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Abstract

The (parameterized) feedback vertex set problem on directed graphs (i.e., the dfvs
problem) is defined as follows: given a directed graph G and a parameter k, either construct
a feedback vertex set of at most k vertices in G or report that no such a set exists. It has
been a well-known open problem in parameterized computation and complexity whether the
dfvs problem is fixed-parameter tractable, i.e., whether the problem can be solved in time
f(k)nO(1) for some function f . In this paper, we develop new algorithmic techniques that
result in an algorithm with running time 4kk!nO(1) for the dfvs problem. Therefore, we
resolve this open problem.

1 Introduction

Let G be a directed graph. A feedback vertex set F (briefly, FVS) for G is a set of vertices in G

such that every directed cycle in G contains at least one vertex in F , or equivalently, that the
removal of F from the graph G leaves a directed acyclic graph (i.e., a DAG). The (parameterized)
feedback vertex set problem on directed graphs (briefly, the dfvs problem) is defined as
follows: given a directed graph G and a parameter k, either construct an FVS of at most k

vertices for G or report that no such set exists.
The dfvs problem is a classic NP-complete problem that appeared in the first list of NP-

complete problems in Karp’s seminal paper [18], and has a variety of applications in areas such
as operating systems [24], database systems [13], and circuit testing [20]. In particular, the dfvs

problem has played an essential role in the study of deadlock recovery in database systems and
in operating systems [24, 13]. In such a system, the status of system resource allocations can
be represented as a directed graph G (i.e., the system resource-allocation graph), and a directed
cycle in G represents a deadlock in the system. Therefore, in order to recover from deadlocks,
we need to abort a set of processes in the system, i.e., to remove a set of vertices in the graph

1



G, so that all directed cycles in G are broken. Equivalently, we need to find an FVS in the
graph G. In practice, one may expect and desire that the number of vertices removed from
the graph G, which is the number of processes to be aborted in the system, be small. This
motivates the study of parameterized algorithms for the dfvs problem that find an FVS of k

vertices in a directed graph of n vertices and run in time f(k)nO(1) for a fixed function f ; thus,
the algorithms become practically efficient when the value k is small.

This work has been part of a systematic study of the theory of fixed-parameter tractability [11],
which has received considerable attention in recent years. A problem Q is a parameterized
problem if each instance of Q contains a specific integral parameter k. A parameterized problem
is fixed-parameter tractable if it can be solved in time f(k)nc for a function f(k) and a constant
c, where the function f(k) is independent of the instance size n. A large number of NP-hard
parameterized problems, such as the vertex cover problem [6] and the ml type-checking

problem [21], have been shown to be fixed-parameter tractable. On the other hand, strong
evidence has been given that another group of well-known parameterized problems, including
the independent set problem and the dominating set problem, are not fixed-parameter
tractable [11]. The study of fixed-parameter tractability of parameterized problems has become
increasingly interesting, for both theoretical research and practical computation.

The fixed-parameter tractability of the dfvs problem was posted as an open problem in the
very first papers on the study of fixed-parameter tractability [9, 10]. After numerous significant
efforts, however, the problem still remained open. In the past fifteen years, the problem has
been constantly and explicitly posted as an open problem in a large number of publications in
the literature (see [17] for a recent survey on this study). The problem has become a well-known
and outstanding open problem in parameterized computation and complexity.

In this paper, we develop new algorithmic techniques that lead to the conclusion that the
dfvs problem is fixed-parameter tractable, and thus resolve the above open problem in param-
eterized computation and complexity. We first show that the dfvs problem can be reduced
in time f(k)nO(1) for some function f to a special version of the multi-cut problem, which
will be called the skew separator problem. We then develop an algorithm that shows the
fixed-parameter tractability of the skew separator problem. The combination of these two
results gives an algorithm with running time 4kk!nO(1) for the dfvs problem, which proves its
fixed-parameter tractability.

The relationship between the dfvs problem and multi-cut problems has been studied in the
research of approximation algorithms for the feedback vertex set problem [12, 19]. However,
our problem formulations and the corresponding techniques are significantly different from those
studied in the approximation algorithms. In particular, our formulations and techniques seem
especially suitable for developing faster and more effective exact algorithms (of exponential-
time) for NP-hard multi-cut problems. First of all, instead of seeking a multi-cut that separates
a given set of terminal vertices, as formulated in most multi-cut problems, our problem is
more general: we wish to construct a multi-cut that separates a collection of terminal vertex-
subsets. This more general version of the multi-cut problem enables us to effectively reduce the
search space size when we are searching for an optimal solution of a given problem instance.
Secondly, unlike most multi-cut problems whose solutions are multi-cuts that are in general
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symmetric to the given terminal vertices, the multi-cuts for the skew separator problem are
asymmetric to the terminal vertex-subsets. Thirdly, we develop an (exponential-time) reduction
that effectively reduces the problem of multi-cuts for multiple terminal vertex-subsets to the
problem of minimum cuts from a single source vertex to a single sink vertex. Note that the
latter is solvable in polynomial time via algorithms for the maximum flow problem. Such
an exponential-time reduction is obviously very different from the polynomial-time processes
used in the development of polynomial-time approximation algorithms. Finally, unlike most
parameterized algorithms that are focused on effectively decreasing the sole parameter value k,
our algorithm for the skew separator problem adds another dimension of bounds in terms of
the size of a minimum cut between two properly chosen terminal vertex-subsets. This dimension
of bounds has become crucial in our development of the algorithm for the skew separator

problem because it effectively bounds the number of branches in which the parameter value k

is not decreased.
Before we move to the technical discussion of our algorithms, we remark that the feedback

vertex set problem on undirected graphs (briefly, the ufvs problem) has also been an inter-
esting and active research topic in parameterized computation and complexity. Since the first
fixed-parameter tractable algorithm for the ufvs problem was published almost twenty years
ago [2], there has been an impressive list of improved algorithms for the problem. Currently
the best algorithm for the ufvs problem runs in time O(5kkn2) [5]. The feedback vertex

set problem on directed graphs (i.e., the dfvs problem) seems very different from the prob-
lem on undirected graphs (i.e., the ufvs problem). This fact has also been reflected in the
study of approximation algorithms for the problems. The feedback vertex set problem on
undirected graphs is polynomial-time approximable with a ratio 2. This holds true even for
weighted graphs [1]. On the other hand, it still remains open whether the feedback vertex

set problem on directed graphs has a constant-ratio polynomial-time approximation algorithm.
The current best polynomial-time approximation algorithm for the problem on directed graphs
has a ratio O(log τ log log τ), where τ is the size of a minimum FVS for the input graph [12].

2 Preliminaries

Let G = (V, E) be a directed graph and let e = [u, v] be a (directed) edge in G. We say that the
edge e goes out from the vertex u and comes into the vertex v. The edge e is called an outgoing
edge of the vertex u, and an incoming edge of the vertex v. These concepts can be extended
from single vertices to general vertex sets. Thus, for two vertex sets S1 and S2, we can say that
an edge goes out from S1 and comes into S2 if the edge goes out from a vertex in S1 and comes
into a vertex in S2. Moreover, we say that an edge goes out from S1 if the edge goes out from a
vertex in S1 and comes into a vertex not in S1, and that an edge comes into S2 if the edge goes
out from a vertex not in S2 and comes into a vertex in S2.

A path P from a vertex v1 to a vertex vh in the graph G is a sequence {v1, v2, . . . , vh} of
vertices in G such that [vi, vi+1] is an edge in G for all 1 ≤ i ≤ h − 1. The path P is simple if
no vertex is repeated in P . The path P is a cycle if v1 = vh, and the cycle is simple if no other
vertices are repeated. We say that a path is from a vertex set S1 to a vertex set S2 if the path
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is from a vertex in S1 to a vertex in S2. The graph G is a DAG (i.e., directed acyclic graph) if
it contains no cycles.

For a vertex subset V ′ ⊆ V in the directed graph G = (V, E), we denote by G[V ′] the
subgraph of G that is induced by the vertex subset V ′. Without any ambiguity, we will denote
by G−V ′ the induced subgraph G[V −V ′], and by G−w, where w is a vertex in G, the induced
subgraph G[V − {w}].

A vertex subset F in the directed graph G is a feedback vertex set (FVS) if the graph G−F

is a DAG. Since a vertex v with a self-loop (i.e., an edge that both goes out from and comes into
v) must be included in every FVS for the graph G, we will assume, without loss of generality,
that the graphs in our discussion have no self-loops.

Definition Let [S1, . . . , Sl] and [T1, . . . , Tl] be two collections of l vertex subsets in a directed
graph G = (V, E). A skew separator X for the pair ([S1, . . . , Sl], [T1, . . . , Tl]) is a vertex subset
in V −⋃l

i=1(Si ∪ Ti) such that for any pair of indices i and j satisfying l ≥ i ≥ j ≥ 1, there is
no path from Si to Tj in the graph G−X.

The subsets S1, . . ., Sl will be called the source sets and the subsets T1, . . ., Tl will be
called the sink sets. A vertex is a non-terminal vertex if it is not in

⋃l
i=1(Si ∪ Ti). Note that

by definition, all vertices in a skew separator must be non-terminal vertices. Moreover, a skew
separator X is asymmetric to the source sets and the sink sets: a path from Si to Tj with i < j

may exist in the graph G−X.
When there is only one source set S1 and one sink set T1, a skew separator for the pair

([S1], [T1]) becomes a regular cut for S1 and T1, i.e., a vertex set whose removal leaves a graph
in which there is no path from the set S1 to the set T1. Therefore, a skew separator for the pair
([S1], [T1]) is also called a cut from S1 to T1. A cut from S1 to T1 is a min-cut (i.e., a minimum
cut) if it has the smallest cardinality over all cuts from S1 to T1.

The following lemma can be easily derived based on standard maximum flow techniques [23].
Thus, we omit its proof.

Lemma 2.1 There is an O(kn2) time algorithm that for two given vertex subsets S and T in
a directed graph G of n vertices, and a parameter k, either constructs a min-cut from S to T

whose size is bounded by k, or reports that the min-cut from S to T has a size larger than k.

The algorithm for the dfvs problem is obtained through careful development of algorithms
for a series of problems. In the following, we give the formal definitions of these problems.

skew separator: given (G, [S1, . . . , Sl], [T1, . . . , Tl], k), where G is a directed graph,
[S1, . . . , Sl] is a collection of l source sets and [T1, . . . , Tl] is a collection of l sink sets
in G, and a parameter k, such that

(1) all sets S1, . . ., Sl, T1, . . ., Tl are pairwise disjoint;

(2) for each i, 1 ≤ i ≤ l − 1, there is no edge coming into the source set Si; and

(3) for each j, 1 ≤ j ≤ l, there is no edge going out from the sink set Tj ,
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either construct a skew separator of at most k vertices for the pair ([S1, . . . , Sl], [T1, . . . , Tl]),
or report that no such separator exists.

Note that in an instance of the skew separator problem, condition (2) on source sets and
condition (3) on sink sets are not completely symmetric. Although the first l− 1 source sets are
not allowed to have incoming edges, the last source set Sl is allowed to have incoming edges.
On the other hand, all sink sets are not allowed to have outgoing edges.

We remark that conditions (1)-(3) in the definition of the skew separator problem (plus
the restriction that the skew separator can consist of only non-terminal vertices) may be relaxed,
and our techniques for the problem may still be applicable. However, the above formulation of
the problem will make our discussion simpler, and will also be sufficient for our solution to
the dfvs problem, which is the focus of the current paper. We leave the investigation of the
separator problems of more general forms to later research.

Let G = (V, E) be a directed graph, and let (D1, D2) be a bi-partition of the vertex set V

of G, i.e., D1 ∪ D2 = V and D1 ∩ D2 = ∅. The bi-partition (D1, D2) is a DAG-bipartition for
the graph G if both induced subgraphs G[D1] and G[D2] are DAGs. A vertex subset F in the
graph G is a D1-FVS if F is an FVS for G and F ⊆ D1.

dag-bipartition fvs: given (G,D1, D2, k), where G is a directed graph, (D1, D2)
is a DAG-bipartition for G, and k is the parameter, either construct a D1-FVS of
size bounded by k for the graph G, or report that no such D1-FVS exists.

We will be also interested in a special version of the feedback vertex set problem.

dfvs reduction: given a triple (G,F, k), where G is a directed graph and F is an
FVS of size k + 1 for G, either construct an FVS of size bounded by k for G, or
report that no such FVS exists.

Finally, our central problem in this paper is as follows.

dfvs: given a pair (G, k), where G is a directed graph and k is the parameter, either
construct an FVS of size bounded by k for G, or report that no such FVS exists.

3 Solving the skew separator problem

In this section, we study the complexity of the skew separator problem.
Let (G, [S1, . . . , Sl], [T1, . . . , Tl], k) be an instance of the skew separator problem. Define

Tall =
⋃

1≤i≤l Ti. There are a few cases in which we can directly reduce the instance size:

Rule R1. There is no path from Sl to Tall, i.e., the size of a min-cut from Sl to Tall is 0:
then we only need to find a skew separator of size k that separates Si from Tj for all
indices i and j satisfying l − 1 ≥ i ≥ j ≥ 1, i.e., we can work instead on the instance
(G, [S1, . . . , Sl−1], [T1, . . . , Tl−1], k). Note that in this case, by definition, if l = 1, then the
solution to the instance (G, [S1, . . . , Sl−1], [T1, . . . , Tl−1], k) is simply the empty set ∅;
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Rule R2. There is an edge from Sl to Tall: then there is no way to even separate Sl from Tall

– we can simply stop and claim that the given instance is a “No” instance;

Rule R3. There exists a non-terminal vertex w, an edge from Sl to w, and an edge from w

to Tall: then the vertex w must be included in the skew separator in order to separate Sl

and Tall – we can simply work on the instance (G− w, [S1, . . . , Sl], [T1, . . . , Tl], k − 1) and
recursively find a skew separator of size k − 1.

Note that in Rules R1 and R3, the reduced instances (G, [S1, . . . , Sl−1], [T1, . . . , Tl−1], k) and
(G−w, [S1, . . . , Sl], [T1, . . . , Tl], k− 1) are still valid instances of the skew separator problem.

In the following discussion, assume that for the input instance (G, [S1, . . . , Sl], [T1, . . . , Tl], k),
none of the rules above is applicable. In particular, since Rule R1 is not applicable, a min-cut
from Sl to Tall has size larger than 0. Because Rules R1-R3 are not applicable, there must be
a non-terminal vertex u0 such that (1) there is an edge from Sl to u0; and (2) there is no edge
from u0 to Tall. Such a vertex u0 will be called an Sl-extended vertex. Fix an Sl-extended vertex
u0, let S′l = Sl ∪ {u0}.

We start with the following simple but important lemma. The proof of this lemma is straight-
forward. Thus, we leave it to the reader.

Lemma 3.1 Let X be a subset of vertices in the graph G that does not contain the Sl-extended
vertex u0. Then X is a skew separator for the pair ([S1, . . . , Sl], [T1, . . . , Tl]) if and only if X is
a skew separator for the pair ([S1, . . . , Sl−1, S

′
l], [T1, . . . , Tl−1, Tl]).

Lemma 3.1 also directly implies the following two useful corollaries.

Corollary 3.2 A skew separator for the pair ([S1, . . . , Sl−1, S
′
l], [T1, . . . , Tl−1, Tl]) is also a skew

separator for the pair ([S1, . . . , Sl], [T1, . . . , Tl]).

Corollary 3.3 The size of a min-cut from S′l to Tall in the graph G is at least as large as the
size of a min-cut from Sl to Tall in G.

Now we are ready for our main theorem in this section.

Theorem 3.4 If the size of a min-cut from Sl to Tall is equal to the size of a min-cut from S′l
to Tall, then the pair ([S1, . . . , Sl], [T1, . . . , Tl]) has a skew separator of size bounded by k if and
only if the pair ([S1, . . . , Sl−1, S

′
l], [T1, . . . , Tl−1, Tl]) has a skew separator of size bounded by k.

Proof. ⇐: Suppose that the pair ([S1, . . . , Sl−1, S
′
l], [T1, . . . , Tl−1, Tl]) has a skew separator X ′

of size bounded by k. By Corollary 3.2, X ′ is also a skew separator for ([S1, . . . , Sl], [T1, . . . , Tl]).
In consequence, ([S1, . . . , Sl], [T1, . . . , Tl]) has a skew separator of size bounded by k.

⇒: Suppose that the pair ([S1, . . . , Sl], [T1, . . . , Tl]) has a skew separator X of size bounded
by k. If the skew separator X does not contain the Sl-extended vertex u0, then by Lemma 3.1,
X is also a skew separator of size bounded by k for the pair ([S1, . . . , Sl−1, S

′
l], [T1, . . . , Tl−1, Tl]),

and the theorem is proved. Therefore, we can assume that the set X contains the Sl-extended
vertex u0. We will define another set X ′ that does not contain u0. We will show that |X ′| ≤ |X|

6



and that X ′ is a skew separator for ([S1, . . . , Sl], [T1, . . . , Tl]). Then the theorem will immediately
follow.

Let Y be a min-cut from S′l to Tall. Then Y does not contain the Sl-extended vertex u0.
Moreover, since there is no edge coming into Si from outside of Si for all i ≤ l − 1, the set Y

does not contain any vertex in
⋃l−1

i=1 Si. In consequence, the set Y consists of only non-terminal
vertices. By Corollary 3.2, Y is also a cut from Sl to Tall. Moreover, by the assumption of the
theorem that the size of a min-cut from Sl to Tall is equal to the size of a min-cut from S′l to
Tall, Y is actually also a min-cut from Sl to Tall. Let RY (Sl) be the set of vertices v such that
either v ∈ Sl or there is a path from Sl to v in the subgraph G− Y . In particular, u0 ∈ RY (Sl)
because Y does not contain u0 and there is an edge from Sl to u0.

We introduce a number of sets as follows.

Z = X ∩ Y ;

Xin = X ∩RY (Sl);

Xout = X − (Xin ∪ Z).

That is, the skew separator X for ([S1, . . . , Sl], [T1, . . . , Tl]) is decomposed into three disjoint
subsets Z, Xin, and Xout (note that by definitions, RY (Sl) and Y do not intersect).

Let YT be the set of vertices v in the min-cut Y such that there is a path from v to Tall in
the subgraph G−X. By definition, we have YT ∩ Z = ∅. Let

YS = Y − (YT ∪ Z).

Thus, the min-cut Y from Sl to Tall is decomposed into three disjoint subsets Z, YT , and YS .
Figure 1 gives an intuitive illustration of the sets Z, Xin, Xout, YT , YS , and RY (Sl).
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Y : a min-cut from S′l to Tall

X: a skew separator for
([S1, . . . , Sl], [T1, . . . , Tl])

RY (Sl): vertices reachable from Sl

in G− Y

Z = X ∩ Y

Xin = X ∩RY (Sl)

Xout = X − (Xin ∪ Z)

YT : vertices in Y from which Tall is

reachable in G−X

YS = Y − (YT ∪ Z)

Figure 1: Sets in the proof of Theorem 3.4.
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We first show that the set Y ′ = YS ∪Z ∪Xin is also a cut from Sl to Tall. If by contradiction
Y ′ is not a cut from Sl to Tall, then there is a path P1 from Sl to Tall in the subgraph G− Y ′.
The path P1 must contain vertices in the set Y since Y is a cut from Sl to Tall. Let w be the
first vertex on the path P1 that is in Y when we traverse from Sl to Tall along the path P1.
Then w must be in YT since Y ′ contains both YS and Z. Now the partial path P ′

1 of P1 from
Sl to w (not including w) must be entirely contained in RY (Sl) (note that the path P1 does not
intersect YS ∪Z). Moreover, the path P ′

1 contains neither vertices in Xin ∪Z (by the definition
of the set Y ′) nor vertices in Xout (since the sets Xout and RY (Sl) are disjoint). In summary,
the subpath P ′

1 from Sl to w contains no vertex in the set X. Moreover, by the definition of
the set YT , and w ∈ YT , there is a path P ′′

1 from w to Tall in the subgraph G − X. Now the
concatenation of the paths P ′

1 and P ′′
1 would result in a path from Sl to Tall in the graph G−X,

contradicting the fact that X is a skew separator for the pair ([S1, . . . , Sl], [T1, . . . , Tl]). This
contradiction shows that the set Y ′ must be a cut from Sl to Tall.

Since Y is a min-cut from Sl to Tall, we have |Y | ≤ |Y ′|. By definition, Y = YS ∪ Z ∪ YT

and Y ′ = YS ∪Z ∪Xin. Also note that YS , Z, and YT are pairwise disjoint, and that YS , Z, and
Xin are also pairwise disjoint. Therefore, we must have |YT | ≤ |Xin|.

Consider the set X ′ = Xout ∪ Z ∪ YT . The set X ′ has the following properties: (1) X ′

consists of only non-terminal vertices (because both X and Y consist of only non-terminal
vertices); (2) |X ′| ≤ |X| (because |YT | ≤ |Xin|), so the size of X ′ is bounded by k; and
(3) the set X ′ does not contain the Sl-extended vertex u0 (this is because u0 is in Xin and
Y does not contain u0). Therefore, if we can prove that X ′ is a skew separator for the pair
([S1, . . . , Sl], [T1, . . . , Tl]), then by Lemma 3.1, X ′ is also a skew separator of size bounded by k

for the pair ([S1, . . . , Sl−1, S
′
l], [T1, . . . , Tl−1, Tl]). This will complete the proof of the theorem.

Therefore, what remains is to prove that the set X ′ = Xout ∪Z ∪ YT is a skew separator for
the pair ([S1, . . . , Sl], [T1, . . . , Tl]). Let RY (Tall) be the set of vertices v such that either v ∈ Tall,
or there is a path from v to Tall in the subgraph G− Y .

Suppose by contradiction that X ′ is not a skew separator for ([S1, . . . , Sl], [T1, . . . , Tl]). Then
there is a path P2 in the subgraph G −X ′ from Si to Tj for some i ≥ j. The path P2 has the
following properties:

1. The path P2 must contain a vertex in RY (Sl): since X is a skew separator for the pair
([S1, . . . , Sl], [T1, . . . , Tl]), the path P2 from Si to Tj with i ≥ j must contain at least one
vertex w1 in X = Xin∪Z ∪Xout. Now since the path P2 is in the subgraph G−X ′, where
X ′ = Xout ∪ Z ∪ YT , the vertex w1 must be in Xin, which is a subset of RY (Sl);

2. The path P2 must contain a vertex in YS : by Property 1, P2 contains a vertex w1 in RY (Sl).
From the vertex w1 to Tall along the path P2, there must be a vertex w2 in Y = YS∪Z∪YT

since Y is a cut from Sl to Tall while w1 is reachable from Sl in the subgraph G−Y . Now
since X ′ = Xout ∪ Z ∪ YT , and the path P2 is in the subgraph G −X ′, the vertex w2 on
the path P2 must be in the set YS ;

3. The path P2 must end at a vertex in RY (Tall); this is simply because P2 is ended in Tall.
Note that by definition, no vertex in YS can be in RY (Tall).
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By Properties 2-3, the path P2 contains a vertex not in RY (Tall) and ends at a vertex in RY (Tall).
Thus, there must be an internal vertex w in the path such that w is not in RY (Tall) but all
vertices after w along the path P2 (from Si to Tj) are in RY (Tall). Note that no vertex w′ after
the vertex w along the path P2 can be in the set X: w′ in X would imply w′ in Xin (since P2 is
a path in the subgraph G−X ′), which would imply that there is another vertex after w′ that is
in Y thus is not in RY (Tall). Moreover, the vertex w must be in the set Y (otherwise, w would
be in RY (Tall)). Since P2 is a path in G−X ′ and X ′ = Xout ∪Z ∪ YT , the vertex w must be in
the set YS . However, this derives a contradiction: the subpath of P2 from w to Tall shows that
the vertex w should belong to the set YT (note that all vertices after w on the path are not in
X), and the sets YS and YT are disjoint. This contradiction proves that the set X ′ must be a
skew separator for the pair ([S1, . . . , Sl], [T1, . . . , Tl]). Since the size of the set X ′ is bounded by
k and X ′ does not contain the Sl-extended vertex u0, by Lemma 3.1, the set X ′ is also a skew
separator for the pair ([S1, . . . , Sl−1, S

′
l], [T1, . . . , Tl−1, Tl]), and the size of X ′ is bounded by k.

This completes the proof of the theorem.

Theorem 3.4 enables us to develop a parameterized algorithm for the skew separator

problem. The algorithm is presented in Figure 2.

Algorithm SMC(G, [S1, . . . , Sl], [T1, . . . , Tl], k)
input: an instance (G, [S1, . . . , Sl], [T1, . . . , Tl], k) of the skew separator problem.
output: a skew separator of size bounded by k for the pair ([S1, . . . , Sl], [T1, . . . , Tl]),

or report “No” (i.e., no such separator exists).

1. if l = 1 then solve the problem in time O(kn2);
2. if Rule R2 applies or k < 0 then return “No”;
3. if Rule R1 applies then return SMC(G, [S1, . . . , Sl−1], [T1, . . . , Tl−1], k);
4. if Rule R3 applies on a vertex w

then return {w} ∪ SMC(G− w, [S1, . . . , Sl], [T1, . . . , Tl], k − 1); §

5. pick an Sl-extended vertex u0; let S′l = Sl ∪ {u0};
6. let m be the size of a min-cut from Sl to Tall =

⋃l
i=1 Ti;

7. if m > k then return “No”;
8. let m′ be the size of a min-cut from S′l to Tall;
9. if (m = m′)
9.1. then return SMC(G, [S1, . . . , Sl−1, S

′
l ], [T1, . . . , Tl−1, Tl], k);

9.2. else X = {u0} ∪ SMC(G− u0, [S1, . . . , Sl], [T1, . . . , Tl], k − 1);
if X 6= “No” then return X;

9.3. else return SMC(G, [S1, . . . , Sl−1, S
′
l ], [T1, . . . , Tl−1, Tl], k).

§ To simplify our description, we assume that a “No” plus anything gives a “No”.

Figure 2: An algorithm for the skew separator problem.

Theorem 3.5 The algorithm SMC(G, [S1, . . . , Sl], [T1, . . . , Tl), k] solves the skew separator

problem in O(4kkn3) time, where n is the number of vertices in the input graph G.

Proof. We first prove the correctness of the algorithm. Let (G, [S1, . . . , Sl], [T1, . . . , Tl], k)
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be an input to the algorithm, which is an instance of the skew separator problem, where
G = (V, E) is a directed graph, [S1, . . . , Sl] and [T1, . . . , Tl] are the source sets and the sink sets,
respectively, and k is the upper bound of the size of the skew separator we are looking for.

If l = 1, then the problem becomes the construction of a min-cut of size bounded by k from
S1 to T1, which can be solved in O(kn2) time by Lemma 2.1. Steps 2-4 were justified in the
discussions of Rules 2, 1, 3, respectively, at the beginning of this section (note that we have
also consistently defined that an instance is a “No” instance if the parameter k has a negative
value). Therefore, if the algorithm reaches step 5, then none of the Rules 1-3 are applicable. In
particular, since Rule 1 is not applicable and the sets Sl and Tall are disjoint, there must be an
edge [v, w], where v ∈ Sl and w 6∈ Sl. Since Rule 2 is not applicable, the vertex w is not in the
set Tall. The vertex w also cannot be in any source set Si for i < l because there is no edge
coming into Si from outside of Si. Therefore, the vertex w is a non-terminal vertex. Finally,
since Rule 3 is not applicable, there is no edge from w to Tall. Thus, w must be an Sl-extended
vertex. This proves that at step 5, the algorithm can always find an Sl-extended vertex u0.

In the case m > k in step 7, i.e., the size m of a min-cut from Sl to Tall is larger than
the parameter k, then even separating a single source set Sl from the sink sets Tall =

⋃l
j=1 Tj

requires more than k vertices. Thus, no skew separator of size bounded by k can exist to separate
Si from Tj for all l ≥ i ≥ j ≥ 1. Step 7 correctly handles this case by returning “No”.

In the case m = m′ in step 9, i.e., the size m of a min-cut from Sl to Tall is equal to the
size m′ of a min-cut from S′l to Tall, by Theorem 3.4, the pair ([S1, . . . , Sl], [T1, . . . , Tl]) has a
skew separator of size bounded by k if and only if the pair ([S1, . . . , Sl−1, S

′
l], [T1, . . . , Tl−1, Tl])

has a skew separator of size bounded by k. Moreover, by Corollary 3.2, a skew separa-
tor of size bounded by k for the pair ([S1, . . . , Sl−1, S

′
l], [T1, . . . , Tl−1, Tl]) is also a skew sep-

arator for the pair ([S1, . . . , Sl], [T1, . . . , Tl]). Therefore, in this case we can recursively call
SMC(G, [S1, . . . , Sl−1, S

′
l], [T1, . . . , Tl−1, Tl], k), and look instead for a skew separator of size

bounded by k for the pair ([S1, . . . , Sl−1, S
′
l], [T1, . . . , Tl−1, Tl]), as handled by step 9.1.

In the case m 6= m′, then the algorithm branches into two subcases: step 9.2 includes the
Sl-extended vertex u0 in the skew separator and recursively looks for a skew separator of size
bounded by k− 1 in the remaining graph G− u0 for the pair ([S1, . . . , Sl], [T1, . . . , Tl]); and step
9.3 excludes the Sl-extended vertex u0 from the skew separator and recursively looks for a skew
separator that does not contain u0 and is of size bounded by k in the graph G for the pair
([S1, . . . , Sl], [T1, . . . , Tl]) (which, by Lemma 3.1, is a skew separator of size bounded by k for
the pair ([S1, . . . , Sl−1, S

′
l], [T1, . . . , Tl−1, Tl])). This completes the verification of the correctness

of the algorithm. Now we analyze its complexity.
The recursive execution of the algorithm can be described as a search tree T . We first

count the number of leaves in the search tree T . Note that only steps 9.2-9.3 of the algorithm
correspond to branches in the search tree T . Let D(k, m) be the total number of leaves in the
search tree T for the algorithm SMC(G, [S1, . . . , Sl], [T1, . . . , Tl], k), where m is the size of a
min-cut from Sl to Tall. Then steps 9.2-9.3 induce the following recurrence relation:

D(k, m) ≤ D(k − 1,m1) + D(k, m2) (1)

where m1 is the size of a min-cut from Sl to Tall in the graph G − u0 as given in step 9.2,
and m2 is the size of a min-cut from S′l to Tall in the graph G as given in step 9.3. Note that
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m− 1 ≤ m1 ≤ m because removing the vertex u0 from the graph G cannot increase the size of
a min-cut from Sl to Tall, and can decrease the size of a min-cut for the two sets by at most 1.
Moreover, by Corollary 3.3, in step 9.3 we must have m2 ≥ m + 1. Summarizing these, we have

m− 1 ≤ m1 ≤ m and m2 ≥ m + 1. (2)

We prove, by induction on t = 2k −m, that D(k, m) ≤ 22k−m. First note that we always
have t = 2k − m ≥ 0 because by the definitions of k and m we always have k ≥ m ≥ 0. In
particular, in the initial case when t = 2k −m = 0, we must have k = m = 0; in this case the
algorithm can solve the instance without further branching. Therefore, we have D(k, m) = 1
when t = 2k −m = 0. For the inductive step, note that by Inequalities (2), we have

t1 = 2(k − 1)−m1 ≤ 2(k − 1)− (m− 1) = 2k −m− 1,

and
t2 = 2k −m2 ≤ 2k − (m + 1) = 2k −m− 1.

Therefore, we can apply the inductive hypothesis on Inequality (1), which gives

D(k, m) ≤ D(k − 1,m1) + D(k, m2)

≤ 22(k−1)−m1 + 22k−m2

≤ 22k−m−1 + 22k−m−1

= 22k−m. (3)

This completes the inductive proof. Moreover, we also note that certain non-branching steps
(i.e., steps 3, 4, and 9.1) may also change the values of k and m, thus changing the value
t = 2k −m. However, none of these steps increases the value t = 2k −m: (i) step 3 keeps the
value k unchanged and does not decrease the value m (because in this case the size of a min-cut
from Sl to Tall is 0 that cannot be larger than the size of a min-cut from Sl−1 to

⋃l−1
j=1 Tj); (ii)

step 4 decreases the value k by 1 and the value m by at most 1 (because removing a vertex from
G can reduce the size of a min-cut from Sl to Tall by at most 1), which as a total will decrease
the value t = 2k−m by at least 1; (iii) by the condition assumed, step 9.1 keeps both the values
k and m unchanged, thus unchanging the value t = 2k −m. As a result, the value t = 2k −m

after a branching step to the next branching step can never be increased.
Summarizing the above discussion, we conclude that the total number of leaves, D(k, m), in

the search tree T for the algorithm SMC(G, [S1, . . . , Sl], [T1, . . . , Tl], k), where m is the size of
a min-cut from Sl to Tall, satisfies the following inequality

D(k, m) ≤ 22k−m ≤ 4k.

The running time of each execution of the algorithm SMC, not counting the time for the
recursive calls in the execution, is bounded by O(kn2), where n is the number of vertices in the
input graph. In particular, by Lemma 2.1, step 1 that looks for a min-cut of size bounded by k

from S1 to T1, steps 6-7 that determine if the size m of a min-cut from Sl to Tall is bounded by
k, and steps 8-9 that determine if the size of a min-cut from S′l to Tall is equal to m (m ≤ k at
this point), all have their running time bounded by O(kn2).
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Observe that for each recursive call in an execution of the algorithm SMC, either the number
of source-sink pairs in the instance is decreased by 1 (step 3), or the number of non-terminal
vertices in the instance is decreased by 1 (steps 4, 9.1, 9.2, and 9.3). When the number of
source-sink pairs is equal to 1, the problem is solved in time O(kn2) by step 1, and when the
number of non-terminal vertices is equal to 0, either step 2 or step 3 can be applied directly. In
conclusion, along each root-leaf path in the search tree T , there are at most O(n) recursive calls
to the algorithm SMC. Therefore, the running time along each root-leaf path in the search tree
T is bounded by O(kn3).

Summarizing the above discussions, we conclude that the running time of the algorithm
SMC is bounded by O(4kkn3). This completes the proof of the theorem.

4 Solving the dag-bipartition fvs problem

In this section, we describe how to use the results in the previous section to solve the dag-

bipartition fvs problem.
Recall that an instance of dag-bipartition fvs is given as a tuple (G,D1, D2, k), where

G is a directed graph, (D1, D2) is a DAG-bipartition of G, and k is the parameter, with the
objective of finding an FVS X for the graph G such that X ⊆ D1 (recall that such an FVS is
called a D1-FVS) and that the size of X is bounded by k.

Let π = {v1, v2, . . . , vh} be a topologically sorted order of the vertices in the induced DAG
G[D2]. We construct an instance of the skew separator problem as follows:

1. Let G′ be the graph obtained from G by removing all edges in G[D2].

2. In the graph G′, replace each vertex vi in D2 by a pair (ti, si) of vertices such that all
incoming edges into vi are now coming into the vertex ti, and that all outgoing edges from
vi are now going out from the vertex si. Let the resulting graph be Gπ.

Note that in the resulting graph Gπ, the vertices si, 1 ≤ i ≤ h, have no incoming edges, and
the vertices tj , 1 ≤ j ≤ h, have no outgoing edges. Moreover, since we have removed all edges
between the vertices in G[D2], every edge going out from a vertex si must come into a vertex in
the set D1, and every edge coming into a vertex tj must go out from a vertex in the set D1. In
particular, (Gπ, [{s1}, . . . , {sh}], [{t1}, . . . , {th}], k) is a valid instance for the skew separator

problem, which will be called an instance of the skew separator induced by the instance
(G,D1, D2, k) of dag-bipartition fvs and the topologically sorted order π of the vertices in
G[D2].

Thus, each vertex vi in the set D2 in the graph G is now “split” into the two vertices si

and ti in the graph Gπ. Moreover, there is a one-to-one mapping between the vertices in the
set D1 in the graph G and the non-terminal vertices in the graph Gπ. Thus, in case of no
ambiguity, we will use the same vertex name to refer to both a non-terminal vertex in the graph
Gπ and a vertex in the set D1 in the graph G. In particular, a skew separator for the pair
([{s1}, . . . , {sh}], [{t1}, . . . , {th}]) in the graph Gπ corresponds to a subset of D1 in the graph G.
We have the following important theorem.
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Theorem 4.1 Let (G,D1, D2, k) be an instance of the dag-bipartition fvs problem, and let
X be a D1-FVS for the graph G. Then there is a topologically sorted order π = {v1, . . . , vh} of
the vertices in G[D2] such that in the instance (Gπ, [{s1}, . . . , {sh}], [{t1}, . . . , {th}], k) induced
by (G,D1, D2, k) and π: (1) X is a skew separator for the pair ([{s1}, . . . , {sh}], [{t1}, . . . , {th}])
in the graph Gπ; and (2) every skew separator for the pair ([{s1}, . . . , {sh}], [{t1}, . . . , {th}]) in
Gπ is a D1-FVS for the graph G.

Proof. As assumed in the theorem, let (G,D1, D2, k) be an instance of the dag-bipartition

fvs problem, and let X be a D1-FVS for the graph G. Consider the subgraph G−X. Since X is
an FVS for G, the graph G−X is a DAG. Therefore, the vertices in G−X can be topologically
sorted into an ordered list π′ such that there is no edge in G−X that goes out from a later vertex
in π′ and comes into an earlier vertex in π′. Let π = {v1, . . . , vh} be the order of the vertices
in D2 that is induced from the order π′ (i.e., π is obtained from π′ by removing the vertices
not in D2. Note that all vertices in X are in D1). The order π is obviously a topologically
sorted order for the DAG G[D2]. We show that this order π of the vertices in D2 and the
corresponding instance (Gπ, [{s1}, . . . , {sh}], [{t1}, . . . , {th}], k) induced by (G,D1, D2, k) and π

satisfy the conclusions of the theorem.
We first show that the set X is a skew separator for the pair ([{s1}, . . . , {sh}], [{t1}, . . . , {th}])

in the graph Gπ. If this were not the case, then there would be a path P in the graph Gπ −X

that starts from a vertex si and ends at a vertex tj with i ≥ j. Since no vertex in {s1, . . . , sh} has
incoming edges and no vertex in {t1, . . . , th} has outgoing edges, all internal vertices on the path
P are non-terminal vertices in Gπ. In consequence, all internal vertices on P are vertices in the
set D1 in the graph G. Therefore, the path P in Gπ −X corresponds to a path P ′ in the graph
G −X that starts from the vertex vi and ends at the vertex vj , where i ≥ j, with all internal
vertices of P ′ in the set D1. But it is impossible: (1) if i = j then the path P ′ would be a cycle
in the graph G−X, contradicting the assumption that X is an FVS for the graph G; and (2) if
i > j, then P ′ would become a path from vi to vj with i > j in the graph G−X, contradicting
the assumption that π = {v1, . . . , vh} is an order of the vertices in D2 that is induced from the
topologically sorted order π′ of the vertices in the DAG G−X. In conclusion, the path P does
not exist, and the set X is a skew separator for the pair ([{s1}, . . . , {sh}], [{t1}, . . . , {th}]) in the
graph Gπ.

Now we prove that every skew separator X ′ for the pair ([{s1}, . . . , {sh}], [{t1}, . . . , {th}]) in
the graph Gπ is a D1-FVS for the graph G. First of all, by definition, a skew separator consists
of only non-terminals, thus, all vertices in X ′ are in the set D1. Suppose for a contradiction that
X ′ is not a D1-FVS for the graph G. Then there is a cycle C in the graph G − X ′. Without
loss of generality, we can assume that C is a simple cycle. Since both the induced subgraphs
G[D1] and G[D2] are DAGs, the cycle C must contain both vertices in D1 and vertices in D2.
We consider two different cases.

Case 1. The cycle C contains a single vertex vi in the set D2. Then all other vertices in the
cycle C are in the set D1. But then the cycle C would correspond to a path P1 in the graph
Gπ −X ′ that starts with the vertex si and ends at the vertex ti (with all internal vertices being
non-terminal vertices). But this contradicts the assumption that X ′ is a skew separator for the
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pair ([{s1}, . . . , {sh}], [{t1}, . . . , {th}]) that should have cut all paths from si to ti.
Case 2. The cycle C contains more than one vertex in the set D2. Let {vi1 , vi2 , . . . , vid , vi1}

be the order of the vertices in D2 that we encounter when traversing along the cycle C (starting
from an arbitrary vertex vi1 in D2), where d > 1. Then there must be an index j such that
ij > ij+1 (where we take ij+1 = i1 if j = d). Now consider the subpath P2 of C that starts from
the vertex vij and ends at the vertex vij+1 . The path P2 cannot be a single edge from vij to vij+1

since π = {v1, v2, . . . , vh} is a topologically sorted order for the vertices in the DAG G[D2] and
ij > ij+1. Thus, the path P2 contains at least one internal vertex. Since all internal vertices on
the path P2 are not in D2 thus correspond to non-terminal vertices in the graph Gπ −X ′, the
path P2 would correspond to a path P ′

2 in the graph Gπ − X ′ that starts from the vertex sij

and ends at the vertex tij+1 , with ij > ij+1. Again this contradicts the assumption that X ′ is
a skew separator for the pair ([{s1}, . . . , {sh}], [{t1}, . . . , {th}]), which should have cut all paths
from sij to tij+1 when ij > ij+1.

This proves that the skew separator X ′ for the pair ([{s1}, . . . , {sh}], [{t1}, . . . , {th}]) in the
graph Gπ must be a D1-FVS for the graph G. This completes the proof of the theorem.

Theorem 4.1 enables us to reduce the dag-bipartition fvs problem to the skew separa-

tor problem. An algorithm for the dag-bipartition fvs problem is given in Figure 3.

Algorithm DBF(G, D1, D2, k)
input: an instance (G, D1, D2, k) of the dag-bipartition fvs problem.
output: a D1-FVS of size bounded by k for G, or report “No” (i.e., no such D1-FVS exists).

1. for each topologically sorted order π = {v1, . . . , vh} of the vertices in G[D2] do
1.1. construct the instance (Gπ, [{s1}, . . . , {sh}], [{t1}, . . . , {th}], k) of the skew

separator problem induced by (G, D1, D2, k) and π;
1.2. let X = SMC(Gπ, [{s1}, . . . , {sh}], [{t1}, . . . , {th}], k);
1.3. if X is a D1-FVS of size bounded by k for G

then return(X); stop;
2. return(“No”).

Figure 3: An algorithm for the dag-bipartition fvs problem.

Theorem 4.2 The algorithm DBF(G,D1, D2, k) solves the dag-bipartition fvs problem in
time O(4kkn3h!), where h is the number of vertices in the set D2, and n is the number of vertices
in the input graph G.

Proof. The running time of the algorithm is obvious: the for-loop in step 1 is executed
at most h! times, and the time for each execution is dominated by the subroutine call to the
algorithm SMC in step 1.2. By Theorem 3.5, the running time of each execution of step 1.2 is
bounded by O(4kkn3).

For the correctness of the algorithm, first note that the algorithm always returns “No” unless
it actually constructs a D1-FVS of size bounded by k for G in step 1.3. In particular, if the
input instance (G,D1, D2, k) contains no D1-FVS of size bounded by k for the graph G, then
the algorithm always correctly reports “No”.
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On the other hand, suppose that there is a D1-FVS X0 of size bounded by k for the graph
G. Then by Theorem 4.1, there is a topologically sorted order π = {v1, . . . , vh} of the vertices in
the DAG G[D2] such that in the instance (Gπ, [{s1}, . . . , {sh}], [{t1}, . . . , {th}], k) of the skew

separator problem induced by (G,D1, D2, k) and π, the set X0 is a skew separator for the
pair ([{s1}, . . . , {sh}], [{t1}, . . . , {th}]) in the graph Gπ, and every skew separator for the pair
([{s1}, . . . , {sh}], [{t1}, . . . , {th}]) in Gπ is a D1-FVS for the graph G. In particular, the pair
([{s1}, . . . , {sh}], [{t1}, . . . , {th}]) has at least one skew separator of size bounded by k (e.g., X0)
in the graph Gπ. Therefore, step 1.2 of the algorithm DBF must return a skew separator X

of size bounded by k for the pair ([{s1}, . . . , {sh}], [{t1}, . . . , {th}]) in the graph Gπ (the set X

may be different from the set X0), and this set X is a D1-FVS for the graph G. In conclusion, if
there is a D1-FVS of size bounded by k for the graph G, then the algorithm DBF(G,D1, D2, k)
will correctly return a D1-FVS of size bounded by k in step 1.3.

5 Solving the dfvs problem

We present our algorithm for the dfvs problem. We start with a more restricted version of the
problem, the dfvs reduction problem, defined as follows.

dfvs reduction: given a triple (G,F, k), where G is a directed graph and F is an
FVS of size k + 1 for G, either construct an FVS of size bounded by k for G, or
report that no such FVS exists.

Lemma 5.1 The dfvs reduction problem on a triple (G,F, k) is solvable in time O(n34kk3k!),
where n is the number of vertices in the input graph G.

Proof. Let G = (V, E) be the input directed graph with n = |V | vertices, and let F be the
input FVS of size k + 1 for the graph G. Every FVS F ′ of size bounded by k for G can be
split into two disjoint subsets F1 and F2, where F2 consists of j vertices in F for some integer j,
0 ≤ j ≤ k, and F1 consists of at most k− j vertices in V −F . Note that since we assume that no
vertex in F −F2 is in the FVS F ′, the induced subgraph G[F −F2] must be a DAG. Therefore,
for each j, 0 ≤ j ≤ k, we enumerate all subsets of j vertices in F . For each such subset F2 of F

such that G[F −F2] is a DAG, we seek a subset F1 of at most k− j vertices in V −F such that
F1 ∪ F2 makes an FVS for the graph G.

Fix a subset F2 of F , such that |F2| = j and that the induced subgraph G[F −F2] is a DAG.
Note that the graph G has an FVS F1 ∪ F2 of size bounded by k, where F1 ⊆ V − F , if and
only if the subset F1 of V − F is an FVS for the graph G − F2 and the size of F1 is bounded
by k− j. Therefore, to solve the original problem, we can instead consider how to construct an
FVS F1 for the graph G− F2 such that |F1| ≤ k − j and F1 ⊆ V − F .

Since F is an FVS for G, we have that the induced subgraph G[V − F ] = G − F is a
DAG. Moreover, by our assumption, the induced subgraph G[F − F2] is also a DAG. Note that
(V − F ) ∪ (F − F2) = V − F2, which is the vertex set for the graph G′ = G − F2. Therefore,
(V − F, F − F2) is a DAG-bipartition of the graph G′. Thus, an FVS F1 for the graph G′ such
that |F1| ≤ k − j and F1 ⊆ V − F , is actually a (V − F )-FVS of size bounded by k − j for the
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graph G′ with the DAG-bipartition (V − F, F − F2). Therefore, the set F1 can be constructed
by the algorithm DBF(G′, V − F, F − F2, k − j).

Since |F | = k + 1 and |F2| = j, we have |F − F2| = k + 1 − j. Therefore, the DAG
G[F −F2] contains exactly k+1−j vertices. By Theorem 4.2, the running time of the algorithm
DBF(G′, V −F, F −F2, k−j) is bounded by O(4k−j(k−j)n3(k+1−j)!). Now for all integers j,
0 ≤ j ≤ k, we enumerate all subsets F2 of j vertices in F and apply the algorithm DBF(G′, V −
F, F −F2, k− j) for those F2 such that G[F −F2] is a DAG. As we discussed above, the graph G

has an FVS of size bounded by k if and only if for some F2 of j vertices in F , where 0 ≤ j ≤ k,
the algorithm DBF(G′, V − F, F − F2, k − j) produces an FVS F1 of size bounded by k − j for
the graph G′. The running time of this process is bounded by the order of

k∑

j=0

(
k + 1

j

) (
4k−j(k − j)n3(k + 1− j)!

)
= O(n34kk3k!).

This completes the proof of the lemma.

The rest of our process for solving the original dfvs problem is to apply the iterative com-
pression method. The method was proposed by Reed, Smith, and Vetta [22] and has been used
for solving the feedback vertex set problem on undirected graphs [8, 15, 16]. Here we extend
the method and apply it to solve the dfvs problem.

Theorem 5.2 The dfvs problem is solvable in time O(n44kk3k!).

Proof. Let (G, k) be an instance of the dfvs problem, where G = (V, E) is a directed graph
with n = |V | vertices, and k is the parameter. Pick any subset V0 of k + 1 vertices in G, and
let F0 be any subset of k vertices in V0. Note that the set F0 is an FVS of k vertices for the
induced subgraph G0 = G[V0] since the graph G0 − F0 consists of a single vertex (note that by
our assumption, the graph G contains no self-loops).

Let V − V0 = {v1, v2, . . . , vn−k−1}. Let Vi = V0 ∪ {v1, . . . , vi}, and let Gi = G[Vi] be the
subgraph induced by Vi, for i = 0, 1, . . . , n − k − 1. Inductively, suppose that for an integer i,
0 ≤ i < n−k−1, we have constructed an FVS Fi of size bounded by k for the induced subgraph
Gi (this has been the case for i = 0). Without loss of generality, we can assume that the set Fi

consists of exactly k vertices – otherwise we simply pick k−|Fi| vertices (arbitrarily) from Gi−Fi

and add them to the set Fi. Now consider the set F ′
i+1 = Fi +vi+1. Since Gi+1−F ′

i+1 = Gi−Fi

and Fi is an FVS for Gi, the set F ′
i+1 is an FVS of size k + 1 for the induced subgraph Gi+1. In

particular, the triple (Gi+1, F
′
i+1, k) is a valid instance for the dfvs reduction problem.

Apply Theorem 5.1 to the instance (Gi+1, F
′
i+1, k), which either returns an FVS Fi+1 of size

bounded by k for the graph Gi+1, or claims that no such FVS exists. It is easy to see that if the
induced subgraph Gi+1 = G[Vi+1] does not have an FVS of size bounded by k, then the original
graph G cannot have an FVS of size bounded by k. Therefore, in this case, we can simply stop
and conclude that there is no FVS of size bounded by k for the original input graph G. On the
other hand, suppose that an FVS Fi+1 of size bounded by k is constructed for the graph Gi+1

in the above process, then the induction successfully proceeds from i to i + 1 with a new pair
(Gi+1, Fi+1).
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In conclusion, the above process either stops at some point and correctly reports that the
input graph G has no FVS of size bounded by k, or eventually ends with an FVS Fn−k−1 of size
bounded by k for the graph Gn−k−1 = G[Vn−k−1] = G.

This process is involved in solving at most n − k − 1 instances (Gi, Fi, k) of the dfvs re-

duction problem, for 0 ≤ i ≤ n − k − 2. By Theorem 5.1, the running time of the process is
bounded by O(n34kk3k!(n − k − 1)) = O(n44kk3k!), and the process correctly solves the dfvs

problem.

Remark. The running time of the algorithm in Theorem 5.2 can be further improved by
taking advantage of existing approximation algorithms for the feedback vertex set problem
on directed graphs. Even, Naor, Schieber, and Sudan [12] have developed a polynomial time
approximation algorithm for the feedback vertex set problem that for a given directed graph
G, produces an FVS F of size bounded by c · τ log τ log log τ in time O(n2M(n) log2 n), where
c is a constant, τ is the size of a minimum FVS for the graph G, and M(n) = O(n2.376) is the
complexity of the multiplication of two n× n matrices. Therefore, for a given instance (G, k) of
the dfvs problem, we can first apply the approximation algorithm in [12] to construct an FVS
F for the graph G. If |F | > c · k log k log log k, then we know that the graph G has no FVS of
size bounded by k. On the other hand, suppose that |F | ≤ c · k log k log log k. Then we pick a
subset F0 of arbitrary k vertices in F , and let G0 = G − (F − F0). The set F0 is an FVS of
size k for the graph G0. Now we can proceed exactly the same way as we did in Theorem 5.2:
let F − F0 = {v1, v2, . . . , vh}, where h ≤ c · k log k log log k − k, and let Vi = V0 ∪ {v1, . . . , vi},
and Gi = G[Vi], for i = 0, 1, . . . , h. By repeatedly applying the algorithm in Lemma 5.1, we
can either stop with a certain index i where the induced subgraph Gi+1 has no FVS of size
bounded by k (thus the original input graph G has no FVS of size bounded by k), or eventually
construct an FVS Fh of size bounded by k for the graph Gh = G[Vh] = G. This process calls
for the execution of the algorithm in Lemma 5.1 at most h = O(k log k log log k) times, and
each execution takes time O(n34kk3k!). In conclusion, the dfvs problem can be solved in time
O(n34kk4k! log k log log k + n4.376 log2 n), where the second term in the complexity is due to the
approximation algorithm given in [12].

6 Remarks and future research

We presented a parameterized algorithm of running time O(n44kk3k!) for the dfvs problem,
which shows that the problem is fixed-parameter tractable, and resolves an outstanding open
problem in parameterized computation and complexity. Before we close the paper, we give a
few remarks on our results and on directions for future research.

There is an edge version of the feedback set problem, which is called the feedback arc

set problem (briefly, the dfas problem): given a directed graph G and a parameter k, either
construct a set of at most k edges in G whose removal leaves a DAG, or report that no such
edge set exists. The dfas problem is also a well-known NP-complete problem [14]. As shown by
Even, Naor, Schieber, and Sudan [12], the dfas problem and the dfvs problem can be reduced
in linear time from one to the other with the same parameter. Therefore, our results also imply
an O(n44kk3k!) time algorithm for the dfas problem.
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The techniques developed in this paper for solving the skew separator problem seem to
be powerful and generally useful in the study of a variety of separator problems. For example, it
has been used recently in developing improved algorithms for a multi-cut problem on undirected
graphs in which a separator is sought to (uniformly) separate a set of given terminals [7]. It will
be interesting to identify the conditions for the multi-cut problems under which these techniques
(and their variations and generalizations) are applicable. In particular, it will be interesting to
see if the techniques are applicable to derive the fixed-parameter tractability of the feedback

vertex set problem on weighted and directed graphs. Note that the fixed-parameter tractability
of the problem on weighted and undirected graphs has been derived recently [5].

It will be interesting to develop new techniques that lead to faster parameterized algorithms
for the dfvs problem and other related problems. For example, is it possible that the dfvs

problem can be solved in time O(cknO(1)) for a constant c? Another direction is to look at the
kernelization of the dfvs problem, by which we refer to a polynomial-time algorithm that on an
instance (G, k) of the dfvs problem, produces a (smaller) instance (G′, k′) of the problem, such
that the size of the graph G′ (the kernel) is bounded by a function g(k) of k (but independent of
the size of the original graph G), that k′ ≤ k, and that the graph G has an FVS of size bounded
by k if and only if the graph G′ has an FVS of size bounded by k′. Since now it is known that the
dfvs problem is fixed-parameter tractable, by a general theorem in parameterized complexity
theory [11], such a kernelization algorithm exists for the dfvs problem. However, how small
can the size of the kernel G′ be? In particular, can the kernel G′ have its size bounded by a
polynomial of the parameter k? We note that recently there has been progress in the study
of kernelization for the feedback vertex set problem on undirected graphs. Bodlaender [3]
was able to give a kernel of size O(k3) for the feedback vertex set problem on undirected
graphs, and Bodlaender and Penninkx [4] have shown that the feedback vertex set problem
on undirected planar graphs has a kernel of size O(k).
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[16] J. Guo, J. Gramm, F. Hüffner, R. Niedermeier, and S. Wernicke, Improved fixed-
parameter algorithms for two feedback set problems, Proc. 9th Workshop on Algorithms and
Data Structures (WADS’05), Lecture Notes in Computer Science 3608, (2005), pp. 158–168.

[17] G. Gutin and A. Yeo, Some parameterized problems on digraphs, The Computer Journal,
to appear.

[18] R. Karp, Reducibility among combinatorial problems, in Complexity of Computer Compu-
tations, R. Miller and J. Thatcher, eds., Plenum Press, New York, (1972), pp. 85–103.

[19] T. Leighton and S. Rao, An approximation max-flow min-cut theorem for uniform
multi-commodity flow problems with applications to approximation algorithms, Journal of
the ACM 46, (1999), pp. 787–832.

[20] C. Leiserson and J. Saxe, Retiming synchronous circuitry, Algorithmica 6, (1991), pp. 5–
35.

[21] O. Lichtenstein and A. Pnueli, Checking that finite state concurrent programs satisfy
their linear specification, Proc. 12th ACM Symp. Principles of Prog. Languages, (1985),
pp. 97–107.

[22] B. Reed, K. Smith, and A. Vetta, Finding odd cycle transversals, Operations Research
Letters 32, (2004), pp. 299–301.

[23] A. Schrijver, Combinatorial Optimization, Springer-Verlag, Berlin, 2003

[24] A. Silberschatz and P. Galvin, Operating System Concepts, 4th ed., Addison Wesley,
Reading, MA, 1994.

20


