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Abstract. We introduce the SoftAllEqual global constraint, which
maximizes the number of equalities holding between pairs of assignments
to a set of variables. We study the computational complexity of prop-
agating this constraint, showing that it is intractable in general, since
maximizing the number of pairs of equally assigned variables in a set is
NP-hard. We propose three ways of coping with NP-hardness. Firstly,
we develop a greedy linear-time algorithm to approximate the maximum
number of equalities within a factor of 2. Secondly, we identify a tractable
(polynomial) class for this constraint. Thirdly, we identify a parameter
based on this class and show that the SoftAllEqual constraint is fixed-
parameter tractable with respect to this parameter.

1 Introduction

Constraints for reasoning on the number of differences within a set of variables
are ubiquitous in constraint programming. One of the most commonly used
global constraints is the AllDifferent constraint [11], which enforces that all
variables take pair-wise different values. Petit et al. have introduced a soft ver-
sion of the AllDifferent constraint, SoftAllDiff [10]. They proposed two
types of costs, which are to be minimized: graph- and variable-based costs (see
Definitions 1 and 2). The former counts the number of equalities, whilst the
latter counts the number of variables violating an AllDifferent constraint.
The algorithms for filtering these two constraints, introduced in the same paper,
were then improved by Hoeve et al. [15]. In both cases the constraint can be rep-
resented as a flow problem, leading to polynomial time algorithms for achieving
generalised arc consistency.

Another closely related constraint dealing with equalities between variables,
AtMostNValue, received some attention recently. Achieving bounds consis-
tency on this constraint can be done in polynomial time [2] whilst achieving
GAC is NP-hard [3]. This latter constraint ensures that no more than k dis-
tinct values are assigned to a set of n variables. It is therefore the dual of
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Table 1. Complexity of optimizing inequalities

Minimizing Cost Maximizing Cost

Variable Cost O(n
√

m) NP-hard
Graph Cost O(nm) ?

SoftAllDiff for the variable-based cost, i.e. an assignment with k distinct
values among n variables violates AllDifferent on n−k variables. To impose
a cost of k for AtMostNValue is thus equivalent to imposing a cost of n − k
for SoftAllDiff.

The complexities of minimizing both variable- and graph-based costs, as well
as maximizing the variable-based cost, for SoftAllDiff are known. However,
the complexity of maximizing the graph-based cost (i.e. maximizing the num-
ber of pairs of variables assigned with the same value) is still an open problem.
Table 1 summarizes the known results for these constraints. Interestingly, whereas
minimizing this cost can be mapped to a flow problem and therefore solved in poly-
nomial time, maximizing it does not correspond in a straightforward way to any
known problem. In this paper, we fill this gap by providing a number of algorithmic
results on the problem of maximizing the number of pair-wise equalities amongst
a set of variables. We first show that this problem is NP-hard in general, then we
introduce an approximation algorithm, a tractable class and a fixed parameter
tractable algorithm.

We call SoftAllEqualG the global constraint defined with the same graph-
based cost as SoftAllDiff, albeit where this cost is to be maximized instead
of minimized. This constraint has many applications. For instance, consider the
problem of scheduling a number of meetings so that every person attends ex-
actly one meeting, and the number of interactions is to be maximized. Each
person is assigned to a timeslot, and two people interact only if they attend the
same meeting, i.e., are assigned the same value. This can be modelled using a
single SoftAllEqualG constraint. As another example, consider a map color-
ing problem where we want each continent to be colored as homogeneously as
possible. One could post, besides inequalities corresponding to borders, as many
SoftAllEqualG constraints as continents, ensuring that whilst neighboring
countries are distinguishable, continents also appear as entities.

However, the original motivation for this work comes from our desire to for-
mulate the problem of finding sets of similar and diverse solutions to CSPs as
a constraint optimization problem. Similarity and diversity play fundamental
roles in theories of knowledge and behaviour [14]. Reasoning about the distance
between solutions is an important problem in artificial intelligence [1,4,7,8,13].
For example, in belief update one might wish to minimize Hamming distance
between states [5], in case-based reasoning one often seeks solutions to similar
problems while achieving diversity amongst the alternatives [13], in preference-
based search one may express preferences in terms of a set of ideal or non-ideal
solutions [8]. For instance, let P1, . . . ,Pm, be m CSPs with the same number
of variables n. In [7] the diversity of a set of solutions was defined as the sum
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Fig. 1. Finding diverse solutions as a CSP

of the Hamming distances between each pair of solutions. Let kDifferences(M)
be the number of pairs of distinct elements in the multiset M . The previously
defined diversity of a set of solutions {sol1, . . . , solm} is equivalent to the sum
of kDifferences({sol1[i], . . . , solm[i]}) over all indices 1 ≤ i ≤ n, as illustrated in
Figure 1. When either minimizing or maximizing this sum, achieving GAC on
each number of differences (kDifferences) is enough to obtain GAC on the whole,
since the hypergraph is Berge-acyclic. The complexity of computing lower and
upper bounds for the number of differences on variables is, therefore, key to this
problem.

Our contribution in this paper is to present an indepth study of the complex-
ity of SoftAllEqualG. While achieving generalized arc consistency on the
SoftAllDiff constraint is known to be polynomial, the complexity of filter-
ing the SoftAllEqualG constraint is more intriguing. In Section 3, we show
that SoftAllEqualG is intractable in general, since maximizing the number
of pairs of equally assigned variables in a set is NP-complete. We propose three
ways of coping with NP-hardness. Firstly, in Section 4, we show that a natural
greedy algorithm approximates the maximum number of equalities within a fac-
tor of 2, and that its complexity can be brought down to linear time. Secondly, in
Section 5, we identify a polynomial class for this constraint. Thirdly, in Section 6,
we identify a parameter based on this class and show that the SoftAllEqualG

constraint is fixed-parameter tractable with respect to this parameter.

2 Formal Background

Constraint Satisfaction. A constraint satisfaction problem (CSP) is a triplet
P = (X ,D, C) where X is a set of variables, D a mapping of variables to sets
of values and C a set of constraints that specify allowed combinations of values
for subsets of variables. A constraint C ∈ C is generalized arc consistent (gac)
iff, when a variable in the scope of C is assigned any value, there exists an
assignment of the other variables in C such that C is satisfied. This satisfying
assignment is called a support for the value. Given a CSP P = (X ,D, C), we shall
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use the following notation throughout the paper: n shall denote the number of
variables, i.e., n = |X |; m shall denote the number of distinct unary assignments,
i.e., m =

∑
X∈X |D(X)|; λ shall denote the total number of distinct values, i.e.,

λ = |⋃X∈X D(X)|.

Soft Global Constraints. Adding a cost variable to a constraint to represent
its degree of violation is now common practice in constraint programming. This
model was introduced in [12]. It offers the advantage of unifying hard and soft
constraints since generalized arc consistency, along with other types of consisten-
cies, can be applied to such constraints with no extra effort. As a consequence,
classical constraint solvers can solve over-constrained problems modelled in this
way without modification. This approach was refined and applied to a number
of other constraints in [15].

Two natural cost measures have been explored for the AllDifferent and for
a number of other constraints. The variable-based cost counts how many variables
need to change in order to obtain a valid assignment of the hard constraint. The
graph-based cost counts how many times a component of a decomposition of
the constraint is violated. Typically these components correspond to edges of a
decomposition graph, e.g. for an AllDifferent constraint, the decomposition
graph is a clique and an edge is violated if and only if both variables connected
by this edge share the same value (see Definitions 1 and 2). The SoftAllDiff
constraint was, thus, given the following definitions in [10]:

Definition 1 (SoftAllDiffV – variable-based cost)

SoftAllDiffV ({X1, ..Xn}, N) ⇔ N ≥ n − |{v | Xi = v}|.

Definition 2 (SoftAllDiffG – graph-based cost)

SoftAllDiffG({X1, ..Xn}, N) ⇔ N ≥ |{{i, j} | Xi = Xj & i �= j}|.

Consider each of the violation costs for the following two solutions of a CSP
involving four variables X1, . . . , X4 each with domain {a, b}:

S1 : X1 = a, X2 = b, X3 = a, X4 = b

S2 : X1 = a, X2 = b, X3 = b, X4 = b

In both solutions, at least two variables need to change (for example X3 and X4)
to obtain a valid solution. Therefore, the variable-based cost is two for S1 and
S2. However, in S1 only two edges are violated {X1, X3} and {X2, X4} whilst in
S2, three edges are violated {X2, X3}, {X2, X4} and {X3, X4}. Therefore, the
graph-based cost of S1 is two whereas it is three for S2.

Parameterized Complexity. We shall use the notion of parameterized com-
plexity in the last section of this paper. For a comprehensive introduction the
reader is referred to [9]. Given a problem A, a parameterized version of A is
obtained by specifying a parameter of this problem and getting as additional



362 E. Hebrard, B. O’Sullivan, and I. Razgon

input a non-negative integer k which restricts the value of this parameter. The
resulting parameterized problem 〈A, k〉 is fixed-parameter tractable (FPT) with
respect to k if it can be solved in time f(k) ∗ nO(1), where f(k) is a function
depending only on k.

3 The SoftAllEqual Constraint

We define the constraint that we study in this paper, SoftAllEqualG, by
reversing the graph-based cost of the SoftAllDiff constraint (Definition 2).

Definition 3 (SoftAllEqualG – dual of SoftAllDiffG)

SoftAllEqualG({X1, ..Xn}, N) ⇔ N ≤ |{{i, j} | Xi = Xj & i �= j}|.
Interestingly, the same inversion of the definition for the variable-based cost
of SoftAllDiff leads to the AtMostNValue constraint [2]. The focus of
this paper, however, is on the graph-based cost. We first show that solving a
CSP with the SoftAllEqualG constraint is intractable using a reduction from
3dMatching [6].

Definition 4 (3dMatching)
Data: An integer K, three disjoint sets X, Y, Z, and T ⊆ X × Y × Z.
Question: Does there exist M ⊆ T such that |M | ≥ K and ∀m1, m2 ∈ M, ∀i ∈
{1, 2, 3}, m1[i] �= m2[i].

Theorem 1 (The Complexity of SoftAllEqualG). Finding a satisfying
assignment for the SoftAllEqualG constraint is NP-complete even if no value
appears in more than three domains.

Proof. The problem is clearly in NP: checking the number of equalities in an
assignment can be done in O(n2) time.

We use a reduction from 3dMatching to show completeness. Let P=(X, Y, Z,
T, K) be an instance of 3dMatching, where: K is an integer; X, Y, Z are three
disjoint sets such that X ∪ Y ∪ Z = {x1, . . . xn}; and T = {t1, . . . tm} is a set of
triplets over X ×Y ×Z. We build an instance I of SoftAllEqualG as follows:

1. Let n = |X | + |Y | + |Z|, we build n variables {X1, . . . , Xn}.
2. For each tl = 〈xi, xj , xk〉 ∈ T , we have l ∈ D(Xi), l ∈ D(Xj) and l ∈ D(Xk).
3. For each pair (i, j) such that 1 ≤ i < j ≤ n, we put the value (|T |+ (i− 1) ∗

n + j) in both D(Xi) and D(Xj).

We show there exists a matching of P of size K if and only if there exists
a solution of I with  3K+n

2 � equalities. We refer to “a matching of P” and
to a “solution of I” as “a matching” and “a solution” throughout this proof,
respectively.

⇒: We show that if there exists a matching of cardinality K then there exists a
solution with at least  3K+n

2 � equalities. Let M be a matching of cardinality K.
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We build a solution as follows. For all tl = 〈xi, xj , xk〉 ∈ M we assign Xi, Xj and
Xk to l (2). Observe that there remain exactly n−3K unassigned variables after
this process. We pick an arbitrary pair of unassigned variables and assign them
with their common value (3), until at most one variable is left (if one variable is
left we assign it to an arbitrary value). Therefore, the solution obtained in this
way has exactly  3K+n

2 � equalities, 3K from the variables corresponding to the
matching and n−3K

2 � for the remaining variables.

⇐: We show that if the cardinality of the maximal matching is K, then there is
no solution with more than  3K+n

2 � equalities. Let S be a solution. Furthermore,
let L be the number of values appearing three times in S. Observe that this set
of values corresponds to a matching. Indeed, a value l appears in three domains
D(Xi),D(Xj) and D(Xk) if and only if there exists a triplet tl = 〈xi, xj , xk〉 ∈ T
(2). Since a variable can only be assigned to a single value, the values appearing
three times in a solution form a matching. Moreover, since no value appears in
more than three domains, all other values can appear at most twice. Hence the
number of equalities in S is less than or equal to  3L+n

2 �, where L is the size of
a matching. It follows that if there is no matching of cardinality greater than K,
there is no solution with more than  3K+n

2 � equalities. ��
It is worth noting that if one similarly reverses the alternative, variable-based,
cost of SoftAllDiff, the result corresponds to the AtMostNValue con-
straint. Interestingly, this is not equivalent to applying the variable-based cost
on a constraint AllEqual. For instance, consider n variables X1, . . . , Xn and
suppose that half are assigned to a whilst the other half are assigned to b. One
needs to change n/2 variables in order to make them all equal, and n − 2 to
make them all different. In this paper we consider only the costs as defined for
SoftAllDiff in [10], when reasoning about both lower an upper bounds. On
the other hand, the graph-based cost on AllEqual is indeed equivalent to the
opposite of SoftAllDiffG.

4 Approximation Algorithm

In this section and in the rest of the paper we consider the optimization version
of SoftAllEqualG where the objective is to maximize the number of pairs of
variables assigned with the same value. We first study a natural greedy algorithm
for approximating the maximum number of equalities in a set of variables. This
algorithm picks the value that occurs in the largest number of domains, and
assigns as many variables as possible to this value (this can be achieved in
O(m)). Then it recursively repeats the process on the resulting sub-problem until
all variables are assigned (at most O(n) times). We show that this algorithms
approximates the maximum number of equalities with a factor 2 in the worst
case. Moreover, we it can be implemented to run in in linear amortized time
(that is, O(m)) by using the following data structures:
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– var : Λ �→ 2X maps every value v to the set of variables whose domains
contain v.

– val : N �→ 2Λ maps every integer i ∈ [0..n] to the set of values appearing in
exactly i domains.

These data structures are initialized in Lines 1 and 2 of Algorithm 1, respectively.

Algorithm 1. GreedyValue
Data: A set of variables X
Result: Lower bound on the maximum number of equalities
var(v)← ∅, ∀v ∈ S

X∈X D(X);1

foreach X ∈ X do
foreach v ∈ D(X) do

add X to var(v);

val(k)← ∅, ∀k ∈ [0..|X |];2

foreach v ∈ S
X∈X D(X) do

add v to val(|var(v)|);
return AssignAndRecurse(var, val, |X |);

Algorithm 2. AssignAndRecurse
Data: a mapping var : Λ �→ 2X , a mapping val : N �→ 2Λ, an integer k;
while val(k) = ∅ do k ← k − 1;1

if k ≤ 1 then
return 0;

else
pick and remove any v ∈ val(k);2

foreach X ∈ var(v) do3

foreach w 
= v ∈ D(X) do
occw ← |var(w)|;
remove w from val(occw);
add w to val(occw − 1);
assign X with w and remove X from var(w);4

return k(k−1)
2

+AssignAndRecurse(var, val, k);

The above algorithm returns the number of pairs of equal values of an assign-
ment of the given CSP, which is constructed on Line 4.

Theorem 2 (Algorithm Correctness). The algorithm GreedyValue approx-
imates the optimal satisfying assignment of the SoftAllEqualG constraint
within a factor of 2 and runs in O(m).

Proof. We first prove the correctness of the approximation ratio, the soundness
of the algorithm and then the complexity of the algorithm.
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Approximation Factor. We proceed using induction on n. Let lb be the value re-
turned by GreedyValue and let eq∗ be the maximum possible number of equal-
ities. We denote P (n) the proposition “If there are no more than n values in
the union of the domains of X , then lb ≥ eq∗/2”. P (1) implies that every vari-
able can all be assigned to a unique value v. Algorithm GreedyValue therefore
chooses this value and assigns all variables to it. In this case lb = eq∗.

Now we suppose that P (n) holds and we show that P (n + 1) also holds. Let
X be a set of variables such that |⋃X∈X D(X)| = n + 1 and let v be the first
value chosen by GreedyValue. We denote by Xv = {X ∈ X | v �∈ D(X)} the set
of variables whose domains do not contain v, X̄v = X \ Xv the complementary
set of variables assigned to v and we let k = |X̄v|. We denote eq∗v the maximal
number of equalities on the set of variables Xv, that is where both variables in
the equality belong to Xv. Consider any variable X ∈ X̄v. Given any value w in
D(X), there are no more than k variables in X containing w. Indeed, v was chosen
for maximizing this criterion and belongs to the domains of exactly k variables.
Therefore, the total number of equalities involving at least one variable in X̄v is
at most k(k−1), since there are k variables in X̄v and each can only be involved
in k − 1 equalities. Since an equality either involves at least one variable X̄v, or
none of them, we can bound the maximal total number of equalities as follows:

eq∗ ≤ k(k − 1) + eq∗v .

Now, observe that the total number of values in Xv is less than or equal to n
since every variable whose domain contains v is in X̄v. Since we suppose that
P (n) holds, we know that the value returned by GreedyValue for X̄v is greater
than or equal to eq∗v/2. Hence the value returned for X is greater than or equal
to k(k − 1)/2 + eq∗v/2. We can therefore conclude that lb ≥ eq∗/2 and hence
P (n + 1) is true.

Correctness. Here we show that the mapping var and val are correctly updated
in a call to AssignAndRecurse. Let X be the set of variables given as initial input
of GreedyValue. We define XV , as the set of variables remaining after greedily
choosing and assigning the set of values V . (XV = {X | X ∈ X & D(X)∩V = ∅}).
We say that val and var are correct for XV iff both of the following invariants
hold:

∀v ∈
⋃

X∈XV

D(X), var(v) = {X | v ∈ D(X)} (1)

∀k ∈ [1..n], val(k) = {v | k = |var(v)|} (2)

This is clearly the case after the initialisation phase. Now we suppose that it
is the case at the ith call to AssignAndRecurse and we show that it still holds
at the (i + 1)th call. We assume that value w is chosen in Line 2.

We suppose first that invariant 1 does not hold. That is, there exists X ∈ XV , v
such that either v ∈ D(X) and X �∈ var(v) or v �∈ D(X) and X ∈ var(v). The
latter case is not possible since we only remove values from var(v). The former
case can only arise if X was removed from var(v) in AssignAndRecurse (Line 4).
However this can only happen if X ∈ var(w), hence X �∈ XV ∪{w}.
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Then we suppose that invariant 2 does not hold, i.e., there exists k, v such
that either v ∈ val(k) and k �= |var(v)| or v �∈ val(k) and k = |var(v)|. However,
the cardinality k of var(v) can only decrease by one at Line 4, and in that case
v is removed from val(k) and added to val(k − 1).

Complexity. The mapping var is in O(m) space, and val is in O(λ), where λ
denotes the number of distinct values. Initialising both mappings is done in
linear time since exactly one element is added to either val or var at every
step. Hence the initialisation is in O(m) + O(λ) time, i.e., O(m). In Line 1 in
AssignAndRecurse, k can be decremented at most n times in total. In Loop 3,
every iteration remove exactly one element in var, the amortised time complexity
for this loop therefore is O(m). The overall time complexity is thus O(m). ��
Theorem 3 (Tightness of the Approximation Ratio). The approximation
factor of 2 for GreedyValue is tight.

Proof. Let {X1, . . . X4} be a set of four variables with domains as follows:

X1 ∈ {a}; X2 ∈ {b}; X3 ∈ {a, c}; X4 ∈ {b, c}.
Every value appears in exactly two domains, hence GreedyValue can choose
any value. We suppose that the value c is chosen first. At this point no other
value can contribute to an equality, hence GreedyValue returns 1. However, it
is possible to achieve two equalities with the following solution: X1 = a, X3 =
a, X2 = b, X4 = b. ��

5 Tractable Class

In this section we explore further the connection between the SoftAllEqualG

constraint and vertex matching. We showed earlier that the general case was
linked to 3dMatching. We now show that the particular case where no value
appears in more than two domains solving the SoftAllEqualG constraint is
equivalent to the vertex matching problem on general graphs, and therefore can
be solved by a polynomial time algorithm. We shall then use this tractable class
to show that SoftAllEqualG is NP-hard only if an unbounded number of
values appear in more than two domains.

Definition 5 (The VertexMatching Problem)
Data: An integer K, an undirected graph G = (V, E).
Question: Does there exist M ⊆ E such that |M | ≥ K and ∀e1, e2 ∈ M , e1 and
e2 do not share a vertex.

Theorem 4 (Tractable Class of SoftAllEqualG). If all triplets of vari-
ables X, Y, Z ∈ X are such that D(X)∩D(Y )∩D(Z) = ∅ then finding an optimal
satisfying assignment to SoftAllEqualG is in P .

Proof. In order to solve this problem, we build a graph G = (V, E) with a vertex
xi for each variable Xi ∈ X , that is, V = {xi | Xi ∈ X}. Then for each pair
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{i, j} such that D(Xi) ∩ D(Xj) �= ∅, we create an undirected edge {i, j}; let
E = {{i, j} | i �= j & D(Xi) ∩ D(Xj) �= ∅}.

We first show that if there exists a matching of cardinality K, then there exists
a solution with at least K equalities. Let M be a matching of cardinality K of G,
for each edge e = (i, j) ∈ M we assign Xi and Xj to any value v ∈ D(Xi)∩D(Xj)
(by construction, we know that there exists such a value). Observe that no
variable is counted twice since it would mean that two edges of the matching have
a common vertex. The obtained solution therefore has at least |M | equalities.

Now we show that if there are K equalities in S, then there exists a matching of
cardinality K. Let S be a solution, and let M = {{i, j} | S[Xi] = S[Xj]}. Observe
that M is a matching of G. Indeed, suppose that two edges sharing a vertex (say
{i, j}, {j, k}) are both in M . It follows that S[Xi] = S[Xj] = S[Xk], however this
is in contradiction with the hypothesis. We can therefore compute a solution S
maximizing the number of equalities by computing a maximal matching in G.

��
This tractable class can be generalized by restricting the number of occurrences
of values in the domains of variables. The notion of heavy values is key to this
result.

Definition 6 (Heavy Value). A heavy value is a value that occurs more than
twice in the domains of the variables of the problem.

Theorem 5 (Tractable Class with Heavy Values). If the domain D(Xi)
of each variable Xi contains at most one heavy value then finding an optimal
satisfying assignment of SoftAllEqualG is in P .

Proof. Consider a two stage algorithm. In the first stage it explores all values
w that have three or more appearances and assigns w to all the variables whose
domains contain it. Notice that no variable will be assigned with two values.
In the second stage the CSP created by the domains of unassigned variables
consists of only values having at most two occurrences, so we solve this CSP by
transforming it to the matching problem as suggested in the proof of Theorem 4.

We show that there exists an optimal solution where each variable that can
be assigned to an heavy value is assigned to this value. Let s∗ be an optimal
solution and w be an heavy value over a set T of variables of cardinality t.
We suppose that only z < t of them are assigned to w in s∗. Consider the
solution s′ obtained by assigning all these t variables to w: we add exactly
t(t−1)/2−z(z−1)/2 equalities. However, we potentially remove t−z equalities
since values other than w do not appear more than twice. We therefore have
obj(s′) − obj(s∗) ≥ t2 − 3t − z2 + 3z, which is non-negative for t ≥ 3 and z < t.
By iteratively applying this transformation, we obtain an optimal solution where
each variable that can be assigned to an heavy value is assigned to this value.
The first stage of the algorithm is thus correct. The second stage is correct by
Theorem 4. ��
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6 Parameterized Complexity

We further advance our analysis of the complexity of the SoftAllEqualG con-
straint by introducing a fixed-parameter tractable (FPT) algorithm with respect
to the number of values. This result is important because it shows that the com-
plexity of propagating this constraint grows only polynomially in the number of
variables. It may therefore be possible to achieve gac at a reasonable computa-
tional cost even for a very large set of variables, providing that the total number
of distinct values is relatively small.

We first show that the SoftAllEqualG problem is FPT with respect to
the number of values λ. We use the tractable class introduced in the previous
section to generalize this result, showing that the problem is FPT with respect to
the number of heavy values occurring in domains containing two or more heavy
values. We begin with a definition.

Definition 7 (Solution from a Total Order). A solution s≺ is induced by
a total order ≺ over the values if and only if

s[X ] = v ⇒ ∀w ≺ v, w �∈ D(X).

We now prove the following key lemma.

Lemma 1. Let s∗ be an optimal solution, v be a value, and occ(s∗, v) be the
number of variables assigned to v in s∗. Moreover, let ≺occ be a total order
such that values are ranked by decreasing number of occurrences (ties are broken
arbitrarily). We claim that ≺occ induces s∗.

Proof. Consider, without loss of generality, a pair of values v, w such that v ≺occ

w. By definition we have occ(s∗, v) ≥ occ(s∗, w). We suppose that the hypothesis
is falsified and show that this leads to a contradiction. Suppose that there exists
a variable X such that {v, w} ⊆ D(X) and s∗[X ] = w (that is, ≺occ does not
induce s∗). The objective value of the solution s′ such that s′[X ] = v and s′[Y ] =
s∗[Y ] ∀y �= x is given by: obj(s′) = obj(s∗)+occ(s∗, v)−(occ(s∗, w)−1). Therefore,
obj(s′) > obj(s∗). However, s∗ is optimal, hence this is a contradiction. ��
This lemma has two interesting consequences. The first consequence is expressed
by the following corollary.

Corollary 1. There exists a total order ≺ over the set of values, such that the
solution s≺ induced by ≺ is optimal.

Proof. Direct consequence of Lemma 1.

The fixed-parameter tractability of the SoftAllEqualG constraint follows eas-
ily from Corollary 1.

Theorem 6 (FPT – number of values). Finding an optimal satisfying as-
signment of the SoftAllEqualG constraint is fixed-parameter tractable with
respect to λ, the number of values in the domains of the constrained variables.
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Proof. Explore all possible λ! permutations of values. For each permutation cre-
ate a solution induced by this permutation. Compute the cost of this solution.
Return the solution having the highest cost. According to Corollary 1, this solu-
tion is optimal. Creating an induced solution can be done by selecting for each
domain the first value in the order. Clearly, this can be done in O(m). Com-
puting the cost of the given solution can be done by computing the number of
occurrences occ(w) and then summing up occ(w) ∗ (occ(w) − 1)/2 for all values
w. Clearly, this can be done in O(m) as well. Hence the theorem follows. ��
The second corollary from Lemma 1 is much more surprising.

Corollary 2. The number of optimal solutions of the CSP with the
SoftAllEqualG is at most λ!

Proof. According to Lemma 1, each optimal solution is induced by an order over
the values of the given problem. Clearly each order induces exactly one solution.
Thus the number of optimal solution does not exceed the number of total orders
which is at most λ!. ��
Corollary 2 claims that the number of optimal solutions of the considered prob-
lem does not depend on the number of variables and they all can be explored by
considering all possible orders of values. We believe this fact is interesting from
the practical point of view because in essence it means that even enumerating all
optimal solutions is scalable with respect to the number of variables. Moreover,
we can show that SoftAllEqualG is fixed-parameter tractable with respect
to the number of bad values, defined as follows.

Definition 8 (Bad Value). A value w of a given CSP is a bad value if and
only if it is an heavy value and there is a domain D(X) that contains w and
another heavy value.

Theorem 7 (FPT – number of bad values). Let k be the number of bad
values of a CSP comprising only one SoftAllEqualG constraint. Then the
CSP can be solved in time O(k! ∗ n2 ∗ λ), hence SoftAllEqualG is fixed-
parameter tractable with respect to k.

Proof. Consider all the permutations of the bad values. For each permutation
perform the following two steps. In the first step for each variable X where
there are two or more bad values, remove all the bad values except the one
which is the first in the order among the bad values of D(X) according to
the given permutation. In the second stage we obtain a problem where each
domain contains exactly one heavy value. Solve this problem polynomially by
the algorithm provided in the proof of Theorem 5.

Let s be the solution obtained by this algorithm. We show that this solution is
optimal. Let p∗ be a permutation of all the values of the considered CSP so that
the solution s∗ induced by p∗ has the highest possible cost. By Corollary 1, s∗ is
an optimal solution. Let p1 be the permutation of the bad values which is induced
by p∗ and let s1 be the solution obtained by the above algorithm with respect
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to p1. By definition of s, obj(s) ≥ obj(s1). We show that obj(s1) ≥ obj(s∗) from
which the optimality of s immediately follows.

Observe that there is no X such that s∗[X ] = w and w was removed from
D(X) in the first stage of the above algorithm where the permutation p1 is
considered. Indeed, w can only be removed from D(X) if it is preceded in p1 by
a value v ∈ D(X). It follows that w is also preceded in p∗ by v and consequently
s∗(X) �= w. Thus s∗ is a solution of the CSP obtained as a result of the first stage.
However s1 is an optimal solution of that CSP by Theorem 5 and, consequently,
obj(s1) ≥ obj(s∗) as required. ��
This result shows that the complexity of propagating the SoftAllEqualG con-
straint comes primarily from the number of (bad) values, whereas other factors,
such as the number of variables, have little impact. Observe that the “expo-
nential” part of this algorithm is based on the exploration of all possible orders
over the given set of bad values. In fact the ordering relation between two values
matters only if these values belong to a domain of the same variable. In other
words consider a graph H on values of the given CSP instance. Two values a and
b are connected by an edge if and only if they belong to the domain of the same
variable. Instead of considering all possible orders over the given set of values we
may consider all possible ways of transforming the given graph into an acyclic
digraph. The upper bound on the number of possible transformations is 2E(H)

where E(H) is the number of edges of H . For sparse graphs such a bound is
much more optimistic that k!. For example, if the average degree of a vertex is
4 then the number of considered partial orders is 22k = 4k.

7 Conclusion and Future Work

We showed that achieving gac for the SoftAllEqualG constraint is NP-
complete. Then we introduced a simple linear greedy algorithm and showed
that it approximates the maximum number of pairs of variables that can be
assigned equally within a factor of 2. Moreover, we showed that the hardness of
the problem could be encapsulated by the number of “bad” values, irrespective
of the size of the instance.

We believe one can combine our parameterized and approximation algorithms
in order to design a practical algorithm for solving the SoftAllEqualG con-
straint. Firstly, Theorem 7 allows us to search in the space of permutations of
a subset of values, which is usually much smaller than the space of partial as-
signments. Therefore we can design a branch-and-bound algorithm searching in
the space of permutations. Secondly, we can use our approximation algorithm
to more effectively prune the branches of the search tree. In particular, if the
number of equalities guessed by the approximation algorithm is at most half of
the current upper bound maintained by the branch-and-bound algorithm, then
the algorithm may safely backtrack.

To the best of our knowledge, the problem we are tackling in this paper does
not have a straightforward equivalent formulation in the algorithmic literature.
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We therefore focused on complexity and approximability issues, laying down the-
oretical foundations for future work on this constraint. The design of a filtering
algorithm for SoftAllEqualG, besides the trivial application of the bounds
provided in this paper, is left as a challenge. A very important avenue of research
is to study the complexity of achieving bounds consistency on SoftAllEqualG.
The complexity of SoftAllEqualG when domains are intervals on N is still
open, while bounds consistency on the AtMostNValue constraint can be done
in polynomial time [2]. The problem is equivalent to finding a clique cover of
minimal cardinality for the intersection graph of the domains [3], which is by
definition an interval graph. The restriction of SoftAllEqualG to intervals,
on the other hand, leads to a similar problem, but requiring a clique cover of the
same graph that maximizes the sum of cardinalities of the cliques.
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