Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.



This article was published in an Elsevier journal. The attached copy is furnished to the author for non-commercial research and education use, including for instruction at the author's institution, sharing with colleagues and providing to institution administration.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:

http://www.elsevier.com/copyright



Available online at www.sciencedirect.com



Information Processing Letters

Information Processing Letters 104 (2007) 53-58

www.elsevier.com/locate/ipl

## A $2^{O(k)}$ poly(*n*) algorithm for the parameterized Convex Recoloring problem

Igor Razgon

Computer Science Department, University College Cork, Ireland Received 29 August 2006 Available online 23 May 2007 Communicated by F. Dehne

#### Abstract

In this paper we present a parameterized algorithm that solves the Convex Recoloring problem for trees in  $O(256^k * poly(n))$ . This improves the currently best upper bound of  $O(k(k/\log k)^k * poly(n))$  achieved by Moran and Snir. © 2007 Elsevier B.V. All rights reserved.

Keywords: Graph algorithms; Convex recoloring; Parameterized complexity

### 1. Introduction

Let *T* be a tree, *C* be a set of colors and  $P: V(T) \rightarrow C$ . We call the pair (T, P) a *colored tree* and *P* a *coloring* of *T*. The coloring *P* is *convex* if for each color  $c \in C$ , the set  $P^{-1}(c)$  induces a subtree of *T* (in other words, the vertices corresponding to *c* induce a connected subgraph of *T*).

Let  $S \subseteq V(T)$ ,  $D: S \to C$  such that for each  $v \in S$ ,  $D(v) \neq P(v)$ . Let P' be a coloring of T obtained from P by recoloring each  $v \in S$  in D(v). We say that (S, D)is a Convex Recoloring (CR) of (T, P) if P' is a convex coloring of T. The *size* of (S, D) is |S|.

In this Letter we consider a problem that gets as input a colored tree (T, P) and asks for a smallest CR of (T, P). A parameterized version of this problem gets in addition a parameter k and asks for existence of a CR of The CRT problem was introduced by Moran and Snir [5] as having applications in bioinformatics. They proved NP-hardness of the problem and showed its fixed-parameter tractability by presenting an  $O(k(k/\log k)^k * \operatorname{poly}(n))$  algorithm for this problem. The problem has also been considered in [3] where an  $O(k^6)$  kernel has been obtained for this problem and in [2], where the size of the kernel has been reduced to  $O(k^2)$ . Variants of convex recoloring problem are studied in [1,4].

In this Letter we present a parameterized algorithm that solves the CRT problem in  $O(256^k * poly(n))$  improving the result of Moran and Snir. To the best of our knowledge, this is the first algorithm solving the problem in  $O(c^k * poly(n))$  where *c* is a constant.

### 1.1. Preliminaries

Let (T, P) be a colored tree. Let us call a monochromatic subtree of T with respect to P, a *color component* 

*E-mail address:* i.razgon@cs.ucc.ie.

<sup>(</sup>T, P) of size at most k. We call this problem Convex Recoloring of Trees (CRT).

<sup>0020-0190/\$ –</sup> see front matter  $\,$  © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.ipl.2007.05.007  $\,$ 

of (T, P). A color *c* is *good* if there is only one color component of *c*. Otherwise *c* is a *bad* color. Let *T'* be a color component of (T, P) whose vertices are colored in *c*. A vertex  $v \notin V(T')$  having a neighbor in V(T') is *adjacent* to *T'*. Obviously, *v* is not colored in *c*.

Now we describe a greedy procedure of partitioning bad color components into *buckets*. Initially all the bad color components are *unmarked*. Let  $c_1$  be a bad color component of color *b*. If any other component of color *b* lies at distance at least 3 from  $c_1$ , make bucket  $B_1 = \{c_1\}$ and mark  $c_1$ . Otherwise, let *v* be a vertex *not* colored in *b*, which is adjacent to  $c_1$  and at least one other component of color *b*. Let  $c_1, \ldots, c_l$  be all the components of color *b* adjacent to *v*. Make bucket  $B_1 = \{c_1, \ldots, c_l\}$ and mark the components  $c_1, \ldots, c_l$ .

Assume that *i* buckets  $(i \ge 1)$  have been already made. Let  $c_1$  be an *unmarked* color component of some bad color *b*. If all other *unmarked* color components of *b* lie at distance at least 3 from  $c_1$  then make bucket  $B_{i+1} = \{c_1\}$  and mark  $c_1$ . Otherwise let *v* be a vertex *not* colored in *b*, which is adjacent to  $c_1$  and another *unmarked* component colored in *b*. Let  $c_1, \ldots, c_l$  be the components colored in *b*, which are adjacent to *v*. Make bucket  $B_{i+1} = \{c_1, \ldots, c_l\}$  and mark all components  $c_1, \ldots, c_l$ . Proceed until there are no unmarked bad color components.

Let  $B = \{B_1, \ldots, B_m\}$  be the set of buckets obtained by applying the above procedure. Let  $B_i$  be a bucket with at least two components. We call the vertex adjacent to all the components of  $B_i$  the connecting vertex of  $B_i$ . A vertex is *adjacent* to a bucket if it is adjacent to any of its components. The *path* between buckets  $B_k$ and  $B_i$  is the shortest path between a vertex adjacent to  $B_k$  and a vertex adjacent to  $B_i$  (this path may contain a single vertex only). We denote by  $U(B_i)$  the set of all vertices that belong to the components of  $B_i$ . The following proposition is heavily used in the proofs of the present paper.

**Proposition 1.** Let  $v_k$  and  $v_l$  be the vertices of two distinct buckets  $B_k$  and  $B_l$ , respectively. Then the path between  $v_k$  and  $v_l$  includes the path between  $B_k$  and  $B_l$ .

**Proof.** By definition, the path between  $B_k$  and  $B_l$  is the shortest path between their adjacent vertices. Let  $u_k$ and  $u_l$  be these adjacent vertices. Consider a walk including the path from  $v_k$  to  $u_k$ , the path from  $u_k$  to  $u_l$ and the path from  $u_l$  to  $v_l$ . We prove the proposition by showing that this walk is actually a path. Assume by contradiction that a path from say  $v_k$  to  $u_k$  includes an intermediate external vertex and this external vertex belongs to a path from  $u_k$  to  $u_l$ . The only external vertex that might occur there is the connecting vertex u of  $B_k$ . In this case the path from u to  $u_k$  contains vertices of  $U(B_k)$  as intermediate ones, while the path from  $u_k$  to u does not contain any of these vertices. In other words, we obtained a cycle, a contradiction. The possibility that the path from  $u_k$  to  $u_l$  and the path from  $u_l$  to  $v_l$  share intermediate vertices is ruled out analogously. Finally, if we assume that the path from  $v_k$  to  $u_k$  and the path from  $u_l$  to the disjointness of buckets, this intermediate vertex must be the connecting vertex v of both  $B_k$  and  $B_l$ . But in this case  $v = u_k = u_l$  in contradiction to being v an *intermediate* vertex of the considered paths.  $\Box$ 

### 1.2. Structure of the paper

Throughout the paper we assume that the input of the CRT problem is a colored tree (T, P) and a parameter k. We also assume that  $B = \{B_1, \ldots, B_m\}$  is the set of buckets generated as shown in the previous subsection. The paper is organized as follows.

In Section 2 we prove that  $|B| \leq 4k$  is a necessary condition for existence of a CR of size at most k. In the proof we use the fact that for a CR of size at most k, it is necessary that the number of bad colors is at most 2k [3]. In Section 3 we present a polynomial-time procedure that, given a pair of subsets of B, produces a convex recoloring. We then prove that for at least one pair of buckets, the procedure returns a smallest recoloring. It will follow the CRT problem can be solved by applying the procedure to each of  $O(2^{2|B|})$  subsets of buckets. Taking into account that  $|B| \leq 4k$ , as proven in Section 2, we obtain a parameterized algorithm taking time of  $O(2^{8k} * poly(n)) = O(256^k * poly(n))$ .

# 2. The number of buckets is linear in the size of convex recoloring

Let (T, P) be input of the CRT problem and let l be the number of bad colors. Assume that  $|B| = k_1 + \cdots + k_l$ , where  $k_i$  is the number of buckets of color i.

**Theorem 1.** Let (S, D) be a convex recoloring of (T, P). Then  $|S| \ge (\sum_{i=1}^{l} (k_i - 1))/2$ .

**Proof.** Consider a bipartite graph H = (B, S, E), where there is an edge between  $B_i \in B$  and  $v \in S$  if and only if v is a vertex of  $U(B_i)$  or v is adjacent to  $B_i$ . We prove the theorem by showing that there is a correspondence  $f : B' \to S$  with the following properties.

- B' is a subset of B containing  $k_i 1$  buckets of each color i.
- For each vertex  $v \in S$ ,  $|f^{-1}(v)| \leq 2$ .

We construct the desired correspondence in two stages. On the first stage we proceed as follows. All the buckets are considered unmarked. We select an unmarked bucket  $B_i$  such that there is a vertex  $v \in$  $U(B_i) \cap S$ , set  $f(B_i) = v$  and mark  $B_i$ . We proceed the selection process until it is impossible to select a bucket satisfying the above conditions. Observe that there are no two marked buckets  $B_{i_1}$  and  $B_{i_2}$  that correspond to the same vertex v because in this case  $v \in U(B_{i_1}) \cap U(B_{i_2})$  in contradiction to the disjointness of the buckets.

If after the first stage there is at most one unmarked bucket of each color, there desired correspondence is ready. Otherwise, we proceed constructing the correspondence based on the following two claims.

**Claim 1.** Let  $B_i$  be a bucket of color b containing two or more components. Then at least one of the following two conditions holds:

- $U(B_i) \cap S \neq \emptyset.$
- The connecting vertex of  $B_i$  is recolored to b in D.

**Proof.** Assume that the first condition does not hold. Then, if the connecting vertex of  $B_i$  is not colored in b, in the resulting coloring there are at least two vertices colored in b, the path between them is not entirely colored in b in contradiction to the convexity of the resulting coloring.  $\Box$ 

**Claim 2.** Let  $B_{i_1}$  and  $B_{i_2}$  be two distinct buckets of the same color b. Then at least one of the following conditions holds:

- Either  $U(B_{i_1})$  or  $U(B_{i_2})$  intersects with S.
- All the vertices of the path between the buckets are colored in b in the coloring obtained from the initial coloring P<sup>1</sup> as a result of recoloring vertices from S according to D.

**Proof.** Assume that the first condition does not hold. Pick a vertex  $v_1 \in U(B_{i_1})$  and a vertex  $v_2 \in U(B_{i_2})$ . Both these vertices are colored in *b*. Consequently, the path between them is colored in *b* in any convex coloring. By Proposition 1, the path between  $v_1$  and  $v_2$  includes the path between  $B_{i_1}$  and  $B_{i_2}$ .  $\Box$ 

Now we present the second stage of constructing the correspondence. Let  $B_i$  be an unmarked bucket of color b such that there is another unmarked bucket of the same color. As the first stage has been finished no vertex of  $U(B_i)$  belongs to S. Assume that  $B_i$  contains two or more components. Then, by Claim 1, the connecting vertex v of  $B_i$  belongs to S. Set the correspondence  $f(B_i) = v$  and mark  $B_i$ . If  $B_i$  contains only one component then let  $B_i$  be another unmarked bucket of the same color. By Claim 2, the path between  $B_i$  and  $B_j$  is colored in b in any convex coloring. The vertex v of the path that is adjacent to  $B_i$  is not colored in b initially hence it belongs to S. Again, set the correspondence  $f(B_i) = v$  and mark  $B_i$ . Proceed as shown above until for each color there is at most one unmarked bucket of this color.

**Claim 3.** *No two buckets marked on the second stage correspond to the same vertex.* 

Proof. Assume that the statement is not true. Then there is a bucket  $B_i$  such that at the moment  $f(B_i) = v$ is being set, another bucket  $B_i$  has been marked on the second stage and the correspondence  $f(B_i) = v$  has been set. First of all, observe that  $B_i$  and  $B_j$  are of the same color b because v is colored in the initial colors of the buckets. Assume that both  $B_i$  and  $B_j$  contain two or more components. Then, according to the procedure of constructions of buckets, buckets  $B_i$  and  $B_i$ must be united to a single bucket as being of the same color and having the same connecting vertex. Indeed, assume, without loss of generality, that  $B_i$  is created before  $B_j$ . Then the components of  $B_i$  are all the components which are *unmarked* at the time of creation of  $B_i$ , colored in b, and adjacent to v. However, there are at least two additional components contained in  $B_i$  with the same properties, a contradiction. This argumentation shows that the case where both  $B_i$  and  $B_j$  contain two or more components cannot occur.

A similar argumentation works for the case where only  $B_i$  or only  $B_j$  contain two or more components. Assuming, without loss of generality, that  $B_i$  contains two or more components, we see that if  $B_i$  is created first, the component of  $B_j$  must be joined to  $B_i$  as being adjacent to the connecting vertex of  $B_i$ . If  $B_j$  is created first, the creating procedure cannot allow  $B_j$  to contain only one component because there is at least unmarked component "sharing" an adjacent vertex with the component of  $B_j$ . The latter argumentation also works for

<sup>&</sup>lt;sup>1</sup> Recall that (T, P) is the input of the problem.

the case where both  $B_i$  and  $B_j$  contain only one component. Whoever is created first, cannot be allowed to contain only one component because this component has a common adjacent vertex with another unmarked component.

We obtained contradiction in all possible cases, hence the claim is true.

Let *B'* be the set of all marked buckets. It follows that for each vertex *v* of *S*, there is at most one bucket corresponding to *v* is marked at the first stage and at most one bucket corresponding to *v* is marked on the second stage (Claim 3). In other words,  $|f^{-1}(v)| \leq 2$ . Hence  $|S| \ge |B'|/2 = (\sum_{i=1}^{l} (k_i - 1))/2$ .  $\Box$ 

**Corollary 1.** If for the given tree there is a convex recoloring of size at most k then the number of buckets is at most 4k.

**Proof.** Assume that the given tree has a convex recoloring of size at most k. Then, by Theorem 1,  $k \ge (k_1 + \cdots + k_l - l)/2$  (recall that l is the number of bad colors,  $k_1 + \cdots + k_l$  is the number of buckets). It follows that the number of buckets is at most 2k + l. It has been shown by Bodlaender et al. [3] that l is at most 2k.  $\Box$ 

### 3. The algorithm

Let  $SB_1$  and  $SB_2$  be two subsets of B (recall that B is a subset of buckets) such that  $SB_2 \subseteq SB_1$ . We present a procedure that  $Recolor(SB_1, SB_2)$  that returns a recoloring (S, D). We then prove that this recoloring is convex. Further, we prove that for at least one pair  $(SB_1, SB_2)$ , the resulting recoloring is smallest. Taking into account that the *Recolor* procedure takes a polynomial time and that the number of distinct pairs  $(SB_1, SB_2)$  is at most  $2^{2|B|}$ , we obtain an algorithm that solves the CRT problem in  $O(2^{2|B|}poly(n))$ . Considering that a convex recoloring of size at most k can exist only if the number of buckets is at most 4k, we get a parameterized algorithm for the CRT problem that takes time of  $O(2^{8k}poly(n)) = O(256^kpoly(n))$ .

Let us define *FixedColored*( $SB_1$ ,  $SB_2$ , b), where b is a bad color as a subset of vertices of V(T) containing the following vertices.

- (i) For each pair  $\{B_{i_1}, B_{i_2}\}$  of distinct buckets of  $SB_1$  colored in *b* in (T, P), the shortest path between  $B_{i_1}$  and  $B_{i_2}$ . Obviously, vertices of this category are contained in *FixedColored*( $SB_1, SB_2, b$ ) only if there are at least two buckets of color *b* in  $SB_1$ .
- (ii) For each bucket  $B_i$  of  $SB_2$  having two or more color components, the connecting vertex of  $B_i$ .

(iii) The minimal subset *S* of vertices such that the vertices of the above two categories together with *S* induce a single subtree.

We assume that  $FixedColored(SB_1, SB_2, c) = \emptyset$  for each good color c.

Below we describe a procedure  $Recolor(SB_1, SB_2)$ .

 $Recolor(SB_1, SB_2)$ 

### - Initial recoloring

- (i) if  $FixedColored(SB_1, SB_2, b_1)$  has a nonempty intersection with  $FixedColored(SB_1, SB_2, b_2)$ for some bad colors  $b_1$  and  $b_2$  then return '*INFEASIBLE*'.
- (ii) Let (T, P') be a colored tree obtained from (T, P) by setting the color of vertices of *FixedColored*(SB<sub>1</sub>, SB<sub>2</sub>, b) to b for each bad color b.
- Identifying the additional set of vertices to be recolored
  - (i) For each color *c* such that *FixedColored*(*SB*<sub>1</sub>, *SB*<sub>2</sub>, *c*) ≠ Ø, let g(c) be the color component of *c* in (*T*, *P'*), which contains all the vertices of *FixedColored*(*SB*<sub>1</sub>, *SB*<sub>2</sub>, *c*).
  - (ii) For each color *c* such that *FixedColored*(*SB*<sub>1</sub>, *SB*<sub>2</sub>, *c*) =  $\emptyset$ , let *g*(*c*) be the color component of *c* in (*T*, *P'*), which has the greatest size.
  - (iii) For each color c, let r(c) be the set of vertices contained in all the components of color c in (T, P') except g(c).
  - (iv) Let *RC* be the union of all r(c).
- The additional recoloring
  - (i) color each connected subtree induced by the vertices of *RC* to the color of any vertex of *T* \ *RC* adjacent to that subtree.
  - (ii) Let (T, P'') be the colored tree obtained from (T, P') by the above coloring of *RC*.
  - (iii) Return  $(S, P'' \setminus P)$ , where S is the domain of  $P'' \setminus P$ .

**Lemma 1.** If  $Recolor(SB_1, SB_2)$  does not return 'INFEASIBLE', it returns a convex recoloring of (T, P).

**Proof.** We will prove that (T, P'') has at most one color component per color. Observe that the vertices of  $T \setminus RC$ are colored by P'' in the same color as by P'. Moreover, note that the coloring of vertices of  $T \setminus RC$  by P' is convex because, by definition of RC, it contains all but one color components of (T, P') for each color. Hence, if (T, P'') is non-convex, the "non-convexity" is introduced by coloring of vertices of RC in P''. Observe that any connected component induced by the vertices of *RC* is colored in the color of a vertex of  $T \setminus RC$  adjacent to that component. That is, one can show by induction that coloring of each new connected component induced by *RC* does not produce a bad color, hence there are no bad colors at the end of the coloring process.  $\Box$ 

Now we shall prove that for at least one feasible input  $(SB_1, SB_2)$  (such that  $Recolor(SB_1, SB_2)$  does not return '*INFEASIBLE*'), the *Recolor* procedure returns the smallest recoloring.

**Theorem 2.**  $Recolor(SB_1, SB_2)$  returns the smallest recoloring for at least one feasible input  $(SB_1, SB_2)$ .

**Proof.** Let  $(S_1, D_1)$  be a smallest convex recoloring of (T, P). Let  $SB_1$  be the subset of buckets of B not all vertices of which are recolored by  $(S_1, D_1)$ . Let  $SB_2$  be the subset of  $SB_1$  containing each bucket B' with 2 or more components such that the connecting vertex of B' is recolored into the initial color of the vertices of B'. We will show that  $(SB_1, SB_2)$  is a feasible input of the *Recolor* procedure. Further, let (S, D) be the recoloring returned by  $Recolor(SB_1, SB_2)$ . We will prove that  $|S| \leq |S_1|$ , from which the theorem will follow.

The key property used for the proof is expressed by the following lemma.

**Lemma 2.** Let  $(T, P_2)$  be the colored tree obtained from (T, P) by recoloring the vertices of  $S_1$  according to  $D_1$ . Then for each bad color b in (T, P), all vertices of FixedColored $(SB_1, SB_2, b)$  are colored in b in  $(T, P_2)$ .

**Proof.** We prove the lemma for each category of vertices of  $FixedColored(SB_1, SB_2, b)$ .

Let  $v \in FixedColored(SB_1, SB_2, b)$  be a vertex of the first category. By selection of  $SB_1$  and Proposition 1 a vertex v lies on the path between vertices  $v_1 \in U(B_{i_1})$  and  $v_2 \in U(B_{i_2})$ , which are not recolored. Hence, v must be colored in b by  $P_2$ .

Let v be a vertex of the second category of *FixedColored*(*SB*<sub>1</sub>, *SB*<sub>2</sub>, *b*). By selection of *SB*<sub>2</sub>, *v* is the connecting vertex of some bucket  $B_i \in SB_2$ , hence v gets color *b* in  $P_2$  by definition of *SB*<sub>2</sub> in the beginning of the proof of the present theorem.

Now, as the vertices of the first two categories of *FixedColored*( $SB_1$ ,  $SB_2$ , b), are colored in b in  $(T, P_2)$ , the vertices lying in the paths between them are also colored in b. But those vertices constitute the set of vertices of the third category of *FixedColored*( $SB_1$ ,  $SB_2$ , b).  $\Box$ 

An immediate corollary from Lemma 2 is that  $(SB_1, SB_2)$  is a feasible input of the *Recolor* procedure. Really, if not then *FixedColored* $(SB_1, SB_2, b_1) \cap$ *FixedColored* $(SB_1, SB_2, b_2) \neq \emptyset$  for some bad colors  $b_1$  and  $b_2$ . Consequently the vertices that belong to the above intersection are colored in two colors by  $P_2$ , a contradiction.

Thus,  $Recolor(SB_1, SB_2)$  returns a recoloring (S, D)and we have to prove that  $|S| \leq |S_1|$ . Let *F* be the set of all vertices v such that  $v \in FixedColored(SB_1, SB_2, b)$ for some bad color b but not colored in b in (T, P). By the description of the Recolor procedure and Lemma 2  $F \subseteq S \cap S_1$ . Moreover, as a result of recoloring of vertices of F, (T, P) is transformed in (T, P'). It follows that (T, P'') is obtained from (T, P') by recoloring the vertices of  $S \setminus F$ , while  $(T, P_2)$  is obtained from (T, P')by recoloring the vertices of  $S_1 \setminus F$ . Let P'(c) be the subset of vertices of T colored in c by P'. Clearly, the union of all P'(c) is V(T). We prove the theorem by showing that for each color c,  $|(S \setminus F) \cap P'(c)| \leq c$  $|(S_1 \setminus F) \cap P'(c)|$ . We consider only colors c such that P'(c) induces two or more subtrees of T: in case of one subtree  $|(S \setminus F) \cap P'(c)| = 0$  and the desired statement trivially follows.

Let c be a color such that  $FixedColored(SB_1, SB_2, c) = \emptyset$ .

**Lemma 3.** All the components of c in T(P') but at most one are fully recolored in  $T(P_2)$ .

**Proof.** Note that in the considered case P' does not color new vertices in c in addition to those colored in cin (T, P), that is  $P'(c) \subseteq P(c)$ . Thus the lemma immediately follows in case all vertices of P(c) are recolored in  $P_2$ . Assume that this is not so. Then, the fact that *FixedColored*( $SB_1$ ,  $SB_2$ ) =  $\emptyset$  implies that  $SB_1$  contains exactly one bucket B' whose vertices are colored in cin (T, P) and that exactly one component g' of B' is not fully recolored. If the vertices of g' that are not recolored by (T, P') constitute a single component, we are done. Otherwise, the vertices of g' are separated into several components by vertices of F recolored into colors different from c. Let  $v_1$  and  $v_2$  be two vertices of g' that belong to different color components of cin (T, P'). The path between them passes through a vertex v of F whose color is different from c and preserved in  $P_2$ . Consequently, to avoid convexity violation either  $v_1$  or  $v_2$  is recolored in  $P_2$ .  $\Box$ 

Lemma 3 shows that  $S_1 \setminus F$  includes all the components of *c* but at most one, while  $S \setminus F$  includes, by

definition, all the components of *c* but the *largest* one. Clearly,  $|(S \setminus F) \cap P'(c)| \leq |S_1 \setminus F \cap P'(c)$  in this case.

Let c be a color such that  $FixedColored(SB_1, SB_2, c) \neq \emptyset$ .

### **Lemma 4.** Each color component of c in (T, P) which is not fully recolored in $P_2$ is adjacent to a vertex of FixedColored(SB<sub>1</sub>, SB<sub>2</sub>, c).

**Proof.** Let g' be a color component of c in (T, P)which is not fully recolored by  $P_2$ . Clearly g' is a component of a bucket B' of  $SB_1$ . If  $B' \in SB_2$  then the connecting vertex of B' belongs to FixedColored(SB<sub>1</sub>,  $SB_2, c$ ), hence the lemma is valid for this case. Assume that  $B' \in SB_1 \setminus SB_2$ . Then, to ensure that *Fixed*- $Colored(SB_1, SB_2, c) \neq \emptyset$ ,  $SB_1$  must contain another bucket B'' colored in c in (T, P). By definition, Fixed-Colored  $(SB_1, SB_2, c)$  contains the path between B' and B''. Let  $v_1$  be the vertex of this path adjacent to B'. Taking into account that  $B' \in SB_1 \setminus SB_2$ ,  $v_1$  is not the connecting vertex of B', hence it is adjacent to exactly one component g'' of B'. If g'' = g' we are done. Otherwise, g'' is fully recolored in  $P_2$  in order to avoid the connecting vertex of B' to be recolored in c. Let  $v_2$  be the vertex of g'' adjacent to  $v_1$ . Let  $v_3$  be a vertex of g'. Let Z be the path from  $v_3$  to  $v_2$  in P. Observe that the connecting vertex of B' is the only vertex of Z that does not belong to B'. That is,  $v_1$  does not belong to Z. It follows that Z together with  $\{v_1, v_2\}$  constitutes the path Z' from  $v_3$  to  $v_1$ . In other words, Z' is the path between two vertices colored in c in  $P_2$  which passes through a vertex not colored in c in  $P_2$ , namely  $v_2$ , in contradiction to the convexity of  $(T, P_2)$ .

Let g be the component induced by P'(c) that contains *FixedColored*( $SB_1, SB_2, c$ ). According to the description of *Recolor*( $SB_1, SB_2$ ),  $(S \setminus F) \cap P'(c) =$  $P'(c) \setminus V(g)$ . We are going to show that any vertex of  $P'(c) \setminus V(g)$  belongs to  $(S_1 \setminus F) \cap P'(c)$  which will finish the proof of the theorem. Assume that it is not so regarding some  $v \in P'(c) \setminus V(g)$ . Observe that  $v \in P(c) \cap P'(c)$  because all the vertices of  $P'(c) \setminus P(c)$  belong to V(g) by construction. By Lemma 4, v belongs to a color component of c in (T, P) adjacent to a vertex  $v_1$  of *FixedColor*( $SB_1, SB_2, c$ ). In other words, all the vertices of the path Z from v to  $v_1$ , except  $v_1$  itself, have color c in (T, P). By construction,  $v_1 \in V(g)$ . Taking into account that  $v \notin V(g)$ , at least one vertex v' of Z is recolored by P' and hence preserves its role in  $P_2$ . Thus, Z is the path between two vertices colored in c by  $P_2$  which passes through a vertex not coloring in c in  $P_2$ .  $\Box$ 

An immediate corollary of Theorem 2 is an algorithm that solves the CRT problem in  $O(2^{2|B|}poly(n))$ . Try all possible pairs of buckets  $(SB_1, SB_2)$  such that  $SB_2 \subseteq SB_1$  and select the smallest returned recoloring. By Lemma 1, this recoloring is convex. By Theorem 2, this recoloring is optimal. According to Theorem 1, the algorithm can return "NO" at the preprocessing stage if the number of buckets is greater than 4k. As a result, the complexity of the algorithm is bounded to  $O(2^{8k}poly(n)) = O(256^kpoly(n))$ .

### References

- E. Bachoore, H. Bodlaender, Convex recoloring of leaf-colored trees, Technical Report UU-CS-2006-10, Department of Information and Computing Sciences, Utrecht University, 2006.
- [2] H. Bodlaender, M. Fellows, M. Langston, M. Ragan, F. Rosamond, M. Weyer, Quadratic kernelization for convex recoloring, in: COCOON 2007, in press.
- [3] H. Bodlaender, M. Fellows, M. Langston, M. Ragan, F. Rosamond, M. Weyer, Kernelization for convex recoloring, in: ACID 2006, King's College London, pp. 23–35.
- [4] B. Chor, M. Fellows, M. Ragan, F. Rosamond, S. Snir, I. Razgon, Connected coloring completion for general graphs: Algorithms and complexity, in: COCOON 2007, in press.
- [5] S. Moran, S. Snir, Convex recolorings of strings and trees: Definitions, hardness results and algorithms, in: WADS 2005, Springer-Verlag, pp. 218–232.