
Constraints of Difference and Equality: A
Complete Taxonomic Characterisation?

Emmanuel Hebrard1, Dániel Marx2, Barry O’Sullivan1, and Igor Razgon1

1 Cork Constraint Computation Centre
Department of Computer Science, University College Cork, Ireland

{e.hebrard|b.osullivan|i.razgon}@4c.ucc.ie
2 Budapest University of Technology and Economics

Budapest, Hungary
dmarx@cs.bme.hu

Abstract. Many combinatorial problems encountered in practice in-
volve constraints that require that a set of variables take distinct or
equal values. The AllDifferent constraint, in particular, ensures that
all variables take distinct values. Two soft variants of this constraint
were proposed in [4], defined either with respect to a so-called variable
or graph-based cost function. When requiring similarity, as opposed to
diversity, one can consider the dual definition either for the cost or for
the basic constraint itself, that is, AllEqual in our case. Six cost func-
tions can be defined by exploring every combination of these definitions.
It is therefore natural to study the complexity of achieving arc consis-
tency and bounds consistency on them. From our earlier work on this
topic an open problem remained, namely achieving bounds consistency
on the maximisation of the SoftAllDiff constraint when considering
the graph-based cost. In this paper we resolve this problem. Therefore,
we give a complete taxonomy of constraints of equality and difference,
based on the alternative objective functions used for the soft variants.

1 Introduction

Constraints for reasoning about the diversity or similarity of a set of variables are
ubiquitous in constraint programming. For example, in a university timetabling
problem we will want to ensure that all courses taken by a particular student are
held at different times. Similarly, in meeting scheduling we will want to ensure
that the participants of a meeting are scheduled to meet at the same time and in
the same place. Sometimes, when the problem is over-constrained, we may wish
to maximise the extent to which these constraints are satisfied. Consider again
our timetabling example: we might wish to maximise the number of courses that
are scheduled at different times when a student’s preferences cannot all be met.

? Hebrard, O’Sullivan and Razgon are supported by Science Foundation Ireland (Grant
Number 05/IN/I886). Marx is supported by the Magyary Zoltán Felsőoktatási
Közalaṕıtvány and the Hungarian National Research Fund (OTKA grant 67651).

In a constraint programming setting, these requirements are normally speci-
fied using global constraints. One of the most commonly used global constraints
is the AllDifferent [6], which enforces that all variables take pair-wise differ-
ent values. A soft version of the AllDifferent constraint, the SoftAllDiff,
has been proposed by the authors of [4]. They proposed two cost metrics for
measuring the degree of satisfaction of the constraint, which are to be min-
imised or maximised: graph- and variable-based cost. The former counts the num-
ber of equalities, whilst the latter counts the number of variables, violating an
AllDifferent constraint. When we wish to enforce that a set of variables take
equal values, we can use the AllEqual, or its soft variant, the SoftAllEqual
constraint, which we recently introduced [3].

When considering these two constraints (AllDifferent and AllEqual),
these two costs (graph-based and variable-based) and objectives (minimisation
and maximisation) we can define eight algorithmic problems related to con-
straints of difference and equality. In fact, because the graph-based costs of
AllDifferent and AllEqual are dual, only six distinct problems are defined.

When we introduced the SoftAllEqual constraint one open problem re-
mained: namely, the design of an algorithm for achieving bounds consistency
on the SoftAllEqual constraint when the objective is to maximise the num-
ber of equalities achieved in the decomposition graph of the constraint, i.e. the
SoftAllEqual constraint defined by the graph-based cost. In this paper we
resolve this open question, and propose an efficient bounds consistency algorithm
for this case. This result enables us to fully characterise the complexity of achiev-
ing arc consistency and bounds consistency on each of the eight constraints in
this class. This paper, therefore, provides a complete taxonomy of constraints of
difference and equality.

The remainder of this paper is organised as follows. In Section 2 we intro-
duce the necessary technical background. A complete taxonomy of constraints
of equality and difference is presented in Section 3. In Section 4 we present the
main technical contribution of the paper, namely the complexity of achieving
bounds consistency on the SoftAllEqual when the objective is to optimise
the graph-based cost. A filtering algorithm is proposed in Section 5. Concluding
remarks are made in Section 6.

2 Background

Constraint Satisfaction. A constraint satisfaction problem (CSP) is a triplet
P = (X ,D, C) where X is a set of variables, D a mapping of variables to sets of
values (without loss of generality, we assume D(X) ⊂ Z for all X ∈ X , and we
denote by min(X) and max(X) the minimum and maximum values in D(X),
respectively) and C a set of constraints that specify allowed combinations of
values for subsets of variables. An assignment of a set of variables X is a set
of pairs S such that |X | = |S| and for each (X, v) ∈ S, we have X ∈ X and
v ∈ D(X). A constraint C ∈ C is arc consistent (ac) iff, when a variable in
the scope of C is assigned any value, there exists an assignment of the other

variables in C such that C is satisfied. This satisfying assignment is called a
domain support for the value. Similarly, we call a range support an assignment
satisfying C, but where values, instead of being taken from the domain of each
variable (v ∈ D(X)), can be any integer between the minimum and maximum of
this domain following the natural order on Z, that is, v ∈ [min(X), . . . ,max(X)].
A constraint C ∈ C is range consistent (rc) iff, every value of every variable in
the scope of C has a range support. A constraint C ∈ C is bounds consistent
(bc) iff, for every variable X in the scope of C, min(X) and max(X) have a
range support. Given a CSP P = (X ,D, C), we shall use the following notation
throughout the paper: n shall denote the number of variables, i.e., n = |X |; m
shall denote the number of distinct unary assignments, i.e., m =

∑
X∈X |D(X)|;

Λ shall denote the total set of values, i.e., Λ =
⋃
X∈X D(X); finally, λ shall

denote the total number of distinct values, i.e., λ = |Λ|;

Soft Global Constraints. Adding a cost variable to a constraint to represent
its degree of violation is now common practice in constraint programming. This
model was introduced in [7]. It offers the advantage of unifying hard and soft
constraints since arc consistency, along with other types of consistencies, can be
applied to such constraints with no extra effort. As a consequence, classical con-
straint solvers can solve over-constrained problems modelled in this way without
modification. This approach was applied to a number of other constraints, for
instance in [9].

Two natural cost measures have been explored for the AllDifferent and
for a number of other constraints. The variable-based cost counts how many vari-
ables need to change in order to obtain a valid assignment for the hard constraint.
The graph-based cost counts how many times a component of a decomposition of
the constraint is violated. Typically these components correspond to edges of a
decomposition graph, e.g. for an AllDifferent constraint, the decomposition
graph is a clique and an edge is violated if and only if both variables connected
by this edge share the same value. For instance, still for the AllDifferent
constraint, the following example shows two solutions involving four variables
X1, . . . , X4 each with domain {a, b}:

S1 = {(X1, a), (X2, b), (X3, a), (X4, b)}

S2 = {(X1, a), (X2, b), (X3, b), (X4, b)}

In both solutions, at least two variables must change (e.g., X3 and X4) to obtain
a valid solution. Therefore, the variable-based cost is 2 for S1 and S2. However,
in S1 only two edges are violated, (X1, X3) and (X2, X4), whilst in S2, three
edges are violated, (X2, X3), (X2, X4) and (X3, X4). Thus, the graph-based cost
of S1 is 2 whereas it is 3 for S2.

3 Taxonomy

In this section we introduce the taxonomy of the soft constraints related to
AllDifferent and AllEqual. We consider the eight algorithmic problems

AllEqualAllDifferent

SoftAllEqualmin
V

SoftAllEqualmax
VSoftAllDiffmax

VSoftAllDiffmin
V SoftAllEqualmax

G

SoftAllDiffmin
G SoftAllEqualmin

G

SoftAllDiffmax
G

ALLDIFFERENT and ALLEQUAL are dual, only six different problems are thus de-
fined. In this section we introduce the taxonomy of the soft constraints related to
ALLDIFFERENT and ALLEQUAL defined by these parameters. We close the last re-
maining cases: the complexity of achieving BC on SOFTALLDIFFmax

G as well as that
of achieving AC and BC SOFTALLEQUALmin

V . Whilst the latter is almost trivial, the
former required involved proofs (Sections 4 and 5). Thanks to these results, Table 1
can now be completed.

AC O(n
√

m) NP-hard O(nm) NP-hard O(m) O(
√

nm)
BC O(n

√
m) O(nlog(n)) O(nm) O(min(λ3, n3)m) O(m) O(nlog(n))

We use the following example, showing a possible assignment of a set of seven
variables, to illustrate the different costs.

X1 : a,X2 : a,X3 : a,X4 : b, X5 : b, X6 : c, X7 : d (1)

SofAllDifferent, Variable-based cost, Minimisation:

Definition 1 (SOFTALLDIFFmin
V)

SOFTALLDIFFmin
V ({X1, ..Xn}, N)⇔

N ≥ n− |{v | Xi = v}|.

Here the cost to minimise is the number of variables that need to be changed in
order to obtain a solution satisfying an ALLDIFFERENT constraint. For instance, on
Example 1, the cost is 3. This objective function was first studied in [?] where the
authors give an algorithm for achieving AC in O(n

√
m). To our knowledge, no algo-

rithm with better time complexity for the special case of bounds consistency has been
proposed for this constraint.

SofAllDifferent, Variable-based cost, Maximisation:

Definition 2 (SOFTALLDIFFmax
V)

SOFTALLDIFFmax
V ({X1, ..Xn}, N)⇔
N ≤ n− |{v | Xi = v}|.

Here the same cost is to be maximised. In other words, we want to minimise the
number of distinct values assigned to the given set of variables, since the complement
of this number to n is exactly the number of variables to modify in order to obtain a
solution satisfying an ALLDIFFERENT constraint. For instance, on Example 1, the cost
is 3 and the number of distinct values is 7−3 = 4. This constraint was studied under the
name AtMostNValues in [?] where the authors introduce an algorithm in O(nlog(n))
to achieve BC, and in [?] where the authors show that achieving AC is NP-hard since
the problem is isomorphic to MIN HITTING SET.

3

variable-based cost graph-based costgraph-based cost variable-based cost

ac O(n
√
m) NP-hard O(nm) NP-hard O(m) O(

√
nm)

bc O(n
√
m) O(nlog(n)) O(nm) O(min(λ2, n2)nm) O(m) O(nlog(n))

Fig. 1. Complexity of optimising difference and equality.

related to constraints of difference and equality defined by combining these
two constraints, two costs (graph-based and variable-based), and two objec-
tives (minimisation and maximisation). In fact, because the graph-based costs
of AllDifferent and AllEqual are dual, only six different problems are
thus defined. We close the last remaining cases: the complexity of achieving
ac and bc SoftAllEqualminV in this section, and that of achieving bc on
SoftAllDiffmaxG in Sections 4 and 5. Based on these results, Figure 1 can now
be completed.

The next six paragraphs correspond to the six columns of Figure 1, i.e., to the
twelve elements of the taxonomy. For each of them, we briefly outline the current
state of the art, using the following assignment as a running example to illustrate
the various costs: S3 = {(X1, a), (X2, a), (X3, a), (X4, a), (X5, b), (X6, b), (X7, c)}.

SoftAllDiff: Variable-based cost, Minimisation.

Definition 1 (SoftAllDiffminV).

SoftAllDiffminV ({X1, ..Xn}, N)⇔ N ≥ n− |{v | Xi = v}|.

Here the cost to minimise is the number of variables that need to be changed
in order to obtain a solution satisfying an AllDifferent constraint. For in-
stance, the cost of S3 is 4 since three of the four variables assigned to a as well as
one of the variables assigned to b must change. This objective function was first
studied in [4] where the authors give an algorithm for achieving ac in O(n

√
m).

To our knowledge, no algorithm with better time complexity for the special case
of bounds consistency has been proposed for this constraint.

SoftAllDiff: Variable-based cost, Maximisation.

Definition 2 (SoftAllDiffmaxV).

SoftAllDiffmaxV ({X1, ..Xn}, N)⇔ N ≤ n− |{v | Xi = v}|.

Here the same cost is to be maximised. In other words, we want to minimise
the number of distinct values assigned to the given set of variables, since the
complement of this number to n is exactly the number of variables to modify

in order to obtain a solution satisfying an AllDifferent constraint. For in-
stance, the cost of S3 is 4 and the number of distinct values is 7 − 4 = 3. This
constraint was studied under the name AtMostNValues in [1] where the au-
thors introduce an algorithm in O(nlog(n)) to achieve bc, and in [2] where the
authors show that achieving ac is NP-hard since the problem is isomorphic to
Min Hitting Set.

SoftAllDiff: Graph-based cost, Minimisation & SoftAllEqual: Graph-based
cost, Maximisation.

Definition 3 (SoftAllDiffminG ' SoftAllEqualmaxG).

SoftAllDiffminG ({X1, ..Xn}, N)⇔ N ≥ |{{i, j} | Xi = Xj & i 6= j}|.

Here the cost to minimise is the number of violated constraints when de-
composing AllDifferent into a clique of binary NotEqual constraints. For
instance, the cost of S3 is 7 since four variables share the value a (six violations)
and two share the value b (one violation). Clearly, it is equivalent to maximising
the number of violated binary Equal constraints in a decomposition of a global
AllEqual. Indeed, these two costs are complementary to

(
n
2

)
of each other (on

S3: 7 + 14 = 21). An algorithm in O(nm) for achieving ac on this constraint
was introduced in [8]. Again, to our knowledge there is no algorithm improving
this complexity for the special case of bc.

SoftAllEqual: Graph-based cost, Minimisation & SoftAllDiff: Graph-based
cost Maximisation.

Definition 4 (SoftAllEqualminG ' SoftAllDiffmaxG).

SoftAllEqualminG ({X1, ..Xn}, N)⇔ N ≥ |{{i, j} | Xi 6= Xj & i 6= j}|.

Here we consider the same two complementary costs, however we aim at
optimising in the opposite way. In [3] the authors show that achieving ac on
this constraint is NP-hard, however the complexity of achieving bc is left as
an open question. In this paper we show that computing the optimal cost can
be done in O(min(nλ2, n3)) thus demonstrating that bc can be achieved in
polynomial time.

SoftAllEqual: Variable-based cost, Minimisation.

Definition 5 (SoftAllEqualminV).

SoftAllEqualminV ({X1, ..Xn}, N)⇔ N ≥ n−maxv∈Λ(|{i | Xi = v}|)

Here the cost to minimise is the number of variables that need to be changed
in order to obtain a solution satisfying an AllEqual constraint. For instance,
the cost of S3 is 3 since four variables already share the same value. This is
equivalent to maximising the number of variables sharing a given value. There-
fore this bound can be computed trivially by counting the occurrences of every

value in the domains, that is, in O(m). On the other hand, pruning the domains
according to this bound without degrading the time complexity is not as trivial,
so we show how it can be done.

Theorem 1. ac on SoftAllEqualminV can be achieved in O(m) steps.

Proof. We suppose, without loss of generality, that the current upper bound on
the cost is k. We first compute the number of occurrences occ(v) for each value
v ∈ Λ, which can be done in O(m). There are three cases to consider:

1. First, consider the case where no value appears in n − k domains or more
(∀v ∈ Λ, occ(v) < n− k). In this case the constraint is violated, hence every
value is inconsistent.

2. Second, consider the case where at least one value v appears in the domains
of at least n − k + 1 variables (∃v ∈ Λ, occ(v) > n − k). In this case we
can build a support for every value w ∈ D(X) by assigning all variables in
X \ X with v if possible. The resulting assignment has a cost of k, hence
every value is consistent.

3. Otherwise, if neither of the two cases above hold, we know that no value
appears in more than n − k domains, and that at least one appears n − k
times, let W denote the set of such values. In this case, the pair (X, v) is
inconsistent iff v 6∈W & W ⊂ D(X).
We first suppose that this condition does not hold and show that we can
build a support. If v ∈W then clearly we can assign every possible variable
to v and achieve a cost of k. If W 6⊂ D(X), then we consider w such that
w ∈ W and w 6∈ D(X). By assigning every variable with w when possible
we achieve a cost of k.
Now we suppose that this condition holds and show that (X, v) does not
have an ac support. Indeed once X is assigned to v the domains are such
that no value appear in n− k domains or more, since every value in W has
now one less occurrence, hence we are back to Case 1.

Computing values satisfying the condition above can be done easily once the
number of occurrences have been computed. In Case 3, the domain can be pruned
down to the set W of values whose number of occurrences is n− k. ut

SoftAllEqual: Variable-based cost, Maximisation.

Definition 6 (SoftAllEqualmaxV).

SoftAllEqualmaxV ({X1, ..Xn}, N)⇔ N ≤ n−maxv∈Λ(|{i | Xi = v}|)

Here the same cost has to be maximised. In other words we want to minimise
the maximum cardinality of a value. For instance, the cost of S3 is 3, that is
the complement to n of the maximum cardinality of a value (3 = 7− 4). This is
exactly equivalent to applying a Global Cardinality constraint (considering
only the upper bounds on the cardinalities). In [5] the authors introduce an
algorithm in O(

√
nm) and in O(nlog(n)) for achieving ac and bc, respectively,

on this constraint.

4 The Complexity of Bounds Consistency on
SoftAllEqualmin

G

In this section we introduce an efficient algorithm that, assuming the domains
are discrete intervals, computes the maximum possible number of pairs of equal
values in an assignment. This algorithm allows us to close the last remaining open
complexity question in Figure 1: bc on the SoftAllEqualminG constraint. We
then improve this algorithm, first by reducing the time complexity thanks to a
preprocessing step, before turning it into a filtering method in Section 5.

We start by introducing additional terminology. Given two integers a and b,
a ≤ b, we say that the set of all integers x, a ≤ x ≤ b is an interval and denote it
by [a, b]. Let X be the set of variables of the considered CSP and assume that the
domains of all the variables of X are sub-intervals of [1, λ]. We denote by ME(X)
the set of all assignments P to the variables of X such that the number of pairs
of equal values of P is the maximum possible. The subset of X containing all
the variables whose domains are subsets of [a, b] is denoted by Xa,b. The subset
of Xa,b including all the variables containing the given value c in their domains
is denoted by Xa,b,c. Finally the number of pairs of equal values in an element
of ME(Xa,b) is denoted by Ca,b(X) or just Ca,b if the considered set of variables
is clear from context. For notational convenience, if b < a, then we set Xa,b = ∅
and Ca,b = 0. The value C1,λ(X) is the number of equal pairs of values in an
element of ME(X).

Theorem 2. C1,λ(X) can be computed in O((n+ λ)λ2) steps.

Proof. The problem is solved by a dynamic programming approach: for every a, b
such that 1 ≤ a ≤ b ≤ λ, we compute Ca,b. The main observation that makes it
possible to use dynamic programming is the following: in every P ∈ME(Xa,b),
there is a value c (a ≤ c ≤ b) such that every variable X ∈ Xa,b,c is assigned
value c. To see this, let value c be a value that is assigned by P to a maximum
number of variables. Suppose that there is a variable X with c ∈ D(X) that is
assigned by P to a different value, say c′. Suppose that c and c′ appear on x and
y variables, respectively. By changing the value of X from c′ to c, we increase
the number of equalities by x − (y − 1) ≥ 1 (since x ≥ y), contradicting the
optimality of P .

Notice that Xa,b \Xa,b,c is the disjoint union of Xa,c−1 and Xc+1,b (if c−1 < a
or c+1 > b, then the corresponding set is empty). These two sets are independent
in the sense that there is no value that can appear on variables from both
sets. Thus it can be assumed that P ∈ ME(Xa,b) restricted to Xa,c−1 and
Xc+1,b are elements of ME(Xa,c−1) and ME(X c+ 1, b), respectively. Taking
into consideration all possible values c, we get

Ca,b = max
c,a≤c≤b

((
|Xa,b,c|

2

)
+ Ca,c−1 + Cc+1,b

)
. (1)

In the first step of the algorithm, we compute |Xa,b,c| for all values of a, b, c.
For each triple a, b, c, it is easy to compute |Xa,b,c| in time O(n), hence all these

Algorithm 1: Computing C1,λ(X)
∀ 1 ≤ a, b, c ≤ λ, δa,b,c ← |Xa,b,c| ← Ca,b ← 0;
foreach k ∈ [0, λ− 1] do

foreach a ∈ [1, λ] do
b← a+ k;
foreach X ∈ Xa,b do

δa,b,min(X) ← δa,b,min(X) + 1;1

δa,b,max(X)+1 ← δa,b,max(X)+1 − 1;2

foreach c ∈ [a, b] do
|Xa,b,c| ← |Xa,b,c−1|+ δa,b,c;3

Ca,b ← max(Ca,b, (
`|Xa,b,c|

2

´
+ Ca,c−1 + Cc+1,b));4

return C1,λ;

values can be computed in time O(nλ3). However, the running time can be
reduced to O((n + λ)λ2) as follows. For each pair a, b, we determine all the
values |Xa,b,c|, a ≤ c ≤ b in time O(n + λ). More precisely, we define δa,b,c =
|Xa,b,c| − |Xa,b,c−1| and compute δa,b,c for every a < c ≤ b (Alg. 1, Line 1-2).
Observe that if D(X) = [a′, b′] for some X ∈ Xa,b, then X contributes only to
two of the δa,b,c values: it increases δa,b,a′ by 1 and decreases δa,b,b′+1 by 1. Thus
by going through all variables, we can compute the δa,b,c values for a fixed a, b
and for all a ≤ c ≤ b in time O(n) and we can also compute |Xa,b,a| in the same
time bound. Now we can compute the values |Xa,b,c|, a < c ≤ b in time O(λ) by
using the equality |Xa,b,c| = |Xa,b,c−1|+ δa,b,c iteratively (Alg. 1, Line 3).

In the second step of the algorithm, we compute all the values Ca,b. We
compute these values in increasing order of b−a. If a = b, then Ca,b =

(|Xa,a,a|
2

)
.

Otherwise, values Ca,c−1 and Cc+1,b are already available for every a ≤ c ≤ b,
hence Ca,b can be determined in time O(λ) using Eq. (1) (Alg. 1, Line 4). Thus
all the values Ca,b can be computed in time O(λ3), including C1,λ, which is
the value of the optimum solution of the problem. Using standard techniques
(storing for each Ca,b a value c that minimises (1)), a third step of the algorithm
can actually produce a variable assignment that obtains the maximum value. ut

Algorithm 1 computes the largest number of equalities one can achieve by
assigning a set of variables with interval domains. It can therefore be used to
find an optimal solution to either SoftAllDiffmaxG or SoftAllEqualminG .
Notice that for the latter one needs to take the complement to

(
n
2

)
in order to

get the value of the violation cost. Clearly, it follows that achieving range or
bounds consistency on these two constraints can be done in polynomial time,
since Algorithm 1 can be used as an oracle for testing the existence of a range
support. We give an example of the execution of Algorithm 1 in Figure 2. A set
of ten variables, from X1 to X10 are represented. Then we give the table Ca,b
for all pairs a, b ∈ [1, λ].

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

 1 2 3 4

va
ria

bl
es

values

Ca,b a = 1 a = 2 a = 3 a = 4

b = 1 1

b = 2 X1,2,1 + C2,2 = 3 0

b = 3 X1,3,1 + C2,3 = 6 0 0

b = 4 X1,4,1 + C2,4 = 16 X2,4,4 + C2,3 = 6 X3,4,4 + C3,3 = 3 1

Fig. 2. A set of intervals, and the corresponding dynamic programming table (Ca,b).

The complexity can be further reduced if λ >> n. Let X be a set of variables
with interval domains on [1, λ]. Consider the function occ : Q 7→ [0..n], where
Q ⊂ Q is a set of values of the form a/2 for some a ∈ Z, such that min(Q) = 1
and max(Q) = λ. Intuitively, the value of occ(a) is the number of variables
whose domain interval encloses the value a, more formally:

∀a ∈ Q, occ(a) = |{X | X ∈ X ,min(X) ≤ a ≤ max(X)}|.

Such an occurrence function, along with the corresponding set of intervals, is de-
picted in Figure 3. The crest of the function occ is an interval [a, b] ∈ Q such that
for some c ∈ [a, b], occ is monotonically increasing on [a, c] and monotonically
decreasing on [c, b]. For instance, on the set intervals represented in Figure 3,
[1, 15] is a crest since it is monotonically increasing on [1, 12] and monotonically
decreasing on [12, 15].

Let I be a partition of [1, λ] into a set of intervals such that every element of
I is a crest. For instance, I = {[1, 15], [16, 20], [21, 29], [30, 42]} is such a partition
for the set of intervals shown in Figure 3. We denote by RI(X) the reduction
of X by the partition I. The reduction has as many variables as X (2) but
the domains are replaced with the set of intervals in I that overlap with the
corresponding variable in X (3).

RI(X) = {X ′ | X ∈ X} (2)
∀X ∈ X , D(X ′) = {I | I ∈ I & D(X) ∩ I 6= ∅} (3)

X1 in [30,40]

X2 in [21,26]

X3 in [1,13]

X4 in [32,38]

X5 in [9,19]

X6 in [16,40]

X7 in [18,32]

X8 in [7,15]

X9 in [10,26]

X10 in [26,42]

[1 15] [16 20] [21 29] [30 42]
values

Fig. 3. Some intervals and the corresponding occ function.

For instance, the set of intervals depicted in Figure 3 can be reduced to the
set shown in Figure 2, where each element in I is mapped to an integer in [1, 4].

Theorem 3. If I is a partition of [1, λ] such that every element of I is a crest
of occ, then ME(X) = ME(RI(X)).

Proof. First, we show that for any optimal solution s ∈ME(X), we can produce
a solution s′ ∈ME(RI(X)) that has the same number of equalities as s. Indeed,
for any value a, consider every variable X assigned to this value, that is, such that
s[X] = a. Let I ∈ I be the crest containing a; by definition we have I ∈ D(X ′).
Therefore we can assign all these variables to the same value I.

Now we show the opposite, that is, given a solution to the reduced problem,
one can build a solution to the original problem with the same cost. The key
observation is that, for a given crest [a, b], all intervals overlapping with [a, b]
have a common value. Indeed, suppose that this is not the case, that is, there
exists [c1, d1] and [c2, d2] both overlapping with [a, b] such that d1 < c2. Then
occ(d1) > occ(d1 + 1

2) and similarly occ(c2 − 1
2) < occ(c2). However, since a ≤

d1 < c2 ≤ b, [a, b] would not satisfy the conditions for being a crest, hence a
contradiction. Therefore, for a given crest I, and for every variable X ′ such that
s′[X ′] = I, we can assign X to this common value. ut

We show that this transformation can be achieved in O(nlog(n)) steps. Ob-
serve that δ1,a,λ, if it was defined on Q rather than [1, λ], would in fact be the

Algorithm 2: Computing a partition into crests I
δ ← ∅;
foreach X ∈ X do1

if ∃(min(X), k) ∈ δ then
replace (min(X), k) with (min(X), k + 1) in δ;

else
add (min(X), 1) to δ;

if ∃(max(X) + 1, k) ∈ δ then
replace (max(X) + 1

2
, k) with (max(X) + 1

2
, k − 1) in δ;

else
add (max(X) + 1

2
,−1) to δ;

sort δ by increasing first element;
I ← ∅;
min← max← 1;
while δ 6= ∅ do2

polarity ← pos;
k = 1;
repeat

pick and remove the first element (a, k) of δ;
max← round(a)− 1;
if polarity = pos & k < 0 then polarity ← neg;

until polarity = pos or k < 0 ;
add [min,max] to I;
min← max+ 1;

derivative of occ. Moreover, we can compute it in O(nlog(n)) steps as shown in
Algorithm 2. We first compute the non-null values of δ1,a,λ by looping through
each variable X ∈ X (Line 1). Then we sort them, and finally we create the
partition into crests by going through the derivative once and identifying the
inflection points. Clearly, the number of elements in δ is bounded by 2n. There-
fore, the complexity of Algorithm 2 is dominated by the sorting of its elements,
hence the O(nlog(n)) worst-case time complexity.

Therefore, we can replace every crest by a single value as a preprocessing step
and then run Algorithm 1. Moreover, since the number of crests is bounded by
n, we obtain the following theorem, where n stands for the number of variables,
λ for the number of distinct values, and m for the sum of all domain sizes.

Theorem 4. rc on SoftAllEqualminG can be achieved in O(min(λ2, n2)nm)
steps.

Proof. If λ ≤ n then one can achieve range consistency by iteratively calling
Algorithm 1 after assigning each of the O(m) unit assignments ((X, v) ∀X ∈
X , v ∈ D(X)). The resulting complexity is O(nλ2)m (the term λ3 is absorbed
by nλ2 due to λ ≤ n). Otherwise, we apply the above O(nlog(n)) procedure
and similarly achieve range consistency after that. Since after the reformulation
λ = O(n), the resulting complexity is O(n3m). ut

5 A Filtering Method for SoftAllEqualmin
G

In this section, we show that in the particular case where the cost variable N
to minimise is such that max(N) = (

(
n
2

)
− C1,λ), rc can be achieved in the

same time complexity as that for computing C1,λ. In other words, once the
current lower bound, computed by Algorithm 1, exactly matches the required
value max(N), we can compute and prune range inconsistent values at no extra
computational cost. This is an important particular case. Indeed, on the one
hand, if max(N) is not as high as this lower bound, the constraint should fail
hence no pruning is required. On the other hand, if max(N) is strictly larger than
this lower bound, it is less likely that pruning should occur since the constraint
is less tight.

We show how one can compute all the values participating in an optimal
solution in O(min(nλ2, λ3)) steps. When the cost (

(
n
2

)
− C1,λ) of an optimal

solution matches max(N) all values either participate in an optimal solution or
in no solution at all.

In the first step we run Algorithm 1, hence in the rest of the section we
assume that all values Ca,b(X) and |Xa,b,c| are known (i.e. can be computed in
a constant time). Moreover, we introduce the following additinal notation:

– Let Va,b(X) be the set of all values c such that Ca,b(X) =
(|Xa,b,c|

2

)
+

Ca,c−1(X) + Cc+1,b(X). In other words c ∈ Va,b(X) if there is an optimal
assignment to the set of variables whose domains are subintervals of [a, b],
where each variable containing c in its domain is assigned with c. By the
above assumption, given an interval [a, b] and c ∈ [a, b], it is possible to
check in O(1) whether c ∈ Va,b(X).

– LetH(X) be the descendance graph naturally defined by V , that is, whose set
of vertices are all sub-intervals [a, b] of [1, n] and there is an arc ([a, b], [c, d])
if and only if a = c & (d+1) ∈ Va,b(X) or d = b & (c−1) ∈ Va,b(X). In other
words, given an interval [a, b], any value c ∈ Va,b(X) such that a < c < b
defines two ‘children’ of [a, b]: one is [a, c−1], the other is [c+1, d]. If c = a or
c = d then there is only one child, namely [c+1, d] and [a, c−1], respectively
(of course, if a = b then no other interval is a child of [a, b]).

– We say that [c, d] is a descendant of [a, b] if [c, d] = [a, b] or H(X) has a path
from [a, b] to [c, d]. Since computing whether c ∈ Va,b(X) can be done inO(1),
it is possible to compute in O(λ) the set of arcs leaving [a, b]. Therefore, by
applying a DFS- or BFS-like method, it is possible to compute in O(λ3) the
set of all descendants of [1, λ].

– We say that the interval [a, b] is a witness of (X, c) if and only if a ≤
min(X) ≤ c ≤ max(X) ≤ b, [a, b] is a descendant of [1, λ] and c ∈ Va,b(X).

The intuition behind the following proof is that for an assignment (X, c) to
belong to an optimal solution P ∈ME(X), two conditions need to hold. First,
the value c must be involved in an optimal solution, that is, it must belong to
some set Va,b(X) such that [a, b] is a descendant of [1, λ]. Second, there must
exist at least one variable X ∈ X whose domain is included in [a, b] and such

that c ∈ D(X). The notion of witness defined above encapsulates these two
conditions, we therefore look for a witness [a, b] for (X, c).

We shall proceed by induction: if c belongs to V1,λ(X), then [1, λ] is a witness.
Otherwise, there is some value d ∈ V1,λ(X) such that either c ∈ [a, d − 1] or in
c ∈ [d+1, b]. Moreover, (X, c) belongs to the optimal assignment of the variables
whose domains are subsets of one of these intervals. We show in the proof that,
by proceeding with such an inductive descent, we will eventually encounter a
descendant [a′, b′] of [1, λ] such that c ∈ Va′,b′(X) and this interval [a′, b′] will be
the desired witness of (X, c).

The proof of the opposite direction will require a more careful consideration
of the descendance relation defined in the list above. In particular, we will notice
that if [a′, b′] is a descendant of [1, λ] then any optimal assignment P to the
variables whose domains are subsets of [a′, b′] is a subset of an optimal assignment
of X . It will follow that if (X, c) participates in such an assignment P then it
participates in a globally optimal assignment as well.

Lemma 1. (X, c) belongs to an assignment P ∈ ME(X) if and only if (X, c)
has a witness.

Proof. Let [a, b] be the domain of X and let [a′, b′] be a witness of [a, b]. Observe
first that since [a′, b′] is a descendant of [1, λ], any element P ′ ∈ ME(Xa,b) is
a subset of an element of ME(X). This is clear if [a′, b′] = [1, λ]. Assume that
([1, λ], [a′, b′]) is an arc of H(X) and assume without loss of generality that a′ = 1
and (b′+ 1) ∈ V1,λ(X). That is, C1,λ(X) =

(|X1,λ,b′+1|
2

)
+Ca′,b′(X) +Cb′+2,λ(X).

That is, any assignment to Xa′,b′ that results in Ca′,b′(X) of equal pairs of values
(in other words, any assignment of ME(Xa′,b′)) can be extended to an assignment
of ME(X). If the distance in H(X) between [1, λ] and [a′, b′] is greater than 1
the observation can be proved by induction applying the argument for distance
1 along the shortest path from [1,X] to [a, b].

Since c ∈ Va′,b′(X) there is P ′ ∈ ME(Xa′,b′) where all the variables having
c in their domains are assigned with c. Since [a, b] ⊆ [a′, b′], (X, c) ∈ P ′. Ac-
cording to the previous paragraph P ′ is a subset of assignment P ∈ ME(X).
Consequently, (X, c) ∈ P as required.

Conversely, assume that (X, c) ∈ P ∈ ME(X). Observe that in this case
either c ∈ V1,λ(X) or there is an interval [a∗, b∗] such that ([1, λ], [a∗, b∗]) is
an arc in H(X) and [a, b] ⊆ [a∗, b∗]. Indeed assume that c /∈ V1,λ(X) and let
P ∈ ME(X) such that (X, c) ∈ P . As has been observed in Theorem 2, there
is a value d such that for any variable X ′ having d in its domain, (X ′, d) ∈ P .
It follows that d ∈ V1,λ(X) and hence c 6= d. Then either [a, b] ⊆ [1, d − 1]
(i.e. [a∗, b∗] = [1, d − 1]) or [a, b] ⊆ [d + 1, λ] (i.e. [a∗, b∗ = [d + 1, λ]) because
otherwise X contains d in its domain and hence (X, d) ∈ P in contradiction to
our assumption that (X, c) ∈ P .

We proceed by induction on the difference between λ − 1 and b − a. If the
difference is 0 then, since [a, b] ⊆ [1, λ], it follows that [a, b] = [1, λ]. Thus [a, b]
cannot be a proper sub-interval of [1, λ] and hence, according to the previous
paragraph, c ∈ V1,λ(X). Clearly, [1, λ] is a witness of [a, b]. Assume now that

(λ− 1)− (b− a) > 0. If c ∈ V1,λ(X) then [1, λ] is a witness of [a, b]. Otherwise,
let [a∗, b∗] be as in the previous paragraph. By the induction assumption, (X, c)
has a witness [a′, b′] with respect to Xa∗,b∗ . In other words, [a, b] ⊆ [a′, b′], c ∈
Va′,b′(Xa∗,b∗) and [a′, b′] is a descendant of [a∗, b∗] in H(Xa∗,b∗). Since Xa′,b′ ⊆
Xa∗,b∗ ,c ∈ Va′,b′(X). It is also not hard to observe that H(Xa∗,b∗) is a sub-graph
of H(X). It follows that [a′, b′] is a witness of (X, c) with respect to X . ut

Lemma 1 allows us to achieve rc in the following way. For each value (X, c)
such that D(X) = [a, b], check for all super-intervals [a′, b′] whether [a′, b′] is a
witness of [a, b]. Since there are O(nλ) possible values, O(λ2) super-intervals of
the given interval and the witness relation can be checked in O(1), bounds con-
sistency can be achieved in O(nλ3). This runtime can be further reduced if before
exploring the values we compute an auxiliary Boolean three-dimensional array
MarkedV alues using the following procedure. Order the sub-intervals [a, b] of
[1, λ] by decreasing difference b−a and explore them according to this order. For
the given interval [a, b], explore all values c ∈ [a, b] and set MarkedV alues[a][b][c]
to 1 if and only if the one of the following conditions is true:

1. [a, b] is a descendant of [1, λ] in H(X) and c ∈ Va,b(X);
2. MarkedV alues[a− 1][b][c] = 1 (only if a > 1);
3. MarkedV alues[a][b+ 1][c] = 1 (only if b < λ).

If none of the above conditions are satisfied then MarkedV alues[a][b][c] is
set to 0. Clearly, computing the MarkedV alues array takes O(λ3). Having com-
pleted the above procedure, the following lemma holds.

Lemma 2. Let X ∈ X be a variable with domain [a, b]. Then for any c ∈ [a, b],
(X, c) belongs to an assignment P ∈ME(X) iff MarkedV alues[a][b][c] = 1.

Proof. Assume that MarkedV alues[a][b][c] = 1. If the first condition among the
above three is satisfied then [a, b] is a witness of (X, c). Otherwise, let [a′, b′] be
the super-interval of [a, b] that caused MarkedV alues[a][b][c] to be set to 1. If the
first condition is satisfied with respect to [a′, b′] then [a, b] is a witness of (X, c).
Otherwise there is a super-interval [a′′, b′′] that caused MarkedV alues[a′][b′][c]
to be set to 1. Proceeding to argue in this way we explore a sequence of intervals
such that every next element in this sequence is a strict super-interval of its
predecessor. Clearly this sequence is of finite length and MarkedV alues[a∗][b∗][c]
for the last element [a∗, b∗] of this sequence is set according to Condition 1.
Hence, [a∗, b∗] is a witness of (X, c). Thus if MarkedV alues[a][b][c] = 1 then
(X, c) has a witness and (X, c) belongs to an assignment P ∈ME(X) according
to Lemma 1.

Conversely assume that (X, c) belongs to an assignment P ∈ ME(X). Let
[a′, b′] be a witness of (X, c) existing according to Lemma 1. Then, by Condi-
tion 1,MarkedV alues[a′][b′][c] = 1. It is not hard to show thatMarkedV alues[a][b][c]
is set to 1 by the inductive application of Conditions 2 and 3. ut

Theorem 5. If the minimum number of allowed equal pairs of values is Ca,b(X),
rc on SoftAllEqualminG can be achieved in O((n+ λ)λ2) steps.

Proof. Achieving bc in this case can be done by filtering all values that do
not belong to an assignment P ∈ ME(X). By Lemma 2, this can be done
by exploring all values (X, c) and for each of them checking in O(1) whether
MarkedV alues[a][b][c] = 1 where [a, b] is the domain ofX. Since theMarkedV alues
array can be computed in O((n+λ)λ2) (the computation includes all the previ-
ously discussed computational steps) and there are O(nλ) values, the theorem
follows. ut

6 Conclusion

Constraints for reasoning about the number of different assignments to a set of
variables are ubiquitous in constraint programming and artificial intelligence. In
this paper we considered the global constraints AllDifferent and AllEqual,
and their optimisation variants, SoftAllDiff and SoftAllEqual, respec-
tively. A major technical contribution of the paper is an efficient algorithm for
optimising the cost of the SoftAllEqual constraint when the objective is to
maximise the number of equalities achieved in the decomposition graph of the
constraint. Therefore, we give a complete characterisation of these constraints.
This paper can be regarded as providing a complete taxonomy of constraints of
difference and equality.

References

1. Nicolas Beldiceanu. Pruning for the minimum constraint family and for the number
of distinct values constraint family. In CP, pages 211–224, 2001.

2. Christian Bessière, Emmanuel Hebrard, Brahim Hnich, Zeynep Kiziltan, and Toby
Walsh. Filtering algorithms for the nvalueconstraint. Constraints, 11(4):271–293,
2006.

3. Emmanuel Hebrard, Barry O’Sullivan, and Igor Razgon. A soft constraint of equal-
ity: Complexity and approximability. In CP, pages 358–371, 2008.

4. Thierry Petit, Jean-Charles Régin, and Christian Bessière. Specific filtering algo-
rithms for over-constrained problems. In CP, pages 451–463, 2001.

5. Claude-Guy Quimper, Alejandro López-Ortiz, Peter van Beek, and Alexander
Golynski. Improved algorithms for the global cardinality constraint. In CP, pages
542–556, 2004.

6. Jean-Charles Régin. A filtering algorithm for constraints of difference in csps. In
AAAI, pages 362–367, 1994.

7. Jean-Charles Régin, Thierry Petit, Christian Bessière, and Jean-Francois Puget. An
original constraint based approach for solving over constrained problems. In CP,
pages 543–548, 2000.

8. Willem Jan van Hoeve. A hyper-arc consistency algorithm for the soft alldifferent
constraint. In CP, pages 679–689, 2004.

9. Willem Jan van Hoeve, Gilles Pesant, and Louis-Martin Rousseau. On global warm-
ing: Flow-based soft global constraints. J. Heuristics, 12(4-5):347–373, 2006.

