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Abstract

In this paper we present a parameterized algorithm that solves the Convex Recoloring problem for trees in O(256k ∗ poly(n)).
This improves the currently best upper bound of O(k(k/ log k)k ∗ poly(n)) achieved by Moran and Snir.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Graph algorithms; Convex recoloring; Parameterized complexity

1. Introduction

Let T be a tree, C be a set of colors and P :V (T ) →
C. We call the pair (T ,P ) a colored tree and P a col-
oring of T . The coloring P is convex if for each color
c ∈ C, the set P −1(c) induces a subtree of T (in other
words, the vertices corresponding to c induce a con-
nected subgraph of T ).

Let S ⊆ V (T ), D :S → C such that for each v ∈ S,
D(v) �= P(v). Let P ′ be a coloring of T obtained from
P by recoloring each v ∈ S in D(v). We say that (S,D)

is a Convex Recoloring (CR) of (T ,P ) if P ′ is a convex
coloring of T . The size of (S,D) is |S|.

In this Letter we consider a problem that gets as in-
put a colored tree (T ,P ) and asks for a smallest CR of
(T ,P ). A parameterized version of this problem gets in
addition a parameter k and asks for existence of a CR of
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(T ,P ) of size at most k. We call this problem Convex
Recoloring of Trees (CRT).

The CRT problem was introduced by Moran and
Snir [5] as having applications in bioinformatics. They
proved NP-hardness of the problem and showed its
fixed-parameter tractability by presenting an O(k(k/

logk)k ∗ poly(n)) algorithm for this problem. The prob-
lem has also been considered in [3] where an O(k6) ker-
nel has been obtained for this problem and in [2], where
the size of the kernel has been reduced to O(k2). Vari-
ants of convex recoloring problem are studied in [1,4].

In this Letter we present a parameterized algorithm
that solves the CRT problem in O(256k ∗ poly(n)) im-
proving the result of Moran and Snir. To the best of our
knowledge, this is the first algorithm solving the prob-
lem in O(ck ∗ poly(n)) where c is a constant.

1.1. Preliminaries

Let (T ,P ) be a colored tree. Let us call a monochro-
matic subtree of T with respect to P , a color component
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of (T ,P ). A color c is good if there is only one color
component of c. Otherwise c is a bad color. Let T ′ be
a color component of (T ,P ) whose vertices are colored
in c. A vertex v /∈ V (T ′) having a neighbor in V (T ′) is
adjacent to T ′. Obviously, v is not colored in c.

Now we describe a greedy procedure of partitioning
bad color components into buckets. Initially all the bad
color components are unmarked. Let c1 be a bad color
component of color b. If any other component of color b

lies at distance at least 3 from c1, make bucket B1 = {c1}
and mark c1. Otherwise, let v be a vertex not colored
in b, which is adjacent to c1 and at least one other com-
ponent of color b. Let c1, . . . , cl be all the components
of color b adjacent to v. Make bucket B1 = {c1, . . . , cl}
and mark the components c1, . . . , cl .

Assume that i buckets (i � 1) have been already
made. Let c1 be an unmarked color component of some
bad color b. If all other unmarked color components of
b lie at distance at least 3 from c1 then make bucket
Bi+1 = {c1} and mark c1. Otherwise let v be a vertex
not colored in b, which is adjacent to c1 and another
unmarked component colored in b. Let c1, . . . , cl be
the components colored in b, which are adjacent to v.
Make bucket Bi+1 = {c1, . . . , cl} and mark all compo-
nents c1, . . . , cl . Proceed until there are no unmarked
bad color components.

Let B = {B1, . . . ,Bm} be the set of buckets obtained
by applying the above procedure. Let Bi be a bucket
with at least two components. We call the vertex adja-
cent to all the components of Bi the connecting vertex
of Bi . A vertex is adjacent to a bucket if it is adjacent
to any of its components. The path between buckets Bk

and Bl is the shortest path between a vertex adjacent to
Bk and a vertex adjacent to Bl (this path may contain a
single vertex only). We denote by U(Bi) the set of all
vertices that belong to the components of Bi . The fol-
lowing proposition is heavily used in the proofs of the
present paper.

Proposition 1. Let vk and vl be the vertices of two
distinct buckets Bk and Bl , respectively. Then the path
between vk and vl includes the path between Bk and Bl .

Proof. By definition, the path between Bk and Bl is
the shortest path between their adjacent vertices. Let uk

and ul be these adjacent vertices. Consider a walk in-
cluding the path from vk to uk , the path from uk to ul

and the path from ul to vl . We prove the proposition
by showing that this walk is actually a path. Assume by
contradiction that a path from say vk to uk includes an
intermediate external vertex and this external vertex be-
longs to a path from uk to ul . The only external vertex

that might occur there is the connecting vertex u of Bk .
In this case the path from u to uk contains vertices of
U(Bk) as intermediate ones, while the path from uk to
u does not contain any of these vertices. In other words,
we obtained a cycle, a contradiction. The possibility that
the path from uk to ul and the path from ul to vl share
intermediate vertices is ruled out analogously. Finally, if
we assume that the path from vk to uk and the path from
ul to vl share an intermediate vertex then, due to the
disjointness of buckets, this intermediate vertex must be
the connecting vertex v of both Bk and Bl . But in this
case v = uk = ul in contradiction to being v an interme-
diate vertex of the considered paths. �
1.2. Structure of the paper

Throughout the paper we assume that the input of
the CRT problem is a colored tree (T ,P ) and a parame-
ter k. We also assume that B = {B1, . . . ,Bm} is the set
of buckets generated as shown in the previous subsec-
tion. The paper is organized as follows.

In Section 2 we prove that |B| � 4k is a necessary
condition for existence of a CR of size at most k. In the
proof we use the fact that for a CR of size at most k,
it is necessary that the number of bad colors is at most
2k [3]. In Section 3 we present a polynomial-time pro-
cedure that, given a pair of subsets of B , produces a
convex recoloring. We then prove that for at least one
pair of buckets, the procedure returns a smallest recol-
oring. It will follow the CRT problem can be solved by
applying the procedure to each of O(22|B|) subsets of
buckets. Taking into account that |B| � 4k, as proven in
Section 2, we obtain a parameterized algorithm taking
time of O(28k ∗ poly(n)) = O(256k ∗ poly(n)).

2. The number of buckets is linear in the size of
convex recoloring

Let (T ,P ) be input of the CRT problem and let l be
the number of bad colors. Assume that |B| = k1 + · · ·+
kl , where ki is the number of buckets of color i.

Theorem 1. Let (S,D) be a convex recoloring of
(T ,P ). Then |S| � (

∑l
i=1(ki − 1))/2.

Proof. Consider a bipartite graph H = (B,S,E), where
there is an edge between Bi ∈ B and v ∈ S if and only if
v is a vertex of U(Bi) or v is adjacent to Bi . We prove
the theorem by showing that there is a correspondence
f :B ′ → S with the following properties.
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– B ′ is a subset of B containing ki −1 buckets of each
color i.

– For each vertex v ∈ S, |f −1(v)| � 2.

We construct the desired correspondence in two
stages. On the first stage we proceed as follows. All
the buckets are considered unmarked. We select an
unmarked bucket Bi such that there is a vertex v ∈
U(Bi) ∩ S, set f (Bi) = v and mark Bi . We proceed
the selection process until it is impossible to select a
bucket satisfying the above conditions. Observe that
there are no two marked buckets Bi1 and Bi2 that
correspond to the same vertex v because in this case
v ∈ U(Bi1)∩U(Bi2) in contradiction to the disjointness
of the buckets.

If after the first stage there is at most one unmarked
bucket of each color, there desired correspondence is
ready. Otherwise, we proceed constructing the corre-
spondence based on the following two claims.

Claim 1. Let Bi be a bucket of color b containing two
or more components. Then at least one of the following
two conditions holds:

– U(Bi) ∩ S �= ∅.
– The connecting vertex of Bi is recolored to b in D.

Proof. Assume that the first condition does not hold.
Then, if the connecting vertex of Bi is not colored in b,
in the resulting coloring there are at least two vertices
colored in b, the path between them is not entirely col-
ored in b in contradiction to the convexity of the result-
ing coloring. �
Claim 2. Let Bi1 and Bi2 be two distinct buckets of the
same color b. Then at least one of the following condi-
tions holds:

– Either U(Bi1) or U(Bi2) intersects with S.
– All the vertices of the path between the buckets are

colored in b in the coloring obtained from the initial
coloring P 1 as a result of recoloring vertices from S

according to D.

Proof. Assume that the first condition does not hold.
Pick a vertex v1 ∈ U(Bi1) and a vertex v2 ∈ U(Bi2).
Both these vertices are colored in b. Consequently, the
path between them is colored in b in any convex col-

1 Recall that (T ,P ) is the input of the problem.

oring. By Proposition 1, the path between v1 and v2
includes the path between Bi1 and Bi2 . �

Now we present the second stage of constructing
the correspondence. Let Bi be an unmarked bucket of
color b such that there is another unmarked bucket of the
same color. As the first stage has been finished no ver-
tex of U(Bi) belongs to S. Assume that Bi contains two
or more components. Then, by Claim 1, the connect-
ing vertex v of Bi belongs to S. Set the correspondence
f (Bi) = v and mark Bi . If Bi contains only one com-
ponent then let Bj be another unmarked bucket of the
same color. By Claim 2, the path between Bi and Bj is
colored in b in any convex coloring. The vertex v of the
path that is adjacent to Bi is not colored in b initially
hence it belongs to S. Again, set the correspondence
f (Bi) = v and mark Bi . Proceed as shown above un-
til for each color there is at most one unmarked bucket
of this color.

Claim 3. No two buckets marked on the second stage
correspond to the same vertex.

Proof. Assume that the statement is not true. Then
there is a bucket Bi such that at the moment f (Bi) = v

is being set, another bucket Bj has been marked on the
second stage and the correspondence f (Bj ) = v has
been set. First of all, observe that Bi and Bj are of the
same color b because v is colored in the initial colors
of the buckets. Assume that both Bi and Bj contain
two or more components. Then, according to the pro-
cedure of constructions of buckets, buckets Bi and Bj

must be united to a single bucket as being of the same
color and having the same connecting vertex. Indeed,
assume, without loss of generality, that Bi is created be-
fore Bj . Then the components of Bi are all the compo-
nents which are unmarked at the time of creation of Bi ,
colored in b, and adjacent to v. However, there are at
least two additional components contained in Bj with
the same properties, a contradiction. This argumenta-
tion shows that the case where both Bi and Bj contain
two or more components cannot occur.

A similar argumentation works for the case where
only Bi or only Bj contain two or more components.
Assuming, without loss of generality, that Bi contains
two or more components, we see that if Bi is created
first, the component of Bj must be joined to Bi as being
adjacent to the connecting vertex of Bi . If Bj is created
first, the creating procedure cannot allow Bj to contain
only one component because there is at least unmarked
component “sharing” an adjacent vertex with the com-
ponent of Bj . The latter argumentation also works for
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the case where both Bi and Bj contain only one com-
ponent. Whoever is created first, cannot be allowed to
contain only one component because this component
has a common adjacent vertex with another unmarked
component.

We obtained contradiction in all possible cases,
hence the claim is true.

Let B ′ be the set of all marked buckets. It follows
that for each vertex v of S, there is at most one bucket
corresponding to v is marked at the first stage and at
most one bucket corresponding to v is marked on the
second stage (Claim 3). In other words, |f −1(v)| � 2.
Hence |S| � |B ′|/2 = (

∑l
i=1(ki − 1))/2. �

Corollary 1. If for the given tree there is a convex re-
coloring of size at most k then the number of buckets is
at most 4k.

Proof. Assume that the given tree has a convex re-
coloring of size at most k. Then, by Theorem 1, k �
(k1 + · · · + kl − l)/2 (recall that l is the number of bad
colors, k1 +· · ·+kl is the number of buckets). It follows
that the number of buckets is at most 2k + l. It has been
shown by Bodlaender et al. [3] that l is at most 2k. �
3. The algorithm

Let SB1 and SB2 be two subsets of B (recall that B is
a subset of buckets) such that SB2 ⊆ SB1. We present a
procedure that Recolor(SB1,SB2) that returns a recolor-
ing (S,D). We then prove that this recoloring is convex.
Further, we prove that for at least one pair (SB1,SB2),
the resulting recoloring is smallest. Taking into account
that the Recolor procedure takes a polynomial time
and that the number of distinct pairs (SB1,SB2) is at
most 22|B|, we obtain an algorithm that solves the CRT
problem in O(22|B|poly(n)). Considering that a con-
vex recoloring of size at most k can exist only if the
number of buckets is at most 4k, we get a parameter-
ized algorithm for the CRT problem that takes time of
O(28kpoly(n)) = O(256kpoly(n)).

Let us define FixedColored(SB1,SB2, b), where b is
a bad color as a subset of vertices of V (T ) containing
the following vertices.

(i) For each pair {Bi1,Bi2} of distinct buckets of SB1
colored in b in (T ,P ), the shortest path between
Bi1 and Bi2 . Obviously, vertices of this category
are contained in FixedColored(SB1,SB2, b) only if
there are at least two buckets of color b in SB1.

(ii) For each bucket Bi of SB2 having two or more
color components, the connecting vertex of Bi .

(iii) The minimal subset S of vertices such that the ver-
tices of the above two categories together with S

induce a single subtree.

We assume that FixedColored(SB1,SB2, c) = ∅ for
each good color c.

Below we describe a procedure Recolor(SB1,SB2).

Recolor(SB1,SB2)

– Initial recoloring
(i) if FixedColored(SB1,SB2, b1) has a nonempty

intersection with FixedColored(SB1,SB2, b2)

for some bad colors b1 and b2 then return
‘INFEASIBLE’.

(ii) Let (T ,P ′) be a colored tree obtained from
(T ,P ) by setting the color of vertices of
FixedColored(SB1,SB2, b) to b for each bad
color b.

– Identifying the additional set of vertices to be re-
colored

(i) For each color c such that FixedColored(SB1,

SB2, c) �= ∅, let g(c) be the color component
of c in (T ,P ′), which contains all the vertices
of FixedColored(SB1,SB2, c).

(ii) For each color c such that FixedColored(SB1,

SB2, c) = ∅, let g(c) be the color component
of c in (T ,P ′), which has the greatest size.

(iii) For each color c, let r(c) be the set of vertices
contained in all the components of color c in
(T ,P ′) except g(c).

(iv) Let RC be the union of all r(c).
– The additional recoloring

(i) color each connected subtree induced by the
vertices of RC to the color of any vertex of
T \ RC adjacent to that subtree.

(ii) Let (T ,P ′′) be the colored tree obtained from
(T ,P ′) by the above coloring of RC.

(iii) Return (S,P ′′ \ P), where S is the domain
of P ′′ \ P .

Lemma 1. If Recolor(SB1,SB2) does not return
‘INFEASIBLE’, it returns a convex recoloring of (T ,P ).

Proof. We will prove that (T ,P ′′) has at most one color
component per color. Observe that the vertices of T \RC
are colored by P ′′ in the same color as by P ′. Moreover,
note that the coloring of vertices of T \ RC by P ′ is
convex because, by definition of RC, it contains all but
one color components of (T ,P ′) for each color. Hence,
if (T ,P ′′) is non-convex, the “non-convexity” is intro-
duced by coloring of vertices of RC in P ′′. Observe that
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any connected component induced by the vertices of RC
is colored in the color of a vertex of T \ RC adjacent to
that component. That is, one can show by induction that
coloring of each new connected component induced by
RC does not produce a bad color, hence there are no bad
colors at the end of the coloring process. �

Now we shall prove that for at least one feasible in-
put (SB1,SB2) (such that Recolor(SB1,SB2) does not
return ‘INFEASIBLE’), the Recolor procedure returns
the smallest recoloring.

Theorem 2. Recolor(SB1,SB2) returns the smallest re-
coloring for at least one feasible input (SB1,SB2).

Proof. Let (S1,D1) be a smallest convex recoloring of
(T ,P ). Let SB1 be the subset of buckets of B not all
vertices of which are recolored by (S1,D1). Let SB2 be
the subset of SB1 containing each bucket B ′ with 2 or
more components such that the connecting vertex of B ′
is recolored into the initial color of the vertices of B ′.
We will show that (SB1,SB2) is a feasible input of the
Recolor procedure. Further, let (S,D) be the recolor-
ing returned by Recolor(SB1,SB2). We will prove that
|S| � |S1|, from which the theorem will follow.

The key property used for the proof is expressed by
the following lemma.

Lemma 2. Let (T ,P2) be the colored tree obtained from
(T ,P ) by recoloring the vertices of S1 according to D1.
Then for each bad color b in (T ,P ), all vertices of
FixedColored(SB1,SB2, b) are colored in b in (T ,P2).

Proof. We prove the lemma for each category of ver-
tices of FixedColored(SB1,SB2, b).

Let v ∈ FixedColored(SB1,SB2, b) be a vertex of the
first category. By selection of SB1 and Proposition 1 a
vertex v lies on the path between vertices v1 ∈ U(Bi1)

and v2 ∈ U(Bi2), which are not recolored. Hence, v

must be colored in b by P2.
Let v be a vertex of the second category of

FixedColored(SB1,SB2, b). By selection of SB2, v is
the connecting vertex of some bucket Bi ∈ SB2, hence v

gets color b in P2 by definition of SB2 in the beginning
of the proof of the present theorem.

Now, as the vertices of the first two categories of
FixedColored(SB1,SB2, b), are colored in b in (T ,P2),
the vertices lying in the paths between them are also col-
ored in b. But those vertices constitute the set of vertices
of the third category of FixedColored(SB1,SB2, b). �

An immediate corollary from Lemma 2 is that
(SB1,SB2) is a feasible input of the Recolor proce-
dure. Really, if not then FixedColored(SB1,SB2, b1) ∩
FixedColored(SB1,SB2, b2) �= ∅ for some bad colors b1

and b2. Consequently the vertices that belong to the
above intersection are colored in two colors by P2, a
contradiction.

Thus, Recolor(SB1,SB2) returns a recoloring (S,D)

and we have to prove that |S| � |S1|. Let F be the set of
all vertices v such that v ∈ FixedColored(SB1,SB2, b)

for some bad color b but not colored in b in (T ,P ). By
the description of the Recolor procedure and Lemma 2
F ⊆ S ∩ S1. Moreover, as a result of recoloring of ver-
tices of F , (T ,P ) is transformed in (T ,P ′). It follows
that (T ,P ′′) is obtained from (T ,P ′) by recoloring the
vertices of S \F , while (T ,P2) is obtained from (T ,P ′)
by recoloring the vertices of S1 \ F . Let P ′(c) be the
subset of vertices of T colored in c by P ′. Clearly,
the union of all P ′(c) is V (T ). We prove the theorem
by showing that for each color c, |(S \ F) ∩ P ′(c)| �
|(S1 \ F) ∩ P ′(c)|. We consider only colors c such that
P ′(c) induces two or more subtrees of T : in case of one
subtree |(S \ F) ∩ P ′(c)| = 0 and the desired statement
trivially follows.

Let c be a color such that FixedColored(SB1,

SB2, c) = ∅.

Lemma 3. All the components of c in T (P ′) but at most
one are fully recolored in T (P2).

Proof. Note that in the considered case P ′ does not
color new vertices in c in addition to those colored in c

in (T ,P ), that is P ′(c) ⊆ P(c). Thus the lemma imme-
diately follows in case all vertices of P(c) are recolored
in P2. Assume that this is not so. Then, the fact that
FixedColored(SB1,SB2) = ∅ implies that SB1 contains
exactly one bucket B ′ whose vertices are colored in c

in (T ,P ) and that exactly one component g′ of B ′ is
not fully recolored. If the vertices of g′ that are not re-
colored by (T ,P ′) constitute a single component, we
are done. Otherwise, the vertices of g′ are separated
into several components by vertices of F recolored into
colors different from c. Let v1 and v2 be two vertices
of g′ that belong to different color components of c

in (T ,P ′). The path between them passes through a ver-
tex v of F whose color is different from c and preserved
in P2. Consequently, to avoid convexity violation either
v1 or v2 is recolored in P2. �

Lemma 3 shows that S1 \ F includes all the com-
ponents of c but at most one, while S \ F includes, by
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definition, all the components of c but the largest one.
Clearly, |(S \F)∩P ′(c)| � |S1 \F ∩P ′(c) in this case.

Let c be a color such that FixedColored(SB1,

SB2, c) �= ∅.

Lemma 4. Each color component of c in (T ,P ) which
is not fully recolored in P2 is adjacent to a vertex of
FixedColored(SB1,SB2, c).

Proof. Let g′ be a color component of c in (T ,P )

which is not fully recolored by P2. Clearly g′ is a com-
ponent of a bucket B ′ of SB1. If B ′ ∈ SB2 then the
connecting vertex of B ′ belongs to FixedColored(SB1,

SB2, c), hence the lemma is valid for this case. As-
sume that B ′ ∈ SB1 \ SB2. Then, to ensure that Fixed-
Colored(SB1,SB2, c) �= ∅, SB1 must contain another
bucket B ′′ colored in c in (T ,P ). By definition, Fixed-
Colored(SB1,SB2, c) contains the path between B ′
and B ′′. Let v1 be the vertex of this path adjacent to B ′.
Taking into account that B ′ ∈ SB1 \ SB2, v1 is not the
connecting vertex of B ′, hence it is adjacent to exactly
one component g′′ of B ′. If g′′ = g′ we are done. Oth-
erwise, g′′ is fully recolored in P2 in order to avoid the
connecting vertex of B ′ to be recolored in c. Let v2 be
the vertex of g′′ adjacent to v1. Let v3 be a vertex of g′.
Let Z be the path from v3 to v2 in P . Observe that the
connecting vertex of B ′ is the only vertex of Z that does
not belong to B ′. That is, v1 does not belong to Z. It fol-
lows that Z together with {v1, v2} constitutes the path
Z′ from v3 to v1. In other words, Z′ is the path between
two vertices colored in c in P2 which passes through a
vertex not colored in c in P2, namely v2, in contradic-
tion to the convexity of (T ,P2).

Let g be the component induced by P ′(c) that
contains FixedColored(SB1,SB2, c). According to the
description of Recolor(SB1,SB2), (S \ F) ∩ P ′(c) =
P ′(c) \ V (g). We are going to show that any vertex
of P ′(c) \ V (g) belongs to (S1 \ F) ∩ P ′(c) which
will finish the proof of the theorem. Assume that it is

not so regarding some v ∈ P ′(c) \ V (g). Observe that
v ∈ P(c)∩P ′(c) because all the vertices of P ′(c)\P(c)

belong to V (g) by construction. By Lemma 4, v belongs
to a color component of c in (T ,P ) adjacent to a ver-
tex v1 of FixedColor(SB1,SB2, c). In other words, all
the vertices of the path Z from v to v1, except v1 itself,
have color c in (T ,P ). By construction, v1 ∈ V (g). Tak-
ing into account that v /∈ V (g), at least one vertex v′ of
Z is recolored by P ′ and hence preserves its role in P2.
Thus, Z is the path between two vertices colored in c

by P2 which passes through a vertex not coloring in c

in P2 in contradiction to the convexity of P2. �
An immediate corollary of Theorem 2 is an algo-

rithm that solves the CRT problem in O(22|B|poly(n)).
Try all possible pairs of buckets (SB1,SB2) such that
SB2 ⊆ SB1 and select the smallest returned recoloring.
By Lemma 1, this recoloring is convex. By Theorem 2,
this recoloring is optimal. According to Theorem 1, the
algorithm can return “NO” at the preprocessing stage
if the number of buckets is greater than 4k. As a re-
sult, the complexity of the algorithm is bounded to
O(28kpoly(n)) = O(256kpoly(n)).
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