testing purposes. For instance, the implementation of a
simple symbol table might be as an ordered list of symbols. The specification describes this using an
invariant condition called ordered. The ordered condition is of no consequence to the end user.
However, by implementing some code to check the ordered condition, tests can be carried out to see
if other operations on the symbol table violate the invariant.

OBJ based specifications have the advantage that they can be directly executed, so that conditions
such as ordered can be confirmed at the specification stage. With Z, there is at present no way to
execute a specification, and the ordered condition would have to be implemented by hand, along
with prototype code for the operations on the symbol table.

Functional tests from JSP.

In section 1.3.3, the work of Roper and Smith in producing tests from JSP diagrams was mentioned.
They developed this, in [53], into a functional testing method, based on the specification. By restrict-
ing the functions used to five basic function types (data access, data storage, arithmetic expression,
arithmetic relation and Boolean expression), the specification can be made concise and unambiguous
in an operational specification. Also rigorous tests for these five types of function are described in
Howden’s book, [27], and so tests can be derived directly from the operational specification.

The tests derived from the operational specification are applied to the JSP program design, and to the
actual code produced from the JSP.

1.4.4 Completeness of a specification.

Given a specification, it is desirable if it is consistent and complete. Loosely, this means that the
specification must be unambiguous and be defined for all possible inputs. In [31], P. Jalote describes a
method for testing specifications given in the OBJ language for completeness. OBJ constructs the spe-
cification of operations on abstract data types axiomatically, and Jalote only considers incompleteness
caused by missing axioms.

A tool is used to generate the tests automatically. The tests are based on the syntax part of the
specification, which gives the signatures of the operations. (There is no point basing them on the
semantics, since that is where the errors leading to incompleteness will be.) The tool generates all of
the syntactically possible expressions down to a certain depth of operation applications. The test cases
are these expressions, with the various output operations applied to them.

Jalote has found the method to work well in practice, although there are limitations on the axioms that
it can cope with.

Aside Mutation testing can also be applied to an executable specification. Woodward outlines the
approach in [60]. 3
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1.5 Statistical testing and reliability.

So far, I have only discussed testing methods aimed at fault detection, with the goal of correctness in
mind. This is not the only motivation for testing.

Suppose that a system has been extensively tested without revealing any failures. These tests mean
that there is a higher level of confidence in the system, (or a reduced expectation of failure) than before
they were carried out.

Statistical methods can be used to try to quantify the increase in confidence by estimating the probability
of failure. There are a number of different statistical models used (Miller et al. [37], Hamlet &
Taylor [20], Weiss & Weyuker [57]), and they lead to conflicting claims as to the benefits of different
types of testing. In particular, Hamlet and Taylor claim that “partition testing does not inspire
confidence,” whereas Miller et al. describe circumstances where partitioning can increase confidence.

Tests are selected randomly using a probability density function based on the operational input dis-
tribution. Then, each test that does not lead to a failure slightly reduces the estimated probability of
a failure occurring. The extent to which it does this depends on the particular model used, and the
assumptions made about the software’s behaviour.
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Chapter 2

Case study: Z specification and
testing.

2.1 Overview

This chapter has two aims:

• To examine the use of a partition based testing method (Ostrand & Balcer’s category-partition
method [46]) in detail.

• To demonstrate the benefits of using a formal specification (written in Z, see Spivey’s Reference
Manual [55]) in the development of those tests.

An extended version of this chapter is published as [35].

The system described is a dating agency, originally inspired by an example of Howden’s [27, chapter 2].
Details of users are recorded in a data-base (although details of how the data-base is managed are kept
to a minimum), and the specification here covers queries made to the data-base for suitable partners
for a client.

2.2 Specification for a dating system in Z.

2.2.1 Basic abstract definition

To begin with introduce some basic types, representing users and their details in the system.

[USER,USERRECORD ]

In practice, these types would have some internal structure (for instance, an element of USERRECORD
would contain details of a USER’s likes and dislikes plus other relevant data), but for the moment this
is not developed.

Now define the data-base that stores information on all the dating system’s users:

DateFile == USER 7→ USERRECORD

DF
dtfile : DateFile
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In other words DF is a structure consisting of a partial function from USERs to USERRECORDs
called dtfile. This means that the names of actual users, of type USER must be unique. In other
words, treating DF as a database, elements of USER are used as the key field.

Next introduce a function to perform compatibility analysis:

compatible : USER → (USER → N)

This function compares two user records and returns a numerical
indication of their compatibility; the greater the number returned,
the greater the compatibility. The details of how this is achieved
depend on the internal structure of USERRECORD and are de-
ferred until that structure is defined

This schema is an example of function Currying. Given a single argument of type USER, compatible
will return a function of type USER → N. Given a pair of arguments, of types USER and USER, it
returns an element of type N. Strictly speaking, only the first argument is used by compatible, the
second argument being given to the function returned, and so typical applications of function might
look like this:

compatible(u1) which is of type USER → N

or
(compatible(u1))(u2) which is of type N.

However, for convenience, the notation compatible(u1, u2) will be taken to be equivalent to (the strictly
correct) (compatible(u1))(u2).

It is now possible to specify what it means for a date to be “best”.

bestdate : DateFile → (USER → USER)

∀ dtfile : DateFile; ∀ client : USER •

bestdate(dtfile, client) ∈ dom dtfile − {client} ∧

compatible((bestdate(dtfile, client)), client)

= max (ran(compatible(client)))

In other words, the bestdate function is simply defined by considering users not including the client
who’s compatibility with the client is maximal. Furthermore, the bestdate function is defined non-
deterministically, in that if there is more than one user with maximal compatibility, the specification
does not define which of them is returned.

So a system operation can be defined that finds the best date for a client:

BestDate
ΞDF

client? : USER

bestdate! : USER

bestdate! = bestdate(dtfile, client?)

2.2.2 Basic implementation details

Given the above abstract description, consider a possible means of actually implementing it.

Suppose the dtfile has been implemented using an ordered sequence, with respect to some ordering
<USER on USER (the definition of which is deferred). The specification of this implementation is as
follows:

RecPair ::= USER × USERRECORD
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DFImp
dfseq : seqRecPair

ordered(dfseq)

where

ordered : seqRecPair → Boolean

∀ s : seqRecPair ; i , j : dom(s) • i < j ⇒ s(i).user <USER s(j ).user

This schema sees the use of .user as a selector function. The elements s(i) are of type RecPair , and
s(i).user refers simply to the part of the tuple of type USER. Similarly, s(i).userrecord would refer
to just the USERRECORD part of the tuple.

Before continuing with the implementation consider its relationship with the earlier abstract specific-
ation. It is important that this is well defined.

DF − DFImp
DF

DFImp

DF = {Pr : ran(dfseq) • Pr .user 7→ Pr .userrecord}

In other words, a pair in the ordered list of DFImp corresponds to a maplet (A User 7→ A Record) in
DF , where A User and A Record are elements of type USER and USERRECORD respectively.

Now develop implementation definitions that allow the best date for a client to be found in DFImp,
that conform to the abstract definition given in DF .

A lookup function for locating the details of a particular user is required:

lookup : USER × seqRecPair 7→ RecPair ∪ {null}

(∀ usr : USER; file : seqRecPair •

(∃ rec : USERRECORD • (usr , rec) ∈ ranfile

∧ lookup(usr ,file) = (usr , rec))

∨

(¬ ∃ rec : USERRECORD • (usr , rec) ∈ ranfile

∧ lookup(usr ,file) = null)

It is necessary to be able to search a sequence for the best date

BestInList : USER × seqRecPair → RecPair

RcvBestInList : RecPair × seqRecPair → RecPair

∀ client : USER; dfile : seqRecPair •

BestInList(client , dfile) = RcvBestInList(lookup(client , dfile), dfile)

∀ clinfo : RecPair ; file : seqRecPair •

(head(file) 6= clinfo ∧

Better(head(file),RcvBestInList(clinfo, tail(file)), clinfo)

⇒ RcvBestInList(clinfo,file) = head(file))

∨

((head(file) = clinfo

∨ Better(RcvBestInList(clinfo, tail(file)), head(file), clinfo))

⇒ RcvBestInList(clinfo,file) = RcvBestInList(clinfo, tail(file)))
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where

Better : RecPair × RecPair × RecPair → Boolean

Better(x , y , z ) = true ⇔ x is a better match for z than y

The actual definition of this is left, pending the definition of the internal structure of USERRECORD .

The function RcvBestInList , which does the bulk of the work, is defined recursively on sequences of
RecPairs. At each level of recursion, it simply uses Better to decide if the first RecPair of the sequence
is a better match for the client user than the result of applying RcvBestInList to the remainder of the
sequence (i.e. the result of finding the best date for the client user in the remainder of the sequence).

Notice that the non-determinism from the specification of bestdate has been resolved in the specification
of BestInList ; the last user in the sequence with maximal compatibility will be selected as the value
of BestInList . This is an arbitrary solution to the problem, and the simplest rather than the one that
would be most useful in practice.

This leads to the implementation for giving the best date:

BestDateImp
ΞDFImp

client?, date! : USER

date! = BestInList(client?, dfseq).user

In practice, it would be important to show that BestDateImp satisfies BestDate, in that the date!
chosen by BestDateImp satisfies the condition given in BestDate. This is omitted here for the sake of
brevity.

As a final stage to specifying the system, add some exception handling operations:

Introduce a new type

REPORT ::= Ok | Error

and some new schemas

Success
rep! : REPORT

rep! = Ok
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AbstractFailure
ΞDF

client?, date! : USER

rep! : REPORT

(client? 6∈ dom(dtfile) ∨ dom({client?} −⊳ dtfile) = ∅ ∨ client? = nil)

∧ rep! = Error

ImpFailure
ΞDFImp

client? : USER

rep! : REPORT

rep! = Error ∧ ((dfseq =<>) ∨ (lookup(client?, dfseq) = null) ∨ (client? = nil))

Now define a RobustBestDate

RobustBestDate == AbstractFailure ∨ (BestDate ∧ Success)

and a RobustBestDateImp

RobustBestDateImp == ImpFailure ∨ (BestDateImp ∧ Success)

The operation RobustBestDateImp is the one that is going to be tested.

Before going on to consider testing it, it remains to fill in the details of the internal structure of
USERRECORD , and some of the other definitions dependent on them.

[CHAR]
USER ::= seqCHAR
SEX ::= nulsex | male | female
PIZZA ::= nulpz | LikesPizza | DoesntLikePizza
USERRECORD ::= nulUR | UR〈〈SEX × PIZZA〉〉

In other words, the elements of USER are simple strings of characters, and USERRECORDs are
records made up from a SEX field and a PIZZA field (this is a fairly simple model of a dating agency).
Any or all of these can take null values.

Better : RecPair × RecPair × RecPair → Boolean

compatibility : USERRECORD × USERRECORD → N

∀ r1, r2, r3 : RecPair •

Better(r1, r2, r3) ⇔

compatibility((r1).userrecord , (r3).userrecord) >

compatibility((r2).userrecord , (r3).userrecord) ∧

nulUR 6∈ {(ri).userrecord | i = 1, 2, 3} ∧

nulsex 6∈ {((ri).userrecord).sex | i = 1, 2, 3} ∧

nulpz 6∈ {((ri).userrecord).pizza | i = 1, 2, 3}

∀ ur1, ur2 : USERRECORD •

(ur1).sex = (ur2).sex ⇒ compatibility(ur1, ur2) = 0

(ur1).sex 6= (ur2).sex ∧ (ur1).pizza 6= (ur2).pizza ⇒

compatibility(ur1, ur2) = 1

(ur1).sex 6= (ur2).sex ∧ (ur1).pizza = (ur2).pizza ⇒

compatibility(ur1, ur2) = 2
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This defines Better in terms of compatibility , which simply gives a score between 0 and 2 depending
on whether the two USERRECORDs supplied are different sexes and both like pizza.

Once again projection functions are used to access individual parts of the tuples. For instance,
((ri).userrecord).pizza refers to the PIZZA part of the USERRECORD part of ri which is of type
RecPair .

Finally, the compatible function used earlier can now be properly defined:

compatible : USER → (USER → N)

ΞDF

∀ u1, u2 : USER

compatible(u1, u2) = compatibility(dtfile(u1), dtfile(u2))

2.3 Application of Category Partition Method.

The functions are BestInList , RcvBestInList , Better , lookup.

2.3.1 Identify parameters, and environment conditions:

The distinction between parameters and environment conditions is hazy at best, particularly if a
functional approach to specification is taken. So, the distinction is ignored here, and a simple combined
list for each function is given.

lookup: one of type USER, one of type RecPair and one of type dfseq (the file of system users).

Better : 3 RecPairs the first 2 being compared to see which is more compatible with the 3rd, and a
boolean for returning the answer.

BestInList : one of type USER, a dfseq (i.e. a file), and a RecPair corresponding to the best date for
the user in the dfseq .

RcvBestInList : one of type RecPair , a seqRecPair (i.e. a file), and another RecPair corresponding
to the best date in the list for the first RecPair .

2.3.2 Split the parameters into characteristic categories

lookup: the USER being looked up, the dfseq (file) being looked in, the length of the dfseq , the number
of occurrences of the USER in the dfseq , the position of the USER in the dfseq (if its there at
all).

Better : the first RecPair , the second RecPair , the third RecPair , the relative compatibility of the
first and second with the third.

BestInList : the USER, the dfseq (file), the length of the dfseq , the position and number of occurrences
of the USER in the dfseq , the bestdate for the USER in the dfseq , the position and number of
occurrences of the bestdate in the dfseq .

RcvBestInList : the RecPair of the client USER, the seqRecPair , the length of the seqRecPair , the
position and number of occurrences of the client USER in the seqRecPair , the position and
number of occurrences of potential bestdates in the seqRecPair .
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2.3.3 Partition the categories into choices

lookup:

1. the USER being looked up can be chosen from {missing, present};

2. the dfseq being looked into can be {missing, present};

3. the length of the dfseq can be {zero, singleton, longer};

4. the number of occurrences of the USER in the dfseq can be {never, once,
more than once};

5. the position of the USER in the dfseq can be {not there, first, last, middle}.

Better :

1. the first, second and third RecPairs can be {present, missing};

2. the relative compatibility of the first and second RecPairs can be
{first better, second better, equal}.

BestInList :

1. the USER can be {missing, present};

2. the dfseq can be {missing, present};

3. the length of the dfseq can be {zero, singleton, double, longer};

4. the number of occurrences of the USER in the dfseq can be {zero, once};

5. the position of the USER in the dfseq can be {not there, start, end, middle};

6. the number of occurrences of potential bestdates can be {zero, once, more than
once};

7. the positions of potential bestdates can be {not there, start only, end only, middle only,
start middle, start end, middle end, start middle end}.

RcvBestInList :

1. the RecPair of the client can be {missing, present};

2. the seqRecPair being searched can be {missing, present};

3. the length of the seqRecPair can be {zero, singleton, double, longer};

4. the number of occurrences of the client RecPair in the seqRecPair can be {zero, once};

5. the position of the client RecPair in the seqRecPair can be {not there, start, end, middle};

6. the number of occurrences of potential bestdates can be {zero, once, more than
once};

7. the position of potential bestdates can be {not there, start only, end only, middle only,
end only, start middle start end, middle end, start middle end}.

A parameter is “missing” if it is not supplied to the function, or if it takes a null value of some sort.

2.3.4 Pause for breath

Before going on to simulate the application of a test generating tool to the above lists of choices, it is
beneficial to re-assess their usefulness. This is prompted by observing the similarity between parts of
the above lists. In particular, those for BestInList and RcvBestInList are almost exactly alike, and
that for lookup is duplicated almost exactly in both BestInList and RcvBestInList . As things stand,
the tests for (say) lookup will be repeated 3 times, which seems very wasteful. Two approaches suggest
themselves:
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1. Only test the function with the “biggest” list, i.e. BestInList . The justification is that the
choice list for this “includes” the choice lists for the sub-functions (i.e. lookup, Better and
RcvBestInList). If the sub-functions are not then tested as thoroughly as they would have
been if they were considered individually, then this is assumed to be unimportant as, all of the
critical parts of the sub-functions will be tested. This is reminiscent of the “big-bang” approach
to testing where coding is completed before any testing can be performed.

2. Test all the “small” functions first, and then remove the overlap between them and the “bigger”
functions. Repeat this until you get to the top-level functions. In this way, you can avoid
duplicating testing effort, and start performing tests on low level functions as they are ready.
However, there is the difficulty of deciding when a “small” function’s constraint list is included
in that of a “bigger” function. For instance, the Better function is used by RcvBestInList , but
it is not immediately clear how. This is a more “bottom-up” approach, and it requires that sub-
functions are test-able individually. This may require the construction of special test harness
code.

A hybrid approach is adopted here, considering BestInList and Better .

2.3.5 Now determine constraints on the choice partitions

It is important that the order that the constraints are defined is irrelevant. Also, it is important to
understand the meaning of an [if property]—it indicates that that partition choice can (but need not
necessarily) be used if the property holds; the choice cannot be used if the property does not hold.

The categories, partitioned into choices, and their constraints, can be written down using Ostrand &
Balcer’s Test Specification Language [46], for which I introduced a formal syntax in figure 1.1 one
page 14.

Function:Better
Parameters:

1. 1st RecPair :

• present [1stPres]

• missing [error]

2. 2nd RecPair :

• present [2ndPres]

• missing [error]

3. 3rd RecPair :

• present [3rdPres]

• missing [error]

4. The relative compatibility of the first and second RecPairs, compared with the third:

• first better [if 1stPres & 2ndPres & 3rdPres]

• second better [if 1stPres & 2ndPres & 3rdPres]

• equal [if 1stPres & 2ndPres & 3rdPres]

EndFunction;

Function:BestInList
Parameters:

1. The USER for whom a date is being sought:

• present [property IdThere]

• missing [property NoIdThere] [error]
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2. The dfseq being searched:

• present [property SeqThere]

• missing [if Empty] [property NoSeqThere] [error]

3. The length of the dfseq :

• zero [property Empty]

• singleton [if SeqThere] [property OneLong]

• double [if SeqThere] [property TwoLong]

• longer [if SeqThere] [property LotsLong]

4. The number of occurrences of the USER in the dfseq :

• zero [property UserNotIn]

• once [if IdThere & SeqThere] [property UserIn]

5. The position of the USER in the dfseq :

• not there [if UserNotIn]

• start [if UserIn & (OneLong or TwoLong or LotsLong)]

• end [if UserIn & (TwoLong or LotsLong)]

• middle [if UserIn & LotsLong]

6. The number of occurrences of potential bestdates:

• zero [if (UserNotIn or NoIdThere or OneLong)] [property NoBestDate]

• once [if UserIn & (TwoLong or LotsLong)] [property BestDate]

• more than once [if UserIn & LotsLong] [property BestDate]

7. The positions of potential bestdates:

• not there [if NoBestDate]

• start only [if BestDate]

• middle only [if BestDate]

• end only [if BestDate]

• start middle [if BestDate]

• start end [if BestDate]

• middle end [if BestDate]

• start middle end [if BestDate]

EndFunction;

2.3.6 Apply the test generation tool to produce test frames

Sadly, no test generation tool was available, but here are simulated results of applying it to the above
data.

Test frames are given in the following format:

Xi ={1.missing, 2.present, 3.present, 4.NA}

which would be test number Xi, with the particular choices from each category given. In other words,
the choice for category 1 is “missing”, etc. NA indicates that no choice from a category is applicable.

1. Better :

A1 = {1.missing, 2.present, 3.present, 4.NA},

A2 = {1.present, 2.missing, 3.present, 4.NA},

A3 = {1.present, 2.present, 3.missing, 4.NA},
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A4 = {1.missing, 2.missing, 3.present, 4.NA},

A5 = {1.missing, 2.present, 3.missing, 4.NA},

A6 = {1.present, 2.missing, 3.missing, 4.NA},

A7 = {1.missing, 2.missing, 3.missing, 4.NA},

A8 = {1.present, 2.present, 3.present, 4.first better},

A9 = {1.present, 2.present, 3.present, 4.second better},

A10 = {1.present, 2.present, 3.present, 4.equal}.

2. BestInList :

B1 = {1.missing, 2.missing, 3.zero, 4.zero, 5.not there, 6.zero, 7.not there},

B2 = {1.missing, 2.present, 3.NA, 4.zero, 5.not there, 6.zero, 7.not there},

B3 = {1.present, 2.missing, 3.zero, 4.zero, 5.not there, 6.zero, 7.not there},

B4 = {1.present, 2.present, 3.zero, 4.zero, 5.not there, 6.zero, 7.not there},

B5 = {1.present, 2.present, 3.singleton, 4.zero, 5.not there, 6.zero, 7.not there},

B6 = {1.present, 2.present, 3.singleton, 4.once, 5.start, 6.zero, 7.not there},

B7 = {1.present, 2.present, 3.double, 4.zero, 5.not there, 6.zero, 7.not there},

B8 = {1.present, 2.present, 3.double, 4.once, 5.start, 6.zero, 7.not there},

B9 = {1.present, 2.present, 3.double, 4.once, 5.start, 6.once, 7.end},

B10 = {1.present, 2.present, 3.double, 4.once, 5.end, 6.zero, 7.not there},

B11 = {1.present, 2.present, 3.double, 4.once, 5.end, 6.once, 7.start},

B12 = {1.present, 2.present, 3.longer, 4.zero, 5.not there, 6.zero 7.not there},

B13 = {1.present, 2.present, 3longer, 4.once, 5.start, 6.zero, 7.not there},

B14 = {1.present, 2.present, 3.longer, 4.once, 5.start, 6.once, 7.end},

B15 = {1.present, 2.present, 3.longer, 4.once, 5.start, 6.once, 7.middle},

B16 = {1.present, 2.present, 3.longer, 4.once, 5.start, 6.more than once,
7.middle end},

B17 = {1.present, 2.present, 3.longer, 4.once, 5.end, 6.zero, 7.not there},

B18 = {1.present, 2.present, 3.longer, 4.once, 5.end, 6.once, 7.start},

B19 = {1.present, 2.present, 3.longer, 4.once, 5.end, 6.once, 7.middle},

B20 = {1.present, 2.present, 3.longer, 4.once, 5.end, 6.more than once,
7.start middle}

B21 = {1.present, 2.present, 3.longer, 4.once, 5.middle, 6.zero, 7.not there}

B22 = {1.present, 2.present, 3.longer, 4.once, 5.middle, 6.once, 7.start},

B23 = {1.present, 2.present, 3.longer, 4.once, 5.middle, 6.once, 7.end},

B24 = {1.present, 2.present, 3.longer, 4.once, 5.middle, 6.once, 7.mid},

B25 = {1.present, 2.present, 3.longer, 4.once, 5.middle, 6.more than once,
7.start middle},

B26 = {1.present, 2.present, 3.longer, 4.once, 5.middle, 6.more than once,
7.start end},

B27 = {1.present, 2.present, 3.longer, 4.once, 5.middle, 6.more than once,
7.middle end},

B28 = {1.present, 2.present, 3.longer, 4.once, 5.middle, 6.more than once,
7.start middle end}
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2.3.7 Convert test frames into actual test cases

This is fairly straight-forward, and simply consists of devising inputs that satisfy the descriptions given
in the test frames. The expected output (according to the specification) should also be worked out.

A few frames are converted to actual cases as examples.

1. Better :

A1 = Parameters:

u1 = (〈〉,nulUR)
u2 = (〈fred〉,UR(male,LikesPizza))
u3 = (〈jane〉,UR(female,DoesntLikePizza))

Test:

Better(u1, u2, u3)

Valid result(s):

False

A9 = Parameters:

u1 = (〈john〉,UR(male,LikesPizza)
u2 = (〈fred〉,UR(male,DoesntLikePizza))
u3 = (〈jane〉,UR(female,DoesntLikePizza))

Test:

Better(u1, u2, u3)

Valid result(s):

False

2. BestInList :

B8 = Parameters:

u = 〈fred〉
seq = 〈(〈fred〉,UR(male,DoesntLikePizza)),

(〈john〉,UR(male,DoesntLikePizza))〉

Test:

BestInList(u, seq)

Valid result(s):

(〈〉,nulUR)

B15 = Parameters:

u = 〈fred〉
seq = 〈(〈fred〉,UR(male,DoesntLikePizza)),

(〈jane〉,UR(female,DoesntLikePizza)),
(〈jasmine〉,UR(female,LikesPizza)),
(〈john〉,UR(male,DoesntLikePizza))〉
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Test:

BestInList(u, seq)

Valid result(s):

(〈jane〉,UR(female,DoesntLikePizza))

B16 = Parameters:

u = 〈fred〉
seq = 〈(〈fred〉,UR(male,DoesntLikePizza)),

(〈jane〉,UR(female,DoesntLikePizza)),
(〈jasmine〉,UR(female,LikesPizza)),
(〈jim〉,UR(male,DoesntLikePizza)),
(〈joanne〉,UR(female,DoesntLikePizza))〉

Test:

BestInList(u, seq)

Valid result(s):

(〈joanne〉,UR(female,DoesntLikePizza))
(〈jane〉,UR(female,DoesntLikePizza))

This example illustrates a case where more than a single result might be acceptable. Ac-
cording to the definition of BestInList then only the first result, 〈joanne〉 is acceptable. But,
according to the original definition of bestdate, the second, 〈jane〉, would also be correct.

2.3.8 Apply the test cases and evaluate the results

The system described by the specification was actually implemented (in the functional language
Hope+C) together with various supplementary functions to construct suitable data-structures. Also,
code was written to execute the code repeatedly with different test cases as input.

Rather than examine what would happen if “correct” code were tested, we consider faulty code here.
Suppose the code for Better satisfied the following specification, instead of the one supplied earlier:

Better : RecPair × RecPair × RecPair → Boolean

∀ r1, r2, r3 : RecPair

Better(r1, r2, r3) ⇔

((compatibility((r1).userrecord , (r3).userrecord) >

compatibility((r2).userrecord , (r3).userrecord) ∨

nulUR ∈ {(ri).userrecord | i = 1, 2, 3}) ∧

(etc. as before) . . .

The only changes made, are that an ∧ has been replaced by an ∨, and a 6∈ by a ∈. The result is that
Better would evaluate to true if any of its arguments were nulUR.

Then, invalid output would result for many of the tests. For instance:

A1 would have result True not False.

B8 would give the result

(〈john〉,UR(male,DoesntLikePizza))
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2.4 Conclusion

This chapter demonstrated that functional tests for a system can be systematically derived from its
formal specification. It also presented an example of a formal specification for (part of) a large system.

The formal specification means that all of the early parts of the testing procedure are easy to carry
out. The functions have been identified, with their parameters (and the environment conditions, if they
are regarded as different) so the first stages have already been done. The formal specification means
that the valid results for each test case can be worked out with certainty.

The use of the TSL and an automatic tool means that the test specification and test frames are written
in a standard format, which could easily be modified to suit the format required for a particular
standard.

Constructing the test specification informs the design specification process. Many special cases and
exception conditions are uncovered by the process of writing tests for them. Similarly, using the
design specification to work out expected test results will frequently uncover limitations and errors in
the design.

It is fairly easy to modify the test specification as the design specification evolves, so it is practical for
test specification to begin at the same time as design specification.

On the other hand, it is difficult to find satisfactory formalisms describing the structures identified in
the testing process. For instance, what, precisely, is a category?

This chapter concentrated on just one of the functions of a complete dating agency system. The
complete system would have many such functions, interacting in a complex way. The category-partition
method gives no guidance as to how to integrate the testing of individual functions into tests for the
system as a whole.

Using the category-partition method, the test cases are given in the form of parameters for the functions.
No guidance is given on how to generate the required values for the parameters when the function is
embedded within a large system; it is assumed that a test harness of some sort can be used to
generate arbitrary data structures (in the case of the example, the data structures are sequences of
USERRECORDS ).

Also the choice partitions that are made rely heavily on the experience of the tester for their effective-
ness. An arbitrary partition of a category into choices will not necessarily be much use for revealing
likely faults. For instance, in the extreme, it would be legitimate to just have one choice for each
category (corresponding to “any value”), and so there would be only a single test case for the function.
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Chapter 3

Fundamentals.

3.1 Goodenough and Gerhart’s theoretical framework.

The earliest theoretical discussion of testing, and how it relates to correctness, was by Goodenough
& Gerhart [17]. The theory was not intended for use as a direct means of test selection, and was
subsequently shown to have a number of limitations, as discussed later in this chapter.

3.1.1 Initial definitions.

These definitions are those of Goodenough & Gerhart [17].

S is a specification and I is an implementation of it. Assume that they can be regarded as functions:

S : D → R, I : D → R.

D is the domain, or set of possible inputs, R is the range.

Definition 3.1.1 out(d , r) = true iff I (d) = r is an acceptable output, i.e. S (d) = r .

Equivalently,

out(d , r) ⇔ [S (d) = r ].

3

Definition 3.1.2 ok(d) ≡ out(d , I (d)). 3

Definition 3.1.3 A test set T ⊆ D is ideal if

∀ t ∈ T · ok(t) ⇒ ∀ d ∈ D · ok(d).

3

Definition 3.1.4 C is a criterion for test data selection. It takes the form of a predicate, which can
be applied to test sets, T ⊆ D . 3

Definition 3.1.5 complete(T ,C ) iff the elements of T collectively satisfy the criterion C . 3

Clearly, if T = D , T is an ideal test set. This is not very useful though. The idea behind C is to
choose it such that T (⊆ D) is ideal iff complete(T ,C ). The next section develops this.

Definition 3.1.6

successful(T ) ≡ [∀ t ∈ T • ok(t)].

3
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The definition of successful(T ) is implicitly dependent on the implementation, I .

Definition 3.1.7

reliable(C ) ≡ ∀T1,T2 ⊆ D •

complete(T1,C ) ∧ complete(T2,C ) ⇒

(successful(T1) ≡ successful(T2)),

i.e. a criterion C is reliable iff any test set satisfying it will either always test successfully or always
test unsuccessfully. 3

Definition 3.1.8

valid(C ) ≡ ∀ d ∈ D •

¬ ok(d) ⇒

∃T ⊆ D • (complete(T ,C ) ∧ ¬ successful(T )),

i.e. a criterion is valid iff there is a test set satisfying it that will reveal any particular fault. 3

Both reliable(C ) and valid(C ) involve successful(T ), and so are dependent on the particular
implementation under consideration.

Theorem 3.1.9 (The Fundamental Theorem of Testing) [17] Given definitions 3.1.1 to 3.1.8,

∃T ⊆ D ; ∃C •

complete(T ,C ) ∧ reliable(C ) ∧ valid(C ) ∧ successful(T ) ⇒

∀ d ∈ D • ok(d).

This simply means that if a test set satisfies a criterion that is valid and reliable, and is executed
successfully, then the program will execute successfully for any input.

Proof Assume there exists some d ∈ D for which I fails (i.e. ¬ ok(d)). Then valid(C ) implies
that there exists a complete set of test data, T , that is not successful. reliable(C ) implies that if
one complete test set fails then all will fail. But this contradicts the theorem’s premise, that there is
a complete test set which is successfully executed. 2

3.2 Weyuker and Ostrand’s Revealing Sub-domains.

There are a number of limitations to the Goodenough and Gerhart’s theory.

Firstly, there is the difficulty of choosing the criteria and proving that they are reliable and valid, and
then proving that a particular test set is complete with respect to the criterion. In general, this is just
as difficult as a proof.

The second major drawback is the dependence of the definitions of successful and valid and reli-

able on the implementation under consideration, so that the proofs of these properties is unique for
each particular version of the implementation, no matter how small the differences. In particular, it is
necessary to know what faults are in the implementation (or at least the types of fault) to prove that
a given criterion is valid and reliable. Further, if any change is made to the implementation (e.g. to
correct a fault that has been revealed), then the criterion used will not necessarily still be valid and
reliable. Worse still, some criteria that were not valid and reliable before the change may become valid
and reliable after it.

These problems were identified by Weyuker and Ostrand [59], who developed the theory further to try
to overcome them, specifically by abandoning the goal of strict correctness, and aiming at correctness
with respect to likely faults instead.

There are several steps to go through first.
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Definition 3.2.1 Let B ⊆ D . Then test criterion C is revealing for B if, whenever B contains inputs
that will lead to failures, every test set complete with respect to C is unsuccessful. i.e.

revealing(C ,B) ≡ [∃ d ∈ B • ¬ ok(d)] ⇒

[∀T ⊆ B • (complete(C ,T ) ⇒ ¬ successful(T ))]

3

Notice that if B = D , then the criterion chosen is valid and reliable for the implementation.

In general, it will be just as hard to show that a criterion is revealing as it is to show that it is valid
and reliable, and for the same reasons.

However, suppose that the criterion is true for any test set. Then, the definition becomes

revealing(B) ≡ [∃ d ∈ B • ¬ ok(d)] ⇒

[∀T ⊆ B • ¬ successful(T )].

Under this definition, a sub-domain B is revealing if a fault affecting any member of B will also affect
all the other members of B . Proving that a sub-domain is revealing means proving that every fault
that affects any element of B , affects every element of B , or, alternatively, that no fault affects any
element of B . This is still generally difficult.

Now define an even more restricted version of revealing.

Definition 3.2.2 A sub-domain B is revealing for a fault F in I , if, if F affects any member of B , it
affects all the members of B . 3

So, if d ∈ B , and ok(d), then the fault F is guaranteed not to affect any of the sub-domain.

This is a definition of some pragmatic use. By enumerating the likely faults, they can be guaranteed
not to affect a particular implementation if successful tests are run on carefully chosen revealing sub-
domains.

However, the vague notions of likely and carefully need to be formalised in some way.

3.3 Fault-based testing.

Morell [38] discusses the problem at some length, and draws on the work of Howden [25], DeMillo
et al. [6] and others working on mutation testing. Morell’s theory of fault-based testing is a generalisation
of some of the ideas of mutation testing. It is based on a notation for describing a set of alternatives to
a particular implementation, and on the use of symbolic execution to determine revealing sub-domains
for them.

3.3.1 Notation and definitions.

These definitions are due to Morell [38]. They are based on a specification S , and an implementation
I . As usual, they are regarded as functions, S , I : D → R.

Definition 3.3.1 A location in I denotes some expression of I . An expression corresponds to a (group
of) symbol(s) from the syntax of the language that I is written in. 3

Definition 3.3.2 An alternate expression or alternative is an expression, f , that can be substituted
for an expression, l in I , without violating the syntactic correctness of I . 3

Definition 3.3.3 The result of making such a substitution in I , is the alternate implementation, I l
f .

I is the original specification. 3

Definition 3.3.4 Any location in I can have a set of alternatives, called the alternative set. This set
generally contains the original. 3
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Definition 3.3.5 A fault-based arena is a 5-tuple: E =< I ,S ,D ,L,A >, where I , S and D are the
implementation, specification and input domain respectively, and: L = (l1, l2, . . . , ln) is an n-tuple of
locations in I , and A = (A1,A2, . . . ,An) is an n-tuple, each Ai being an alternative set for li .

There is no restriction on the number of alternatives allowed at each location. 3

Mutation testing is fault-based testing in which the alternative sets are finite.

Definition 3.3.6 IE is the set of all programs that can be generated from I using a fault-based arena,
E , by substituting one or more alternatives at their respective locations in I . 3

Test data sets are sought that distinguish or differentiate the original program from its alternates.

Definition 3.3.7 For implementation I , and x ∈ dom(I ), x distinguishes I from an implementation
J iff I (x ) 6= J (x ).

T ⊆ dom(I ), T distinguishes I from J iff ∃ x ∈ T such that x distinguishes I from J .

Similarly, a test set T can distinguish I from a set of programs J . 3

3.3.2 Fault-based testing and correctness.

Definition 3.3.8 A fault-based arena, E =< I ,S ,D ,L,A > is alternate sufficient iff ∃ J ∈ IE such
that J is correct with respect to S . 3

Definition 3.3.9 Alternatives a1 and a2 are coupled if they can be individually distinguished from
the correct implementation by a single test, but their combination cannot be precluded by the same
test. i.e.

∃ t ∈ D • I l1
a1

(t) 6= S (t) ∧ I l2
a2

(t) 6= S (t) ∧ I l1,l2
a1,a2

(t) = S (t).

3

Morell argues that there are two conditions governing whether fault-based testing ensures correctness:

1. The fault-based arena must be alternate-sufficient.

2. Coupling does not occur anywhere in the test set.

Unfortunately, as Morell shows, it is undecidable whether an arbitrary fault-based arena is alternate-
sufficient, or involves coupling.

Therefore, alternate-sufficiency is assumed to hold, until evidence that it does not is found. Then some
new alternatives have to be found, extending the fault-based arena, and the assumption is taken up
again. When it is assumed to be true for a particular implementation, alternate-sufficiency is known
as the competent programmer hypothesis.

However, the absence of coupling can sometimes be inferred from the implementation structure: al-
ternatives cannot be coupled if they lie on different paths, or if they affect different parts of the data
structure.

Definition 3.3.10 E =< I ,S ,D ,L,A > is finitely distinguishable, or finite, iff there is a finite test
set T , that distinguishes I from IE . 3

Every arena in which all the alternative sets are finite, is finitely distinguishable (which includes
mutation testing). There are also arenas with infinite alternative sets that are finitely bounded.

3.3.3 Symbolic testing.

But this still leaves the arenas that aren’t finitely distinguishable. Morell extends the theory by
allowing symbolic arenas, where symbolic alternatives take the place of a possibly infinite number
of real alternatives.

There are two aspects to symbolic testing:
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• Symbolic inputs are used to model inputs that would follow a given path through the implement-
ation.

• Symbolic alternatives are used to model whole classes of ordinary alternatives.

i.e. given a location li from an arena, the whole alternative set, Ai , can be represented by a
single symbolic alternative.

By using a development of standard symbolic execution techniques, the implementation can be executed
with the symbolic inputs, and symbolic alternatives to produce symbolic outputs.

For symbolic alternative A and symbolic input x , two expressions need to be generated:

• Ox , the symbolic output generated, when A is not used,

i.e. Ox = I (x );

• OA
x , the symbolic output generated, when A is used,

i.e. OA
x = I li

A(x ), where li is the location of A.

Consider Ox = OA
x and Ox 6= OA

x (called the propagation equation and assertion respectively). They
can be solved for A (in terms of the input).

Solutions to the propagation equation correspond to faults that are indistinguishable by the symbolic
input.

Solutions to the propagation assertion correspond to faults that are distinguishable by the symbolic
input. In fact, real inputs corresponding to the symbolic input form revealing sub-domains for these
faults.

3.3.4 Limitations of fault-based testing.

Morell’s work is a considerable step forward from Weyuker & Ostrand’s, as it describes a way to
actually generate revealing sub-domains. However, it is oriented towards the implementation rather
than the specification: the faults are defined in terms of alternate expressions in specific locations
of the implementation. They are therefore dependent on the structure (and hence the syntax) of the
implementation, which is not entirely satisfactory. This is clearly shown by the need for the competent
programmer hypothesis.

One reason for this is that the arenas are based wholly around the syntactic representation of the
implementation, rather than on semantic representations of the implementation and the specification.
A more detailed look at the meanings of the word fault is required.

3.4 Faults.

Recall from definition 1.1.2 that, given a specification S : D → R and an implementation of it,
I : D → R, then a failure is a maplet (i 7→ o) ∈ (I \ S ), i.e. a maplet belonging to I but not to S .

Given this definition, the simplest formalisation of the concept fault, is as sets of failures. Thus a
fault is a partial function consisting of the failures it causes. So S could be implemented with fault
F = {i1 7→ o1, i2 7→ o2, . . . , in 7→ on}, in which case the implementation, I , would be S ⊕F .

However, it does not take into account the fact that distinct faults may cause exactly the same failures.
For instance, many different faults could lead to the failures of the system crashing on every input,
i.e. I = S ⊕ (λ d : D • ⊥).

To describe this, a mapping between actual faults and the sets of failures could be used, i.e:

• ∆ == {d : D ; r : R | S (d) 6= r • d 7→ r}, the set of all possible failures. (See Spivey, [55] for
the set notation.)
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• Let Faults denote the set of possible faults that can occur in converting S to I .

• FaultMap(S ) : Faults → P(∆), describes S ’s fault mapping.

Under this scheme of things, dom(FaultMap(S )) = Faults is the set of all possible faults that might
occur in converting S into I . Also, given fault F , dom(F) is a revealing sub-domain.

To guarantee correctness a property analogous to alternate sufficiency is needed on Faults, i.e. it has
to genuinely describe all the possible faults.

This is all very well, but Faults still remains undefined. What is required is a framework in which S
and I can be directly compared, in which case the differences will be faults. Such a framework will be
capable of modelling both S and I in the same terms.

One such model might be Finite-State machines.

3.4.1 Finite-state-machine models of S and I .

Definition 3.4.1 This definition is largely from Chow [4].

A deterministic finite-state-machine (FSM), M is a quintuple:

M = (Y ,Z ,Q ,F ,O),

where:

• Y is the input set.

• Z is the output set.

• Q is the set of states, including q0, the initial state.

• F : Y × Q → Q is the transition function (or next-state function).

• O : Y × Q → Z is the output function.

The general behaviour of the machine can be described by a function,

‖M‖ : Q → (Y + → Z+).

The behaviour of the machine can be described by a function,

|M| = ‖M‖ (q0).

Finite-state-machines are normally defined by drawing a state transition diagram with labelled arcs,
or using a state transition table. 3

When input and output are regarded as sequences, input is processed “head-first”, output is generated
“head-last.”

Notation 3.4.2 Given finite-state-machine M with states q1, q2 ∈ Q , and with input y ∈ Y such that
F (q1, y) = q2, and O(q1, y) = z , this can be written in the following way:

q1
y/z

> q2,

or, if the output is not important, as

q1
y
> q2.

3
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q1 a/0

z/0

a/0

z/0

a/0

z/0

q2 q3

f/0

f/0

s/0

f/0

m/1

b/0

Figure 3.1: State transition diagram of a finite-state-machine to recognise the sequence “fsm”.

In terms of the specification S : D → R and implementation I : D → R, the notion of finite-state-
machines is useful so long as there are suitable Y and Z such that Y + = D and Z+ = R.

The model is fairly simple, so given S, the finite-state-machine model of S there are not many different
ways that faults can appear in I (the finite-state-machine model of I ):

1. I could have missing states;

2. I could have extra states;

3. I could have a faulty transition function (i.e. a misdirected or missing arc between states).

4. I could have a faulty output function.

Example 3.4.3 Figure 3.1 shows a finite-state-machine as a state transition diagram, and table 3.1
shows the corresponding state transition table. The machine accepts a character stream as input, so
Y = {a, . . . , z}, and D = Y +, and outputs a binary stream, with a 1 for every occurrence of the
sequence “fsm” in the input. So Z = {1, 0}, and R = Z+.

The simplest faults involve only single maplets of the transition function or of the output function. For
instance, F (m, q3) = q3 is a fault, and O(m, q3) = 0 is a fault.

The situation is more complicated if missing or extra states are involved. For instance, if a state is
missing, then all the maplets from F that involve it must also change, and there are many different
ways in which they could change. 3

The theory of finite-state-machines has been thoroughly investigated, and their use for generating test
cases is well established [3, 4, 12, 54].

3.5 Test generation from finite-state-machine models of S.

In this section I describe Chow’s W -method of test set generation [4]. It will detect all transition
errors and output errors, plus any missing states, and any extra states up to a finite limit, (say up to
e extra states).
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Y Q
q1 q2 q3

a q1/0 q1/0 q1/0
b q1/0 q1/0 q1/0
...

...
...

...
e q1/0 q1/0 q1/0
f q2/0 q2/0 q2/0
g q1/0 q1/0 q1/0
...

...
...

...
l q1/0 q1/0 q1/0
m q1/0 q1/0 q1/1
n q1/0 q1/0 q1/0
...

...
...

...
r q1/0 q1/0 q1/0
s q1/0 q3/0 q1/0
t q1/0 q1/0 q1/0
...

...
...

...
z q1/0 q1/0 q1/0

Table 3.1: State transition table of a finite-state-machine to recognise the sequence “fsm”.

3.5.1 Preliminary definitions.

In the definitions that follow (which are from Chow), M is a general finite-state-machine, S a finite-
state-machine modelling S , the specification, and I is a finite-state-machine modelling I , an imple-
mentation of it.

M = (Y ,Z ,Q ,F ,O)

S = (Y ,Z ,QS ,FS ,OS)

I = (Y ,Z ,QI ,FI ,OI)

Definition 3.5.1 M is completely specified if there is a transition defined for every input symbol
y ∈ Y for every state. 3

Definition 3.5.2 M is strongly connected if there are input sequences that take the machine from
each state to any other state. 3

Definition 3.5.3 Given sets of input sequences, V1 and V2, their concatenation is the set V1 ·V2 ==

{v1
a v2 | v1 ∈ V1, v2 ∈ V2}. 3

Notation 3.5.4 For input sequence V , V n denotes the n-times concatenation of V . 3

Notation 3.5.5 V [k ] == ({ε} ∪ V ∪ V 2 ∪ · · · ∪ V k ), where ε is the empty sequence. 3

Definition 3.5.6 Given a set V of input sequences, states qS and qI , from S and I are V -equivalent
if S in state qS and I in state qI respond with identical output sequences to each input sequence in
V . 3

Definition 3.5.7 Two states are equivalent if they are V -equivalent for any set V . 3

Definition 3.5.8 Machines S and I are equivalent if their initial states, qS
0 and qI

0 are equivalent. 3

Definition 3.5.9 M is minimal if it has fewer or equal states to any other machine M′ which is
equivalent to M. 3
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Definition 3.5.10 V , a set of input sequences, is a state cover set of M if for each state qM
i of M,

there is an input sequence vi ∈ V such that qM
0

vi
> qM

i . 3

Definition 3.5.11 V , a set of input sequences, is a transition cover set of M if, for each transition

qi
y/z

> qj , there are sequences v and v a 〈y〉 in V such that q0
v
> qi and q0

v
a〈y〉

> vj .

A transition cover set contains a state cover set. 3

Definition 3.5.12 W , a set of input sequences, is a characterisation set of M if, for each pair of
different states, qi , qj , the output sequences produced by W when applied in states qi and qj are
different. 3

3.5.2 Test set description.

Chow’s test set, T , is built up from several parts, and is entirely based on S:

• C a transition cover set for S;

• P a prefix set for S, where e is the maximum number of extra states in I compared to S,

P = ({ε} ∪ Y ∪ Y 2 ∪ · · · ∪ Y e)

= Y [e]

• W a characterisation set for S;

T = C · P · W

The idea is that the transition cover (C ) ensures that all the transitions of S are present in I, and the
remainder (P ·W ) ensures that I is in the same state as S would be after the each transition is used.

P is needed to detect extra states. If there are up to e extra states, and they are reachable from qI
0 ,

then they must be reachable by some input sequence of up to length e from one of the existing states.
Notice that if e = 0 (i.e. no extra states) then P = ∅.

3.5.3 Correctness.

In order to guarantee correctness, the following conditions have to hold:

• The specification, S must be minimal, which is a necessary and sufficient condition to guarantee
the existence of a characterisation set W [3, chapter 2].

• S must have at least two states.

• S and I must be completely specified, and deterministic.

• S and I must both be strongly connected.

• S must have a reset operation (i.e. an extra input that causes the machine to change back to qS
0

from every state; in the worst case this corresponds to re-starting the system), which must be
correctly implemented in I.

• The machines must have the same input set.

• The number of states in I must be bounded by m ≥ n, where n is the number of states in S. So
e = m − n.

Chow proves that correctness is guaranteed under these circumstances [4].

If I is not minimal, but otherwise correct w.r.t. S, the test set, T , will not detect it.
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3.5.4 Practical application of the method.

The three sets C , P and W can be generated automatically from S, as described by Chow [4], Fujiwara
et al. [12] and Bhattacharyya [3].

Example 3.5.13 The test set for the finite-state-machine in example 3.4.3 can be constructed as
follows (assuming that there are no more than 2 extra states in the implementation :

Y = {〈a〉, . . . , 〈z 〉}

C = Y ∪ {〈f 〉} · Y ∪ {〈fs〉} · Y

P = {a, . . . z}[2]

W = {〈sm〉, 〈m〉}.

To see that W is a characterisation set, consider the behaviour function in each case

‖M‖ (q1)〈sm〉 = 〈00〉

‖M‖ (q1)〈m〉 = 〈0〉

‖M‖ (q2)〈sm〉 = 〈01〉

‖M‖ (q2)〈m〉 = 〈0〉

‖M‖ (q3)〈sm〉 = 〈00〉

‖M‖ (q3)〈m〉 = 〈1〉.

Altogether there are size(C ) × size(P) × size(W ) = 78 × 702 × 2 = 109512 test cases, although many
of these will be duplicates of one another. 3

According to Chow, the upper bound on the number of test cases is

[size(QS)]2 × [size(Y )](e+1),

where e is the maximum number of extra states in I compared to S. (In the case of the example, this
gives a value of 158184.)

3.6 Limitations of finite-state-machine based testing.

The finite-state-machine model enables revealing test sets to be generated in a straight forward manner.
But the model is rather simple and has several drawbacks.

Firstly, there is no way to model data structures independently of the control structure. This makes
modelling large systems very difficult. In fact, it is difficult to model any non-trivial data structure
using finite-state-machines.

Secondly for a finite-state-machine to be complete, there has to be one transition defined for every
different input in every state. This leads to a very large number of test cases, many of which are very
similar. Fujiwara et al. [12] describe various ways to reduce the size of the test set, but the reductions
just avoid unnecessary repetition, and other minor aspects of minimisation.

Both problems could be overcome with a model that separates the data state from the control structure.
Input (and output) should be treated as part of the data structure, removing the need for a lot of the
“almost-duplication” of transitions seen in the example. I investigate the possibilities of such a model
in the next few chapters.
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Chapter 4

Specification using X -machines.

4.1 Introduction to X -machines.

X -machines were first proposed by Samuel Eilenberg [9, chapter X] as a general machine model
of computation. Sadly, Eilenberg never fully described their potential, or even all of his reasons
for introducing them. However, they offer a number of attractions as an abstract model for use
in specification, as pointed out by Mike Holcombe in [24]. X -machines allow the control and data
manipulation aspects of a system to be succinctly and separately modelled. These ideas are developed
here.

4.1.1 Basic concepts

Definition 4.1.1 This style of definition is due to Holcombe [24].

An X -machine, M, is a 10-tuple, as follows:

M = (X ,Y ,Z , α, β,Q ,Φ,F , I ,T )

1. X is the fundamental data set that the machine operates on.

2. Y and Z are the input and output sets, respectively.

3. α and β are the input and output relations respectively, used to convert the input and output
sets into, and from, the fundamental set. i.e.

α : Y ↔ X β : X ↔ Z

4. Q is the (finite) set of states.

5. Φ is the type of M, a set of relations on X .
i.e.

Φ : P(X ↔ X )

Φ can also be viewed as an abstract alphabet. It is not necessary for all of the relations in Φ
to be used in M. In fact, Φ can be infinite, although only a finite number of the members will
actually be used in any particular machine.

6. F is the ‘next state’ function.

F : Q → (Φ → P Q)
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It is described as a Curry-ed function. So, for state q ∈ Q ,

F (q) : Φ → P Q

However, when it is convenient, F can be treated like a function with two arguments; i.e. F (q , φ) =
(F (q))(φ).

F is often described by means of a diagram.

7. I and T are the sets of initial and terminal states respectively.

I ⊆ Q , T ⊆ Q

3

The remaining definitions in this chapter are my own.

Definition 4.1.2 If qa , qb ∈ Q , φ ∈ Φ and qb ∈ F (qa , φ), write qa
φ
> qb . φ is the arc, from qa to

qb . 3

Definition 4.1.3 If qa , qb ∈ Q are such that there exist q1, . . . qn ∈ Q and φ1, . . . φn+1 ∈ Φ with

qa
φ1

> q1
φ2

> . . . qn
φn+1

> qb ,

then p = (〈qa , q1, . . . , qn , qb〉, 〈φ1, . . . , φn+1〉) is the path from qa to qb .

There are three distinct elements to p:

1. the sequence of states passed through, 〈qa , q1, . . . , qn , qb〉 ∈ Q∗, called the Q-path of p, written
pQ ;

2. the sequence of transitions used, 〈φ1, . . . , φn+1〉 ∈ Φ∗, called the Φ-path of p, written pΦ;

3. the relation due to the composition of pΦ, φ1φ2 . . . φn+1 ∈ X ↔ X , called the label of p, written
|p|.

Notice that len(pQ) = len(pΦ) + 1.

Write qa
φ1φ2...φn+1

> qb or qa
p
> qb .

This is an extension to Eilenberg’s path definition. 3

NB The connection between paths and their labels is close, but not unique; distinct paths (i.e. passing
through different sequences of states) can have exactly the same label, although not vice versa.
However, in most cases the context provides enough information to make the meaning of a phrase
like “using path φ1 . . . φn” clear without having to specify which states are passed through.

Definition 4.1.4 Given a path, p, from qa ∈ Q to qb ∈ Q , then p is a full-path if qa ∈ I and qb ∈ T .
Otherwise, p is a partial-path. 3

Definition 4.1.5 An X -machine, M is deterministic iff:

1. α is a function, not a relation:

α : Y → X

2. β is a function, not a relation:

β : X → Z

3. Φ contains only partial functions on X rather than relations:

Φ : P(X 7→ X )
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4. F maps each pair (q , φ) ∈ Q × Φ onto at most a single next state:

F : Q → (Φ 7→ Q)

A partial function is used because every φ ∈ Φ will not necessarily be defined as the label to a
path in every state.

5. I contains only a single element, I = {q0}.

3

4.1.2 Operation of X -machines

Given y ∈ Y , the operation of the X -machine M on y consists of:

1. Taking a path, p, from a start state, qi(∈ I ), to a finish state, qt(∈ T ), i.e. qi
|p|

> qt .

2. Apply α to the input to convert it to the internal type X .

3. Apply |p|, if it is defined for α(y). Otherwise, go back to step 1.

4. Apply β, to get the output.

Assuming the machine is deterministic, then the operation can be summarised as:

β(|p| (α(y)))

Alternatively, the operation can be described state-transition by state-transition, as follows (assuming
once again, that the machine is deterministic):

1. Apply α to y to obtain x0 = α(y).

2. Consider F (qn). Take one of the transition functions, φ ∈ dom(F (qn)) for which φ(xn) is defined.

3. Apply the φ to xn to obtain xn+1 = φ(xn), and apply F to get qn+1 = F (qn , φ).

4. Go back to step 2, unless qn+1 ∈ T and there is no φ ∈ dom(F (qn+1)) such that φ(xn+1) is
defined.

5. Apply β to xn+1 to obtain the output, z = β(xn+1).

This view of X -machine operation is particularly useful when modelling interactive systems, where the
final output is of no special relevance compared to the state-transition by state-transition behaviour.
In fact, in this sort of situation, it can be appropriate to consider β as an output filter that can be
applied to the current xn at any time. For instance, X might be a complicated data type describing
the system data-state, and β the function that extracts the screen appearance from X .

Definition 4.1.6 An X -machine, M is fully-deterministic, if M is deterministic and, for any x ∈ X
and any q ∈ Q there is at most one φ ∈ dom(F (q)) that is defined for x . 3

Definition 4.1.7 An X -machine, M is complete w.r.t. X if for any x ∈ X and any q ∈ Q , there is at
least one φ ∈ dom(F (q)) that is defined for x . 3

Definition 4.1.8 An X -machine, M is complete w.r.t. Φ if for all q ∈ Q , Φ = dom(F (q)). (i.e. F :
Q → (Φ → Q).) 3

Lemma 4.1.9 If M is a fully-deterministic X -machine that is complete w.r.t. X , then, for each state,
q , the domains of the φ ∈ dom(F (q)) form a partition of X . In other words, suppose dom(F (q)) =
{φ1, φ2, . . . , φn}, then dom(φ1) ∪ dom(φ2) ∪ · · · ∪ dom(φn) = X , and dom(φi) ∩ dom(φj ) = ∅ for all
i , j ∈ {1..n} where i 6= j .

Proof Follows directly from the definitions. 2
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4.2 Input/Output and X -machines

There are several ways of handling input/output with X -machines.

4.2.1 Input/Output by resolving non-determinism

One technique is to build X -machines such that they are not deterministic, and the “input” is used to
resolve the non-determinism.

Example 4.2.1 Consider the following X -machine, M4.2.1:

1. X = {a, . . . , z}∗.

2. Y = ∅ Z = X .

3. α = λ y • 〈〉.

4. β = λ x • x .

5. Q = {Read,End}.

6. Φ = {a, . . . , z, a′, . . . , z′, a′′, . . . , z′′,Return} where

n = some fixed integer constant

a = λ x •

{

x a 〈a〉 if len(x ) < n − 1
⊥ otherwise

b = λ x •

{

x a 〈b〉 if len(x ) < n − 1
⊥ otherwise

...

z = λ x •

{

x a 〈z 〉 if len(x ) < n − 1
⊥ otherwise

Return = λ x • x

a′ = λ x •

{

x a 〈a〉 if len(x ) = n − 1
⊥ otherwise

...

z′ = λ x •

{

x a 〈a〉 if len(x ) = n − 1
⊥ otherwise

a′′ = λ x •

{

x if len(x ) > n − 1
⊥ otherwise

...

z′′ = λ x •

{

x if len(x ) > n − 1
⊥ otherwise

7. For F see figure 4.1.

8. I = {Read}.
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EndRead

Return

a′

z′

a

b

z

Return

a′′

z′′

Figure 4.1: A simple X -machine, for entering a text string

9. T = {End}.

Notice that α and Y are trivial. This is typical of the approach. Also, M4.2.1 is complete w.r.t. X
and deterministic, but not complete w.r.t. Φ or fully-deterministic.

The machine models the input of a text string of up to n characters, terminated by a Return if it is
shorter than n characters. When the machine is in, say, state Read, with fewer than n − 1 characters
entered so far, dom(F (Read)) = {a, . . . , z, a′, . . . , z′,Return}. Of these, any of a, . . . , z,Return are
defined, and so could be the next transition taken. This non-determinism is resolved according to the
actual input: if “a” is entered, then transition a is the one taken, and so forth. 3

One problem with this approach is the large number of very similar transition functions that have to
be defined; typically one for every possible input. Even in the case of a trivial example such as M4.2.1

there are three sets of 26 transition functions, that are essentially the same. If input from a mouse were
to be modelled, for instance, then one transition function would be needed for every screen location
the mouse could point at.

4.2.2 Input/Output using streams

A solution to the problem was suggested by Eilenberg in his original discussion of the X -machine
model. A typical X would take the form Γ∗ × M × Σ∗. Here, Σ∗ is the input stream, formed of
sequences from the alphabet Σ, and Γ∗ the output stream, formed of sequences from the alphabet Γ.
M is the memory of the machine.

Suppose x = (G ,m,S ), where S ∈ Σ∗, m ∈ M and G ∈ Γ∗. Interpret S as the sequence of unprocessed
input so far, and G as the sequence of output, so far. The next input is head S , and the next transition
function will remove it, update m, and add a new output to the head of G .

The output sequence can be considered as “instructions” to the output device(s), which are interpreted
by β. Or, alternatively, the output can be considered as a sequence of “snap-shots” of the output status.

Example 4.2.2 Consider the following X -machine, M4.2.2:

1. X = Γ∗ × M × Σ∗, where

Σ = {a, . . . , z ,Return} Γ = {a, . . . , z}
M = {a, . . . , z}∗

2. Y = Σ∗.

3. Z = Γ∗.

4. α = λS • (〈〉, 〈〉,S ).

5. β = λ(G ,m,S ) • G .
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Read End

r

Return

end

Return

r’

Figure 4.2: An X -machine using general functions.

6. Q = {Read,End}.

7. Φ = {r,Return, end, r′}, where

n = some fixed integer constant

r = λ(G ,m,S ) •















(G a head S ,

m a head S , tail S ) if head S ∈ {a, . . . z} ∧
len(m) < n − 1

⊥ otherwise

r′ = λ(G ,m,S ) •

{

(G ,m, tail S ) if head S ∈ {a, . . . , z} ∧
len(m) > n − 1

⊥ otherwise

end = λ(G ,m,S ) •















(G a head S ,

m a head S , tail S ) if head S ∈ {a, . . . z} ∧
∧ len(m) = n − 1

⊥ otherwise

Return = λ(G ,m,S ) •

{

(G ,m, tail S ) if head S = Return
⊥ otherwise

8. For F , see figure 4.2.

9. I = {Read}.

10. T = {End}.

Notice that α and β are still fairly simple. M4.2.2 is complete w.r.t. X and fully-deterministic, but
not complete w.r.t. Φ.

M4.2.2 models the same string input behaviour as M4.2.1, but uses far fewer functions. 3

Examples 4.2.1 and 4.2.2 represent two extremes in the handling of input to X -machines, but there is
no reason why the approaches cannot be combined when it is appropriate.

Definition 4.2.3 An X -machine with X = Γ∗ × M × Σ∗, is a stream-X-machine if

1. there exists a bijection, α∗ : Y → Σ∗ such that α = λ y • (〈〉,m0, α
∗(y)) where m0 is the initial

memory value of the stream-X -machine.

2. there exists a bijection, β∗ : Γ∗ → Z such that β = λ(G ,m,S ) • β∗(G).

The M component of X is known as the memory of the machine.
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Each transition function must remove the head of the input stream and add a single element to the
head of the output stream, and, furthermore, no transition is allowed to use information from the tail
of the input or any of the output. i.e. every φ ∈ Φ is of the following form:

φ = λ(g ,m, h :: s) : Γ∗ × M × Σ∗ •















(γ1(m, h) :: g , φ1(m, h), s) if c1(m, h)
(γ2(m, h) :: g , φ2(m, h), s) if c2(m, h)

...
⊥ otherwise

where the φis are functions of m and h (i.e. φi : M × Σ → M ), the γi are functions of m and h
(i.e. γi : M ×Σ → Γ) and the cis are mutually exclusive conditions on m and h (i.e. ci : M ×Σ → B).

3

The machine in example 4.2.2 (M4.2.2) is a stream-X -machine.

Remark 4.2.4 Part of the motivation behind the definition of stream-X -machines is so that they have
the following property: There is a concatenation operator, ⌣, on Y so that the following diagram
commutes:

Y × Y
⌣

> Y

Σ∗ × Σ∗

α∗

∨ a

> Σ∗
∨

α∗

Since input is converted to Σ∗ by a bijection (α∗), input may often be considered to be from the set
Σ∗ as from the set Y . Thus the phrase “input sequence S ∈ Σ∗” is meaningful. 3

Definition 4.2.5 A stream-X -machine, M, with X = Γ∗ × M × Σ∗, as above, is complete w.r.t. Y
if, for any y ∈ Y , there is at least one q ∈ I and path, p, with len(pΦ) = len(α∗(y)), and starting at
q , such that β(|p| (α(y))) is defined. 3

Definition 4.2.6 Given a stream-X -machine, M, with X = Γ∗ × M × Σ∗, there are projection
functions as follows:

Output = λ(G ,m,S ) : X • G

Mem = λ(G ,m,S ) : X • m

Input = λ(G ,m,S ) : X • S

Mem Input = λ(G ,m,S ) : X • (m, head S )

3

Definition 4.2.7 Given a stream-X -machine, M, m ∈ M and q ∈ Q , m is attainable in q if there is

an input sequence, y ∈ Y , and path p such that qa
p
> q (where qa ∈ I ) and m = Mem(|p| (α(y))). 3

Definition 4.2.8 Given a stream-X -machine, M, with a state q ∈ Q ,

Attainable(q) = {(m, s) : M × Σ | m is attainable in q , s ∈ Σ},

MAttainable(q) = {m : M | m is attainable in q},

XAttainable(q) = {x : X | Mem Input(x ) ∈ Attainable(q)}

are the sets of values from M × Σ, M and X respectively that can occur in state q . 3

Aside When discussing the internal behaviour of a stream-X -machine, it is often convenient to talk
about partial paths, starting at an arbitrary state q ∈ Q (with q not necessarily in I ), with an arbitrary
(partial) input sequence S ∈ Σ∗, and an arbitrary initial value for the memory, m ∈ MAttainable(q). 3
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The set of attainable values
of (G ,m,S ) in state q .

Part of dom(φ2) that is
not attainable in state q .dom(φ1)

dom(φ2)

dom(φ3)

dom(φ4)

dom(φ5)

Figure 4.3: Venn diagram showing the relationship between attainable and defined elements of Γ∗M×Σ∗

for a given state q .

Lemma 4.2.9 If M is a fully-deterministic stream-X -machine that is complete w.r.t. Y , then, for
each state q ∈ Q , the domains of the φ ∈ dom(F (q)) form a partition of the set XAttainable(q). In
other words, if

dom(F (q)) = {φ1, . . . , φn},

then

dom(φ1) ∪ dom(φ2) ∪ · · · ∪ dom(φn) ⊇ XAttainable(q),

and

dom(φi) ∩ dom(φj ) = ∅

for any i , j ∈ {1..n} where i 6= j .

Proof Follows directly from the definitions. 2

NB A given φ ∈ dom(F (q)) may be defined for some values of (G ,m,S ) which are not in the set
XAttainable(q), as illustrated by figure 4.3. 3

4.3 Some X -machine theory.

4.3.1 Preliminary definitions.

Throughout section 4.3

M = (X ,Y ,Z , α, β,QM,Φ,FM, IM,TM)

N = (X ,Y ,Z , α, β,QN ,Φ,FN , IN ,TN )

M and N are both fully-deterministic stream-X -machines that are complete w.r.t. Y , and X =
Γ∗ × M × Σ∗.

Notation 4.3.1 Given M, with state q ∈ QM, m ∈ MAttainable(q), and (partial) input sequence
S ∈ Σ∗,
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• q |Φ (m,S ) ∈ Φ∗ denotes the Φ-path through M resulting from a start value of X = (〈〉,m,S )
in state q .

• q |Γ (m,S ) ∈ Γ∗ denotes the output sequence of M, resulting from a start value of X = (〈〉,m,S ),
in state q .

• q |Q (m,S ) ∈ Q∗ denotes the sequence of states passed through in M, (i.e. the Q-path) from a
start value of X = (〈〉,m,S ), in state q .

• q |M (m,S ) ∈ M ∗ denotes the sequence of values of M that are taken during the course of M’s
operation, with start value X = (〈〉,m,S ), in state q .

• q |X (m,S ) ∈ X ∗ denotes the sequence of values of X that are taken by M in the course of its
operation, with start value X = (〈〉,m,S ), in state q .

The sequences are all built up so that the “most recent” element is the head, apart from the sequence
of φ’s, which has its most recent element last. 3

Notation 4.3.2 Given M, with state q ∈ QM, m ∈ MAttainable(q), and (partial) input sequence
S ∈ Σ∗,

• q ‖Φ (m,S ) ∈ Φ denotes the final transition followed in the operation of M with start value
X = (〈〉,m,S ) in state q .

q ‖Φ (m,S ) = last q |Φ (m,S ).

• q ‖Γ (m,S ) ∈ Γ denotes the final output of the operation of M with start value X = (〈〉,m,S )
in state q .

q ‖Γ (m,S ) = head q |Γ (m,S ).

• q ‖Q (m,S ) ∈ Q denotes the final state reached in M with start value X = (〈〉,m,S ) in state q .

q ‖Q (m,S ) = head q |Q (m,S ).

• q ‖M (m,S ) ∈ M denotes the final value of M taken in the operation of M with start value
X = (〈〉,m,S ) in state q .

q ‖M (m,S ) = head q |M (m,S ).

• q ‖X (m,S ) ∈ X denotes the final value of X taken in the operation of M with start value
X = (〈〉,m,S ) in state q .

q ‖X (m,S ) = head q |X (m,S ).

Also,

q ‖X (m,S ) = (q |Γ (m,S ), q ‖M (m,S ), 〈〉).

3

Observation 4.3.3

len(S ) = len(q |Φ (m,S )) = len(q |Γ (m,S )) = len(q |Q (m,S )) − 1.

Observation 4.3.4 The stream-X -machine definition was, in part, motivated by the following prop-
erties (which are described in terms of fully-deterministic stream-X -machine, M that is complete
w.r.t. Y ).
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If

q0 ‖M (m0,S1) = m1

q0 ‖Q (m0,S1) = q1

then

[q0 |Φ (m0,S1)] a [q1 |Φ (m1,S2)] = q0 |Φ (m0,S1
a S2)

[q0 |Γ (m0,S1)] a [q1 |Γ (m1,S2)] = q0 |Γ (m0,S1
a S2)

3

Notation 4.3.5 In cases where there is ambiguity regarding which machine a state belongs to, the
following convention is used. Suppose X -machines M and N both have a state called q . Then, qM

belongs to M, and qN belongs to N . 3

Definition 4.3.6 A state q ∈ Q is reachable in M iff

∃S ∈ Σ∗ • q0 ‖Q (m0,S ) = q .

3

4.3.2 Equivalence and minimality of X -machines.

Definition 4.3.7 Given states q1 and q2 from machines of the same type, Φ, then q1 and q2 are
Φ-equivalent iff

MAttainable(q1) = MAttainable(q2) ∧

∀m ∈ MAttainable(q1); ∀S ∈ Σ∗ • q1 |Φ (m,S ) = q2 |Φ (m,S ),

and write q1 ≡Φ q2. 3

Definition 4.3.8 Given M, with QM = {q0, . . . , qn}, M is Φ-minimal iff

∀ qi , qj ∈ QM • (qi 6= qj ) ⇒ ¬ (qi ≡Φ qj ).

3

Definition 4.3.9 Given M and N , they are Φ-equivalent iff their initial states (p0 and q0) are Φ-
equivalent, i.e. p0 ≡Φ q0, and write M ≡Φ N . 3

Definition 4.3.10 An X -machine M is Q-minimal if it has fewer states than any X -machine N that
is Φ-equivalent to it. 3

Lemma 4.3.11 If an X -machine M is Q-minimal then every state is reachable.

Proof This follows directly, as the unreachable states can be removed without affecting the possible
paths in M. 2

Theorem 4.3.12 M is Q-minimal (as in 4.3.10) ⇔ it is Φ-minimal (as in 4.3.8) and every state is
reachable.

Proof

⇒ Suppose M is Q-minimal, and show that it must also be Φ-minimal, with every state reachable.

Firstly, since M is Q-minimal, every state must be reachable.
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Use a proof by contradiction to show that M is Φ-minimal: suppose M is not Φ-minimal. Then

∃ q1, q2 ∈ QM • (q1 6= q2) ∧ (q1 ≡Φ q2).

Without loss of generality, q2 6= qM
0 .

Construct N , of type Φ, which is exactly the same as M, except that it has no state q2. Instead,
for every (q , φ) ∈ (QN × Φ) such that FM(q , φ) = q2, put FN (q , φ) = q1.

Consider the initial states of the two X -machines, qM
0 and qN

0 respectively, and any y ∈ Y , with

α(y) = (〈〉,m0,S ),

which is the same for M and N .

Now, either q2 ∈ qM
0 |Q (m0,S ) or q2 6∈ qM

0 |Q (m0,S ).

1. If q2 6∈ q0 |Q (m0,S ), then clearly

qM
0 |Φ (m0,S ) = qN

0 |Φ (m0,S ),

since the two machines are exactly the same apart from q2.

2. If q2 ∈ q0 |Q (m0,S ), then S can be split into two sections, S = S ′ a S ′′ such that

qM
0 ‖Q (m0,S

′) = q2,

and

qM
0 ‖M (m0,S

′) = m ′,

q2 6∈ q2 |Q (m ′,S ′′).

Also, qN
0 ‖Q (m0,S

′) = q1, from the definition of N .

Repeat the argument on m ′ and S ′ instead of m0 and S as many times as necessary.

So, qM
0 |Φ (m0,S ) = qN

0 |Φ (m0,S ), and qM
0 ≡Φ qN

0 , but N has fewer states than M, which
contradicts the Q-minimality of M.

Therefore, M is Φ-minimal.

⇐ Suppose M is Φ-minimal with every state reachable and show that it must be Q-minimal.

Then

∀ q1, q2 ∈ QM • (q1 6= q2) ⇒ ¬ (q1 ≡Φ q2).

Use a proof by contradiction: suppose that M is not Q-minimal. Then ∃N of type Φ with
N ≡Φ M, but containing fewer states. In fact, w.l.o.g. it can be assumed that N is Q-minimal.

Consider any qM ∈ QM. Every state is reachable, so there is at least one input sequence leading
to qM. Consider any m ∈ MAttainable(qM); then ∃S ′ ∈ Σ∗ such that qM

0 ‖Q (m0,S
′) = qM,

and m = q0 ‖M (m0,S
′).

Let qN = qN
0 ‖Q (m,S ′). Since N ≡Φ M,

qM
0 |Φ (m0,S

′) = qN
0 |Φ (m0,S

′),

and therefore,

qM
0 ‖M (m0,S

′) = qN
0 ‖M (m0,S

′) = m.

Also, since M ≡Φ N ,

∀S ′′ ∈ Σ∗ • qN
0 |Φ (m0,S

′ a S ′′) = qM
0 |Φ (m0,S

′ a S ′′).
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Therefore,

qN |Φ (m,S ′′) = qM |Φ (m,S ′′).

This is true for any m ∈ MAttainable(qM) and S ′′ ∈ Σ∗, so qM ≡Φ qN .

Since there are fewer states in N than in M, this means that there must be qN ∈ QN such that

∃ qM
1 , qM

2 ∈ QM • qM
1 ≡Φ qN ∧ qM

2 ≡Φ qN ∧ qM
1 6= qN

2 .

By the transitivity of ≡Φ , qM
1 ≡Φ qM

2 , which contradicts the Φ-minimality of M.

Therefore, M is Q-minimal.

2

Definition 4.3.13 Given states q1 and q2, then q1 and q2 are Γ-equivalent iff

MAttainable(q1) = MAttainable(q2) ∧

∀m ∈ MAttainable(q1); ∀S ∈ Σ∗ • q1 |Γ (m,S ) = q2 |Γ (m,S ),

and write q1 ≡Γ q2. 3

Definition 4.3.14 Given M, with states QM = {q0, . . . , qn}, M is Γ-minimal iff

∀ qi , qj ∈ QM • (q1 6= q2) ⇒ ¬ (qi ≡Γ qj ).

3

Definition 4.3.15 Given M and N , they are Γ-equivalent iff their initial states (p0 and q0) are Γ-
equivalent, i.e. p0 ≡Γ q0, and write M ≡Γ N . 3

Definition 4.3.16 An M is Q-Γ-minimal if it has fewer states than any X -machine N that is Γ-
equivalent to it. 3

Lemma 4.3.17 If M is Q-Γ-minimal, then every state is reachable.

Proof If a state is not reachable, then it can be removed to produce a Γ-equivalent machine that has
fewer states. 2

Theorem 4.3.18 X -machine M is Q-Γ-minimal (as in 4.3.16) ⇔ it is Γ-minimal (as in 4.3.14) and
every state is reachable.

Proof This is very similar to the proof of Theorem 4.3.12.

⇒ Suppose M is Q-Γ-minimal, and show that it must also be Γ-minimal with every state reachable.

Firstly, M is Q-Γ-minimal, so every state is reachable.

Use a proof by contradiction to show that it must also be Γ-minimal: suppose M is not Γ-
minimal. Then

∃ q1, q2 ∈ QM • (q1 6= q2) ∧ (q1 ≡Γ q2).

Without loss of generality, q2 6= qM
0 .

Construct N , of type Φ, which is exactly the same as M, except that it has no state q2. Instead,
for every (q , φ) ∈ (QN × Φ) such that FM(q , φ) = q2, put FN (q , φ) = q1.

Consider the initial states of the two X -machines, qM
0 and qN

0 respectively, and any y ∈ Y , with

α(y) = (〈〉,m0,S ),

which is the same for M and N .

Now, either q2 ∈ qM
0 |Q (m0,S ) or q2 6∈ qM

0 |Q (m0,S ).
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1. If q2 6∈ q0 |Q (m0,S ), then clearly

qM
0 |Γ (m0,S ) = qN

0 |Γ (m0,S ),

since the two machines are exactly the same apart from q2.

2. If q2 ∈ q0 |Q (m0,S ), then S can be split into two sections, S = S ′ a S ′′ such that

qM
0 ‖Q (m0,S

′) = q2,

and

qM
0 ‖M (m0,S

′) = m ′,

q2 6∈ q2 |Q (m ′,S ′′).

Also, qN
0 ‖Q (m0,S

′) = q1, from the definition of N .

Repeat the argument on m ′ and S ′ instead of m0 and S as many times as necessary.

So, qM
0 |Γ (m0,S ) = qN

0 |Γ (m0,S ), and qM
0 ≡Γ qN

0 , but N has fewer states than M, which
contradicts the Q-Γ-minimality of M.

Therefore, M is Γ-minimal.

⇐ Suppose M is Γ-minimal with every state reachable and show that it must be Q-Γ-minimal.

Then

∀ q1, q2 ∈ QM • (q1 6= q2) ⇒ ¬ (q1 ≡Γ q2).

Use a proof by contradiction: suppose that M is not Q-Γ-minimal. Then ∃N of type Φ with
N ≡Γ M, but containing fewer states. In fact, w.l.o.g. it can be assumed that N is Q-Γ-minimal.

Consider any qM ∈ QM. Every state is reachable, so there is at least one input sequence leading
to qM. Consider any m ∈ MAttainable(qM); then ∃S ′ ∈ Σ∗ such that qM

0 ‖Q (m0,S
′) = qM,

and m = q0 ‖M (m0,S
′).

Let qN = qN
0 ‖Q (m,S ′). Since N ≡Γ M,

qM
0 |Γ (m0,S

′) = qN
0 |Γ (m0,S

′),

and therefore,

qM
0 ‖M (m0,S

′) = qN
0 ‖M (m0,S

′) = m.

Also, since M ≡Γ N ,

∀S ′′ ∈ Σ∗ • qN
0 |Γ (m0,S

′ a S ′′) = qM
0 |Γ (m0,S

′ a S ′′).

Therefore,

qN |Γ (m,S ′′) = qM |Γ (m,S ′′).

This is true for any m ∈ MAttainable(qM) and S ′′ ∈ Σ∗, so qM ≡Γ qN .

Since there are fewer states in N than in M, this means that there must be qN ∈ QN such that

∃ qM
1 , qM

2 ∈ QM • qM
1 ≡Γ qN ∧ qM

2 ≡Γ qN ∧ qM
1 6= qN

2 .

By the transitivity of ≡Γ , qM
1 ≡Γ qM

2 , which contradicts the Γ-minimality of M.

Therefore, M is Q-Γ-minimal.

2
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4.4 Refinement of X -machines.

If X -machines are to be useful as a tool for specification, there needs to be a way to develop existing
machines into more complex and detailed versions, without having to start anew with each modification.

4.4.1 Simple refinements.

The most straight-forward type of refinement of an X -machine is to replace one of its states, q say,
with an “X -machine-let”, consisting of several new states, and new arcs joining them to q .

Definition 4.4.1 An X-machine-let is an X -machine with a single initial state, and a single terminal
state. The terminal state is the same as the initial state. 3

The operation of the X -machine-let is defined in the same way as for an ordinary X -machine. Similarly,
definitions 4.1.2 through to 4.2.5 have direct analogues for X -machine-lets.

Definition 4.4.2 Suppose M is a fully-deterministic X -machine, with

M = (X ,Y ,Z , α, β,Q ,Φ,F , I ,T ),

and N is a fully-deterministic X -machine-let, with

N = (X ,Y ,Z , α, β,QN ,ΦN ,FN , {q}, {q}),

and q ∈ Q ∩ QN . Further, for any x ∈ X such that ∃φ ∈ dom(F (q)) for which φ(x ) is defined,
there must be a φ′ ∈ dom(FN (q)) such that φ′(x ) is defined. Then X -machine M′ (of type Φ′) is the
simple-refinement of M using N if:

M′ = (X ′,Y ′,Z ′, α′, β′,Q ′,Φ′,F ′, I ′,T ′),

where

X ′ = X

Y ′ = Y

Z ′ = Z

α′ = α

β′ = β

Q ′ = Q ∪ QN

Q ∩ QN = {q}

Φ′ = Φ ∪ ΦN

Φ ∩ ΦN ⊇ dom(F (q) −⊲ {q})

F ′ = λ p : Q ′ •







F (p) if p ∈ (Q \ {q})
FN (p) if p ∈ (QN \ {q})
fq if p = q

I ′ = I

T ′ = T

IN = q

and fq is defined as follows:

fq = FN (q) ⊕ (F (q) −⊲ {q})

3

Informally, a refinement of M using N to produce M′, can be described as follows:
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q

To other states
φ1

φ2

φ3

φ5

φ4

Figure 4.4: Diagram showing F (q) for M.

q

φ2

φ3

φ5

q1

φ6

φ8

φ7

φ1

Figure 4.5: The X -machine-let, N .

1. M and N have state q in common.

2. All the transitions of q in M that lead to other states must be present as “loop-back” transitions

of q (i.e. of the form q
φ
> q) in N . Furthermore, these transitions are the same in M′ as in

M.

3. Transitions that are present as “loop-backs” in both M and N are present in M′.

4. Transitions that are “loop-backs” in M but not in N are not present in M′. They are replaced
by the transitions of q in N that lead to other states.

Example 4.4.3 Consider X -machine M, containing state q which is as shown in figure 4.4, and
X -machine-let N , also containing state q , as shown in figure 4.5. Then M′, the Q-simple refinement
of M using N is as shown in figure 4.6.

F (q) = {φ1 7→ qa , φ2 7→ qb , φ3 7→ qc , φ4 7→ q , φ5 7→ q}

FN (q) = {φ1 7→ q , φ2 7→ q , φ3 7→ q , φ5 7→ q , φ6 7→ q1}

q

φ2

φ3

φ5

q1

φ6

φ8

φ7

φ1

Figure 4.6: Diagram showing the “new” part of M′, the Q-simple refinement of M using N .
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so

F (q) −⊲ {q} = {φ1 7→ qa , φ2 7→ qb , φ3 7→ qc}

and therefore

fq = FN (q) ⊕ (F (q) −⊲ {q})

= {φ1 7→ qa , φ2 7→ qb , φ3 7→ qc , φ5 7→ q , φ6 7→ q1}.

3

Lemma 4.4.4 For a fully-deterministic stream-X -machine that is complete w.r.t. Y , with S ∈ Σ∗

and a path p through the machine starting in state q , and where G ∈ Γ∗, m ∈ MAttainable(q), let

(G ′,m ′,S ′) = |p| (G ,m,S ).

Then len(pΦ) = len(S ) − len(S ′).

Proof Follows directly from the definition of a stream-X -machine (definition 4.2.3). 2

Theorem 4.4.5 Suppose M is a stream-X -machine, and N a stream-X -machine-let with q in common
with M, M and N are both fully-deterministic and complete w.r.t. Y , and M is Q-Γ-minimal.

M = (X ,Y ,Z , α, β,Q ,Φ,F , I ,T )

N = (X ,Y ,Z , α, β,QN ,ΦN ,FN , {q}, {q})

Then M′, the Q-simple-refinement of M using N , is a stream-X -machine that is fully-deterministic
and complete w.r.t. Y .

Proof It is clear that M′ is a stream-X -machine, so it remains to show that M′ is fully-deterministic
and complete w.r.t. Y .

fully-deterministic: Firstly, M′ is deterministic, since:

• α′ and β′ are both functions;

• Φ and ΦN both contain only functions on X , so Φ′ contains only functions.

• F ′(p) : Φ′ 7→ Q ′ for all p ∈ Q ′.

Secondly, it is required that for any x ∈ X , and p ∈ Q there be at most one φ ∈ F (p) that is
defined.

If p ∈ (Q \ {q}), then F ′(p) = F (p), and there is at most one φ ∈ F ′(p) that is defined for x .

Similarly, if p ∈ (QN \ {q}), then F ′(p) = FN (p), and there is at most one φ ∈ F ′(p) that is
defined for x .

If p = q , then consider FN (q). Since N is fully-deterministic, there must exist φ ∈ dom(FN (p))
such that φ(x ) is defined. Also,

F ′(p) = FN (p) ⊕ (F (p) −⊲ {p})

and it is clear that dom(F ′(p)) ⊇ dom(FN (p)), so φ ∈ dom(F ′(p)).

complete w.r.t. Y : M is fully-deterministic, so I ′ = {q0}. It is required that for any y ∈ Y there
exist a path p, with len(pΦ) = len(α∗(y)), starting at q0, such that β′(|p| (α′(y))) is defined, for
M′ to be complete w.r.t. Y .

Since M is complete w.r.t. Y , there is a path p in M, fitting all the conditions for arbitrary
y ∈ Y . Now, either q occurs in the Q-path, pQ (of states passed through due to y), or it does
not. If it does not, then p can be taken through M′, and possesses all the required properties.

If q occurs in pQ , then construct the path p′ for y through M′ as follows:
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1. Let α(y) = (〈〉,m0,S ).

2. Let p1 be the longest path (through M) from q0 to q such that
∣

∣p1
∣

∣ (〈〉,m0,S ) is defined
and

ran(p1
Φ) ∩ dom(F (q) −⊲ {q}) = ∅,

i.e. the shortest defined path not involving any of the “loop-back” arcs of q in M.

3. Let x 1 = (G1,m1,S 1) =
∣

∣p1
∣

∣ (〈〉,m0,S ). Then, either S 1 = 〈〉 or it does not. If it does,
then p1 is a path meeting all the conditions.

Otherwise, since M is complete w.r.t. Y , there is a φ ∈ dom(F (q)) such that φ(x1) is
defined. Therefore, there is also a φ′ ∈ dom(FN (q)) that is defined for x 1.

4. Let p2 be the longest path from q to q in N such that

head p2
Φ = φ′

and

ran(p2
Φ) ⊆ (ΦN \ dom(F (q) −⊲ {q})),

and
∣

∣p2
∣

∣ (x 1) is defined.

i.e. the longest path in N not involving any of the arcs that are “state-change” arcs in M.

5. Let x 2 = (G2,m2,S 2) =
∣

∣p2
∣

∣ (x 1). Then, either S 2 = 〈〉 or it does not. If it does, then

p1 a p2 is a path meeting all the conditions.

Otherwise, since M is complete w.r.t. Y , there is a φ ∈ dom(F (q)) such that φ(x 2) is
defined. Furthermore, φ must be a “state-change” arc in M.

6. Repeat the above steps until the input sequence is empty, Sn = 〈〉.

The complete path p′ is a concatenation of the paths p1 to pn , and has the required properties.

2

4.4.2 General refinements.

The simple refinements described in section 4.4.1 are useful in many situations. However, in some
cases, an X -machine-let with a richer data set will be needed to adequately model the refinement.

Definition 4.4.6 Suppose M is a fully-deterministic X -machine, with

M = (X ,Y ,Z , α, β,Q ,Φ,F , I ,T ),

and N is a fully-deterministic X -machine-let, with

N = (XN ,Y ,Z , α, β,QN ,ΦN ,FN , {q}, {q}),

where q ∈ Q ∩ QN and

XN ⊇ X .

Further, for any x ∈ X such that ∃φ ∈ dom(F (q)) for which φ(x ) is defined, there must be a φ′ ∈
dom(FN (q)) such that φ′(x ) is defined. And also, for any x ∈ (XN \ X ) there is no φ ∈ dom(FN (q))
such that φ(x ) is defined.

Then X -machine M′ is a Q-general-refinement of M using N if:

M′ = (X ′,Y ′,Z ′, α′, β′,Q ′,Φ′,F ′, I ′,T ′),
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where

X ′ = XN

Y ′ = Y

Z ′ = Z

α′ = α

β′ = β

Q ′ = Q ∪ QN

Q ∩ QN = {q}

Φ′ = Φ ∪ ΦN

Φ ∩ ΦN ⊇ dom(F (q) −⊲ {q})

F ′ = λ p : Q ′ •







F (p) if p ∈ (Q \ {q})
FN (p) if p ∈ (QN \ {q})
fq if p = q

I ′ = I

T ′ = T

IN = q

and fq is defined as follows:

fq = FN (q) ⊕ (F (q) −⊲ {q})

3

Less formally, a general refinement of M using N to produce N ′ can be described as a simple refinement
with the following additional features:

1. X is extended to X ′, but only the “new” φ’s from N can use the extra values of X ′.

2. So, for the common state q , MAttainable(q) ⊆ Mem(X ) in both M and M′.

Theorem 4.4.7 Suppose M is a stream-X -machine, and N a stream-X -machine-let with q in common
with M, M and N are both fully-deterministic and complete w.r.t. Y , and M is Q-Γ-minimal.

M = (X ,Y ,Z , α, β,Q ,Φ,F , I ,T )

N = (XN ,Y ,Z , α, β,QN ,ΦN ,FN , {q}, {q})

Then M′, the Q-general-refinement of M, using N is a stream-X -machine that is fully-deterministic
and complete w.r.t. Y .

Proof Since the extra values in X ′ are only used in the “new” bit of M′, all of the transitions in the
rest of the machine are unaffected. Therefore, the proof can follow exactly the same lines as that for
theorem 4.4.5. 2
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Chapter 5

Case study: Specification using
X -machines.

In this chapter I introduce a model of a relatively large software system, illustrating how X -machines
can be used to build and refine the specification of such a system.

5.1 The Petri-net tool.

The model is of a tool for building, manipulating and animating Petri-nets, and is based on a real
implementation, carried out by Connelly [5].

Petri-nets are process models, originally developed to model population movement, but now used
to model all kinds of control systems, and synchronous and asynchronous circuit. The details are
not particularly important to the discussion that follows, but can be found in Reisig’s introductory
book, [50].

The tool allows the user to construct a net from places (circles), transitions (bars) and directed arcs
(arrows) between them, by pointing and clicking with a mouse. Tokens (dots) can be put in the places,
and then the net can be animated, causing the tokens to move around the diagram according to the
Petri-net rules.

5.2 Brief introduction to Petri-nets.

See Reisig’s book [50] for more details. There are two parts to a Petri-net, the net (P), and the marking
(µ).

Definition 5.2.1 The net, P, is defined as follows

P : Net == Places × Transitions × InArcs × OutArcs

where

Places == PNames

Transitions == PNames

InArcs == Transitions → bag(Places)

OutArcs == Transitions → bag(Places).

Names is just a set of suitable names for places and transitions. These have to include those entered
by users, and those generated automatically by the system.
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p1

p2

p3

t1

Figure 5.1: A very simple Petri-net.

Notation 5.2.2
P.Places refers to the Places part of the Petri-net P. Similarly, for P.Transitions, etc. 3

P.InArcs is the function that describes arcs leading into the transitions of P.
Similarly, P.OutArcs describes the arcs leading out of transitions of P.

The following conditions must also be met:

• P.Places ∩ P.Transitions = ∅.
In other words, the places and transitions of a net have different names.

• dom(ran(P.InArcs)) ⊆ P.Places.
In other words, the arcs into a transition must come from places that exist in the net.

• dom(ran(P.OutArcs)) ⊆ P.Places.
In other words, the arcs from a transition must go to places that exist in the net.

3

Example 5.2.3 Consider figure 5.1. It would be represented as follows:

1. P.Places = {p1, p2, p3}

2. P.Transitions = {t1}

3. P.InArcs = {t1 7→ [[p1, p2, p2]]}

4. P.OutArcs = {t1 7→ [[p3]]}

3

Definition 5.2.4 The marking, µ, of net P is defined as:

µ : Marking == Places 7→ N

with the following condition

dom(µ) = P.Places

In other words, every place in the net maps onto a natural number, representing the number of tokens
at the place. 3
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Example 5.2.5 If the net from example 5.2.3 had

µ = {p1 7→ 1, p2 7→ 3, p3 7→ 0}

this would represent a marking of 1 token in p1, 3 tokens in p2 and no tokens in p3. 3

Given a Petri-net (consisting of a net and a marking), there are rules for moving the tokens around
the net:

Definition 5.2.6 Given a net P and marking µ for P, a transition, t , is enabled iff:

∀ p ∈ dom(P.InArcs(t)) • µ(p) ≥ (P.InArcs(t))(p)

i.e. if there are enough tokens in all the places leading into t . 3

Example 5.2.7 The marking in example 5.2.5 means that t1 is enabled. 3

Definition 5.2.8 If a transition t is enabled in net P with marking µ1, it can fire to produce marking
µ2:

µ2 = µ1 ⊕ (RemovedTokens ⊕ AddedTokens)

where RemovedTokens is a subfunction describing those places that have had tokens removed due to
the firing of t , and AddedTokens is a subfunction describing those places that have had tokens added
as a result of t firing.

RemovedTokens = {p : InArcs | p ∈ dom(P.InArcs(t)) ∧

n = µ(p) − (P.InArcs(t))(p) • p 7→ n}

AddedTokens = {p : OutArcs | p ∈ dom(P.OutArcs(t)) ∧

n = µ(p) + (P.OutArcs(t))(p) • p 7→ n}

3

5.3 The screen.

The Petri-net tool divides the screen into three areas: the menu bar, the dialogue box and the main
area (see figure 5.2). The mouse driven cursor can be in any of the areas. Screen positions are elements
of the type Positions, which simply gives the Cartesian co-ordinates of each of the possible screen
locations.

1. The menu bar consists of a line of boxes across the top of the screen, with the names of the user
selectable functions and modes written in them. The box corresponding to the current mode is
coloured in.

Each box occupies an area, and the following sets of co-ordinates are defined accordingly:

SaveSpace,LoadSpace,RunSpace,PlaceSpace,TransitionSpace,ArcSpace,

TokenSpace,MoveSpace,NameSpace,ClearSpace,QuitSpace : PPositions

Also, define MenuBar to be the union of all these sets.

2. The dialogue box is a single line at the bottom of the screen, on which error messages appear,
and the user’s keyboard input is echoed.

3. The main area covers the rest of the screen, and the Petri-nets are drawn onto it.
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>

Qui Pla Tra Arc Tok Nam Mov Run Loa Sav Cle

Main Area

Dialogue box

Menu bar

Figure 5.2: The screen layout of the Petri-net tool.

5.4 X -machine model of the tool.

The model is a stream-X -machine called M1, and

M1 = (X ,Y ,Z , α, β,Q ,Φ,F , I ,T ).

5.4.1 The fundamental data set, X .

X = Γ∗ × M × Σ∗, as usual for a stream-X -machine:

The memory (M )

M describes a Petri-net, its current marking, the positions (on the screen) of the places and transitions,
and the status of the menu and dialogue box. So (P, µ,L) : M == Net × Marking × Locations.

1. The net, P as in definition 5.2.1.

2. The marking of the net, µ, as in definition 5.2.4.

3. The locations of places and transitions on the screen, and the status of the menu and dialogue
box (L):

First introduce a set to represent all screen locations,

Positions == X × Y .

So (x , y) ∈ Positions are simply the Cartesian coordinates of a screen position.

Now, introduce the actual structure L:

L : Locations == π × τ × ν × δ

where

π == Positions 7→ Places

τ == Positions 7→ Transitions

ν == {Pl,Tr,Ar,To,Ru,Mo,Na,Lo,Sa,Cl,Qu}

δ == {a, . . . , z , etc.}∗

and the following conditions are met:
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• ran(L.π) = P.Places

• ran(L.τ) = P.Transitions

So, given L : Locations,

(a) L.π is a partial function mapping points on the screen onto particular places. For each place
in the net, there is a maplet {c 7→ place}, where c(: Positions) is the centre point of the
place.

(b) Similarly, L.τ is a partial function mapping points on the screen onto particular transitions.

(c) L.ν gives the status of the menu bar across the top of the screen, so that the corresponding
space on the screen is coloured in.

(d) L.δ is a sequence of letters and characters, that represents the contents of the dialogue box,
along the bottom of the screen.

The input stream, Σ∗.

The input alphabet has to describe all of the possible inputs:

Σ == Positions × MButtons × Keyboard

where the Positions element represents the mouse’s position on the screen, the MButtons element
represents which mouse buttons are pressed, and the Keyboard element represents which keyboard
buttons are pressed.

MButtons == {⊳, ⊲, ⋄}

⊳ = left mouse button

⊲ = right mouse button

⋄ = no mouse button

Keyboard == {a, . . . , z ,Return,⊘}

⊘ = no keyboard input

Assume that no more than one button on the mouse, and one button on the keyboard can be pressed
at a time.

The output stream, Γ∗.

The output alphabet has to describe all of the possible screen appearances. There are three parts to
the screen, described in section 5.3. Also, the cursor appears on the screen. So:

Γ == Positions × Locations × InArcs × OutArcs × Marking,

where the Positions element records the current cursor position, the Locations element the positions
of the places and transitions on the screen, plus the menu bar and dialogue box statuses, the InArcs

and OutArcs elements the locations of the arcs on the screen, and the Marking element the positions
of tokens.

5.4.2 The input set, Y .

Y == Σ∗.

5.4.3 The output set, Z .

Z == Γ∗.
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5.4.4 The input function, α.

α = λS : Σ∗ • (〈〉, (P0, µ0,L0),S )

where P0 is an empty net, µ0 an empty marking, and L0 an empty screen description.

5.4.5 The output function, β.

β = λ(S ,m,G) : X • G .

5.4.6 The states, Q .

Q = {Place,Arc,Transition,Token,Run,Name,Move,Save,Load}

5.4.7 The transition functions, Φ.

Firstly, I define a few useful auxiliary functions, so that the definitions proper are simpler.

PSpace : PPositions → PPositions

= λP • {(x , y) : Positions |

∃(x ′, y ′) ∈ P • (x − x ′)2 + (y − y ′)2 ≤ (PlaceRadius)2}

TSpace : PPositions → PPositions

= λP • {(x , y) : Positions |

∃(x ′, y ′) ∈ P • |x − x ′| ≤ TransitionWidth ∧

|y − y ′| ≤ TransitionHeight}

where PlaceRadius is the radius of a place on the screen, and TransitionWidth and TransitionHeight
are half of the width and height respectively of a transition on the screen (a transition extends Tran-
sitionHeight above and below its centre point, etc.).

So, given a set of Positions, PSpace treats them as the centres of places and returns the set of
Positions representing the area covered by those places on the screen. Similarly, TSpace returns the
set of Positions representing the area covered on the screen by transitions centred on the Positions

in the set passed as an argument.

Next, I define functions for locating the centre-point of places and transitions. Given an element of
Positions located within a place on the screen, PMiddle returns its centre point. TMiddle behaves
similarly for transitions.

PMiddle : Positions × π → Positions = λ(c, p) : Positions × π •










⊥ if c 6∈ PSpace(dom(p))
ie, if c isn’t in a place at all

c′ if c ∈ PSpace(dom(p))

where:c′ ∈ dom(p), and
c ∈ PSpace({c′})

TMiddle : Positions × τ → Positions = λ(c, t) : Positions× τ •










⊥ if c 6∈ TSpace(dom(t))
ie, if c isn’t in a transition at all

c′ if c ∈ TSpace(dom(t))



66 CHAPTER 5. CASE STUDY: SPECIFICATION USING X-MACHINES.

where:c′ ∈ dom(t), and
c ∈ TSpace({c′})

So long as none of the places or transitions overlap, PMiddle and TMiddle are well defined.

PSpace and TSpace also allow me to define functions for recognising when a set of Positions overlaps
with the places, transition or both on the screen.

Overlap = λ(Points,L) : PPositions × Locations •










true if Points ∩
(PSpace(dom(L.π))∪TSpace(dom(L.τ))) 6= ∅

false otherwise

PlcOverlap = λ(Points,L) : PPositions × Locations •
{

true if Points ∩ (PSpace(dom(L.π)) 6= ∅

false otherwise

TransOverlap = λ(Points,L) : PPositions × Locations •
{

true if Points ∩ (TSpace(dom(L.τ)) 6= ∅

false otherwise

Given a set of Positions, Points, and a single element of Locations, L, Overlap returns true if
the set Points overlaps with any of the places or transitions of L. PlcOverlap and TransOverlap are
similar, but are for overlaps with just places and just transitions respectively.

Finally, I define some functions to make checking for input conditions (involving the mouse and key-
board buttons) simpler:

LeftPressed = λm : MButtons •

{

true if m = ⊳

false otherwise

RightPressed = λm : MButtons •

{

true if m = ⊲

false otherwise

NonePressed = λm : MButtons • [¬ LeftPressed(m)] ∧ [¬ RightPressed(m)]

NoKeysPressed = λ k : Keyboard •

{

true if k = ⊘
false otherwise

Using these auxiliary functions, I can define each of the transition functions of M1 in turn. The
functions all follow the same pattern, each one being defined for a restricted set of possible combinations
of input and the existing status of the memory. So, after the first few definitions, I keep explanatory
notes to a minimum.

The function to add a place to the net, AddPlace:

AddPlace = λ(G , ((P ,T , i , o), µ,L), ((c,m, k) :: S )) : X •
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((c,L, i , o, µ) :: G ,

((P ,T , i , o), µ,L),S ) if LeftPressed(m) ∧
Overlap(PSpace{c},L)
i.e, left button pressed too close to an existing
place or transition

((c,L′, i , o, µ) :: G ,

((P ′,T , i , o), µ,L′),S ) if LeftPressed(m) ∧
¬ Overlap(PSpace{c},L)
i.e, left button pressed away from all the ex-
isting places and transitions

⊥ otherwise

where,

L′ = (pl ,L.τ ,L.ν,L.δ)

P ′ = P ∪ {newname}

pl = L.π ∪ {c 7→ newname}

newname 6∈ P ∪ T .

AddPlace is defined iff the left mouse button is pressed somewhere in the main area of the screen. If
it is pressed with the mouse positioned close enough to the existing places and transitions that a new
place would overlap them, no new place is added. On the other hand, if the mouse is pressed far
enough away from the existing places and transitions, then a new place is added at that position, with
a newname determined in some way beyond the scope of this specification.

The function to remove a place from the net, DelPlace:

DelPlace = λ(G , ((P ,T , i , o), µ,L), (c,m, k) :: S ) : X •














































































((c,L, i , o, µ) :: G ,

((P ,T , i , o), µ,L),S ) if RightPressed(m) ∧
¬ PlcOverlap({c},L)
i.e, right button pressed outside all the exist-
ing places

((c,L′, i ′, o′, µ′) :: G ,

((P ′,T , i ′, o′), µ′,L′) if RightPressed(m) ∧
PlcOverlap({c},L)
i.e, right button pressed inside an existing
place

⊥ otherwise

where

L′ = (pl ,L.τ ,L.ν,L.δ)

P ′ = P \ {p}

i ′ = λ t : Transitions • ({p} −⊳ i(t))

o′ = λ t : Transitions • ({p} −⊳ o(t))

µ
′

= P ′
⊳ µ

pl = L.π ⊲ P ′

p = PL(PMiddle(c))
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DelPlace is defined iff the right mouse button is pressed somewhere in the main area of the screen. If
it is pressed inside an existing place on the screen, then that place is removed from the net, along with
its tokens, and all the arc leading to or from it. If it is pressed outside all the existing places, nothing
happens.

The function to add a transition, AddTransition:

AddTransition = λ(G , ((P ,T , i , o), µ,L), (c,m, k) :: S ) : X •














































































((c,L, i , o, µ) :: G ,

((P ,T , i , o), µ,L),S ) if LeftPressed(m) ∧
Overlap(TSpace{c},L)
i.e, left button pressed too close to an existing
place or transition

((c,L′, i , o, µ) :: G ,

((P ,T ′, i , o), µ,L′),S ) if LeftPressed(m) ∧
¬ Overlap(TSpace{c},L)
i.e, left button pressed away from all the ex-
isting places and transitions

⊥ otherwise

where

L′ = (L.π, tr ,L.ν,L.δ)

T ′ = T ∪ {newname}

tr = L.τ ∪ {c 7→ newname}

newname 6∈ P ∪ T .

The function to remove a transition, DelTransition:

DelTransition = λ(G , ((P ,T , i , o), µ,L), (c,m, k) :: S ) : X •














































































((c,L, i , o, µ) :: G ,

((P ,T , i , o), µ,L),S ) if RightPressed(m) ∧
¬ TransOverlap({c},L)
i.e, right button pressed away from all the ex-
isting transitions

((c,L′, i ′, o′, µ) :: G ,

((P ,T ′, i ′, o′), µ,L′),S ) if RightPressed(m) ∧
TransOverlap({c},L)
i.e, right button pressed inside an existing
transition

⊥ otherwise

where

t = TL(TMiddle(c))

T ′ = T \ {t}

tr = L.τ ⊲ T ′

L′ = (L.π, tr ,L.ν,L.δ)

i ′ = {t} −⊳ i

o′ = {t} −⊳ o
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The function to put a token into a place, AddToken:

AddToken = λ(G , ((P ,T , i , o), µ,L), (c,m, k) :: S ) : X •






































































((c,L, i , o, µ) :: G ,

((P ,T , i , o), µ,L),S ) if LeftPressed(m) ∧
¬ PlcOverlap({c},L)
i.e, left button pressed outside all the existing
places

((c,L, i , o, µ′) :: G ,

((P ,T , i , o), µ′,L),S ) if LeftPressed(m) ∧
PlcOverlap({c},L)
i.e, left button pressed inside an existing place

⊥ otherwise

where

µ′ = µ ⊕ {place 7→ (µ(place) + 1)}

place = PL(PMiddle(c))

The function to remove a token, DelToken:

DelToken = λ(G , ((P ,T , i , o), µ,L), (c,m, k) :: S ) : X •














































































((c,L, i , o, µ) :: G ,

((P ,T , i , o), µ,L,S ) if RightPressed(m) ∧
¬ PlcOverlap({c},L)
i.e, right button pressed outside all the exist-
ing places

((c,L, i , o, µ′) :: G ,

((P ,T , i , o), µ′,L),S ) if RightPressed(m) ∧
PlcOverlap({c},L)
i.e, right button pressed inside an existing
place

⊥ otherwise

where

µ′ = µ ⊕ {place 7→ n}

place = PL(PMiddle(c))

n =

{

0 if µ(place) ≤ 1
µ(place) − 1 otherwise

The function to change the name of a place or transition, ChangeName:

ChangeName = λ(G , ((P ,T , i , o), µ,L), (c,m, k) :: S ) : X •
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((c,L, i , o, µ) :: G ,

((P ,T , i , o), µ,L),S ) if LeftPressed(m) ∧
¬ Overlap({c},L)
i.e, left button pressed outside any of the ex-
isting places or transitions.

((c,LP , i ′, o′, µ′) :: G ,

((P ′,T , i ′, o′), µ′,LP ),S ) if LeftPressed(m) ∧
PlcOverlap({c},L)
i.e, left button pressed in an existing place

((c,LT , i ′, o′, µ) :: G ,

((P ,T ′, i ′, o′), µ,LT ),S ) if LeftPressed(m) ∧
TransOverlap({c},L)
i.e, left button pressed in an existing trans-
ition

⊥ otherwise

where

LP = (pl ,L.τ ,L.ν, 〈newname〉)

LT = (L.π, tr ,L.ν, 〈newname〉)

name =

{

PL(PMiddle(c)) if PlcOverlap({c},L)
TL(TMiddle(c)) if TransOverlap({c},L)

newname 6∈ (P ∪ T ) \ {name}

pl = λ c : Positions •

{

(L.π)(c) if (L.π)(c) 6= name
newname if L.π(c) = name

P ′ = (P \ {name}) ∪ {newname}

tr = λ c : Positions •

{

(L.τ)(c) if (L.τ)(c) 6= name
newname if (L.τ)(c) = name

T ′ = (T \ {name}) ∪ {newname}

i ′ =











λ t : Transitions • ({name} −⊳ i(t))⊕
{newname 7→ (i(t))(name)} if name ∈ P

({name} −⊳ i) ⊕ {newname 7→ i(name)} if name ∈ T

o′ =











λ t : Transitions • ({name} −⊳ o(t))⊕
{newname 7→ (o(t))(name)} if name ∈ P

({name} −⊳ o) ⊕ {newname 7→ o(name)} if name ∈ T

µ′ = ({name} −⊳ µ) ⊕ {newname 7→ µ(name)}

ChangeName doesn’t attempt to deal with the way in which a name is typed in by the user. It just
assumes that newname appears, “by magic”, and that it is different from any of the existing names.

The function to display a name, ShowName:

ShowName = λ(G , ((P ,T , i , o), µ,L), (c,m, k) :: S ) : X •
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((c,L, i , o, µ) :: G
((P ,T , i , o), µ,L),S ) if NonePressed(m) ∧

¬ Overlap({c},L)
i.e, the mouse is pointed away from all the
existing places and transitions

((c,L′, i , o, µ, 〈name〉) :: G
((P ,T , i , o), µ,L′),S ) if NonePressed(m) ∧

Overlap({c},L)
i.e, the mouse is pointed at an existing place
or transition

⊥ otherwise

where

name =

{

PL(PMiddle(c)) if PlcOverlap({c},PL,TL)
TL(TMiddle(c)) if TransOverlap({c},PL,TL)

L′ = (L.π,L.τ ,L.ν, 〈name〉

The function to add an arc, AddArc:

For the time being, assume that the function obtains a second co ordinate, c′, for the end of the arc
“by magic”.

AddArc = λ(G , ((P ,T , i , o), µ,L), (c,m, k) :: S ) : X •






































































































































































((c,L, i , o, µ) :: G ,

((P ,T , i , o), µ,L),S ) if LeftPressed(m) ∧
(¬ Overlap({c},L) ∨ ¬ Overlap({c′},L) ∨
(PlcOverlap({c},L) ∧ PlcOverlap({c′}),L) ∨
(TransOverlap({c′},L) ∧
TransOverlap({c},L)))
i.e, if one or other (or both) the positions are
away from all the existing places and trans-
itions, or if both the positions are in places, or
if both the positions are in transitions

((c,L, i ′, o, µ) :: G ,

((P ,T , i ′, o), µ,L),S ) if LeftPressed(m) ∧
PlcOverlap({c},L) ∧ TransOverlap({c′},L)
i.e, it is an InArc, starting at an existing place
and ending at an existing transition.

((c,L, i , o′, µ) :: G ,

((P ,T , i , o′), µ,L),S ) if LeftPressed(m) ∧
TransOverlap({c},L) ∧ PlcOverlap({c′},L)
i.e, it is an OutArc, starting at an existing
transition and ending at an existing place.

⊥ otherwise

where

i ′ = i ⊕ {t 7→ (i(t) ⊕ {p 7→ (i(t))(p) + 1})}

t = L.τ(TMiddle(c′))

p = L.π(PMiddle(c))
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o′ = o ⊕ {t 7→ (o(t) ⊕ {p 7→ (o(t))(p) + 1})}

t = L.τ(TMiddle(c))

p = L.π(PMiddle(c′))

The function for removing an arc, DelArc:

As in the definition for AddArc, I assume that a second co-ordinate, c′, appears “by magic”, for the
time being.

DelArc = λ(G , ((P ,T , i , o), µ,L), (c,m, k) :: S ) : X •






































































































































































((c,L, i , o, µ) :: G ,

((P ,T , i , o), µ,L),S ) if RightPressed(m) ∧
(¬ Overlap({c},L) ∨ ¬ Overlap({c′},L) ∨
(PlcOverlap({c},L) ∧ PlcOverlap({c′}),L) ∨
(TransOverlap({c′},L) ∧
TransOverlap({c},L)))
i.e, if one or other (or both) the positions are
away from all the existing places and trans-
itions, or if both the positions are in places, or
if both the positions are in transitions

((c,L, i ′, o, µ) :: G ,

((P ,T , i ′, o), µ,L),S ) if RightPressed(m) ∧
PlcOverlap({c},L) ∧ TransOverlap({c′},L)
i.e, it is an InArc, starting at an existing place
and ending at an existing transition.

((c,L, i , o′, µ) :: G ,

((P ,T , i , o′), µ,L),S ) if RightPressed(m) ∧
TransOverlap({c},L) ∧ PlcOverlap({c′},L)
i.e, it is an OutArc, starting at an existing
transition and ending at an existing place.

⊥ otherwise

where

i ′ = i ⊕ {t 7→ (i(t) ⊕ {p 7→ n})}

t = L.τ(TMiddle(c′))

p = L.π(PMiddle(c))

n =

{

0 if (i(t))(p) ≤ 1
(i(t))(p) − 1 otherwise

o′ = o ⊕ {t 7→ (o(t) ⊕ {p 7→ n})}

t = L.τ(TMiddle(c))

p = L.π(PMiddle(c′))

n =

{

0 if (o(t))(p) ≤ 1
(o(t))(p) − 1 otherwise

Function for moving an existing place or transition, Move

As before, I assume that the second co-ordinate required, c′, appears “by magic”.



5.4. X-MACHINE MODEL OF THE TOOL. 73

Move = λ(G , ((P ,T , i , o), µ,L), (c,m, k) :: S ) : X •














































































































































































































((c,L, i , o, µ) :: G ,

((P ,T , i , o), µ,L),S ) if LeftPressed(m) ∧
(¬ Overlap({c},L) ∨
Overlap(space, p, t))
i.e, if the left button is pressed and either the
first co-ordinate is not inside a place or trans-
ition, or the second co-ordinate is too close to
existing places or transitions

((c,LP , i , o, µ) :: G ,

((P ,T , i , o), µ,LP ),S ) if LeftPressed(m) ∧
PlcOverlap({c},LP ) ∧
¬ Overlap({c′}, (p,L.τ ,L.ν,L.δ)
i.e, if the left button is pressed and the first
co-ordinate is inside an existing place, and the
second co-ordinate is away from all the ex-
isting places (except for the one the first co-
ordinate is inside), or transitions

((c,LT , i , o, µ) :: G ,

((P ,T , i , o), µ,LT ),S ) if LeftPressed(m) ∧
TransOverlap({c},L) ∧
¬ Overlap({c′}, (L.π, t ,L.ν,L.δ))
i.e, if the left button is pressed, and the first
co-ordinate is inside an existing transition, and
the second co-ordinate is away from all the ex-
isting places and transitions (apart from the
one the first co-ordinate is inside

⊥ otherwise

where

LP = (pl ,L.τ ,L.ν,L.δ)

pl = p ⊕ {c′ 7→ L.π(c)}

LT = (L.π, tr ,L.ν,L.Dialogue)

tr = t ⊕ {c′ 7→ L.τ(c)}

space =

{

PSpace(PMiddle(c′)) if PlcOverlap({c},L)
TSpace(TMiddle(c′)) if TransOverlap({c},L)

p =

{

{PMiddle(c)} −⊳ L.π if PlcOverlap({c},L)
L.π if TransOverlap({c},L)

t =

{

L.τ if PlcOverlap({c},L)
{TMiddle(c)} −⊳ L.τ if TransOverlap({c},L)

The function to save the net, Save:

I have not modelled the file system, so this function simply leaves the data state mostly alone.

Save = λ(G , ((P ,T , i , o), µ,L), (c,m, k) :: S ) : X •
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((c,L, i , o, µ) :: G ,

((P ,T , i , o), µ,L),S ) if LeftPressed(m) ∧ c ∈ SaveSpace

⊥ otherwise

The function to load a different net, Load:

As for Save, there is no model of the file system, so the new data state appears, “by magic”.

Load = λ(G ,M , (c,m, k) :: S ) : X •










((c,L, i , o, µ) :: G ,

((P ,T , i , o), µ,L),S ) if LeftPressed(m) ∧ c ∈ LoadSpace

⊥ otherwise

where the new net = ((P ,T , i , o), µ,L)

The function to fire a transition, FireTransition:

The definition of FireTransition will be much clearer if a few auxiliary functions are defined first:

EnabledTransitions : Net × Marking → Transitions = λ(P, µ) •

{t : P.Transitions | (∀ p ∈ dom(P.InArcs(t)) • µ(p) ≥ (P.InArcs(t))(p))}

EnabledTransitions simply returns the set of transitions that are enabled by the given marking.

Fire : Net × Marking × Names → Marking = λ(P, µ, t) •






µ if t 6∈ EnabledTransitions(P, µ)

µ⊕(RemovedTokens ∪ AddedTokens) if t ∈ EnabledTransitions(P, µ)

where

RemovedTokens = {p : dom(P.InArcs(t)) |

n = µ(p) − (P.InArcs(t))(p) • p 7→ n}

AddedTokens = {p : dom(P.OutArcs(t)) |

n = µ(p) + (P.OutArcs(t))(p) • p 7→ n})

Fire returns the marking of the net after the given transition has fired.

These functions now allow the main function to be defined relatively easily:

FireTransition = λ(G , ((P ,T , i , o), µ,L), (c,m, k) :: S ) : X •
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((c,L, i , o, µ) :: G ,

((P ,T , i , o), µ,L),S ) if LeftPressed(m) ∧
¬ TransOverlap({c},L)
i.e, if the left button is pressed away from all
the transitions

((c,L, i , o, µ′) :: G ,

((P ,T , i , o), µ′,L),S ) if LeftPressed(m) ∧
TransOverlap({c},L)
i.e, if the left button is pressed inside a trans-
ition

⊥ otherwise

where

µ′ = Fire((P ,T , i , o), µ,L.τ (TMiddle(c)))

The function to clear the system, Clear:

Clear = λ(G , (P, µ,L), (c,m, k) :: S ) : X •






























((c,L0,P0.InArcs,

P0.OutArcs, µ0) :: G ,

(P0, µ0,L0),S ) if LeftPressed(m) ∧ c ∈ ClearSpace
i.e. if the button is pressed in the “Clear” area
of the menu bar

⊥ otherwise

The function to change to place addition/removal mode, PlaceMode:

PlaceMode = λ(G , (P, µ,L), (c,m, k) :: S ) : X •


















((c,L′,P.InArcs,

P.OutArcs, µ) :: G ,

(P, µ,L′),S ) if LeftPressed(m) ∧ c ∈ PlaceSpace

⊥ otherwise

where

L′ = (L.π,L.τ ,Pl,L.δ)

The function to change to arc addition/removal mode, ArcMode:

ArcMode = λ(G , (P, µ,L), (c,m, k) :: S ) : X •


















((c,L′,P.InArcs,

P.OutArcs, µ) :: G ,

(P, µ,L′),S ) if LeftPressed(m) ∧ c ∈ ArcSpace

⊥ otherwise

where

L′ = (L.π,L.τ ,Ar,L.δ)
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The function to change to transition addition/removal mode, TransitionMode:

TransitionMode = λ(G , (P, µ,L), (c,m, k) :: S ) : X •


















((c,L′,P.InArcs,

P.OutArcs, µ) :: G ,

(P, µ,L′),S ) if LeftPressed(m) ∧ c ∈ TransitionSpace

⊥ otherwise

where

L′ = (L.π,L.τ ,Tr,L.δ)

The function to change to name mode, NameMode:

MoveMode = λ(G , (P, µ,L), (c,m, k) :: S ) : X •


















((c,L′,P.InArcs,

P.OutArcs, µ) :: G ,

(P, µ,L′),S ) if LeftPressed(m) ∧ c ∈ NameSpace

⊥ otherwise

where

L′ = (L.π,L.τ ,Na,L.δ)

The function to change to move mode, MoveMode:

MoveMode = λ(G , (P, µ,L), (c,m, k) :: S ) : X •


















((c,L′,P.InArcs,

P.OutArcs, µ) :: G ,

(P, µ,L′),S ) if LeftPressed(m) ∧ c ∈ MoveSpace

⊥ otherwise

where

L′ = (L.π,L.τ ,Mo,L.δ)

The function to change to token addition/removal mode, TokenMode:

TokenMode = λ(G , (P, µ,L), (c,m, k) :: S ) : X •


















((c,L′,P.InArcs,

P.OutArcs, µ) :: G ,

(P, µ,L′),S ) if LeftPressed(m) ∧ c ∈ TokenSpace

⊥ otherwise

where

L′ = (L.π,L.τ ,To,L.δ)
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The function to change to run mode, RunMode:

RunMode = λ(G , (P, µ,L), (c,m, k) :: S ) : X •


















((c,L′,P.InArcs,

P.OutArcs, µ) :: G ,

(P, µ,L′),S ) if LeftPressed(m) ∧ c ∈ RunSpace

⊥ otherwise

where

L′ = (L.π,L.τ ,Ru,L.δ)

The function to change to load mode, LoadMode:

LoadMode = λ(G , (P, µ,L), (c,m, k) :: S ) : X •
{

Load(G , (P, µ,L′), (c,m, k) :: S ) if LeftPressed(m) ∧ c ∈ LoadSpace

⊥ otherwise

where

L′ = (L.π,L.τ ,Lo,L.δ)

LoadMode uses the previously defined function Load to immediately load a net in. The system then
stays in the load mode, until it is switched to a new mode.

The function to change to save mode, SaveMode:

SaveMode = λ(G , (P, µ,L), (c,m, k) :: S ) : X •
{

Save(G , (P, µ,L′), (c,m, k) :: S ) if LeftPressed(m) ∧ c ∈ SaveSpace

⊥ otherwise

where

L′ = (L.π,L.τ ,Sa,L.δ)

SaveMode uses Save to immediately save the net, and then stay in the save mode.

The function to ignore keyboard input, IgnoreKeyboard:

IgnoreKeyboard = λ(G , (P, µ,L), (c,m, k) :: S ) : X •










((c,L,P.π,P.τ , µ) :: G ,

(P, µ,L),S ) if NonePressed(m) ∧ ¬ NoKeysPressed(k)

⊥ otherwise

IgnoreKeyboard is intended to be used when keyboard input is irrelevant. There is a check that no
mouse buttons are pressed, as these should generally not be ignored.
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The function to ignore the left mouse button, IgnoreLeftButton:

IgnoreLeftButton = λ(G , (P, µ,L), (c,m, k) :: S ) : X •


















((c,L,P.π,P.τ , µ) :: G ,

(P, µ,L),S ) if LeftPressed(m) ∧
¬ Overlap({c},L) ∧ c 6∈ MenuBar

⊥ otherwise

The function to ignore the right mouse button, IgnoreRightButton:

IgnoreRightButton = λ(G , (P, µ,L), (c,m, k) :: S ) : X •










((c,L,P.π,P.τ , µ) :: G ,

(P, µ,L),S ) if RightPressed(m) ∧ ¬ Overlap({c},L)

⊥ otherwise

IgnoreLeftButton and IgnoreRightButton are used when left and right mouse button input respectively
is irrelevant. If there were any simultaneous keyboard input, it would also be ignored. The left button
is ignored if it is away from all the places and transitions, and away from the menu bar. The right
button is ignored if it is away from all the places and transitions.

There are a few cases when the mouse buttons have to be more comprehensively ignored, and functions
for these cases are needed.

The function to completely ignore the left mouse button, CompIgnoreLeftButton:

CompIgnoreLeftButton = P, µ,L), (c,m, k) :: S ) : X •










((c,L,P.π,P.τ , µ) :: G ,

(P, µ,L),S ) if LeftPressed(m) ∧ c 6∈ MenuBar

⊥ otherwise

The function to completely ignore the right mouse button, CompIgnoreRightButton:

CompIgnoreRightButton = P, µ,L), (c,m, k) :: S ) : X •










((c,L,P.π,P.τ , µ) :: G ,

(P, µ,L),S ) if RightPressed(m)

⊥ otherwise

The function to ignore un-interesting mouse input, IgnoreMouse:

IgnoreMouse = λ(G , (P, µ,L), (c,m, k) :: S ) : X •


















((c,L,P.π,P.τ , µ) :: G ,

(P, µ,L),S ) if NonePressed(m) ∧ NoKeysPressed(k) ∧
¬ Overlap({c},L)

⊥ otherwise
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5.4.8 The state transition function, F .

There are a very large number of transitions; see figure 5.3 for the basic structure involved. The figure
is cluttered enough, without adding function names to every arc. Instead, I will now describe which
functions apply to which arcs.

“Mode-change” arcs.

Notice that there is an arc from each state to every other state. These arcs are the “mode change”
functions. For instance,

Place
TransitionMode

> Transition,

i.e.

F (Place,TransitionMode) = Transition.

Also, every state is connected to Place by Clear, i.e,

∀ q ∈ Q • F (q ,Clear) = Place.

“Loop-back” arcs.

The remaining arcs are loop-back arcs, in that they are of the form q
φ
> q for state q , and function

φ. There are several such arcs for each state, and they are listed below. After each function is listed,
the values of X for which it is defined are listed, to help in checking that there is a function defined
for every input in all the states (i.e. that the machine is complete w.r.t. Y ).

Place:

AddPlace is used to add places. It is defined as long as the left mouse button is pressed
somewhere on the main part of the screen.

DelPlace is used to delete places. It is defined so long as the right mouse button is pressed
somewhere on the main part of the screen.

PlaceMode is used (and is only defined) if the left mouse button is pressed in PlaceSpace.

Clear is used (and is only defined) if the left mouse button is pressed when the mouse is
pointing in ClearSpace.

IgnoreKeyboard is used to ignore any keyboard input. It is defined if any keyboard key is
pressed, but no mouse key.

IgnoreMouse is used to ignore the mouse if no button is pressed. It is defined if the mouse
is pointing anywhere, but no mouse buttons or keyboard keys are pressed.

Transition:

AddTransition is used to add transitions. It is defined if the left mouse button is pressed
anywhere in the main area of the screen.

DelTransition is used to remove transitions. It is defined if the right mouse button is
pressed, and the mouse is pointing anywhere in the main area of the screen.

TransitionMode is used (and is only defined) if the left mouse button is pressed in TransitionSpace.

IgnoreKeyboard is used to ignore keyboard input, where-ever the mouse is, so long as none
of the mouse buttons are pressed.

IgnoreMouse is used to ignore the mouse if no button is pressed.
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Na

Mo

Sa

Ru

To

Tr

Ar

Pl

Lo

Pl = Place Ar = Arc

Tr = Transition To = Token

Ru = Run Na = Name

Lo = Load Sa = Save

Mo = Move

In attempt to maintain clarity, no more than one arrow is drawn between each pair of states. This
does not necessarily mean that there is only one transition function per arrow.

An arrow q1 < > q2 indicates that there are transition functions in both directions between q1 and
q2.

Figure 5.3: State transition diagram for the Petri-net tool
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Token:

AddToken is used to add tokens to places, and is defined if the left mouse button is pressed
anywhere in the main area of the screen.

DelToken is used to remove tokens from places, and is defined if the right mouse button is
pressed anywhere in the main area of the screen.

TokenMode is used (and only defined) if the left mouse button is pressed in TokenSpace.

IgnoreKeyboard is used to ignore keyboard input.

IgnoreMouse is used to ignore the mouse if no buttons are pressed.

Name:

ChangeName is used to change the names of places and transitions. It is defined if the left
mouse button is pressed anywhere in the main area of the screen.

ShowName is used to to display the name of the last place or transition that the mouse
was pointing at. It is defined if the mouse is pointing anywhere in the main area of the
screen, without any buttons being pressed.

NameMode is used (and only defined) if the left mouse button is pressed in NameSpace.

IgnoreKeyboard is used to ignore keyboard input.

CompIgnoreRightButton is used to ignore the right mouse button being pressed where-ever
it is pointing.

Arc:

AddArc is used to add arcs between places and transitions, or transitions and places. It is
defined if the left mouse button is pressed anywhere in the main area of the screen.

DelArc is used to remove arcs. It is defined if the right mouse button is pressed anywhere
in the main area of the screen.

ArcMode is used (and only defined) if the left mouse button is pressed while the mouse is
pointing in ArcSpace.

IgnoreKeyboard is used to ignore keyboard input.

IgnoreMouse is used to ignore the mouse if it is pointing anywhere, without any of its
buttons being pressed.

Move:

Move is to move places or transitions around the main area of the screen. It is defined if
the left mouse button is pressed anywhere in the screen.

MoveMode is used (and only defined) if the left mouse button is pressed in MoveSpace.

IgnoreKeyboard is used to ignore keyboard input.

CompIgnoreRightButton is used to ignore the right mouse button being pressed, where-ever
it is pointing.

IgnoreMouse is used to ignore the mouse if it is pointing anywhere, without any of its
buttons being pressed.

Save:
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Save is used if the left mouse button is pressed in SaveSpace.

IgnoreKeyboard is used to ignore keyboard input.

CompIgnoreLeftButton is used to ignore the left mouse button being pressed, so long as the
mouse is not pointing at the menu bar.

CompIgnoreRightButton is used to completely ignore the right mouse button.

IgnoreMouse is used to ignore the mouse if it is pointing anywhere, without any of its
buttons being pressed.

Load:

Load is used if the left mouse button is pressed in LoadSpace.

IgnoreKeyboard is used to ignore keyboard input.

CompIgnoreLeftButton is used to ignore the left mouse button being pressed, so long as the
mouse is not pointing at the menu bar.

CompIgnoreRightButton is used to completely ignore the right mouse button.

IgnoreMouse is used to ignore the mouse if it is pointing anywhere, without any of its
buttons being pressed.

Run:

FireTransition is used to fire a transition. It is defined if the left mouse button is pressed
anywhere in the main area of the screen.

RunMode is used if the left mouse button is pressed in RunSpace.

IgnoreKeyboard is used to ignore keyboard input.

CompIgnoreRightButton is used to ignore the right mouse button, where-ever it is pressed.

IgnoreMouse is used to ignore the mouse if it is pointing anywhere, without any of its
buttons being pressed.

5.4.9 The initial states, I .

I = {Place}.

5.4.10 The terminal states, T .

T = Q .

5.4.11 Quitting the machine.

The menu bar of the system includes an area marked quit. In the real system, this would be used to
exit the tool. I have made no attempt to model this aspect of the system—it would require an extra
arc from each state leading to a state End. This state would then have arcs corresponding to the tool
closing down, and control returning to the underlying operating system, all of which are beyond the
scope of this case study.
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5.4.12 Operation of the model.

It is worth taking a brief look at the operation of the machine from a higher level.

The idea is that the input stream will be made up of regular “samples” of the actual input devices,
taken several times a second. So, most of the input will be repetitions of relatively un-interesting
inputs corresponding to the mouse pointing at a single point on the screen, with no buttons being
pressed. It follows, that most of the time, the various “ignore” functions (e.g. IgnoreMouse) are being
used, while the complex “action” functions are used relatively rarely.

Suppose S : Σ∗ is an input stream, typical real values will be along the lines of the following:

S = 〈. . . , (⋄, c,⊘), (⋄, c,⊘), . . .〉

S = 〈. . . , (⋄, c1,⊘), (⋄, c2,⊘), (⋄, c3,⊘), . . .〉

where c1, c2, c3, . . . represent a series of mouse positions, corresponding to the mouse being moved
across the screen.

5.5 Discussion

The long list in section 5.4 described an X -machine model for a (somewhat simplified) version of the
Petri-net tool. It presents a detailed description of each of these elements.

5.5.1 Views of the model.

At first, the complete list seems rather overwhelming in its complexity. However, one of the benefits
of the X -machine model is that there are a number of simpler ways to view the system, which hide
various of its complexities.

Finite-state-machine view. Treat the X -machine as a simple finite-state-machine. In other words,
ignore all of the details of X , and just consider the way the machine moves from state to state; which
elements of Φ connect the states together. The headings from section 5.4.7 plus section 5.4.8 provide
enough information for this view.

Control view. Consider the conditions on each of the φ ∈ Φ, and how they are used to manage the
flow of control from state to state, rather than the details of how each φ manipulates X . Since all of
the conditions on the φ ∈ Φ are input conditions, this view shows how the user’s input controls the
tool.

Data view. Consider the data model in X together with the manipulative parts of the φ ∈ Φ in
isolation (from the condition parts of the φ).

5.5.2 Limitations of the model.

In the course of the description of Φ (section 5.4.7), the phrase “by magic” was used a number of
times. In every case some relatively sophisticated interaction needed to be handled (e.g. typing in the
new new name for a place, using ChangeName), requiring that the user’s input be stored. This raises
several issues:

Firstly, it is tempting to think that the output stream, Γ∗, could be used to keep a record of past
keyboard and mouse inputs, or that you could look beyond the head of the input stream, Σ∗, to
find out what the next input(s) are. However, both of these possibilities are specifically ruled out by
definition 4.2.3 of stream-X -machines in chapter 4.
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Reading

StartReading

ReadLast

ReadLetter

IgnoreNoKeyPressed
IgnoreLeftButton

CompIgnoreRightButton

IgnoreMouse

IgnoreKeyboard

To and from

the other modes

Name

Figure 5.4: X -machine-let showing the replacement for Name

So, any solution is probably going to have to involve a richer data set, that can store the relevant
details of a user’s input. On the other hand, it would be pity to have to redefine the whole of the
machine—most of the transition function definitions are fine, and will not use the enrichments of the
data set even when they are available. Also, for simple but common procedures, such as reading in
text sequences from the keyboard, it would be very useful to re-use a standard model, such as the one
presented in example 4.2.2 of chapter 4.

5.6 X -machine model of the tool revisited.

By using the idea of stream-X -machine-lets from section 4.4, M1 can be refined into an improved
version, M2. The new parts are fully-deterministic stream-X -machine-lets that are complete with
respect to Y , and are added in by general refinement.

5.6.1 Name, revisited.

In order to properly model the user inputting a new name, the state Name needs to be replaced with
an X -machine-let, similar to the one from example 4.2.2 of chapter 4.

All that is needed is a single new state, Reading, and some new function definitions. Figure 5.4 shows
how they fit together. The new name can be up to n characters in length.

The function to change to Reading mode, StartReading:

StartReading = λ(G , ((P ,T , i , o), µ,L), (c,m, k) :: S ) : X •










((c,L′, i , o, µ) :: G ,

((P , t , i , o), µ,L′,name),S ) if LeftPressed(m) ∧ Overlap({c},L)

⊥ otherwise

where

name =

{

L.π(PMiddle(c)) if PlcOverlap({c},L)
L.τ(TMiddle(c)) if TransOverlap({c},L)

L′ = (L.π,L.τ ,L.ν, 〈〉)



5.6. X-MACHINE MODEL OF THE TOOL REVISITED. 85

The fundamental data set has been expanded for the purposes of the X -machine-let, so that

Xnew = Xold ⊎ (Γ∗ × (Net × Marking × Locations × Names) × Σ∗).

This allows the (original) name of the place or transition being moved to be stored while the characters
making up the new name are read in.

The function to read in a single letter, ReadLetter:

ReadLetter = λ(G , (P, µ,L,name), (c,m, k) :: S ) : X •


















((c,L′,P.InArcs,P.OutArcs, µ) :: G ,

(P, µ,L′,name),S ) if k ∈ {a, . . . , z} ∧
len(L.δ) < n − 1

⊥ otherwise

where

L′ = (L.π,L.τ ,L.δ a 〈k〉)

In other words, ReadLetter reads in the next character, and adds it to those already entered.

The function to deal with Return or the nth character, ReadLast:

ReadLast = λ(G , ((P , t , i , o), µ,L, oldname), (c,m, k) :: S ) : X •


















((c,L′, i ′, o′, µ′) :: G ,

((P ′,T ′, i ′, o′), µ′,L′),S ) if k = Return ∨
(k ∈ {a, . . . , z} ∧ len(L.δ) = n − 1)

⊥ otherwise

where

newname =

{

L.δ if k = Return
L.δ a 〈k〉 if k ∈ {a, . . . , z}

P ′ =

{

(P \ {oldname}) ∪ {newname} if oldname ∈ P
P if oldname ∈ T

T ′ =

{

T if oldname ∈ P
(T \ {oldname}) ∪ {newname} if oldname ∈ T

µ′ =







({oldname} −⊳ µ)⊕ if oldname ∈ P
{newname 7→ µ(oldname)}

µ if oldname ∈ T

i ′ =







λ t : Transitions • ({oldname} −⊳ i(t))⊕ if oldname ∈ P
{newname 7→ (i(t))(oldname)}

({oldname} −⊳ i) ⊕ {newname 7→ i(oldname)} if oldname ∈ T

o′ =







λ t : Transitions • ({oldname} −⊳ o(t))⊕ if oldname ∈ P
{newname 7→ (o(t))(oldname)}

({oldname} −⊳ o) ⊕ {newname 7→ o(oldname)} if oldname ∈ T
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L′ =

{

(pl ,L.τ ,L.ν,L.δ) if oldname ∈ P
(L.π, tr ,L.ν,L.δ) if oldname ∈ T

pl = λ c : Positions •

{

L.π(c) if L.π(c) 6= oldname
newname if L.π(c) = oldname

tr = λ c : Positions •

{

L.τ(c) if L.τ(c) 6= oldname
newname if L.τ(c) = oldname

The net effect of all this is to replace all occurrences of oldname in the net with newname.

The function to ignore irrelevant keyboard input, IgnoreNoKeyPressed:

IgnoreNoKeyPressed = λ(G , (P, µ,L,name), (c,m, k) :: S ) : X •
{

((c,L,P.InArcs,P.OutArcs, µ) :: G , if NoKeyPressed(k)
(P, µ,L,name),S )

⊥ otherwise

5.6.2 Arc, revisited.

A similar approach can be used to deal properly with the addition and removal of arcs. The main
difference is that there are two X -machine-lets, one for adding, one for removing, instead of just one.

Firstly, I will describe the X -machine-let for adding a new arc:

The function to start adding an arc, StartArcAdd:

StartArcAdd = λ(G , (P, µ,L), (c,m, k) :: S ) : X •










((c,L,P.InArcs,P.OutArcs, µ) :: G , if LeftPressed(m) ∧ Overlap({c},L)
(P, µ,L, startname),S )

⊥ otherwise

where

startname =

{

L.π(PMiddle(c)) if PlcOverlap({c},L)
L.τ(TMiddle(c)) if TransOverlap({c},L)

As in the case of the Name X -machine-let, the fundamental data set is expanded to allow the name
of the place or transition at the beginning of the new arc to be stored whilst the transition or place at
the end is read.

The function to finish adding an arc, EndArcAdd:

EndArcAdd = λ(G , ((P ,T , i , o), µ,L, startname), (c,m, k) :: S ) : X •














































((c,L, i ′, o′, µ) :: G ,

((P ,T , i ′, o′), µ,L),S ) if LeftPressed(m) ∧
((startname ∈ P) ∧ (endname ∈ T ) ∨
(startname ∈ T ) ∧ (endname ∈ P))
i.e, if the left mouse button is pressed in a
suitable place or transition for the arc to be
finished off

⊥ otherwise
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where

endname =

{

L.π(PMiddle(c)) if PlcOverlap({c},L)
L.τ(TMiddle(c)) if TransOverlap({c},L)

i ′ =







i if endname ∈ P
i ⊕ {endname 7→ (i(endname)⊕
{startname 7→ (i(endname))(startname) + 1})} if endname ∈ T

o′ =

{

o ⊕ {startname 7→ (o(startname)⊕ if endname ∈ P
{endname 7→ (o(startname))(endname) + 1})}

o if endname ∈ T

The function to ignore irrelevant mouse and keyboard input, ArcAddIgnore:

ArcAddIgnore = λ(G , (P, µ,L,name), (c,m, k) :: S ) : X •


































((c,L,P.InArcs,P.OutArcs, µ) :: G ,

(P, µ,L,name),S ) if RightPressed(m) ∨ NonePressed(m) ∨
(LeftPressed(m) ∧
((startname, endname ∈ P) ∨
(startname, endname ∈ T )))

⊥ otherwise

where

endname =

{

L.π(PMiddle(c)) if PlcOverlap({c},L)
L.τ(TMiddle(c)) if TransOverlap({c},L)

Secondly, here are the functions for the X -machine-let for removing arcs.

The function to start removing an arc, StartArcDel:

StartArcDel = λ(G , (P, µ,L), (c,m, k) :: S ) : X •










((c,L,P.InArcs,P.OutArcs, µ) :: G , if RightPressed(m) ∧ Overlap({c},L)
(P, µ,L, startname),S )

⊥ otherwise

where

startname =

{

L.π(PMiddle(c)) if PlcOverlap({c},L)
L.τ(TMiddle(c)) if TransOverlap({c},L)

This uses the same expanded data set as the functions that add a new arc.

The function to finish removing an arc, EndArcDel:

EndArcDel = λ(G , ((P ,T , i , o), µ,L, startname), (c,m, k) :: S ) : X •














































((c,L, i ′, o′, µ) :: G ,

((P ,T , i ′, o′), µ,L),S ) if RightPressed(m) ∧
((startname ∈ P) ∧ (endname ∈ T ) ∨
(startname ∈ T ) ∧ (endname ∈ P))
i.e, if the right mouse button is pressed in a
suitable place or transition for the arc to be
finished off

⊥ otherwise
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where

endname =

{

L.π(PMiddle(c)) if PlcOverlap({c},L)
L.τ(TMiddle(c)) if TransOverlap({c},L)

i ′ =







i if endname ∈ P
i ⊕ {endname 7→ (i(endname)⊕
{startname 7→ ni})} if endname ∈ T

ni =

{

0 if (i(endname))(startname) ≤ 1
(i(endname))(startname) − 1 otherwise

o′ =

{

o ⊕ {startname 7→ (o(startname)⊕ if endname ∈ P
{endname 7→ no})}

o if endname ∈ T

no =

{

0 if (o(startname))(endname) ≤ 1
(o(startname))(endname) − 1 otherwise

The function to ignore irrelevant mouse and keyboard input, ArcDelIgnore:

ArcDelIgnore = λ(G , (P, µ,L,name), (c,m, k) :: S ) : X •


































((c,L,P.InArcs,P.OutArcs, µ) :: G ,

(P, µ,L,name),S ) if LeftPressed(m) ∨ NonePressed(m) ∨
(RightPressed(m) ∧
((startname, endname ∈ P) ∨
(startname, endname ∈ T )))

⊥ otherwise

where

endname =

{

L.π(PMiddle(c)) if PlcOverlap({c},L)
L.τ(TMiddle(c)) if TransOverlap({c},L)

The ways these functions are connected into the original X -machine together with two new states,
ArcAdd, and ArcDel, are shown in Figure 5.5.

5.6.3 Move, revisited.

The function to start moving a place or transition, StartMove:

StartMove = λ(G , (P, µ,L), (c,m, k) :: S ) : X •










((c,L,P.InArcs,P.OutArcs, µ) :: G , if LeftPressed(m) ∧ Overlap({c},L)
(P, µ,L,middle),S )

⊥ otherwise

where

middle =

{

PMiddle(c) if PlcOverlap({c},L)
TMiddle(c) if TransOverlap({c},L)

This X -machine-let uses a different extension to the fundamental data set:

Xnew = Xold ⊎ (Γ∗ × (Net × Marking × Locations × Positions) × Σ∗).

In this case it is only necessary to store the original middle position of the place or transition being
moved.
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EndArcDel
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IgnoreKeyboard
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Figure 5.5: X -machine-let showing the replacements for Arc
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IgnoreLeftButton
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CompIgnoreRightButton
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IgnoreKeyboard

Figure 5.6: X -machine-let to move places and transitions.
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The function to finish moving a place or transition, EndMove:

EndMove = λ(G , (P, µ,L,middle), (c,m, k) :: S ) : X •










































((c,P.InArcs,P.OutArcs, µ,L′) :: G ,

(P, µ,L′),S ) if LeftPressed(m) ∧
((middle ∈ dom(L.π) ∧
PlcOverlap({c},L†)) ∨
(middle ∈ dom(L.τ) ∧
TransOverlap({c},L†)))

⊥ otherwise

where

L† =

{

(pl ,L.τ ,L.ν,L.δ) if middle ∈ dom(L.π)
(L.π, tr ,L.ν,L.δ) if middle ∈ dom(L.τ)

pl = {middle} −⊳ L.π

tr = {middle} −⊳ L.τ

L′ =

{

(pl ′,L.τ ,L.ν,L.δ) if middle ∈ dom(L.π)
(L.π, tr ′,L.ν,L.δ) if middle ∈ dom(L.τ)

pl ′ = pl ⊕ {c 7→ L.π}

tr ′ = tr ⊕ {c 7→ L.τ}

The definition of L† is necessary in order to check whether the new position for the object being moved
is too close to any of the other places or transitions. The definition is complicated by the need to take
into account the fact that the space previously occupied by the object is now available again.

The function to ignore irrelevant input during a move, MoveIgnore:

MoveIgnore = λ(G , (P, µ,L,middle), (c,m, k) :: S ) : X •


















((c,P.InArcs,P.OutArcs, µ,L) :: G ,

(P, µ,L,middle),S ) if RightPressed(m) ∨ NonePressed(m) ∨
(LeftPressed(m) ∧ ¬ Overlap({c},L†))

⊥ otherwise

where L† is as defined above.

Figure 5.6 shows how the functions connect up for the moving X -machine-let.
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Chapter 6

Tests from X -machines

6.1 Faults in X -machines.

Given a specification S modelled by S, a fully-deterministic stream-X -machine that is complete
w.r.t. Y , what are the faults that can occur in implementing it as I , modelled by I? (Without
loss of generality, I can be assumed to be exactly the same as S apart from faults that it might
contain.)

S = (X ,Y ,Z , αS , βS ,QS ,Φ,FS , IS ,TS)

I = (X ,Y ,Z , αI , βI ,QI ,Φ,FI , II ,TI)

X = Γ∗ × M × Σ∗

1. There could be missing states in I compared to S (which would lead to misdirected transitions),
i.e.

QI ⊂ QS .

2. There could by missing or mis-directed transitions in I, i.e.

∃ q ∈ (QS ∩ QI) • [dom(FS(q)) ⊇ dom(FI(q))] ∨ [FS(q) 6= FI(q)].

3. There could be transitions that have faulty functions in I, i.e.

∃φS , φI ∈ Φ • φS 6= φI ∧ dom(φS) = dom(φI) ∧

(∃ q ∈ (QS ∩ QI) • FS(q , φS) = FI(q , φI))

4. There could be extra transitions in I, i.e.

∃ q ∈ (QS ∩ QI) • [dom(FS(q)) ⊂ dom(FI(q))].

5. There could be extra states in I, i.e.

QI ⊃ QS .

Of these, the “extra states” faults, the “extra transitions” faults and the “faulty transition function”
faults are the most problematic.

However, it is worth bearing in mind that extra transitions cannot exist in isolation. Adding an extra
transition to I (compared to S) requires that other transitions be missing, mis-directed or faulty, or
I will not be fully-deterministic and complete w.r.t. Y .
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6.1.1 Missing states.

By using a state cover set for S on I, every state q in S that is also in I will be visited, and any
missing states will be revealed.

6.1.2 Missing or mis-directed transitions.

By using a transition cover set for S on I, every transition φ in S that is also in I will be used, and
any missing or mis-directed transitions will be revealed. As with missing states, it is necessary to use
the characterisation set to check that each transition end in the expected state.

A transition cover set must include a state cover set.

6.2 Transitions with faulty functions.

These are harder to deal with. However, since S is a fully-deterministic stream-X -machine that is
complete w.r.t. Y , every φ ∈ Φ is of the form:

φ = (g ,m, h :: s) : Γ∗ × M × Σ∗ •































(γ1(m, h) :: g , φ1(m, h), s) if c1(m, h)
(γ2(m, h) :: g , φ2(m, h), s) if c2(m, h)

...
(γn(m, h) :: g , φn(m, h), s) if cn(m, h)

⊥ if c⊥(m, h)
(i.e. otherwise)

where the φis and γis are functions of m and h (i.e. φi : M × Σ → M and γi : M × Σ → Γ).
The ci (i ∈ {1..n}) are mutually exclusive conditions on m and h (i.e. ci : M × Σ → B), and so,
for each state q ∈ Q , partition dom(φ) ∩ XAttainable(q). Since the domains of the φ ∈ dom(F (q))
partition XAttainable(q) (see Lemma 4.2.9), the ci of each φ produce a more detailed partition of
XAttainable(q).

The last condition is the negation of all the others: c⊥(m, h) ⇔ ¬ (c1(m, h) ∨ c2(m, h) ∨ . . . ∨
cn(m, h)).

Notation 6.2.1 For φ of the form shown above, and i ∈ {1, 2, . . . ,n,⊥}, call φ’s equivalence classes

C φ
i after the conditions ci that produce them. So

[

(G ,m,S ) ∈ C φ
i

]

⇔ [ci(m, head S ) = true] .

3

Definition 6.2.2 For φ ∈ Φ, the equivalence classes are generated by:

Classes(φ) = {C φ
1 ,C φ

2 , . . . ,C φ
n }.

Notice that C φ
⊥ is not included. 3

Definition 6.2.3 Given M, a fully-deterministic stream-X -machine that is complete with respect to
Y , a set of input sequences T0 ⊆ Σ∗ is a basic partition-based transition cover set (BPBTC) if it

contains two test sequences t
C

φ

i

and t ′
C

φ

i

for each C φ
i of each function φ ∈ Φ each time it is used in

M. i.e.

∀ q ∈ QM • ∀φ ∈ dom(F (q)) • ∀C ∈ Classes(φ) • ∃ t a 〈s〉 ∈ T0 •
[

q0
q0|Φ(m0,t)

> q
]

∧
[

φ = q0 ‖Φ (m0, t a 〈s〉)
]

∧

[(q0 |Γ (m0, t), q0 ‖M (m0, t), s) ∈ C ] .

where t
C

φ

i

= t a 〈s〉 and t ′
C

φ

i

= t . 3
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A BPBTC set includes a transition cover set.

A partition cover will reveal all the faults for which the domains of each φi sub-function of each φ ∈ Φ
are revealing. However, even if the φi are very simple, it is unlikely that a single test case for each
one will reveal all the possible faults.

Example 6.2.4 This example shows how to build a basic partition-based transition cover set for the
machine given in example 4.2.2 (page 46). Assume that the maximum string length, n, is 5. There are
several steps to go through.

Partition the functions into their equivalence classes:

Recall that Φ = {r, r′, end,Return}.

1. Classes(r) has the following parts:

• C r
1 = {(G ,m,S ) : X | head S ∈ {a, . . . , z} ∧ len(m) < 4},

2. Classes(r′) has the following parts:

• C r
′

1 = {(G ,m,S ) : X | head S ∈ {a, . . . , z} ∧ len(m) > 4},

3. Classes(end) has the following parts:

• C end
1 = {(G ,m,S ) : X | head S ∈ {a, . . . , z} ∧ len(m) = 4},

4. Classes(Return) has the following parts:

• C Return
1 = {(G ,m,S ) : X | h = Return},

Generate the test cases that cover these partitions. Inputs are given in two parts: i1 a 〈i2〉. The
first part, i1 corresponds to a sequence that prepares the machine for the second part, i2, which is an
element corresponding to the appropriate equivalence class.

Similarly, outputs are given in two parts: o1
a 〈o2〉. The first part, o1, is the output due to the first

part of the input, i1, and the second part, o2 is the single output due to the second part of the input,
i2.

Thus the two test cases can be found: t = i1 a 〈i2〉, leading to output o1
a 〈o2〉, and t ′ = i1, leading

to output o1.

Q = {Read,End}.

1. F (Read) = {r 7→ Read, end 7→ End,Return 7→ End}

(a) Read
r

> Read. There has to be a test case for each equivalence class of r.

• C r
1 leads to the following test case:

tC r

1
= 〈〉 a 〈a〉,

which has expected output of 〈〉 a 〈a〉.

(b) Read
end

> End.

• C end
1 leads to the following test case:

tC end

1
= 〈a.a.a.a〉 a 〈a〉,

which is expected to result in 〈a.a.a.a〉 a 〈a〉 as output.
output.
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(c) Read
Return

> End.

• C Return
1 leads to the following test case:

tCReturn

1
= 〈〉 a 〈Return〉,

which is expected to result in 〈〉 a 〈〉 as output.

2. F (End) = {Return 7→ End, r′ 7→ End}.

(a) End
Return

> End.

• C Return
1 leads to the following test case:

tCReturn

1
= 〈a.a.a.a.a〉 a 〈Return〉,

which is expected to result in 〈a.a.a.a.a〉 a 〈〉 as output.
output.

(b) End
r
′

> End.

• C r
′

1 leads to the following test case:

t
C r′

1

= 〈a.a.a.a.a〉 a 〈a〉,

which is expected to lead to 〈a.a.a.a.a〉 a 〈a〉 as output.
output.

3

Detailed partition covers.

The example above reveals limitations in the use of basic partition-based transition covers. The
equivalence classes are very “coarse”, in that, even for a simple example, they are not revealing for
many faults.

Definition 6.2.5 A more detailed partition can be constructed by considering the conditions, ci , of
the functions in more detail. If they are compound predicates in disjunctive normal form, they can be
written as follows:

ci(m, h) = bi1(m, h) ∨ bi2(m, h) ∨ . . . ∨ bil(m, h)

where each bij is a conjunction dependent on (m, h).

The bij lead to up to 2l different equivalence classes on X corresponding to predicates of the form

[

∧

j∈J bij

]

∧
[

∧

j∈J ′ ¬ bij

]

where J ∪ J ′ = {1, . . . l} and J ∩ J ′ = ∅. Some of the potential classes might be empty, which is why
there are “up to” 2l classes, not “exactly” 2l classes.

Clearly, test cases can be defined for these classes in the same way as for the classes of definition 6.2.2.
Call these the disjoint-classes of φ, DClasses(φ). 3

Definition 6.2.6 The concept of disjoint-classes leads naturally to a more detailed coverage, defined
in the same way as a basic partition-based transition cover (definition 6.2.3), but called a disjoint
partition-based transition cover.

Given M, a fully-deterministic stream-X -machine that is complete w.r.t. Y , a set of input sequences
T0 ⊆ Σ∗ is a disjoint partition-based transition cover set (disjoint PBTC) if it contains two test
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sequences t and t ′ for each disjoint partition, D, of each function φ ∈ Φ each time it is used in M.
i.e.

∀ q ∈ QM • ∀φ ∈ dom(F (q)) • ∀D ∈ DClasses(φ) • ∃ t a 〈s〉 ∈ T0 •
[

q0
q0|Φ(m0,t)

> q
]

∧
[

φ = q0 ‖Φ (m0, t a 〈s〉)
]

∧

[(q0 |Γ (m0, t), q0 ‖M (m0, t), s) ∈ D ] .

General partition covers.

Basic and disjoint partition-based transition covers are generated in the same way once their respective
partitions of X are defined. The principle can be extended to any partition of X .

Definition 6.2.7 Let M be a stream-X -machine with the usual components. A test-partition gener-
ator for M is a function

G : Φ → P[P(X )]

that partitions the set X into subsets suitable for revealing faults in each of the members of Φ. 3

Definition 6.2.8 A partition P ∈ G(φ) recognises its members; i.e.

P recognizes x ⇔ x ∈ P.

3

Definition 6.2.9 Given a test-partition generator for M, G, and a transition q1
φ
> q2 in M, then

a G partition-based test for the transition is a set of pairs as follows:

Each partition, P ∈ G(φ) either leads to a pair of test cases or to no test cases, according to whether
or not a suitable preparation sequence exists. i.e, whether

XAttainable(q1) ∩ P = ∅.

If the intersection is empty, then no member of P is attainable in q1, and P is said to unreachable for
this particular transition. In which case there is no pair of test cases for this partition.

If the intersection is not empty, then some members of P are attainable in q1, and P is reachable for
this transition. In which case

∃ t ∈ Σ∗; ∃ h ∈ Σ •

[q0 ‖Q (m0, t) = q1] ∧ [q0 ‖M (m0, t) = m] ∧ [q0 |Γ (m0, t) = G ] ∧

[(G ,m, h) ∈ P] ∧ [q0 ∈ I ]

The preparation test case is one such t , and the transition test case is t a 〈h〉, using one such h. 3

Definition 6.2.10 Let M be a stream-X -machine in the usual notation.

Given G, a test-partition generator, then the G partition-based transition cover (or G-PBTC) is a test
set consisting of the union of the G partition based tests for each transition in M. 3

Example 6.2.11 Returning, once again to M4.2.2 of example 4.2.2 that was further examined in
example 6.2.4, reconsider it in the light of the new definitions. This time, let n = 6.
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The test-partition generator, G: This is based on the equivalence classes of example 6.2.4:

1. G(r) has the following partitions:

P1 = {(G ,m,S ) ∈ X | len(m) = 4 ∧ head S ∈ {a, . . . , z}},

P2 = {(G ,m,S ) ∈ X | 1 < len(m) < 4 ∧ head S ∈ {a, . . . , z}},

P3 = {(G ,m,S ) ∈ X | len(m) = 1 ∧ head S ∈ {a, . . . , z}},

P4 = {(G ,m,S ) ∈ X | len(m) = 0 ∧ head S ∈ {a, . . . , z}},

2. G(r′) has the following partitions:

P1 = {(G ,m,S ) ∈ X | len(m) = 6 ∧ head S ∈ {a, . . . , z}},

P2 = {(G ,m,S ) ∈ X | len(m) = 7 ∧ head S ∈ {a, . . . , z}},

P3 = {(G ,m,S ) ∈ X | len(m) > 7 ∧ head S ∈ {a, . . . , z}},

3. G(end) has the following partitions:

P1 = {(G ,m,S ) ∈ X | len(m) = 5 ∧ head S ∈ {a, . . . , z}},

4. G(Return) has the following partitions:

P1 = {(G ,m,S ) ∈ X | len(m) = 0 ∧ head S ∈ {Return}},

P2 = {(G ,m,S ) ∈ X | 0 < len(m) < 5 ∧ head S ∈ {Return}},

P3 = {(G ,m,S ) ∈ X | len(m) = 5 ∧ head S ∈ {Return}},

P4 = {(G ,m,S ) ∈ X | len(m) = 6 ∧ head S ∈ {Return}},

P5 = {(G ,m,S ) ∈ X | len(m) = 7 ∧ head S ∈ {Return}},

P6 = {(G ,m,S ) ∈ X | len(m) > 7 ∧ head S ∈ {Return}},

Generate the test cases that cover these partitions. Actually, only a few partitions will be
considered, as the generation of test cases is almost entirely mechanical once the partitions have been
defined.

Test cases are given in two parts, t : Σ∗, the preparation test case and h : Σ, so that t a 〈h〉 is the
transition test case. Similarly, the output is given in the form o : Γ∗ and g : Γ, where q0 |Γ (t) = o

and q0 |Γ (t a 〈h〉) = g :: o.

Recall that for M4.2.2, the initial state is Read.

1. Read
r

> Read. So for each preparation test case, t , Read ‖Q (t) = Read.

• P2 leads to the following test cases and expected outputs:

t = 〈a.a〉, h = a, o = 〈a.a〉, g = a.

2. Read
Return

> End.

• P1 leads to the following test cases and expected outputs:

t = 〈〉, h = Return, o = 〈〉, g = ε.

• P4 is unreachable in state Read.

3. End
Return

> End.

• P1 leads to the following test cases and expected outputs:

t = 〈Return〉, h = Return, o = 〈〉, g = ε.

• P3 leads to the following test cases and expected outputs:

t = 〈a.a.a.a.a〉, h = Return, o = 〈a.a.a.a.a〉, g = ε.

3



6.3. STATE IDENTIFICATION. 97

6.2.1 Faulty transition functions: reprise.

In section 6.2 I discussed faulty transition functions, and how the faults might be revealed. Two
concrete coverage measures, the basic partition-based transition cover and the disjoint partition-based
transition cover have been introduced. Both have a formal definition. However, they both have
limitations, in that the equivalence partitions they describe are only revealing for faults that affect the
sub-functions in a uniform way.

The fundamental problem is that more detailed models of the functions associated with the transitions
are required in order to define more detailed fault models (and so to be able to define partitions that
reveal more faults). As an open-ended partial solution to this problem, I introduced the notion of
a general test-partition generator function, that is intended to embody the fault models of arbitrary
testing methods. In this way, I intend that the underlying method of partition-based transition covers
can be used with any testing methodology, and can be extended by formally defining test-partition
generator functions, based on the structure of the transition functions.

6.3 State identification.

The various coverage sets described are designed to exercise the states and transitions of the imple-
mentation with varying degrees of thoroughness. However, once a test case from one of the coverage
sets has been used, and given the correct output, it is still necessary to test that it has ended in the
expected state.

Definition 6.3.1 For a stream-X -machine M, the set of input sequences, W ⊆ Σ∗, is a character-
isation set if

∀ q1, q2 ∈ QM • [∃w ∈ W • ∀m1 ∈ Attainable(q1); ∀m2 ∈ Attainable(q2) •

q1 |Γ (m1,w) 6= q2 |Γ (m2,w)].

3

Thus, if a characterisation set exists for S, then every pair of states can be distinguished, and so every
state can be identified.

Lemma 6.3.2 A characterisation sequence exists for fully-deterministicstream-X -machine M that is
complete w.r.t. Y if M is Q-Γ-minimal (see definition 4.3.16).

Proof From theorem 4.3.18, M is Γ-minimal if it is Q-Γ-minimal.

If M is not Γ-minimal, then a pair of states q1, q2 exist that are Γ-equivalent, i.e. that respond in the
same way to every input sequence, and therefore are indistinguishable. 2

Example 6.3.3 In the case of the example, a characterisation set is straightforward:

{a}

In state Read an a will always be appended to the output, in state End nothing will be appended. 3

6.4 Extra states.

Extra states can be difficult to detect in a reliable way. Consider the following example:

Example 6.4.1 Consider a specification S, a stream-X -machine of type Φ, with set of states QS .
Suppose it is implemented by I also of type Φ, but with QI = QS ∪ {q ′}, where q ′ 6∈ QS .

There could be a transition q
φ
> q ′ from any of the states q ∈ QS , and the particular function φ

could be defined for arbitrary elements of X , in the same way that any other fault could affect only
arbitrary elements. 3

Some assumptions are needed so that extra state faults can be enumerated.
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No extra states. The simplest assumption to make is that there are no extra states, and so there
are no faults to reveal. However, this is a very strong assumption, but not necessarily unrealistic in
practice.

For instance, in the Petri-net case study of chapter 5, there are nine states, corresponding to the nine
different modes of operation of the system. It would require a considerable degree of misunderstanding
to add in an extra non-equivalent state for a non-specified extra mode.

One extra state. If there is one extra state, q ′ say, then there must be a legitimate state, q say,
from which it is reachable using a single transition:

q
φ
> q ′.

A test case of the form t a 〈h〉 will reach state q ′ iff

q0 ‖Q (m0, t) = q ∧
(

(q0 |Γ (m0, t)), (q0 ‖M (m0, t)), h
)

∈ dom(φ).

There is no general guarantee that such a t a 〈h〉 exists, since there is no way of knowing what d is
for an arbitrary φ without knowing the details of φ.

However, if the specified machine is fully-deterministic, then φ must be defined “at the expense” of some
other function, φ say, that would otherwise have been legitimately defined. There are two implications
of this:

• φ is faulty in the implementation, since it is not defined as specified.

• Therefore the partition-based transition cover for φ will include tests that result in the coverage
of φ.

So, as long as the partition-based transition cover in use is good enough, the extra state will be reached.

This does not automatically mean that it will be recognised as an extra state simply by being reached,
as φ might give the same result as φ would have done if it were not faulty.

Worse still, the characterisation set chosen for S might not be able to distinguish q ′ from the specified
states.

Example 6.4.2 The characterisation set for M4.2.2 given in example 6.3.3 is not capable of distin-
guishing arbitrary extra states, for there is only one sequence in the set, 〈a〉. If, given 〈a〉 as input,
the extra state adds an a to the end of the output sequence, then it would not be distinguished from
Read. On the other hand, if the extra state didn’t change the output sequence (when given 〈a〉 as
input), it would not be distinguished from End. 3

The problem is compounded if there might be two or more extra states.

6.5 Test set.

An actual test set, T , will consist of the concatenation of two sets:

• A G partition-based transition cover, C , where G is a test-partition generator.

• A characterisation set, W, for the specification.

The sets are concatenated as follows:

T = C · W = {c a w | c ∈ C ,w ∈ W}.

This will detect all missing state faults, all mis-directed transition faults, and any transition function
faults for which C is revealing. It will not detect all extra state faults, as discussed above.
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6.6 Test set size.

Given a specification modelled by S, and an associated test-partition generator, what is the upper
bound on the size of the test set?

Definition 6.6.1 Suppose that T is a test set. Denote an upper bound on the size of T by ↑T
(i.e. size(T ) ≤ ↑T ). 3

If T is the test set for S, and T = C · W, then

↑T ≤ (↑C ) × (↑W).

It is quite easy to work out an upper bound for the characterisation set, W, as there needs to be, at
most, one element for each pair of states in S. So ↑W = n2, where n is the number of states in S.

As for C , suppose that there are f different transition functions, with a maximum of p partitions. So
each transition function could need up to fp test cases. In the worst case, each transition could be used
between every pair of states, once in each direction, i.e, up to n2 − n times. So, ↑C = f .p.n2 − f .p.n.

Therefore, ↑T ≤ f .p.n3(n − 1).

6.7 Practical applications.

The framework for testing outlined in this chapter has two potential areas of application. Firstly, it
can be used as a model for the testing process in general, and secondly, it can be used as a means for
the practical generation of test cases.

6.7.1 A general model of testing.

It is worth briefly considering how the general concept of X -machines and the ideas in this chapter
could be used as a general model of the testing process.

General X -machines can be used to model almost any system, at a wide variety of levels of abstrac-
tion [24]. It is therefore tempting to suggest that any testing can be described in terms of X -machines.
As an example, consider trying to model the various levels of structural coverage.

Example 6.7.1 Any piece of code can be modelled as an X -machine. In outline, the pattern is as
follows:

1. Each statement in the piece of code corresponds to a state in the model.

2. The transition functions correspond to the semantic functions associated with each statement.

3. The data state (X ) corresponds to the memory, registers, buffers, etc. of the system running the
piece of code.

This model corresponds closely to the traditional idea of a flowgraph.

Each level of structural coverage can be described as a combination of a particular amount of trans-
ition or state coverage (most will require full transition coverage), a transition function partition and
sometimes a characterisation set. Three of the common levels of coverage are outlined here:—

Statement coverage: Full transition coverage is not required, but full state coverage is required.
The transition functions have single partitions (their entire domains).

Branch coverage: Full transition cover is required, but each transition function still has a single
partition.
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Path coverage: Full transition cover is needed and some of the transition function partitions are
complex. Transition functions for “normal” statements have single partitions, but transition
functions for “loop” statements are partitioned according to the number of times that the loop
has been executed.

No characterisation sequences are needed for these three coverage levels, as such, but each test case
has to reach the end of the program. 3

This is all very well, but the X -machine model being used is not a stream-X -machine, so most of the
results in this chapter do not apply.

In fact, general X -machines pose several problems.

1. Firstly, there is no limit to the transition functions that can be used. For instance there is nothing
to prevent you using non-computable transition functions.

2. Secondly, the models produced can be non-deterministic, which means that the expected results
for test cases cannot be precisely predicted.

3. Thirdly, there are several different ways to minimise an X -machine. In particular, any X -
machine is equivalent to a single state X -machine with many complex transition functions. Q-Γ-
minimality guarantees that a characterisation exists, but it is only defined for stream-X -machines.

4. Input and output can be handled in a variety of ways.

By defining the concept of stream-X -machines, I overcome these problems to the extent where test
sets can always be described, at the cost of limiting the expressive power of the models that can be
built.

The model of testing described in this chapter can be applied directly to the testing of any system that
can be satisfactorily modelled by a stream-X -machine, by simply devising a suitable partition cover.

6.7.2 A method for test case generation.

Given that a system can be satisfactorily modelled using a stream-X -machine, how practical is it to
generate actual test cases using the methods described?

The following steps are certainly needed:

1. Model the specification as a fully-deterministic stream-X -machine that is complete w.r.t. Y and
Q-Γ-minimal.

This stage will require human input, but various kinds of tool support can be envisaged. For
instance, it is fairly easy to produce a model that is a stream-X -machine, but it might not be
obvious whether the model has all of the other conditions. A tool that analyses X -machines to
check for each of the properties would be very helpful.

• By checking the domains of all the transition functions available in each state in turn, it
should be straightforward to check for full-determinism and completeness w.r.t. Y .

• Unfortunately, checking for Q-Γ-minimality requires that the non-equivalence of composi-
tions of transition functions be checked, and this is not computable, and it is not clear how
difficult manual (or machine assisted) proofs of minimality would be in practice.

2. Find a transition cover and a characterisation set.

Given a stream-X -machine with all the required properties, it is simple to automatically generate
a transition cover, since the same techniques that are used for finite-state-machines can be used.

So long as the stream-X -machine has all of the required properties, a characterisation set exists.
Although no guidance on actually generating a suitable set has so far been given, it has proved
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relatively straightforward in the limited number of case studies so far carried out (such as in
the next chapter). However the case studies were carried out manually; it is not known whether
characterisation sets can be automatically generated in all cases.

As an alternative, characterisation “features” could be automatically introduced into a stream-
X -machine specification, by extending X , all of the transition functions, and the output function
so that they record the current state the machine is in. This would make every state immediately
recognisable, and so no characterisation set would be required. The drawback of this approach
is that the specification has to be artificially extended beyond the actual requirements, but it can
be justified by appealing to the concept of “design for test” [13, 15].

3. Choose a suitable test partition generator, G, for the transition functions of the stream-X -
machine.

Depending on the partition cover chosen, and the particular transition functions in use, this stage
might be automated. For instance, the two partition based covers proposed in this chapter (basic
and disjoint partition based) can be produced automatically by standard partition generator
functions, so long as the transition functions are all in the required format.

Even if the partition cover generator cannot be applied automatically, it only needs to be applied
once to each transition function, and so it could be done manually.

4. For each element p of the transition cover (each of which is a path through the machine), find
an input sequence for each partition of the last transition function in the Φ-path of p.

i.e. use G to produce a G-partition based transition cover for the model of the specification.

In order to produce a suitable input sequence, it is necessary to use techniques for back propaga-
tion from the final expected output to suitable initial input sequences. In cases where all of
the transition functions can be inverted (and the inverses are computable), this is straightfor-
ward, and can be automated. In cases where some or all of the transition functions do not have
computable inverses, it may be possible to find suitable input sequences using various hueristic
techniques.

This is an area of research in itself (see [7]), involving the use of logic programming with various
systems of constraints.

5. Use the test cases as normal: Work out the expected output sequence in each case, run the test
cases on the implementation, and compare the actual results with the expected results.

This stage should present no problems for automation.
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Chapter 7

Case study: Tests from X -machines

In this chapter I apply some of the ideas from chapter 6 to the X -machine model of the Petri-net tool
from chapter 5, the specification for which is modelled by stream-X -machine M1.

But first, here are some of the auxiliary definitions used by the actual transition function definitions.

7.0.3 Auxiliary definitions.

These definitions are repeated from section 5.4.7 (page 65).

PSpace : PPositions → PPositions

= λP • {(x , y) : Positions |

∃(x ′, y ′) ∈ P • (x − x ′)2 + (y − y ′)2 ≤ (PlaceRadius)2}

TSpace : PPositions → PPositions

= λP • {(x , y) : Positions |

∃(x ′, y ′) ∈ P • |x − x ′| ≤ TransitionWidth ∧

|y − y ′| ≤ TransitionHeight}

where PlaceRadius is the radius of a place on the screen, and TransitionWidth and TransitionHeight
are the width and height of a transition on the screen.

PMiddle : Positions × π → Positions = λ(c,PL) : Positions × π •


























⊥
if c 6∈ PSpace(dom(PL))
ie, if c isn’t in a place at all

c′ if c ∈ PSpace(dom(PL))
where: c′ ∈ dom(PL), and

c ∈ PSpace({c′})
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TMiddle : Positions × τ → Positions = λ(c,TL) : Positions × τ •


























⊥ if c 6∈ TSpace(dom(TL))
ie, if c isn’t in a transition at all

c′ if c ∈ TSpace(dom(TL))
where: c′ ∈ dom(TL), and

c ∈ TSpace({c′})

Overlap = λ(Points,L) : PPositions × Locations •










true if Points ∩
(PSpace(dom(L.π))∪TSpace(dom(L.τ))) 6= ∅

false otherwise

PlcOverlap = λ(Points,L) : PPositions × Locations •
{

true if Points ∩ (PSpace(dom(L.π)) 6= ∅

false otherwise

TransOverlap = λ(Points,L) : PPositions × Locations •
{

true if Points ∩ (TSpace(dom(L.τ)) 6= ∅

false otherwise

LeftPressed = λm : MButtons •

{

true if m = ⊳

false otherwise

RightPressed = λm : MButtons •

{

true if m = ⊲

false otherwise

NonePressed = λm : MButtons • (¬ LeftPressed(m)) ∧ (¬ RightPressed(m))

NoKeysPressed = λ k : Keyboard •

{

true if k = ⊘
false otherwise

7.1 The test-partition generator function for M1.

The test-partition generator function, G1, for M1, is described here on a φ-by-φ basis, for some of the
φ ∈ Φ. As the method for constructing the partitions is the same for all φ, there is nothing to be gained
by producing a complete but very repetitive list of partitions for every one of them.

Instead, consider all the functions used by transitions starting in Place:

dom(F (Place)) = {AddPlace,DelPlace,PlaceMode,Clear, IgnoreKeyboard,

IgnoreMouse,TransitionMode,TokenMode,NameMode,ArcMode,

MoveMode,SaveMode, LoadMode,RunMode}.

7.1.1 G1(AddPlace).

AddPlace is the function used to add a place to the net:

AddPlace = λ(G , ((P ,T , i , o), µ,L), ((c,m, k) :: S )) : X •
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((c,L, i , o, µ) :: G ,

((P ,T , i , o), µ,L),S ) if LeftPressed(m) ∧
Overlap(PSpace{c},L)
i.e, left button pressed too close to an existing
place or transition

((c,L′, i , o, µ) :: G ,

((P ′,T , i , o), µ,L′),S ) if LeftPressed(m) ∧
¬ Overlap(PSpace{c},L)
i.e, left button pressed away from all the ex-
isting places and transitions

⊥ otherwise

where,

L′ = (pl ,L.τ ,L.ν,L.δ)

P ′ = P ∪ {newname}

pl = L.π ∪ {c 7→ newname}

newname 6∈ P ∪ T .

The basic partition of AddPlace is as follows:

• C1 = {(G , (P, µ,L), (c,m, k) :: S ) : X | LeftPressed(m) ∧ Overlap(PSpace{c},L)}.

This corresponds to the left mouse button being pressed inside an existing place or transition
(and away from the menu bar; it doesn’t matter whether a key is pressed at the same time).

• C2 = {(G , (P, µ,L), (c,m, k) :: S ) : X | LeftPressed(m) ∧ ¬ Overlap(PSpace{c},L)}.

This corresponds to the left mouse button being pressed away from all the existing places and
transitions (and away from the menu bar; it doesn’t matter whether a key is pressed at the same
time).

The expression Overlap(PSpace{c},L) expands to:

PSpace({c}) ∩ (PSpace(dom(L.π)) ∪ (TSpace(dom(L.τ)))) 6= ∅,

and, in turn (writing (c.x , c.y) = c),

PSpace({c}) = {(x , y) : Positions | (x − c.x )2 + (y − c.y)2 ≤ (PlaceRadius)2}

PSpace(dom(L.π)) = {(x , y) : Positions | ∃(x ′, y ′) ∈ L.π •

(x − x ′)2 + (y − y ′)2 ≤ (PlaceRadius)2}

TSpace(dom(L.τ)) = {(x , y) : Positions | ∃(x ′, y ′) ∈ L.τ •

|x − x ′| ≤ TransitionWidth ∧ |y − y ′| ≤ TransitionHeight}

The underlying conditions for C1 and C2 are very complex and can generate a large number of smaller
partitions. To do this a systematic approach to generating them is needed, such as is suggested by
Ostrand & Balcer’s category-partition method [46] discussed in section 1.4.1. However, in the light
of chapter 6, the category-partition method can be formalised slightly, to make its application more
precise.

Firstly, simplify the notion of category by insisting that a category must correspond precisely to some
component element of the type M × Σ (e.g. M is a category, and Positions is a category, since it is
a component element of Σ). Secondly, the choices for a category must form a partition of it, so that
every possible value of the category is represented by precisely one choice for the category.

In principle, the categories for each transition function are different. However, in practice, the functions
operate on types that are largely the same as one another, so the categories are also largely the same.
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Categories and choices for C1:

The categories are M , Positions, MButtons, and Keyboard.

1. The existing status of the Petri-net, (P, µ,L). The choice is:

(a) The existing net is not empty (it must have either places or transitions, or both):

P = (P ,T , i , o)

µ = a marking of P

L = (π, τ ,ms, 〈〉)

where ms is any menu space.

2. The status of the mouse button, m. The only choice is

m = ⊳.

If m 6= ⊳ then AddPlace is undefined.

3. The position of the mouse, c. The choices are:

(a) The mouse is inside an existing place:

c ∈ PSpace(dom(L.π)).

(b) The mouse is inside an existing transition:

c ∈ TSpace(dom(L.τ)).

(c) The mouse is too close to an existing place, p:

∃ p ∈ dom(L.π) •

PlaceRadius < (c.x − p.x )2 + (c.y − p.y)2 < 2PlaceRadius

(d) The mouse is too close to an existing transition, t . There are eight sub-choices:

The mouse can be on the left and too close:

∃ t ∈ dom(L.τ) •

c.x + PlaceRadius > t .x − TransitionWidth ∧

|c.y − t .y | < TransitionHeight

Or too close and on the right:

∃ t ∈ dom(L.τ) •

c.x − PlaceRadius < t .x + TransitionWidth ∧

|c.y − t .y | < TransitionHeight

Or too close above:

∃ t ∈ dom(L.τ) •

c.y + PlaceRadius < t .y − TransitionHeight ∧

|c.x − t .x | < TransitionWidth

Or too close below:

∃ t ∈ dom(L.τ) •

c.y − PlaceRadius < t .y + TransitionHeight ∧

|c.x − t .x | < TransitionWidth
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Or too close at the top left corner:

∃ t ∈ dom(L.τ) •

(t .x − c.x − TransitionWidth)2 +

(t .y − c.y + TransitionHeight)2 < PlaceRadius2

Or too close to the top right corner:

∃ t ∈ dom(L.τ) •

(t .x − c.x + TransitionWidth)2 +

(t .y − c.y + TransitionHeight)2 < PlaceRadius2

Or too close to the lower left corner:

∃ t ∈ dom(L.τ) •

(t .x − c.x − TransitionWidth)2 +

(t .y − c.y − TransitionHeight)2 < PlaceRadius2

Or too close to the lower right corner:

∃ t ∈ dom(L.τ) •

(t .x − c.x + TransitionWidth)2 +

(t .y − c.y − TransitionHeight)2 < PlaceRadius2

(e) The mouse is just too close to an existing place, p:

∃ p ∈ dom(L.π) • (c.x − p.x )2 + (c.y − p.y)2 = 2PlaceRadius.

(f) The mouse is just too close to an existing transition, t . There are eight sub-choices. The
mouse can be to the left of t , to the right of t , above or below t , or at one of the four
corners.

∃ t ∈ dom(L.τ) •

(t .x ± TransitionWidth = c.x ∓ PlaceRadius) ∧

(|c.y − t .y | ≤ TransitionHeight)

∨

(t .y ± TransitionHeight = c.y ∓ PlaceRadius) ∧

(|c.x − t .x | ≤ TransitionWidth)

∨

(t .x − c.x ± TransitionWidth)2 +

(t .y − c.y ± TransitionHeight)2 = PlaceRadius2

4. The status of the keyboard, k . There are three choices:

(a) k = ⊘;

(b) k ∈ {a, . . . z}, i.e. an ordinary character;

(c) k = Return.

Detailed partitions for C1:

A very detailed partition of C1 can be built up by taking one choice from each category to produce
each equivalence class of the partition.
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Not every combination of choices will correspond to an equivalence class for every instance of AddPlace.
For instance, on some occasions, particular choices will involve unattainable Petri-nets.

An example partition is

C11 = {

(G , (P, µ,L), (c,m, k) :: S ) : X |

P = (P ,T , i , o) ∧

µ = any marking for P ∧

L = (π, τ ,ms, 〈〉) ∧

m = ⊳ ∧

c ∈ PSpace(dom(L.π)) ∧

k ∈ {a, . . . , z}

},

which corresponds to the left mouse button being pressed inside one of the places of a non-empty net
at the same time as a key is pressed on the keyboard.

Note Partitions are constructed on the basis that the transition function they are based on could be
used anywhere in the machine, even if they are only actually used in a few places.

An example is AddPlace, which is only used for the transition

Place
AddPlace

> Place.

This means that not all the values described by the partition are attainable. For instance, the only
possible value for L.ms is Pl. 3

Categories and choices for C2:

1. The existing status of the Petri-net, G , (P, µ,L). The choices are:

(a) The existing net is empty:

P = (∅, ∅, ∅, ∅)

µ = ∅

L = (∅, ∅,ms, 〈〉)

(b) The existing net is not empty (it must have places, transitions, or both):

P = (P ,T , i , o)

µ = a marking of P

L = (π, τ ,ms, 〈〉)

2. The status of the mouse button, m. The only choice is

m = ⊳.

If m 6= ⊳ then AddPlace is undefined.

3. The position of the mouse, c. The choices are:

(a) The mouse is away from all the existing places and transitions:

PSpace({c}) ∩ (PSpace(dom(L.π)) ∪ TSpace(dom(L.τ))) = ∅.

4. The status of the keyboard, k . There are three choices:

(a) k = ⊘;

(b) k ∈ {a, . . . z}, i.e. an ordinary character;

(c) k = Return.
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Detailed partition for C2:

As with C1, a very detailed partition of C2 can be built up from the choices of the categories C2.

7.1.2 G1(DelPlace):

DelPlace is the function used to remove a place from the net:

DelPlace = λ(G , ((P ,T , i , o), µ,L), (c,m, k) :: S ) : X •














































































((c,L, i , o, µ) :: G ,

((P ,T , i , o), µ,L),S ) if RightPressed(m) ∧
¬ PlcOverlap({c},L)
i.e, right button pressed outside all the exist-
ing places

((c,L′, i ′, o′, µ′) :: G ,

((P ′,T , i ′, o′), µ′,L′) if RightPressed(m) ∧
PlcOverlap({c},L)
i.e, right button pressed inside an existing
place

⊥ otherwise

where

L′ = (pl ,L.τ ,L.ν,L.δ)

P ′ = P \ {p}

i ′ = λ t : Transitions • ({p} −⊳ i(t))

o′ = λ t : Transitions • ({p} −⊳ o(t))

µ
′

= P ′
⊳ µ

pl = L.π ⊲ P ′

p = PL(PMiddle(c))

The basic partition for DelPlace is very similar to that for AddPlace, and is as follows:

• C1 = {(G , (P, µ,L), (c,m, k) :: S ) : X |
RightPressed(m) ∧ ¬ PlcOverlap(PSpace{c},L)}.

This corresponds to the right mouse button being pressed away from all existing places (and
away from the menu bar; it doesn’t matter whether a key is pressed at the same time).

• C2 = {(G , (P, µ,L), (c,m, k) :: S ) : X |
RightPressed(m) ∧ PlcOverlap(PSpace{c},L)}.

This corresponds to the right mouse button being pressed inside an existing place (and away
from the menu bar; it doesn’t matter whether a key is pressed at the same time).

As with G1(AddPlace), a far more detailed partition can be worked out by considering categories and
choices for C1 and C2.

Categories and choices for C1:

1. The existing status of the Petri-net, G , (P, µ,L). The choices are:
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(a) The existing net is empty:

P = (∅, ∅, ∅, ∅)

µ = ∅

L = (∅, ∅,ms, 〈〉)

(b) The existing net is not empty and has both places and transitions:

P = (P ,T , i , o)

µ = a marking for P

L = (π, τ ,ms, 〈〉)

2. The status of the mouse button, m. The only choice is

m = ⊲.

If m 6= ⊲ then DelPlace is undefined.

3. The position of the mouse, c. The choices are:

(a) The mouse is away from all the existing places and transitions:

c 6∈ PSpace(dom(L.π)) ∪ TSpace(dom(L.τ)).

(b) The mouse is inside an existing transition:

c ∈ TSpace(dom(L.τ))

4. The status of the keyboard, k . There are three choices:

(a) k = ⊘;

(b) k ∈ {a, . . . z}, i.e. an ordinary character;

(c) k = Return.

Categories and choices for C2:

1. The existing status of the Petri-net, (P, µ,L). The choice is:

(a) The existing net is not empty and has both places and transitions:

P = (P ,T , i , o)

µ = a marking for P

L = (π, τ ,ms, 〈〉)

2. The status of the mouse button, m. The only choice is

(a) m = ⊲. If m 6= ⊲ then DelPlace is undefined.

3. The position of the mouse, c. The choices are:

(a) The mouse is inside an existing place:

∃ p ∈ dom(L.π) • (p.x − c.x )2 + (p.y − c.y)2 < PlaceRadius2

(b) The mouse is on the edge of an existing place:

∃ p ∈ dom(L.π) • (p.x − c.x )2 + (p.y − c.y)2 = PlaceRadius2

4. The status of the keyboard, k . There are three choices:

(a) k = ⊘;

(b) k ∈ {a, . . . , z}, i.e. an ordinary character;

(c) k = Return.
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7.1.3 G1(PlaceMode).

PlaceMode is the function used to change to the place manipulating state. It does nothing if M1 is
already in state Place.

PlaceMode = λ(G , (P, µ,L), (c,m, k) :: S ) : X •


















((c,L′,P.InArcs,

P.OutArcs, µ) :: G ,

(P, µ,L′),S ) if LeftPressed(m) ∧ c ∈ PlaceSpace

⊥ otherwise

where

L′ = (L.π,L.τ ,ms,L.δ)

The basic partition for PlaceMode is very simple:

• C1 = {(G , (P, µ,L), (c,m, k) :: S ) : X | LeftPressed(m) ∧ c ∈ PlaceSpace.

This corresponds to the left mouse button being pressed in the “Place” space of the menu bar.

There is no need to produce quite such a detailed detailed partition for PlaceMode. None-the-less,
there is some benefit to be gained from describing categories and partitions for it.

Categories and choices for C1:

1. The existing status of the Petri-net, (P, µ,L).

(a) The existing net is any net:

P = (P ,T , i , o)

µ = a marking for P

L = (π, τ ,ms, 〈〉)

2. The status of the mouse button, m. The only choice is

(a) m = ⊳.

If m 6= ⊳ then PlaceMode is undefined.

3. The position of the mouse, c. The only choice is

(a) The mouse is inside PlaceSpace:

c ∈ PlaceSpace.

PlaceMode is not defined with the mouse in any other positions.

4. The status of the keyboard, k . There are three choices:

(a) k = ⊘;

(b) k ∈ {a, . . . , z}, i.e. an ordinary character;

(c) k = Return.
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7.1.4 G1(Clear).

Clear is the function used to clear the Petri-net stored in the system, resulting in an empty net.

Clear = λ(G , (P, µ,L), (c,m, k) :: S ) : X •






























((c,L0,P0.InArcs,

P0.OutArcs, µ0) :: G ,

(P0, µ0,L0),S ) if LeftPressed(m) ∧ c ∈ ClearSpace
i.e. if the button is pressed in the “Clear” area
of the menu bar

⊥ otherwise

The basic partition for Clear is very simple:

• C1 = {(G , (P, µ,L), (c,m, k) :: S ) : X | LeftPressed(m) ∧ c ∈ ClearSpace.

This corresponds to the left mouse button being pressed in the “Clear” space of the menu bar.

Once again, a more detailed partition can be described using categories and choices.

Categories and choices for C1:

1. The existing status of the Petri-net, (P, µ,L).

(a) The existing net is already empty:

P = (∅, ∅, ∅, ∅)

µ = ∅

L = (∅, ∅,ms, 〈〉)

(b) The existing net is any non-empty net:

P = (P ,T , i , o)

µ = a marking for P

L = (π, τ ,ms, 〈〉)

2. The status of the mouse button, m. The only choice is

(a) m = ⊳.

If m 6= ⊳ then Clear is undefined.

3. The position of the mouse, c. The only choice is

(a) The mouse is inside ClearSpace:

c ∈ ClearSpace.

Clear is not defined with the mouse in any other positions.

4. The status of the keyboard, k . There are three choices:

(a) k = ⊘;

(b) k ∈ {a, . . . , z}, i.e. an ordinary character;

(c) k = Return.
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7.1.5 G1(IgnoreKeyboard).

IgnoreKeyboard is used to ignore superfluous keyboard input. It should only used when there is no
mouse input.

IgnoreKeyboard = λ(G , (P, µ,L), (c,m, k) :: S ) : X •










((c,L,P.π,P.τ , µ) :: G ,

(P, µ,L),S ) if NonePressed(m) ∧ ¬ NoKeysPressed(k)

⊥ otherwise

The basic partition for IgnoreKeyboard is very simple:

• C1 = {(G , (P, µ,L), (c,m, k) :: S ) : X | m = ⋄ ∧ k 6= ⊘}

This corresponds to any key being pressed while no mouse buttons are pressed.

Categories and choices for C1:

1. The existing status of the Petri-net, (P, µ,L).

(a) The existing net is any net:

P = (P ,T , i , o)

µ = a marking for P

L = (π, τ ,ms, 〈〉)

2. The status of the mouse button, m. The only choice is

(a) m = ⋄.

If m 6= ⋄ then IgnoreKeyboard is undefined.

3. The position of the mouse, c. The only choice is

(a) The mouse is inside anywhere:

c ∈ Positions ∪ menubar .

4. The status of the keyboard, k . There are two choices:

(a) k ∈ {a, . . . , z}, i.e. an ordinary character;

(b) k = Return.

7.1.6 G1(IgnoreMouse).

IgnoreMouse is used to ignore superfluous mouse input, when no buttons are being pressed.

IgnoreMouse = λ(G , (P, µ,L), (c,m, k) :: S ) : X •


















((c,L,P.π,P.τ , µ) :: G ,

(P, µ,L),S ) if NonePressed(m) ∧ NoKeysPressed(k) ∧
¬ Overlap({c},L)

⊥ otherwise

The basic partition for IgnoreMouse is very simple:

• C1 = {(G , (P, µ,L), (c,m, k) :: S ) : X | m = ⋄ ∧ k = ⊘}

This corresponds to no mouse button or keyboard buttons being pressed. The mouse is simply
pointing somewhere on the screen.
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Categories and choices for C1:

1. The existing status of the Petri-net, (P, µ,L).

(a) The existing net is any net:

P = (P ,T , i , o)

µ = a marking for P

L = (π, τ ,ms, 〈〉)

2. The status of the mouse button, m. The only choice is

(a) m = ⋄.

If m 6= ⋄ then IgnoreMouse is undefined.

3. The position of the mouse, c. The only choice is

(a) The mouse is inside anywhere

c ∈ Positions.

4. The status of the keyboard, k . There is only one choice:

(a) k = ⊘;

7.1.7 G1(TransitionMode).

TransitionMode is used to change to the transition manipulation mode.

TransitionMode = λ(G , (P, µ,L), (c,m, k) :: S ) : X •


















((c,L′,P.InArcs,

P.OutArcs, µ) :: G ,

(P, µ,L′),S ) if LeftPressed(m) ∧ c ∈ TransitionSpace

⊥ otherwise

where

L′ = (L.π,L.τ ,Tr,L.δ)

The basic partition for TransitionMode is:

• C1 = {(G , (P, µ,L), (c,m, k) :: S ) : X | LeftPressed(m) ∧ c ∈ TransitionSpace.

This corresponds to the left mouse button being pressed in the “Transition” space of the menu
bar.

Categories and choices for C1:

1. The existing status of the Petri-net, (P, µ,L).

(a) The existing net is any net:

P = (P ,T , i , o)

µ = a marking for P

L = (π, τ ,ms, 〈〉)
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2. The status of the mouse button, m. The only choice is

(a) m = ⊳.

If m 6= ⊳ then TransitionMode is undefined.

3. The position of the mouse, c. The only choice is

(a) The mouse is inside TransitionSpace:

c ∈ TransitionSpace.

TransitionMode is not defined with the mouse in any other positions.

4. The status of the keyboard, k . There are three choices:

(a) k = ⊘;

(b) k ∈ {a, . . . , z}, i.e. an ordinary character;

(c) k = Return.

7.1.8 G1(TokenMode).

TokenMode is used to change to the token manipulation mode.

TokenMode = λ(G , (P, µ,L), (c,m, k) :: S ) : X •


















((c,L′,P.InArcs,

P.OutArcs, µ) :: G ,

(P, µ,L′),S ) if LeftPressed(m) ∧ c ∈ TokenSpace

⊥ otherwise

where

L′ = (L.π,L.τ ,To,L.δ)

The basic partition for TokenMode is very simple:

• C1 = {(G , (P, µ,L), (c,m, k) :: S ) : X | LeftPressed(m) ∧ c ∈ TokenSpace.

This corresponds to the left mouse button being pressed in the “Token” space of the menu bar.

Categories and choices for C1:

1. The existing status of the Petri-net, (P, µ,L).

(a) The existing net is any net:

P = (P ,T , i , o)

µ = a marking for P

L = (π, τ ,ms, 〈〉)

2. The status of the mouse button, m. The only choice is

(a) m = ⊳.

If m 6= ⊳ then TokenMode is undefined.

3. The position of the mouse, c. The only choice is
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(a) The mouse is inside TokenSpace:

c ∈ TokenSpace.

TokenMode is not defined with the mouse in any other positions.

4. The status of the keyboard, k . There are three choices:

(a) k = ⊘;

(b) k ∈ {a, . . . , z}, i.e. an ordinary character;

(c) k = Return.

7.1.9 G1(NameMode).

NameMode is used to change to the name manipulation mode.

MoveMode = λ(G , (P, µ,L), (c,m, k) :: S ) : X •


















((c,L′,P.InArcs,

P.OutArcs, µ) :: G ,

(P, µ,L′),S ) if LeftPressed(m) ∧ c ∈ NameSpace

⊥ otherwise

where

L′ = (L.π,L.τ ,Na,L.δ)

The basic partition for NameMode is:

• C1 = {(G , (P, µ,L), (c,m, k) :: S ) : X | LeftPressed(m) ∧ c ∈ NameSpace.

This corresponds to the left mouse button being pressed in the “name” space of the menu bar.

Categories and choices for C1:

1. The existing status of the Petri-net, (P, µ,L).

(a) The existing net is any net:

P = (P ,T , i , o)

µ = a marking for P

L = (π, τ ,ms, 〈〉)

2. The status of the mouse button, m. The only choice is

(a) m = ⊳.

If m 6= ⊳ then NameMode is undefined.

3. The position of the mouse, c. The only choice is

(a) The mouse is inside NameSpace:

c ∈ NameSpace.

NameMode is not defined with the mouse in any other positions.

4. The status of the keyboard, k . There are three choices:

(a) k = ⊘;

(b) k ∈ {a, . . . , z}, i.e. an ordinary character;

(c) k = Return.
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7.1.10 G1(ArcMode).

ArcMode is used to change to arc manipulation mode.

ArcMode = λ(G , (P, µ,L), (c,m, k) :: S ) : X •


















((c,L′,P.InArcs,

P.OutArcs, µ) :: G ,

(P, µ,L′),S ) if LeftPressed(m) ∧ c ∈ ArcSpace

⊥ otherwise

where

L′ = (L.π,L.τ ,Ar,L.δ)

The basic partition for ArcMode is:

• C1 = {(G , (P, µ,L), (c,m, k) :: S ) : X | LeftPressed(m) ∧ c ∈ ArcSpace.

This corresponds to the left mouse button being pressed in the “Arc” space of the menu bar.

Categories and choices for C1:

1. The existing status of the Petri-net, (P, µ,L).

(a) The existing net is any net:

P = (P ,T , i , o)

µ = a marking for P

L = (π, τ ,ms, 〈〉)

2. The status of the mouse button, m. The only choice is

(a) m = ⊳.

If m 6= ⊳ then ArcMode is undefined.

3. The position of the mouse, c. The only choice is

(a) The mouse is inside ArcSpace:

c ∈ ArcSpace.

ArcMode is not defined with the mouse in any other positions.

4. The status of the keyboard, k . There are three choices:

(a) k = ⊘;

(b) k ∈ {a, . . . , z}, i.e. an ordinary character;

(c) k = Return.
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7.1.11 G1(MoveMode).

MoveMode is used to change to the mode where places and transitions can be moved around.

MoveMode = λ(G , (P, µ,L), (c,m, k) :: S ) : X •


















((c,L′,P.InArcs,

P.OutArcs, µ) :: G ,

(P, µ,L′),S ) if LeftPressed(m) ∧ c ∈ MoveSpace

⊥ otherwise

where

L′ = (L.π,L.τ ,Mo,L.δ)

The basic partition for MoveMode is:

• C1 = {(G , (P, µ,L), (c,m, k) :: S ) : X | LeftPressed(m) ∧ c ∈ MoveSpace.

This corresponds to the left mouse button being pressed in the “Move” space of the menu bar.

Categories and choices for C1:

1. The existing status of the Petri-net, (P, µ,L).

(a) The existing net is any net:

P = (P ,T , i , o)

µ = a marking for P

L = (π, τ ,ms, 〈〉)

2. The status of the mouse button, m. The only choice is

(a) m = ⊳.

If m 6= ⊳ then MoveMode is undefined.

3. The position of the mouse, c. The only choice is

(a) The mouse is inside MoveSpace:

c ∈ MoveSpace.

MoveMode is not defined with the mouse in any other positions.

4. The status of the keyboard, k . There are three choices:

(a) k = ⊘;

(b) k ∈ {a, . . . , z}, i.e. an ordinary character;

(c) k = Return.
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7.1.12 G1(SaveMode).

SaveMode is used to change to the mode for saving nets.

SaveMode = λ(G , (P, µ,L), (c,m, k) :: S ) : X •
{

Save(G , (P, µ,L′), (c,m, k) :: S ) if LeftPressed(m) ∧ c ∈ SaveSpace

⊥ otherwise

where

L′ = (L.π,L.τ ,Sa,L.δ)

The basic partition for SaveMode is:

• C1 = {(G , (P, µ,L), (c,m, k) :: S ) : X | LeftPressed(m) ∧ c ∈ SaveSpace.

This corresponds to the left mouse button being pressed in the “Save” space of the menu bar.

Categories and choices for C1:

1. The existing status of the Petri-net, (P, µ,L).

(a) The existing net is empty:

P = (∅, ∅, ∅, ∅)

µ = ∅

L = (∅, ∅,ms, 〈〉)

(b) The existing net is any non-empty net:

P = (P ,T , i , o)

µ = a marking for P

L = (π, τ ,ms, 〈〉)

2. The status of the mouse button, m. The only choice is

(a) m = ⊳.

If m 6= ⊳ then SaveMode is undefined.

3. The position of the mouse, c. The only choice is

(a) The mouse is inside SaveSpace:

c ∈ SaveSpace.

SaveMode is not defined with the mouse in any other positions.

4. The status of the keyboard, k . There are three choices:

(a) k = ⊘;

(b) k ∈ {a, . . . , z}, i.e. an ordinary character;

(c) k = Return.
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7.1.13 G1(LoadMode).

LoadMode is used to change to the mode for loading new nets.

LoadMode = λ(G , (P, µ,L), (c,m, k) :: S ) : X •
{

Load(G , (P, µ,L′), (c,m, k) :: S ) if LeftPressed(m) ∧ c ∈ LoadSpace

⊥ otherwise

where

L′ = (L.π,L.τ ,Lo,L.δ)

The basic partition for LoadMode is:

• C1 = {(G , (P, µ,L), (c,m, k) :: S ) : X | LeftPressed(m) ∧ c ∈ LoadSpace.

This corresponds to the left mouse button being pressed in the “Load” space of the menu bar.

Categories and choices for C1:

1. The existing status of the Petri-net, (P, µ,L).

(a) The existing net is any net:

P = (P ,T , i , o)

µ = a marking for P

L = (π, τ ,ms, 〈〉)

2. The status of the mouse button, m. The only choice is

(a) m = ⊳.

If m 6= ⊳ then LoadMode is undefined.

3. The position of the mouse, c. The only choice is

(a) The mouse is inside LoadSpace:

c ∈ LoadSpace.

LoadMode is not defined with the mouse in any other positions.

4. The status of the keyboard, k . There are three choices:

(a) k = ⊘;

(b) k ∈ {a, . . . , z}, i.e. an ordinary character;

(c) k = Return.

7.1.14 G1(RunMode).

RunMode is used to change to the mode where transitions can be fired to animate the net.

RunMode = λ(G , (P, µ,L), (c,m, k) :: S ) : X •


















((c,L′,P.InArcs,

P.OutArcs, µ) :: G ,

(P, µ,L′),S ) if LeftPressed(m) ∧ c ∈ RunSpace

⊥ otherwise
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where

L′ = (L.π,L.τ ,Ru,L.δ)

The basic partition for RunMode is:

• C1 = {(G , (P, µ,L), (c,m, k) :: S ) : X | LeftPressed(m) ∧ c ∈ RunSpace.

This corresponds to the left mouse button being pressed in the “Run” space of the menu bar.

Categories and choices for C1:

1. The existing status of the Petri-net, (P, µ,L).

(a) The existing net is any net:

P = (P ,T , i , o)

µ = a marking for P

L = (π, τ ,ms, 〈〉)

2. The status of the mouse button, m. The only choice is

(a) m = ⊳.

If m 6= ⊳ then RunMode is undefined.

3. The position of the mouse, c. The only choice is

(a) The mouse is inside RunSpace:

c ∈ RunSpace.

RunMode is not defined with the mouse in any other positions.

4. The status of the keyboard, k . There are three choices:

(a) k = ⊘;

(b) k ∈ {a, . . . , z}, i.e. an ordinary character;

(c) k = Return.

7.2 Test cases for transitions.

Each basic partition has a large number of detailed partitions. Each detailed partition consists of one
choice from each of the categories identified for the basic partition (although not every combination of
choices leads to a partition, as some of the choices are incompatible). So, there are very many detailed
partitions for each basic partition, and every function has at least one basic partition. There is little
to be gained from a detailed discussion of every single one of them.

Instead, consider just G1(DelPlace) (section 7.1.2). It is used only once in M1, for the transition

Place
DelPlace

> Place.

It has 2 basic partitions, C1 and C2, each of which has four categories, leading to a total of twelve
and six combinations of choices for C1 and C2 respectively, and therefore to twelve and six test pairs
respectively.

One of these pairs corresponds to the choices (1a) “non-empty net with places”, (2a) “left mouse
button pressed”, (3a) “mouse positioned well inside an existing place” and (4a) “no keyboard input”

of C2. Two test cases are required: a preparation test case, t ∈ Σ∗, and a transition test case t a 〈h〉
(see definition 6.2.9, page 95).
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7.2.1 Preparation test cases:

Firstly choose a value for t such that the machine gets into state Place with a non-empty net that
has places, bearing in mind the operation of the model, as described in section 5.4.12.

Since Place is the initial state, of M1, this can actually be achieved by a sequence of length one
(assuming that the mouse’s initial position is in the main screen area):

t = 〈(⊳, c0,⊘)〉.

However, this might not be a practical test case. Whilst it might be possible for an automatic test
harness to produce such a sequence, a human user would have great difficulty in replicating it. Fur-
thermore, and for the same reason, such an abbreviated test sequence cannot be regarded as typical.
Instead something like the following sequence might be a more accurate reflection of the system’s actual
use (although a human user would have just as much difficulty in reliably producing it precisely).

t ′ = 〈(⋄, c0,⊘), . . . , (⋄, c1,⊘), (⊳, c1,⊘), (⋄, c1,⊘), . . . , (⋄, c2,⊘)〉,

where c2 (the final position of the mouse) is less than a distance of PlaceRadius from c1 (the position
of the place added).

If the test cases are to be carried out manually (which would be an immense task), then a more general
description of the required preparation sequence would be desirable.

In the case of the example, such a description would simply say

(⊳, c1,⊘) must be included (i.e. the left button pressed in position c1) (to add a new place
to the net at position c1), and that afterwards, there must be no further mouse button
presses, and the final element of the sequence must position the mouse within PlaceRadius
of c1.

7.2.2 Transition test case:

Having worked out the preparation sequence, this is easy:

t a 〈(⊲, c1,⊘)〉

is the transition test case.

7.3 Characterisation set.

It is possible to recognise each state from the current output (the head of the output stream). This
includes a component that describes the state of the menu bar part of the screen, which is different for
each state of the machine. So every state is recognisable without needing any additional characterisation
sequence.

7.4 Expected output.

The output stream of M1 is a sequence of values, each of which represents the screen at a particular
instant. The head of the output stream represents the latest screen appearance.

A test sequence of length n will lead to a final output stream of length n, and so must have an
expected output stream of length of n. In principle, every element of the actual output sequence must
be checked against the expected output, and this would be practical for an automated test harness.
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In the case of the sequence t ′ above, the expected output would be

〈(c0,L0, i0, o0, µ0), . . . , (c1,L0, i0, o0, µ0), (c1,L1, i0, o0, µ0), (c1,L1, i0, o0, µ0), . . .

. . . , (c2,L1, i0, o0, µ0)〉,

where L0, i0, o0 and µ0 are all initial empty values, and

L1 = ({c1 7→ place}, τ0,Pl, 〈〉)

which is the description of the net with one place (called place) positioned at c1, and no transitions.

If the testing is being carried out manually, a simpler approach is required, as, with many inputs and
outputs every second, it would be impossible for the tester to carry out the checks.

Instead, a general description of the output sequence could be used. In the case of t ′, this would be

the net remains empty, with the mouse pointer following the movements of the mouse until
the left mouse button is pressed at position c1, when a place is added at the current position
of the mouse. The net then remains unchanged, with the mouse pointer following the mouse
movements, until finally, it points somewhere within the place at c1.
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Chapter 8

Conclusion

8.1 Testing and formal methods.

There are many benefits to constructing test cases on the basis of a formal model, whether it be of
a specification or an implementation. The benefits arise from the ability to precisely describe and
reason about potential faults. In particular, it means that tests can be applied uniformly, with greater
confidence in their fault detecting potential, and with the possibility of full automation.

There are a great many testing techniques, based on both specifications and implementations. Tra-
ditionally, these methods have been described and used informally. Initially this was due to the fact
that there were few formal models available to describe specifications, implementations or the potential
faults.

However, programs are themselves formal objects, and it is therefore not surprising that program
based testing techniques were the earliest developed. More recently formal models and methods for
describing specifications have been developed, but they have not been widely used in the field of testing.

8.1.1 Partition testing.

With the case study in chapter 2, I showed how to generate test cases, using Ostrand & Balcer’s
category-partition method [46], but based on the use of a formal specification in Z. The method is
typical of partition techniques.

Although the test cases were comprehensive, and were precisely defined for the individual functions
concerned, some limitations were revealed.

• The method does not give any guidance on combining the tests of individual functions into higher
level, system wide tests, that ensure each function is tested in all of the different circumstances
that are possible.

• The test cases are described in isolation, with no regard for how the particular parameters
required for a particular test of a particular function can be produced by using the other system
functions. This could be a major problem, if the function to be tested is embedded deep within
the system.

• Even using a formal specification, it was by no means clear how to formally describe all the
concepts involved. For instance some categories are parameters of the functions, where-as others
are particular parts of a parameter. There does not appear to be a general rule. (Although, all
of the categories are based, in some way or other, on details of the data-types of the function’s
input and output parameters.)
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8.1.2 Finite-state-machine testing.

In section 3.5, I outlined Chow’s W -method [4] for generating test cases from a finite-state machine
model of a software specification. The test sets produced are very comprehensive, but not every
specification, or aspect of a specification is suited to the finite-state-machine model.

In fact, the aspects suited to finite-state-machine models are largely those that are beyond the partition
based functional tests described above, and vice versa. A finite-state-machine can easily describe the
control structure of a system; the sequences with which low-level functions are used and combined
together. But they are not very useful for a detailed description of how those functions behave.

So, the two approaches complement one another well. A model that integrates their good features is
needed.

8.2 X -machines.

Eilenberg’s X -machine model provides such an integration, by using separate data and control struc-
tures. The original model is very general, and, in chapter 4, I introduced various restrictions in order
to facilitate testing; so that the model is better suited to modelling interactive systems and to allow
models to be refined in a meaningful way. Models conforming to the restrictions are fully-deterministic
stream-X-machines that are complete w.r.t. Y .

8.2.1 Testing X -machines

In chapter 6 I described a test coverage measure for specifications modelled by X -machines that
incorporates the features of both finite-state-machine testing and partition based testing. In order to
facilitate testing, various extra properties on the X -machines are desirable:

• In order for a characterisation sequence (that distinguishes different states) to exist, the specific-
ation must be minimal with respect to its outputs, and the test cases only aim to show that the
implementation is equivalent, not that it is minimal.

• The specification must be complete with respect to the possible inputs, so that there is behaviour
defined for every possible input in every single state.

• The machine must be fully deterministic, so that there is only one possible output for each input.

Fully-deterministic stream-X -machines that are complete w.r.t. Y possess all of these features.

Each transition is tested once for each of the partitions of the transition function. A formally de-
scribed simple partition scheme is defined. However, the idea of a partition generator function is
introduced, with the intention that the method be open-ended, so that new partitioning techniques can
be incorporated.

In the case study (chapter 7) I apply some parts of the method to a large example. By restricting the
meaning of a “category” (to component elements of the data-type, where the data-types are Cartesian
products of other data-types), I was able to use a formal version of the category-partition method as
the partition generator function.

8.2.2 Specification with X -machines.

The method for producing a test set from an X -machine specification is all very well, but the X -
machine model needs to be an attractive means for constructing the specification in the first place for
the test method to be of practical use. By introducing some very simple formal refinements of the
machines, and showing that the refinements preserve properties of stream-X -machines, I hope to have
made a start in this direction.

A second influence on the practical use-ability of the X -machine model is the potential for automation.
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8.3 Automation of testing.

It is intended that the test cover for X -machines can be generated automatically. Chow outlined a
method for automatically producing a transition cover set for a finite-state-machine, and the technique
is applicable to X -machines.

What remains is to automatically generate a partition for each transition function. This requires that
the transition function be expressed in some suitable form, for which the possible data structures are
well understood, and probably restricted. In fact, a functional language, such as Hope or ML would
probably be suitable, so long as the functions had to be written in some canonical form and all used
the same data-type, and the limitations inherent in executable definitions were acceptable.

An alternative approach would be to semi-automate the process, by allowing the partition generation
and test case selection to be directed by a human operator, but most of the repetitive steps to be
automated.

8.4 Animation of executable X -machines.

The idea of using a functional language to describe the transition functions suggests that entire X -
machines could be executed. In fact it should be possible to produce a tool for writing and animating
restricted X -machines. It would be able to check for various useful properties, such as Φ-minimality
or completeness w.r.t. Y , and to carry out refinements. It should also be easy for it to convert the
machine into the canonical form required for the automated test generation.

8.5 X -machine theory.

The theorems on X -machines that I present in chapter 4 are the bare minimum required to allow the
test coverage to be described, and to allow a specification to be refined in a simple and restricted way.

8.5.1 Minimality and equivalence.

Minimisation is not straight-forward with X -machines. For an arbitrary X -machine M, there is an X -
machine, N , with only one state and one transition function that exhibits exactly the same behaviour, in
terms of the overall input / output function it performs, and so is, in some sense, the minimal version.
However, the single transition function would not (necessarily) be of the same type (i.e. from the same
set Φ) as the transition functions of M, and it would almost certainly be a far more complicated
function.

Minimisation of this extreme kind is not of much practical use. The resulting model would be difficult
to understand, and would be very unlikely to correspond to any “intuitive” model of the system it was
intended to describe.

Instead, I introduce the ideas of Φ-minimal and Γ-minimal, which are based on the minimality within
a particular type, Φ. Also, they are defined for stream-X -machines rather than X -machines, which
restricts the complexity of each transition function: each one can only deal with a single element of
input, etc.

8.5.2 Canonical forms of Φ

Having produced a minimal stream-X -machine, it could be described in a canonical form. Two
possibilities are:

• Have precisely one transition between each pair of different states, and one “loop-back” transition
for each state.
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• Have one transition for each possible condition; i.e, every transition is of the form

λ(G ,m,S ) •
{

φ′(G ,m,S ) if c(m, head S ) = true
⊥ otherwise

However, there is the difficulty that the condition function, c, could be decomposed to even
simpler condition functions.

8.5.3 Refinements.

The refinements I introduced in section 4.4 were simple and restricted, but are adequate for many
purposes, as shown in the case study of chapter 5. In summary, the refinements were based on adding
new states, but with a single connecting point to the original machine, and adding new elements to
X , but only allowing them to be used in the refined part of the machine. However, more complicated
refinements could be defined; for instance:

• Add new elements to X and allow them to be used anywhere in the original machine. This would
mean that all the transition functions would have to be re-defined, and perhaps α and β too.

• Add new elements to Y as well as to X . This would mean α needed to be re-defined.

• Add new elements to Z , as well as to X . This would mean β needed to be re-defined.

• Add new states so that they connect with the original machine at more than one point.

Each of these would require a careful definition and extra conditions if properties such as fully-
deterministic or complete w.r.t. Y were to be maintained by the refined X -machine.

As a refinement of a machine need not be of the same type, it is not generally possible to directly
compare the behaviour of a machine with that of a refinement of it. On the other hand, there must
(intuitively) be some relationship, involving the behaviour of the refinement including the behaviour of
the original in some way.

8.6 X -machines at large.

The X -machine model has wider applications than testing.

Firstly and most importantly, it can be used to model entire systems, on many different levels of
abstraction.

Using a tool as described above, it would sometimes be possible to rapidly produce an executable
version of a specification, and to investigate its properties. The initial specification could then be
refined to describe particular features in more detail, until a comprehensive model of the whole system
was produced.

The different views of an X -machine model that are possible mean that un-necessary detail can remain
hidden much of the time, and make it easier to communicate important features of the model at an
intuitive level.

The X -machine model can be used to formally verify properties about algorithms. For instance, in
some cases it is possible to enumerate all of the possible paths through an X -machine and compare
the corresponding compound input / output functions with a higher level description of the required
behaviour. X -machines have also been used to describe the timing constraints of real-time systems.

Beyond these possibilities, the potential for using X -machines in fields such as concurrency or distrib-
uted systems has barely been considered.
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Index of Notation and Concepts

The notation I use for sets, bags, predicates, functions, relations and sequences is that of the Z
specification language, as described in Spivey’s reference manual [55].

In addition, I use a large number of concepts, notation and symbols, some from existing literature and
some of my own. In the following index, those definitions that are wholly my own, or substantially
changed from their traditional meanings, are marked by “*”. Items are listed in order of appearance,
and the references are to their first appearance and definition.

failure definition 1.1.2, page 7
fault definition 1.1.3, page 7
affect definition 1.1.4, page 7
error definition 1.1.5, page 7
correct definition 1.1.6, page 7

out( , ) definition 3.1.1, page 32
ok( ) definition 3.1.2, page 32
ideal definition 3.1.3, page 32
criterion definition 3.1.4, page 32
complete( , ) definition 3.1.5, page 32
successful( ) definition 3.1.6, page 32
reliable( ) definition 3.1.7, page 33
valid( ) definition 3.1.8, page 33
revealing( , ) definition 3.2.1, page 34

location definition 3.3.1, page 34
fault-based arena definition 3.3.5, page 35
alternate sufficient definition 3.3.8, page 35
coupling definition 3.3.9, page 35

∆ page 36 *
FaultMap( ) page 36 *

Finite-state-machine(FSM) definition 3.4.1, page 37
(general) behaviour definition 3.4.1, page 37
| | definition 3.4.1, page 37
‖ ‖ definition 3.4.1, page 37

q
y/z

> q ′ notation 3.4.2, page 37
definition 4.1.2, page 43

complete (FSM) definition 3.5.1, page 39
connected (FSM) definition 3.5.2, page 39
· definition 3.5.3, page 39

concatenation definition 3.5.3, page 39
n notation 3.5.4, page 39
[ ] notation 3.5.5, page 39
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≈V definition 3.5.6, page 39
V -equivalent definition 3.5.6, page 39
≈ definition 3.5.7, page 39

equivalent (FSM) definitions 3.5.7, 3.5.8, page 39
minimal (FSM) definition 3.5.9, page 39
state cover (FSM) definition 3.5.10, page 40
transition cover (FSM) definition 3.5.11, page 40
characterisation set (FSM) definition 3.5.12, page 40

X -machine(XM) definition 4.1.1, page 42
arc definition 4.1.2, page 43
path definition 4.1.3, page 43
Q-path definition 4.1.3, page 43
pQ definition 4.1.3, page 43 *
Φ-path definition 4.1.3, page 43 *
pΦ definition 4.1.3, page 43 *
label definition 4.1.3, page 43 *
| | definition 4.1.3, page 43 *
full-path definition 4.1.4, page 43 *
partial-path definition 4.1.4, page 43 *
deterministic (XM) definition 4.1.5, page 43 *
fully-deterministic (XM) definition 4.1.6, page 44 *
complete w.r.t. X definition 4.1.7, page 44 *
complete w.r.t. Φ definition 4.1.8, page 44 *

stream-X -machine(SXM) definition 4.2.3, page 47 *
input stream definitions 4.2.3, 4.2.6 pages 47, 48, 46 *
output stream definitions 4.2.3, 4.2.6 pages 47, 48, 46 *
memory stream definitions 4.2.3, 4.2.6 pages 47, 48, 46 *
Output( ) definition 4.2.6, pages 48 *
Mem( ) definition 4.2.6, pages 48 *
Input( ) definition 4.2.6, pages 48 *
Mem Input( ) definition 4.2.6, pages 48 *
complete w.r.t. Y definition 4.2.5, page 48 *
attainable definition 4.2.7, page 48 *
Attainable( ) definition 4.2.8, page 48 *
MAttainable( ) definition 4.2.8, page 48 *
XAttainable( ) definition 4.2.8, page 48 *

|Φ ( , ) definition 4.3.1, page 49 *
|Γ ( , ) definition 4.3.1, page 49 *
|Q ( , ) definition 4.3.1, page 49 *
|M ( , ) definition 4.3.1, page 49 *
|X ( , ) definition 4.3.1, page 49 *
‖Φ ( , ) definition 4.3.2, page 50 *
‖Γ ( , ) definition 4.3.2, page 50 *
‖Q ( , ) definition 4.3.2, page 50 *
‖M ( , ) definition 4.3.2, page 50 *
‖X ( , ) definition 4.3.2, page 50 *

reachable (state) definition 4.3.6, page 51 *
Φ-equivalent definitions 4.3.7, 4.3.9 pages 51, 51 *
≡Φ definitions 4.3.7, 4.3.9, pages 51, 51 *

Φ-minimal definition 4.3.8, page 51 *
Q-minimal definition 4.3.10, page 51 *
Γ-equivalent definitions 4.3.13, 4.3.15, pages 53, 53 *
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≡Γ definitions 4.3.13, 4.3.15, pages 53, 53 *
Γ-minimal definition 4.3.14, page 53 *
Q-Γ-minimal definition 4.3.16, page 53 *

X -machine-let definition 4.4.1, page 55 *
simple-refinement definition 4.4.2, page 55 *
general-refinement definition 4.4.6, page 58 *

Petri-net definition 5.2.1, page 60
Places definition 5.2.1, page 60
Transitions definition 5.2.1, page 60
InArcs definition 5.2.1, page 60
OutArcs definition 5.2.1, page 60
Marking definition 5.2.4, page 61
µ definition 5.2.4, page 61
enabled (transition) definition 5.2.6, page 62
fire (transition) definition 5.2.8, page 62
Locations page 63
π page 63
τ page 63
ν page 63
δ page 63
Positions page 64
MButtons page 64
Keyboard page 64
⊳ page 64
⊲ page 64
⋄ page 64
⊘ page 64

Classes( ) definition 6.2.2, page 92 *
basic partition-based transition cover definition 6.2.3, page 92 *
PBTC definition 6.2.3, page 92 *
disjoint classes definition 6.2.5, page 94 *
DClasses definition 6.2.5, page 94 *
disjoint partition-based transition cover definition 6.2.6, page 95 *
test partition generator definition 6.2.7, page 95 *
recognises definition 6.2.8, page 95 *
partition-based test definition 6.2.9, page 95 *
(un) reachable (value) definition 6.2.9, page 95 *
preparation test case definition 6.2.9, page 95 *
transition test case definition 6.2.9, page 95 *
G-PBTC definition 6.2.10, page 95 *

↑ definition 6.6.1, page 99 *
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