
Efficient Recognition of Acyclic Clustered Constraint
Satisfaction Problems�

Igor Razgon and Barry O’Sullivan

Cork Constraint Computation Centre
Department of Computer Science, University College Cork, Ireland

{i.razgon,b.osullivan}@cs.ucc.ie

Abstract. In this paper we present a novel approach to solving Constraint Satis-
faction Problems whose constraint graphs are highly clustered and the graph of
clusters is close to being acyclic. Such graphs are encountered in many real world
application domains such as configuration, diagnosis, model-based reasoning and
scheduling. We present a class of variable ordering heuristics that exploit the clus-
tered structure of the constraint network to inform search. We show how these
heuristics can be used in conjunction with nogood learning to develop efficient
solvers that can exploit propagation based on either forward checking or main-
taining arc-consistency algorithms. Experimental results show that maintaining
arc-consistency alone is not competitive with our approach, even if nogood learn-
ing and a well known variable ordering are incorporated. It is only by using our
cluster-based heuristics can large problems be solved efficiently. The poor per-
formance of maintaining arc-consistency is somewhat surprising, but quite easy
to explain.

1 Introduction

Solving real-world Constraint Satisfaction Problems (CSPs) can prove difficult for a
number of applications, such as scheduling [17], frequency assignment problems [13],
multi-commodity flow congestion control [10], and protein structure prediction [20].
Problems of this nature are typically posed as a network over which a set of constraints
are defined. For example, for multi-commodity flow, the nodes in the network corre-
spond to locations (warehouses and shipment locations), and the edges in the network
correspond to links between locations (roads). The constraints specify capacities of
links, among other things.

The complexity of these network-structured problems can be specified in terms
of their graph parameters. In general, the overall problem is NP-hard; however, the
complexity can be defined as being exponential in the tree-width of the network [4].
Roughly, the more tree-like the network is, the easier it is to solve. Tree-structured
CSPs are important in that inference is polynomial. Inference in tree-structured CSPs
has been heavily studied in the literature. Within the CSP community, it has been ad-
dressed in [7,3,5].

Because of the efficiency of inference in tree-structured CSPs, researchers have de-
veloped several methods for converting a CSP Z into a tree-structured CSP Z ′. These

� This work was supported by Science Foundation Ireland (Grant Number 05/IN/I886).

F. Azevedo et al. (Eds.): CSCLP 2006, LNAI 4651, pp. 154–168, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Efficient Recognition of Acyclic Clustered CSPs 155

methods include using tree-decomposition algorithms [1], and then performing infer-
ence on Z ′ [11,6], or performing a structural compilation of the problem [18].

In this paper we propose a novel approach to efficiently solve clustered CSPs whose
meta-constraint graph (the graph in which each cluster is replaced by a meta-variable)
is close to a tree but not completely acyclic. This approach does not rely on a compila-
tion of the problem. Instead we develop a class of search heuristics that can exploit the
clustering in the problem to help dramatically improve the efficiency of search. Using
these search heuristics we propose an efficient algorithm for solving clustered CSPs
that combines constraint propagation and nogood recording. Our main result is that the
proposed method obliviously recognizes (without spending any computational effort to
do the recognition) when the meta-constraint graph of the problem becomes acyclic
and, if that happens, solves the underlying CSP efficiently. Our algorithm assumes that
the clustered structure of the CSP has either been identified by the user, or in a prepro-
cessing step; usually this is a simple task to approximate manually. An algorithm that
exploits our search heuristics, with nogood learning and constraint propagation, can be
seen as exploiting a backdoor set of variables [19] that are not equivalent to a cycle cut-
set [5]. Our experiments show that MAC augmented with nogood learning and a good
fail-first heuristic is significantly out-performed by a solver based on our cluster-based
search heuristics when tested on clustered CSPs with a large number of variables.

The remainder of the paper is organized as follows. In Section 2 we introduce our
notation. In Section 3 the basic algorithm is presented in terms of constraint propaga-
tion using forward checking, along with a deep theoretical analysis of it. We present a
generalization of the algorithm in Section 4 that incorporates MAC, and also a simpli-
fied nogood recording scheme. An empirical evaluation of the algorithm is presented in
Section 5. Finally, in Section 6 we make some concluding remarks and briefly outline
our future work.

2 Background

2.1 Terminology

A Constraint Satisfaction Problem (CSP) Z is a triplet (V, D, C), where V is a set of
variables, and D is the set of domains of values for each variable. We use the notation
〈u, val〉 to say that val is a value of variable v. A tuple of values is a set of values of dif-
ferent variables. If 〈u, val〉 belongs to a tuple T , we say that 〈u, val〉 is the assignment
of u in T . The last item, C, of Z is the set of constraints. We represent each constraint
c ∈ C as a set of forbidden tuples of values to the variables constrained by c.1 A partial
solution is a tuple of values that contains no forbidden tuple as a subset. A complete
solution or just a solution is a partial solution assigning all the variables of V . To solve
a CSP is to find one of its solutions or to prove that no solution exists.

Let V ′ be a set of variables assigned by a forbidden tuple T . We say the variables of
V ′ are constrained. If all the forbidden tuples have length 2, we get a binary CSP. The
forbidden tuples of a CSP are often referred to as conflicts.

1 We employ an unusual definition of a constraint because it is more convenient for our
discussion.

156 I. Razgon and B. O’Sullivan

A tuple T of values is a nogood if it is a forbidden tuple or if any extension of it to
a tuple that assigns all the variables contains a forbidden tuple. In particular, if a partial
solution is a nogood then it cannot be extended to a full solution.

2.2 The FC-EBJ Algorithm

In this paper we design CSP solvers that, besides solving a CSP, achieve some theoreti-
cal guarantee on their runtime. We assume the reader is familiar with constraint solvers
like Forward Checking (FC) [9] and Maintaining Arc-Consistency (MAC) [16]. All the
constraint solvers maintain additional data structures where they keep the results of
intermediate computation. We introduce some additional terminology related to these
data structures.

The run of a constraint solver consists of a number of iterations where it enumerates
partial solutions in order to extend them to a full solution or to prove that none exists.
If we consider a particular iteration occurring during the execution of a solver then the
partial solution P that the solver tries to extend at that iteration is called the current
partial solution. At the considered iteration, some values may be temporarily removed
from their domains because the solver detected that they cannot be utilized to extend the
current partial solution. The values that are not removed from their domains are called
valid values at that iteration. The set of valid values of variable v is called the current
domain of v.

As stated above, a value 〈u, val〉 is removed from the current domain of u because
P ∪{〈u, val〉} cannot be extended to a full solution, in other words, it contains a nogood
T . The set T \ {〈u, val〉} (which is a subset of the current partial solution) is called an
eliminating explanation of 〈u, val〉.

The only reason why a complete constraint solver removes a value from its current
domain is that it has found (implicitly or explicitly) an eliminating explanation for it.
Some algorithms, like FC and MAC, do not record eliminating explanations explicitly
but there are other algorithms, like DBT [8] or MAC-DBT [12], that do. A simple way
to transform FC into an algorithm maintaining eliminating explanations is to introduce
the following three modifications (in all the items below P denotes the current partial
solution).

– If a value 〈u, val〉 is removed because P ∪{〈u, val〉} contains a forbidden tuple T ,
〈u, val〉 is associated with the eliminating explanation T \ {〈u, val〉}.

– If a value 〈u, val〉 is removed by backtracking caused by the empty current do-
main of some variable v, the eliminating explanation of 〈u, val〉 is the union of
elimination explanations of all values of a variable v minus 〈u, val〉.

– A removed value is restored in the current domain only when its eliminating expla-
nation becomes obsolete, i.e. it is no longer a subset of P .

It follows from the last property that this algorithm possesses the ability to backjump
[14]. For example, if the domain of the currently unassigned variable v is wiped out, but
the last assignment in the eliminating explanations of the values of v is 〈u, val〉 assigned
10-th to the last, the domain of v will remain empty until 10 consecutive backtracks (or
one backjump of length 10) are performed. Thus the algorithm may be viewed as a mod-
ification of FC-CBJ [14], which maintains separate “conflict sets” for every value. We

Efficient Recognition of Acyclic Clustered CSPs 157

term this algorithm FC-EBJ, replacing Conflict-Directed Backjumping by Explanation-
Directed Backjumping. FC-EBJ is almost analogous to the CCFC- algorithm [2] with
two differences. First, the description of CCFC- is not based on eliminating explana-
tions which makes it less convenient for our discussion. Second, CCFC- is formulated
for binary constraints only, while FC-EBJ can solve any CSP.

3 Recognizing Clustered Acyclic CSPs

Consider a CSP whose variables are partitioned into clusters specified by the user. The
given CSP is clustered acyclic if, after contraction of the clusters so that they become
single vertices, the constraint graph of the given CSP is transformed into a tree. A
clustered acyclic CSP can be solved with a complexity equivalent to that of solving the
CSP associated with the largest cluster multiplied by the number of clusters, which is
much faster than traditional backtracking if the clusters are small.

There are CSPs corresponding to real-world problems that can be divided into rel-
atively small clusters such that the constraint graph resulting from the contraction of
these clusters is close to a tree, some of which were discussed in Section 1. Therefore,
it would be worthwhile to design a search algorithm that can recognize that the CSP
induced by the current domains of unassigned variables is a clustered acyclic CSP and,
if that happens, solves the given CSP efficiently. A straightforward approach to do that
is to apply a checking procedure after every instantiation made by the search algorithm.
However, this approach requires additional time for checking the desired property and
thus might be not worthwhile. In this section we propose an alternative approach for
recognizing clustered acyclic CSPs. In particular, we show that FC-EBJ combined with
nogood learning and guided by a specially designed variable-ordering heuristic oblivi-
ously recognizes clustered acyclic CSPs without spending additional time or memory.

The starting point for the design of the proposed method was the observation that
FC-EBJ solves a tree-like CSP polynomially if the variables are assigned in a depth-
first search (DFS) manner with respect to the constraint graph of the given CSP. Next,
we observed that FC-EBJ can benefit from exploring the constraint graph in a DFS-like
manner even if the given CSP is not acyclic. In particular, let P be the current partial
solution maintained by FC-EBJ. If the residual CSP (the result of projecting the un-
derlying CSP to the unassigned variables and removing values incompatible with P) is
acyclic then FC-EBJ takes polynomial time to check whether P can be extended to a
full solution or it is a nogood. What is most interesting is that FC-EBJ neither “knows”
that the residual CSP is acyclic nor applies any additional effort to recognize that. The
algorithm just proceeds exploring the search space as before and the polynomial time
complexity of exploring the residual CSP “comes” automatically. We say that FC-EBJ
with a special ordering heuristic obliviously recognizes acyclic CSPs. Our last obser-
vation was that if this ordering heuristic is combined with nogood learning then the
resulting version of FC-EBJ obliviously recognizes acyclic clustered CSPs.

It is worth noting that the proposed method differs from the traditional approach of
compiling clusters and treating them as meta-variables with the set of solutions to the

158 I. Razgon and B. O’Sullivan

clusters as meta-values2. Instead, we implicitly apply a “lazy” compilation. That is,
solutions to clusters may be learned as nogoods if the underlying CSP is hard and,
in the worst case, the proposed algorithm has the same time and space complexity as
the traditional method. However, if the underlying CSP is not too hard, it might be
solved by the proposed algorithm without any compilation at all. This “compile when
needed” paradigm results in huge time savings, as witnessed by the work of Bayardo
and Miranker [3].

We begin the description of the proposed method from the formal definition of an
acyclic clustered CSP.

Definition 1 (Clustered Acyclic CSP). Let Z = (V, D, C) be a CSP and let SV =
{V1, . . . Vl} be a partition of V . Assume that each constraint in C constrains variables
that belong to at most two different elements of SV . Let H be a constraint graph of
Z i.e. a hypergraph with the vertices corresponding to V and the hyperedges corre-
sponding to the subsets of V , which are scopes of the constraints of C. Consider the
graph H ′ obtained from H by contracting the sets V1, . . . Vl to single vertices v1, . . . vl,
removing the loops, and replacing the multiple edges by single edges. (According to
our assumption all the edges of the resulting graph are binary). We denote by H ′ the
clustered graph of Z with respect to SV . We say that Z is a clustered acyclic CSP with
respect to SV , if H ′ is acyclic.

Figure 1 illustrates the notion of acyclic clustered CSP. The dots represent CSP vari-
ables. All the constraints are binary. The constrained variables are connected by lines.
The set of clusters SV = {{V1, V2, V3}, {V4, V5, V6}, {V7, V8, V9}}. Clearly, as a result
of contraction of these clusters, we get an acyclic constraint graph.

Fig. 1. Illustration of an acyclic clustered CSP

To proceed, we need to extend our notation regarding acyclic clustered CSPs. Let Z
and SV be as in Definition 1. We denote by M(Z, SV) the maximal number of partial
solutions of a CSP created by the variables of Vi (i.e. the CSP consisting of the variables
of Vi, their domains and the forbidden tuples assigning the variables of Vi only) among
all Vi ∈ SV . Let v be a variable of Z . We denote by Cl(v) the cluster of SV that v
belongs to.

Now, we combine the FC-EBJ solver (Section 2.2) with a nogood learning procedure.
Everytime a value 〈u, val〉 is removed, and the removal is justified by an eliminating
explanation P ′, the resulting algorithm records the nogood P ′ ∪ {〈u, val〉} in the store
of nogoods. Nogoods are discarded from the store according to the following algorithm.

2 In this setting recognizing clustered acyclic CSPs is equivalent to recognizing acyclic CSPs.

Efficient Recognition of Acyclic Clustered CSPs 159

Let (〈v1, val1〉, . . . , 〈vk, valk〉) be a nogood recorded in the store. Assume the as-
signments are listed in the chronological order of their appearance in the current partial
solution and the assignments that do not belong to the current partial solution are listed
at the end ordered arbitrarily. Assume that for some l < m < k, Cl(vl+1) = . . . =
Cl(vm) and Cl(vm+1) = . . . = Cl(vk) but Cl(vm) �= Cl(vk). Then the nogood is
stored until the assignment 〈vl, vall〉 becomes obsolete (removed from the current par-
tial solution). In other words, a nogood is stored until its obsolete part assigns variables
of 3 or more clusters. All the time the nogood is stored, it is considered by the algorithm
as a forbidden tuple. We call the resulting solver FC-EBJ-NL (NL is the abbreviation
of Nogood Learning).

Proving the properties of FC-EBJ-NL, we extensively use the notions defined below
(recall that P always denotes the current partial solution).

Definition 2 (Actual Forbidden Tuple). Let S be a forbidden tuple (either original or
dynamically acquired). We say that S is actual if it satisfies one of the following two
conditions:

– There is a removed value 〈u, val〉 ∈ S such that S \ {〈u, val〉} is the eliminating
explanation for 〈u, val〉.

– All the variables of V (S \ P) (recall that P is the current partial solution) are
unassigned and all the values of S \ P belong to the current domains of their
variables.

Thus a forbidden tuple is actual if it is either used for pruning domain values or still
may be violated by an extension of the current partial solution.

Definition 3 (Current CSP and Current Set of Clusters). Let P be the current
partial solution of FC-EBJ-NL applied to a CSP Z with a set of clusters SV .

– The current CSP Z ′ has the set of variables V (Z) \ V (P). The domain of each
variable u ∈ V (Z ′) is the current domain of this variable. The constraints are
defined as follows: for each actual forbidden tuple Q of Z including the values
of Z ′, the tuple Q \ P is forbidden in Z ′. (The definition includes the forbidden
tuples dynamically stored during the solution process at the considered moment of
execution of FC-EBJ-NL.)

– The current set of clusters SV ′ is obtained from SV by removing the variables
assigned by P from each cluster of SV .

The proposed class of ordering heuristics includes any ordering heuristic that satisfies
the following three conditions.

1. The first variable is selected arbitrarily.
2. Let u be the last assigned variable and let Vi be the cluster containing u. Assume

that Vi contains an unassigned variable. Then the variable assigned next to u be-
longs to Vi.

3. Assume that each cluster is either fully assigned or fully unassigned. Let V ′ be an
unassigned cluster sharing an actual forbidden tuple S (either original or dynami-
cally acquired) with the chronologically latest possible assigned cluster V ′′ (in the

160 I. Razgon and B. O’Sullivan

sense that S involves variables of both clusters). Then select any variable of V ′. If
there is no cluster V ′ as above, i.e. no assigned cluster shares an active forbidden
tuple with an unassigned cluster, then select an arbitrary variable.

The last item of the above description has a much simpler formulation for the bi-
nary case: select a variable whose domain values are removed because of conflicts with
the latest possible assigned cluster. We call the class of heuristics satisfying the above
conditions LCC, which is the acronym for Last Conflicting Cluster.

The main theorem regarding FC-EBJ-NL using a LCC heuristic is as follows.

Theorem 1 (Main Result). Assume that FC-EBJ-NL guided by a LCC heuristic is
applied to a CSP Z with a collection of clusters SV . Let P be the current partial solu-
tion, let Z ′ be the current CSP, and let SV ′ be the current set of clusters. Assume that
Z ′ is a clustered acyclic CSP with respect to SV ′. Then the algorithm checks whether
P can be extended to a full solution (and returns such a solution if yes, or refutes P if
no) in time M(Z ′, SV ′)2 ∗ (|SV ′| − 1).

Lemma 1. Assume that FC-EBJ-NL is applied to a CSP Z with a set of clusters SV
and consider an intermediate iteration that occurs during the processing of Z . Let P
be the current partial solution, Z ′ be the current CSP, and SV ′ be the current set of
clusters. Then the number of iterations spent by FC-EBJ-NL in order to check whether
P can be extended to a full solution equals the number of iterations spent by FC-EBJ-
NL in order to solve Z ′.

Proof of Lemma 1 is elementary but quite lengthy, we omit the proof due to space
constraints. According to Lemma 1, Theorem 1 is implied by the following theorem.

Theorem 2. Let Z be a clustered acyclic CSP with respect to a set of clusters SV .
Then FC-EBJ-NL guided by a LCC heuristic solves Z performing at most M(Z, SV)2∗
(|SV | − 1) backtracks.

Proof of Theorem 2. To prove Theorem 2, we recall the way the clusters of Z are as-
signed by the LCC heuristic. After the full assignment of the first cluster V1, the heuris-
tic selects the next cluster V2 such that V2 “shares” nogoods with the assignments of V1,
the next cluster V3 is selected on the same principle with respect to V2 and, if impos-
sible, with respect to V1. Proceeding analogously, having assigned clusters V1, . . . , Vk,
the algorithm selects the next cluster Vk+1 so that it is constrained with the assignments
of an already assigned cluster Vi, 1 ≤ i ≤ k, such that i is as large as possible.

However, the above process is not always successful. It may happen that after as-
signing clusters V1, . . . , Vk no unassigned cluster is constrained with the assignments
of these clusters. In this case, the clusters V1 . . . Vk constitute a link and the algorithm
starts a new link. The partial solution P consists of a number of consecutive links. Each
link has the root, i.e. the cluster, which is fully assigned first. Each cluster Vi of a link
which is not the root of the link has a parent, i.e. the cluster which certified the addition
of Vi to the link (in the last item of the description of the LCC heuristics, cluster V ′′

certifies the addition of cluster V ′ to a link). This structure of the current partial solution
allows us to prove the following lemma.

Efficient Recognition of Acyclic Clustered CSPs 161

Lemma 2. Assume that FC-EBJ-NL guided by the LCC heuristic discards a value
〈u, val〉 at some state during its execution and associates it with the eliminating ex-
planation T . Then T ′ = T ∪ {〈u, val〉} assigns at most two clusters. Moreover, if a
cluster V ′ other then Cl(u) is assigned by T ′ then

– Cl(u) is not assigned by the current partial solution or V ′ is the parent of Cl(u);
– Vi and Cl(u) are adjacent in the cluster graph of Z .

Proof of Lemma 2 (sketch). We consider the chronological sequence of eliminating ex-
planations generated by FC-EBJ-NL and apply induction on this sequence. Let T ′ be
the first eliminating explanation generated by FC-EBJ-NL. Clearly, T ′ is a forbidden
tuple of Z , hence the adjacency condition holds automatically for this case. According
to the structure of Z ′, T ′ assigns at most two clusters. Assume that Cl(u) is partially
assigned and let us show that if T ′ assigns exactly two clusters then it assigns, besides
Cl(u), the parent Vi of Cl(u). Assume that T ′ assigns a cluster Vj other than Vi. Ob-
serve first that Vi and Vj are both fully assigned.

If Vi and Vj belong to the same link then, according to the behaviour of the LCC
heuristic, there is a path from Vi to Vj in the clustered tree which includes only assigned
clusters of their link. Since T ′ is the first nogood generated by FC-EBJ-NL, the next
cluster is selected as sharing an original forbidden tuple with the previous clusters.
Therefore clusters that get to the same link induce a connected subgraph of the clustered
graph of Z . On the other hand, there is a path from Vi to Vj through Cl(u), which is
not fully assigned (u is unassigned at the moment 〈u, val〉 is removed). It follows that
there are two paths from Vi to Vj in the clustered tree, a contradiction.

If Vi and Vj belong to different links then T ′ is a forbidden tuple connecting clusters
Vj and Cl(u). If at the moment the link of Vj is fully assigned, all the values of T ′ are
valid then we get contradiction to that fact that the new link is started. If some of the
values of T ′ are removed, they are associated with eliminating explanations involving
the variables of the link of Vj or an earlier link. In any case, it is a contradiction that
Cl(u) belongs to a link assigned later than the link of Vj .

Consider now a nogood T ′ with the assumption that the eliminating explanations
generated prior to it satisfy the conditions of the lemma. The following claims hold at
the moment of generating T ′ (their proofs are omitted due to space constraints).

1. Each cluster of an existing link is adjacent to its parent in the clustered graph of Z .
2. Let Vj and Vk be two clusters assigned by a stored actual nogood S and assigned

by the current partial solution. Then one of them is the parent of the other.

Given the above observations, we prove the present lemma for each possible way a
new nogood T ′ may be generated.

– T ′ is an original or acquired forbidden tuple. By the structure of Z ′ and the
induction assumption, T ′ assigns at most two clusters. If T ′ assigns exactly two
clusters, assume that Cl(u) is assigned by the current partial solution and we prove
that the other assigned cluster is the parent Vi of Cl(u). If we assume that the other
assigned cluster is some Vj that belongs to another link then we get a contradiction,
analogously to the basic case. If we assume that the other assigned cluster belongs

162 I. Razgon and B. O’Sullivan

to the same link as Cl(u) then applying the first observation from the above list and
the induction assumption, we derive the existence of a cycle in the clustered graph
of Z .

– T ′ is the union of eliminating explanations of a variable v with the empty do-
main. If Cl(v) is assigned by the current partial solution then, by the second ob-
servation from the above list, the nogood associated with each value of v assigns
the parent of V (if it assigns any cluster besides Cl(v)). Clearly, the union of the
eliminating explanations has the same form. If Cl(v) is not assigned by the current
partial solution then assume that there are two nogoods T1 and T2 associated with
values of v which assign distinct clusters, both different from Cl(v). By the induc-
tion assumption, both these clusters are adjacent to Cl(v) in the clustered graph of
Z hence they belong to different links. Assume that T1 involves an earlier assigned
link. This means that there is an actual forbidden tuple involving variables of that
link in contradiction to the fact that a new link has been started. �

Thus Lemma 2 proves that nogoods discovered by FC-EBJ-NL assign at most two
clusters and if two clusters are assigned, they are adjacent in the clustered tree of the un-
derlying CSP. For each pair of clusters there are at most M(Z, SV)2 possible nogoods
assigning those clusters. Also there are |SV | − 1 pairs of adjacent clusters. Hence, the
number of nogoods of the above type is at most M(Z, SV)2 ∗ (|SV | − 1). Each no-
good, once recorded in the nogood store, is never removed from there because, to be
removed, a nogood must assign at least three different clusters. It follows that no no-
good is discovered by a backtrack more than once. Consequently, FC-EBJ-NL spends
at most M(Z, SV)2 ∗ (|SV | − 1) backtracks solving a clustered acyclic CSP. Thus we
have proved Theorem 2 and, as a result, Theorem 1. �

4 Enhancements of the Basic Recognition Algorithm

In this section we discuss two modifications of the FC-EBJ-NL algorithm presented in
Section 3. The first modification introduces achieving arc-consistency as the constraint
propagation method. The second modification simplifies the procedure of nogood
learning.

4.1 Recognizing Acyclic CSP Together with MAC

Let us formulate the MAC-EBJ-NL algorithm. In addition to the propagation performed
by FC-EBJ-NL, MAC-EBJ-NL removes unsupported values. More precisely, let u and
v be two unassigned variables. If MAC-EBJ-NL detects that a value 〈u, val〉 of the
current domain of u is inconsistent with all the values of the current domain of v (in the
sense that 〈u, val〉 has binary conflicts with all these values either existing or produced
by propagation of non-binary forbidden tuples), the following operations are performed:
computing S, the union of eliminating explanations of all the values of v; removing
〈u, val〉 and associating it with eliminating explanation S; recording S ∪ {〈u, val〉} in
the nogood store.

We consider two versions of MAC-EBJ-NL. In the first version, which we call Clus-
tered MAC-EBJ-NL, variables u and v, as above, must belong to the same cluster, i.e.

Efficient Recognition of Acyclic Clustered CSPs 163

Cl(u) = Cl(v). In other words, 〈u, val〉 is not removed if it is unsupported by variable
v that does not lie in the same cluster as u does. The second version of MAC-EBJ-NL
performs full MAC, checking any pair (u, v) of constrained variables.

It turns out that Clustered MAC-EBJ-NL preserves the property of FC-EBJ-NL, that
is, recognizes a clustered acyclic CSP Z performing at most M(Z, SV)2 ∗ (|SV | − 1)
backtracks. Observe that the nogood T resulting from removing 〈u, val〉 unsupported
by a variable v consists of 〈u, val〉 and the union of eliminating explanations of all the
removed values of v. Applying the same induction principle as in Lemma 2, we may
assume that the union of the eliminating explanations assigns, besides Cl(v), at most
one cluster V ′. If Cl(u) = Cl(v) then clearly the resulting nogood T preserves the
same property.

Surprisingly enough, full MAC-EBJ-NL does not preserve this property of FC-EBJ-
NL. The reason is that when a value 〈u, val〉 is removed as being unsupported by a
variable v from another cluster, the nogood produced as a result does not necessarily
satisfy the conditions stated in Lemma 2. In particular, if Cl(v) is an assigned cluster
and Cl(u) is not the parent of Cl(v) then, as a result of removing 〈u, val〉, the obtained
nogood might contain three clusters: Cl(v), the parent of Cl(v), and Cl(u). One can
show that because of the above phenomenon, nogoods assigning an arbitrary number
of clusters may be generated and a bad ordering of values can cause an exponential
number of generated nogoods. We omit the complete proof of this fact due to space
constraints.

4.2 Simplifying the Nogood Learning Procedure

FC-EBJ-NL uses quite a complicated mechanism for removing obsolete nogoods. This
mechanism is useful for the proof of Theorem 1 but it might be difficult for the practical
implementation. In this section we present an alternative nogood learning procedure and
show that FC-EBJ combined with this procedure efficiently recognizes acyclic clustered
CSPs.

The proposed mechanism of learning allocates K “slots” for nogoods given some
predefined constant K . Initially all these slots are empty. The first learned nogood is
stored in the first slot, the next nogood is stored in the second one, then in the third and
so on. No nogood is discarded until all the slots are occupied. Once this happens, the
first nogood stored after that goes to the first slot erasing the nogood stored there before
that, the next one goes to the second slot with the same effect and so on. In other words,
this is a mechanism of nogood learning that uses a store of a constant size and removes
the “oldest” nogood in case of overflow.

The following proposition, whose proof is omitted due to space constraints, makes
the above storage useful for our purposes.

Proposition 1. Fix some two states during the execution of a constraint solver which
uses the above nogood recording mechanism. Assume that at most K nogoods are
stored by the solver between these two states. Then none of these K nogoods is erased
until the second state is reached.

Given a CSP Z with the set of clusters SV , set K = M(Z, SV)2 ∗ (|SV | − 1). As-
sume that at some moment during the execution of FC-EBJ-NL, the current CSP is a

164 I. Razgon and B. O’Sullivan

clustered acyclic one. By Theorem 1, in order to recognize an acyclic CSP, FC-EBJ-NL
detects at most K nogoods provided that no one of them is discarded during the process
of recognition. According to the Proposition 1, the presented mechanism of nogood
learning guarantees they are not discarded. It follows that acyclic clustered CSPs can be
efficiently recognized given the presented nogood learning mechanism which is much
simpler than the one described in Section 3.

5 Experimental Evaluation

In this section we report results of an empirical evaluation carried out in order to assess
the practical merits of our approach to efficiently recognize acyclic clustered CSPs.
We performed experiments on clustered random problems. We generated these prob-
lems using the following parameters: number of variables (num var); domain size
(dom size); size of cluster (size cluster), which always divides num var; the num-
ber of clusters (num clusters = num var/size cluster); additional connectivity
(add connect), a number from 0 to 99; cluster density (cp1); cluster tightness (cp2);
external density (ep1); external tightness (ep2).

Given these parameters, a CSP is generated by the following process:

1. Create the graph of clusters GC. Create num cluster vertices v1, . . . ,
vnum clusters. Then generate a tree on these vertices as follows. First the tree con-
sists of vertex v1. Assume that the current tree consists of vertices v1, . . . , vi. The
new vertex vi+1 is connected to one of the existing vertices selected uniformly at
random. Having created the spanning tree, additional edges are introduced as fol-
lows. For each pair of non-adjacent vertices of the tree, a number between 0 to 99
is chosen at random. If this number is smaller than add connect then the corre-
sponding edge is introduced.

2. Fill each cluster with variables. For each cluster, size cluster variables are gen-
erated. One of these variables per cluster has dom size/2 values in its domain (or
(dom size−1)/2 in case dom size is odd). The domain size of the rest of the vari-
ables in a cluster is dom size. The reason of introducing one variable per cluster
with a smaller domain size will be clear when we present the experimental results.

3. Create conflicts within clusters. This is done analogously to the well-known gen-
erator of Prosser [15] given parameters cp1 and cp2 which are analogous to the
parameters p1 and p2 introduced by Prosser, respectively. In particular, the param-
eter cp1 serves as the probability that there is a constraint between two particular
variables in the given cluster. If the constraint exists, the parameter cp2 determines
the probability of a conflict between two values of the given variables.

4. Create conflicts between variables of different clusters. For each pair of vari-
ables u and v that belong to different clusters connected by an edge in GC, param-
eter ep1 serves as the probability that there is a constraint between u and v. If the
constraint exists, the parameter ep2 serves as the probability that the given pair of
values, one from u, the other from v, are conflicting.

In our experiments we took num var = 100, dom size = 10, size cluster = 10.
That is, the generated CSPs have 100 variables partitioned into 10 clusters, 10 variables

Efficient Recognition of Acyclic Clustered CSPs 165

in each one. The additional connectivity is selected to be 5, that is, the topology of
the graph of clusters is close to a tree. We performed tests for two values of cluster
density: 80% and 90%. We selected just these values because clusters must be dense “by
definition”. For cluster density of 80% we chose the cluster tightness of 30%, for cluster
density of 90% the chosen cluster tightness is 25%. The external density is always 10%.
The external tightness is the varied parameter.

The rest of the section is divided into 2 subsections. In the first subsection we com-
pare MAC-based algorithms, in the second subsection FC-based algorithms are com-
pared.

5.1 Comparison of MAC-Based Algorithms

We have tested the following MAC-based algorithms:

– MAC-EBJ, i.e. the solver that maintains arc-consistency, records eliminating
explanations for the removed values but employs no nogood learning. The smallest-
domain first (a Fail-First – FF) heuristic [9], i.e. the heuristic that selected the small-
est domain first, was used to guide the search performed by MAC-EBJ.

– MAC-EBJ-NL with the FF heuristic (referred as MAC-EBJ-NL-FF), i.e. the solver
like the previous one with the only difference that a nogood learning mechanism is
employed.

– MAC-EBJ-NL with a LCC heuristic (referred as Full MAC-EBJ-NL-LCC). The
ties are broken by the FF heuristic, i.e. every time when a set of variables may be
selected by the LCC heuristic, the one with the smallest domain is selected from
this set.

– The same solver as the previous one but performing Clustered MAC (referred as
Clustered MAC-EBJ-NL-LCC).

The algorithms above are tested on the two sets of instances presented in the intro-
ductory part of the section. We now explain why the instances are designed so that there
is one variable per cluster with a smaller domain. This is done in order to “fool” the FF
heuristic. Without that trick, the FF heuristic guides the search pretty much like an LCC
heuristic which make the comparison of LCC and FF heuristics senseless.

Figures 2 and 3 show the behaviour of the last three solvers on sets of instances pre-
sented at the introductory part of the section. All the solvers use the simplified nogood
learning mechanism described in Section 4.2. The size of the store is 10000 nogoods.
The computational effort is measured in the number of backtracks. For each set of pa-
rameters, the result is obtained as the average of 50 runs. A run is stopped if it takes
more than 50000 backtracks.

According to our experiments, MAC-EBJ (the solver mentioned first) was unable
to solve most of the problems in the allocated number of iterations, hence we do not
illustrate its behaviour in the figures.

One can see that both Full and Clustered MAC-EBJ-NL-LCC essentially outperform
MAC-EBJ-NL-FF. In particular, for density of 90% at the phase transition region, Full
MAC-EBJ-NL-LCC performs about 8 times better and Clustered MAC-EBJ-NL-LCC
performs about 3 times better then MAC-EBJ-NL-FF. Note also that Clustered MAC-
EBJ-NL-LCC outperforms MAC-EBJ-NL-FF doing much less constraint propagation.

166 I. Razgon and B. O’Sullivan

Fig. 2. Comparison of MAC-based algo-
rithms, 80% density

Fig. 3. Comparison of MAC-based algo-
rithms, 90% density

Specifically, the Clustered MAC-EBJ-NL-LCC only propagates within its current clus-
ter, but this is sufficient to improve upon MAC-EBJ-NL-FF. However, when we use our
cluster-based search ordering heuristics we can fully propagate using MAC and gain
some additional improvements, up to a factor of 3, over Clustered MAC-EBJ-NL-LCC.

5.2 Comparison of FC-Based Algorithms

We have tested the following FC-based algorithms:

– FC-EBJ guided by FF heuristic that does not do any nogood learning. This solver is
referred to as FC-EBJ-FF-WL (the last two letters abbreviate ‘Without Learning’).

– FC-EBJ-NL guided by the FF heuristic (referred as FC-EBJ-NL-FF).
– FC-EBJ-NL guided by the LCC heuristic (referred as FC-EBJ-NL-LCC). The

breaking of ties is the same as in the case of MAC.

The algorithms that used the nogood learning mechanism are presented in Section 4.2.
The algorithms have been tested on almost the same sets of instances as MAC-based al-
gorithms with the only difference that for the cluster density 90% we have reduced the
add connect parameter to 4 because for value 5 of that parameter, all the algorithms
took too long time to solve the resulting instances. The computational effort, as before,
is measured in the number of backtracks, for each set of parameters 50 runs were ap-
plied with taking the average, the algorithms were stopped if they did more than 108

consistency checks. The experimental results are presented in Figure 4 and 5.
One can clearly observe that the nogood learning considerably improves the per-

formance of the algorithms: both FC-EBJ-NL-FF and FC-EBJ-NL-LCC do much bet-
ter than FC-EBJ-FF-WL. In particular, FC-EBJ-NL-LCC is about 12 times better than

Efficient Recognition of Acyclic Clustered CSPs 167

Fig. 4. Comparison of FC-based algorithms,
80% density

Fig. 5. Comparison of FC-based algorithms,
90% density

FC-EBJ-FF-WL for both considered groups of instances at the phase transition. These
results correlate with the results of Bayardo and Miranker [3] on restricted nogood
learning. Also FC-EBJ-NL-LCC is better than FC-EBJ-NL-FF but the rate of improve-
ment is smaller than in the case when FC is replaced by MAC. It follows that the class
of LCC heuristics are best applicable for MAC-based solvers.

6 Conclusion

It is well known that constraint graphs that are high clustered can be very challenging
to solve using search-based methods. On the other hand, methods based on compilation
require exponential space in the worst case. In this paper we have presented a novel
algorithm for solving clustered CSPs efficiently. This algorithm can detect and exploit
a tractable case automatically. Experimental results show the efficiency of our approach
on large clustered CSPs.

References

1. Arnborg, S.: Efficient algorithms for combinatorial problems on graphs with bounded,
decomposability–a survey. BIT 25(1), 2–23 (1985)

2. Bacchus, F.: Extending forward checking. Principles and Practice of Constraint Program-
ming 35–51 (2000)

3. Bayardo, R.J., Miranker, D.P.: An optimal backtrack algorithm for tree-structured constraint
satisfaction problems. Artif. Intell. 71(1), 159–181 (1994)

4. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybernetica 11, 1–21 (1993)

168 I. Razgon and B. O’Sullivan

5. Dechter, R., Pearl, J.: Network-based heuristics for constraint-satisfaction problems. Artif.
Intell. 34(1), 1–38 (1987)

6. Dechter, R., Pearl, J.: Tree clustering for constraint networks. Artif. Intell. 38(3), 353–366
(1989)

7. Freuder, E.C.: Complexity of k-tree structured constraint satisfaction problems. In: AAAI,
pp. 4–9 (1990)

8. Ginsberg, M.L.: Dynamic backtracking. J. Artif. Intell. Res (JAIR) 1, 25–46 (1993)
9. Haralick, R.M., Elliott, G.L.: Increasing tree search efficiency for constraint satisfaction

problems. Artif. Intell. 14(3), 263–313 (1980)
10. Harrelson, C., Hildrum, K., Rao, S.: A polynomial-time tree decomposition to minimize

congestion. In: Proceedings of the ACM symposium on Parallel algorithms and architectures,
pp. 34–43. ACM Press, New York (2003)

11. Jegou, P., Terrioux, C.: Hybrid backtracking bounded by tree-decomposition of constraint
networks. Artif. Intell. 146(1), 43–75 (2003)

12. Jussien, N., Debruyne, R., Boizumault, P.: Maintaining arc-consistency within dynamic
backtracking. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 249–261. Springer, Hei-
delberg (2000)

13. Koster, A.M.C.A., van Hoesel, S.P.M., Kolen, A.W.J.: Solving frequency assignment prob-
lems via tree-decomposition. Research Memoranda 036, METEOR (1999)

14. Prosser, P.: Hybrid Algorithms for the Constraint Satisfaction Problem. Computational Intel-
ligence 9, 268–299 (1993)

15. Prosser, P.: Binary constraint satisfaction problems: Some are harder than others. In: ECAI,
pp. 95–99 (1994)

16. Sabin, D., Freuder, E.C.: Contradicting conventional wisdom in constraint satisfaction. In:
ECAI, pp. 125–129 (1994)

17. Sadeh, N.M., Sycara, K.P., Xiong, Y.: Backtracking techniques for the job shop scheduling
constraint satisfaction problem. Artif. Intell. 76(1-2), 455–480 (1995)

18. Weigel, R., Faltings, B.: Compiling constraint satisfaction problems. Artificial Intelli-
gence 115, 257–289 (1999)

19. Williams, R., Gomes, C.P., Selman, B.: Backdoors to typical case complexity. In: IJCAI, pp.
1173–1178 (2003)

20. Xu, J., Jiao, F., Berger, B.: A tree-decomposition approach to protein structure prediction.
In: 2005 IEEE Computational Systems Bioinformatics Conference (CSB’05), pp. 247–256.
IEEE Computer Society Press, Los Alamitos (2005)

	Introduction
	Background
	Terminology
	The FC-EBJ Algorithm

	Recognizing Clustered Acyclic CSPs
	Enhancements of the Basic Recognition Algorithm
	Recognizing Acyclic CSP Together with MAC
	Simplifying the Nogood Learning Procedure

	Experimental Evaluation
	Comparison of MAC-Based Algorithms
	Comparison of FC-Based Algorithms

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

