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Abstract. It often happens that although a problem is FPT, the practitioners pre-
fer to use imprecise heuristic methods to solve the problem in the real-world
situation simply because of the fact that the heuristic methods are faster. In this
paper we argue that in this situation an FPT algorithm for the given problem may
be still of a considerable practical use. In particular, the FPT algorithm can be
used to evaluate the quality of approximation of heuristic approaches.
To demonstrate this way of application of FPT algorithms, we consider the prob-
lem of extracting a maximum-size reflected network in a linear program. We
evaluate a known heuristic SGA and its two variations, a new heuristic and an
exact algorithm. The new heuristic and algorithm use fixed-parameter tractable
procedures. The new heuristic turned out to be of little practical interest, but the
exact algorithm is of interest when the network is close in size to the linear pro-
gram especially if the exact algorithm is used in conjunction with SGA. The most
important conclusion is that a variant of SGA that was disregarded before due to
it being slower than the other heuristics turns out to be the best choice because in
most cases it returns optimal solutions.

1 Introduction, terminology and notation

When a hard optimization problem is to be solved heuristically, it is often hard to choose
which heuristic to use as it rarely happens that one heuristic is both faster and more
precise than another one. Often there is a tradeoff: a heuristic providing a more precise
solution takes more time than a heuristic of lesser quality. In this case, the slower heuris-
tic may be preferred if it turns out that the solution it returns is usually much closer to
the optimal solution. However, to evaluate the quality of the given solution we need a
method that can find an optimal solution (even if finding a provably optimal solution
takes much more time then the heuristic being analyzed). If the considered problem
involves a small parameter, solving the problem to optimality can be done by an FPT
algorithm. Thus even if an FPT algorithm is not directly used within a problem solving
software, it can still be very useful for testing different versions of this software. In
this paper we consider a problem occurring in large-scale linear programming (LP) to
demonstrate the use of FPT algorithms in this novel way.



Large-scale LP models which arise in applications usually have sparse coefficient
matrices with special structure. If a special structure can be recognized, it can often be
used to considerably speed up the process of solving the LP problem and/or to help in
understanding the nature of the LP model. A well-known family of such special struc-
tures is networks; a number of heuristics to extract (reflected) networks in LP problems
have been developed and analyzed, see, e.g., [3, 5–7, 11, 12, 17] (a formal definition
of a reflected network is given below). From the computational point of view, it is
worthwhile extracting a reflected network only if the LP problem under consideration
contains a relatively large reflected network.

We consider an LP problem in the standard form stated as

Minimize {pT x; subject to Ax = b, x ≥ 0}.
LP problems have a number of equivalent, in a sense, forms that can be obtained from
each other by various operations. Often scaling operations, that is multiplications of
rows and columns of the matrix A of constraints by non-zero constants, are applied, see,
e.g., [3, 5, 7, 11]. In the sequel unless stated otherwise, we assume that certain scaling
operations on A have been carried out and will not be applied again apart from row
reflections defined below. A matrix B is a network (matrix) if B is a (0,±1)-matrix
(that is, entries of B belong to the set {1, 0,−1}) and every column of B has at most
one entry equal to 1 and at most one entry equal to −1. The operation of reflection of
a row of a matrix B changes the signs of all non-zero entries of this row. A matrix B
is a reflected network (matrix) if there is a sequence of row reflections that transforms
B into a network matrix. The problem of detecting a maximum embedded reflected
network (DMERN) is to find the maximum number of rows that form a submatrix B of
A such that B is a reflected network. This number is denoted by ν(A). The DMERN
problem is known to be NP-hard [4].

Gülpınar et al. [12] showed that the maximum size of an embedded reflected net-
work equals the maximum order of a balanced induced subgraph of a special signed
graph associated with matrix A (for details, see Section 2). This result led Gülpınar et
al. [12] to a heuristic named SGA for detection of reflected networks. Computational
experiments in [12] with SGA and three other heuristics demonstrated that SGA and
another heuristic, RSD, were of very similar quality and clearly outperformed the two
other heuristics in this respect. However, SGA was about 20 times faster, on average,
than RSD. Moreover, SGA has an important theoretical property that RSD does not
have: SGA always solves the DMERN problem to optimality when the whole matrix A
is a reflected network [12]. Since SGA appeared to be the best choice for a heuristic for
detection of reflected networks, Gutin and Zverovitch [13] investigated ‘repetition’ ver-
sions of SGA and found out that three times repetition of SGA (SGA3) gives about 1%
improvement, while 80 times repetition of SGA (SGA80) leads to 2% improvement.
Thus, at the first glance it might seem that SGA3 and, of course, SGA80 heuristics are
not a very good choice because, taking more time, they produce a very little improve-
ment of the solution quality.

In this paper we argue that in fact SGA80 can be viewed as the best choice because,
being reasonably fast, it in most cases produces an optimal solution to the problem
under consideration. To solve the DMERN problem to optimality we design an FPT al-
gorithm for the maximum balanced subgraph problem and we compare the output of the



heuristics being analyzed against the output of the algorithm. To design the FPT algo-
rithm we reduce the maximum balanced subgraph problem to the bipartization problem
and then use an FPT algorithm for the latter problem [18, 23]. Thus it turns out that
although the FPT algorithm we use is usually much slower than the heuristic methods,
it helps to select the best heuristic for the DMERN problem.

As an additional contribution, we investigated another modification of SGA where
the use of a greedy-type independent set extracting heuristic (which is part of SGA) is
replaced by a fixed-parameter tractable algorithm for finding a minimum vertex cover.
Here we used the well-known fact that the complement of an independent set in a graph
is a vertex cover. Our experiments with this modification of SGA showed very little im-
provement and, thus, this modification of SGA appears to be of little practical interest.
However, this demonstrated that the independent set extracting heuristic need not be
replaced by a more powerful heuristic or exact algorithm.

The rest of the paper is organized as follows. In Section 2 we introduce necessary
notation, Section 3 presents the SGA heuristic and its variants, and Section 4 describes
an FPT algorithm for the maximum balanced subgraph problem. In Section 5 we report
empirical results and analyze them. Concluding remarks are made in Section 6.

2 Embedded networks and signed graphs

In this section, we assume, for simplicity, that A is a (0,±1)-matrix itself (since all rows
containing entries not from the set {−1, 0, +1} cannot be part of a reflected network).
Here we allow graphs to have parallel edges, but no loops. A graph G = (V,E) along
with a function s : E→{−, +} is called a signed graph. Signed graphs have been
studied by many researchers, see, e.g., [14–16, 24].

We assume that signed graphs have no parallel edges of the same sign, but may
have parallel edges of opposite signs. An edge is positive (negative) if it is assigned plus
(minus). For a (0,±1)-matrix A = [aik] with n rows, we construct a signed graph G(A)
as follows: the vertex set of G(A) is {1, 2, . . . , n}; G(A) has a positive (negative) edge
ij if and only if aik = −ajk 6= 0 (aik = ajk 6= 0) for some k. Let G = (V, E, s) be a
signed graph. For a non-empty subset W of V , the W -switch of G is the signed graph
GW obtained from G by changing the signs of the edges between W and V (G) \W .
A signed graph G = (V,E, s) is balanced if there exists a subset W of V (W may
coincide with V ) such that GW has no negative edges. Let η(G) be the largest order of
a balanced induced subgraph of G.

The following important result was proved in [12]. This result allows us to search
for a largest balanced induced subgraph of G(A) instead of a largest reflected network
in A.

Theorem 1. [12] Let A be a (0,±1)-matrix. A set R of rows in A forms a reflected
network if and only if the vertices of G(A) corresponding to R induce a balanced
subgraph of G(A). In particular, ν(A) = η(G(A)).

3 SGA and its Variations

The heuristic SGA introduced in [12] is based on the following:



Lemma 1. [12] Every signed tree T is a balanced graph.

Proof. We prove the lemma by induction on the number of edges in T . The lemma
is true when the number of edges is one. Let x be a vertex of T of degree one. By
the induction hypothesis, there is a set W ⊆ V (T ) − x such that (T − x)W has no
negative edges. In TW the edge e incident to x is positive or negative. In the first case,
let W ′ = W and the second case, let W ′ = W ∪ {x}. Then, TW ′

has no negative
edges. ut

Heuristic SGA:
Step 1: Construct signed graph G = G(A) = (V,E, s).
Step 2: Find a spanning forest T in G.
Step 3: Using a recursive algorithm based on the proof of Lemma 1, compute
W ⊆ V such that TW has no negative edges.
Step 4: Let N be the subgraph of GW induced by the negative edges. Apply
the following greedy-degree algorithm [21] to find a maximal independent set
I in N : starting from empty I , append to I a vertex of N of minimum degree,
delete this vertex together with its neighbors from N , and repeat the above
procedure till N has no vertex.
Step 5: Output I.
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Fig. 1. Illustration for SGA; M is the subgraph G{2} induced by the negative edges of G{2}.

Proposition 1. [12] If G is balanced, then I = V.

Proof. It is well-known (see, e.g., Theorem 2.8 in [12]) that a signed graph is balanced
if and only if it does not contain cycles with odd number of negative edges. Let T be
a a spanning forest in G. Since TW has no negative edges, GW cannot have negative
edges. Indeed, if xy was a negative edge in GW , it would be the unique negative edge
in a cycle formed by xy and the (x, y)-path of TW , a contradiction. ut

Gutin and Zverovitch [13] investigated a repetiton version of SGA where Steps
2-4 were repeated several time (each time the vertices of G were pseudo-randomly
permuted and a new spanning forest of G was built). They found out that three times
repetition of SGA gives about 1% improvement, while 80 times repetition of SGA leads
to 2% improvement, on average. In our experiments we used a larger text bed and better
scaling procedure than in [13] and, thus, we run SGA and its 3 and 80 times repetitions



on the new set of instances of the DMERN problem (see Section 5). We will denote
these repetition versions of SGA by SGA3 and SGA80, respectively.

In Section 5 we also report results on another modification of SGA, SGA+VC,
where we replace Step 4 with finding a vertex cover C of GW and setting I = V (GW )\
C. Since the vertex cover problem is well studied in the area of parameterized complex-
ity [1, 8, 20], to find C we can use a fixed-parameter algorithm for the problem.

4 Minimum Balanced Deletion problem

We recall some most basic notions of parameterized complexity here, for a more in-
depth treatment of the topic we refer the reader to [9, 10, 20].

A parameterized problem Π can be considered as a set of pairs (I, k) where I
is the problem instance and k (usually an integer) is the parameter. Π is called fixed-
parameter tractable (FPT) if membership of (I, k) in Π can be decided in time O(f(k)|I|c),
where |I| is the size of I , f(k) is a computable function, and c is a constant independent
from k and I .

By our discussions above, we are interested in the following parameterized problem.

The minimum balanced deletion problem (MBD)
Input: A signed graph G = (V, E, s), an integer k.
Parameter: k.
Output: A set of at most k vertices whose removal makes G balanced or ’NO’
if no such set exists.

We show that the MBD problem is FPT by transforming it into the Bipartization
problem defined as follows.

The Bipartization problem
Input: A graph G, an integer k
Parameter: k
Output: A set of at most k vertices whose removal makes G bipartite or ’NO’
if no such set exists.

The transformation is described in the following theorem.

Theorem 2. The MBD problem is FPT and can be solved in time O∗(3k).

Proof. It is well-known (see, e.g., Theorem 2.8 in [12]) that a signed graph is balanced
if and only if it does not contain cycles involving odd number of negative edges. Hence,
the MBD problem in fact asks for at most k vertices whose removal breaks all cycles
containing an odd number of negative edges.

Let G′ be the (unsigned) graph obtained from G by subdividing each positive edge.
In other words, for each positive edge {u, v}, we introduce a new vertex w and replace
{u, v} by {u, w} and {w, v}. We claim that G has a set of at most k vertices breaking
all cycles with an odd number of negative edges if and only if G′ can be made bipartite
by removal of at most k vertices.



Assume the former and let K be a set of at most k vertices whose removal breaks all
cycles with an odd number of negative edges. It follows that G′−K is bipartite. Indeed,
each cycle C ′ of G′ −K can be obtained from a cycle C of G −K by subdivision of
its positive edges. Hence, C ′ can be of an odd length only if C has an odd number of
negative edges which is impossible according to our assumption about K.

Conversely, let K be a set of at most k vertices such that G′ − K is bipartite. We
may safely assume that K does not contain the new vertices subdividing positive edges:
otherwise each such vertex can be replaced by one of its neighbors. Thus, K ⊆ V (G).
Observe that G −K does not have cycles with odd number of negative edges. Indeed,
by subdividing positive edges, any such cycle translates into an odd cycle of G′ −K in
contradiction to our assumption about K.

It follows from the above argumentation that the MBD problem can be solved as
follows. Transform G into G′ and run on G′ the O∗(3k) algorithm solving the biparti-
zation problem [18]. If the algorithm returns ’NO’ then return ’NO’. Otherwise, replace
each subdividing vertex by one of its neighbors and return the resulting set of vertices.
Clearly, the complexity of the resulting algorithm is O∗(3k). ¥

Remark The usual trick to avoid the subdivided vertices to be selected to the re-
sulting solution would be to make k +1 copies of each vertex. However, such approach
would increase the runtime of the resulting implementation and hence we have used a
slightly more sophisticated method.

5 Experimental Evaluation

In this section we provide and discuss our experiment results for the heuristics SGA,
SGA3, SGA80, SGA+VC descried in Section 3 and the exact algorithm given in Section
4. Note that in our experiments we use a larger test bed and better scaling procedure than
in [13].

Recall that we consider an LP problem in the standard form stated as

Minimize {pT x; subject to Ax = b, x ≥ 0}.
In Section 2, to simplify our notation we assumed that A is a (0,±1)-matrix. However,
in general, in real LP problems A is not a (0,±1)-matrix. Therefore, in reality, the first
phase in solving the DMERN problem is applying a scaling procedure whose aim is to
increase the number of (0,±1)-rows by scaling rows and columns. Here we describe a
scaling procedure that we have used. Our computational experiments indicate that this
scaling is often better than the scaling procedures we found in the literature. Let us
describe our scaling procedure. Let A = [aij ]n×m.

First we apply simple row scaling, i.e., scale all the rows which contain only zeros
and ±x, where x > 0 is some constant: for every i ∈ {1, 2, . . . , n} set aij = aij/x for
j = 1, 2, . . . ,m if aij ∈ {0,−x, +x} for every j ∈ {1, 2, . . . , m}.

Then we apply a more sophisticated procedure. Let [ri]n be an array of boolean
values, where ri indicates whether the ith row is a (0,±1)-row. Let [bj ]m be an array
of boolean values, where bj indicates whether the jth column is bounded, i.e., whether



it has at least one nonzero value in a (0,±1)-row: for some j ∈ {1, 2, . . . , m} the value
bj = true if and only if there exists some i such that ri = true and aij 6= 0.

Next we do the following for every non (0,±1)-row (note that at this stage any
non (0,±1)-row contains at least two nonzero elements). Let J be the set of indices
of bounded columns with nonzero elements in the current row c: J = {j : acj 6=
0 and bj = true}. If J = ∅, i.e., all the columns corresponding to nonzero elements
in the current row are unbounded, then we simply scale every of these columns: aij =
aij/acj for every i = 1, 2, . . . , n and for every j such that acj 6= 0. If J 6= ∅ and
acj ∈ {+x,−x} for every j ∈ J , where x is some constant, then we scale accordingly
the current row (acj = acj/x for every j ∈ {1, 2, . . . ,m}) and scale the unbounded
columns: aij = aij/acj for every j /∈ J if acj 6= 0. Otherwise we do nothing for the
current row.

Every time when we scale rows or columns we update the arrays r and b.
Since the matrices processed by this heuristic are usually sparse, we use a special

data structure to store them. In particular, we store only nonzero elements providing
the row and column indices for each of them. We also store a list of references to the
corresponding nonzero elements for every row and for every column of the matrix.

The computational results for all heuristics apart from SGA+VC as well as for the
exact algorithm are provided in Table 1. As a test bed we use all the instances provided
in Netlib (http://netlib.org/lp/data/). In the table, n denotes the number
of (0,±1)-rows in the instance, i.e., the number of vertices in the corresponding signed
graph G. Also kmin, k1, k3, k80 denote the values of the difference between n and the
number of vertices in a maximum induced balanced subgraph of G found by the exact
algorithm and SGA, SGA3 and SGA80, respectively, and t, t1, t3, t80 stand for the run-
ning time (in seconds) of the exact algorithm and SGA, SGA3 and SGA80, respectively.
When the exact algorithm could not produce a solution after 1 hour, it was terminated.
The average values of k are given over all the instances for SGA, SGA3 and SGA80.
We also provide the averages for the instances solved by the exact algorithm (see the
optimal set average row).

All algorithms were implemented in C++ and the evaluation platform is based on
an AMD Athlon 64 X2 3.0 GHz processor. For the exact algorithm we used a code
of Hüffner http://theinf1.informatik.uni-jena.de/˜hueffner/. In
SGA+VC we used a vertex cover code based on [2].

Table 1: Experiment results for the SGA, SGA3 and SGA80 heuristics
and for the exact algorithm.

Instance n kmin k1 k3 k80 t t1 t3 t80

25FV47 283 15 25 25 22 4.40 0.02 0.03 0.39
80BAU3B 1629 — 42 40 40 > 1h 0.08 0.25 9.75
ADLITTLE 31 1 1 1 1 0.02 0.00 0.00 0.00
AFIRO 16 0 0 0 0 0.00 0.00 0.00 0.00
AGG 159 — 107 104 104 > 1h 0.02 0.00 0.09
AGG2 153 — 85 85 83 > 1h 0.00 0.00 0.03



Instance n kmin k1 k3 k80 t t1 t3 t80

AGG3 153 — 85 85 83 > 1h 0.02 0.00 0.08
BANDM 143 23 24 24 23 1493.12 0.00 0.00 0.08
BEACONFD 118 3 3 3 3 0.00 0.00 0.00 0.02
BLEND 24 1 1 1 1 0.00 0.00 0.00 0.00
BNL1 315 14 17 17 14 1.83 0.00 0.02 0.19
BNL2 1549 — 127 110 99 > 1h 0.05 0.17 4.96
BOEING1 145 — 49 49 48 > 1h 0.00 0.00 0.03
BOEING2 79 15 17 17 15 0.05 0.00 0.02 0.02
BORE3D 131 12 14 13 12 0.14 0.00 0.00 0.03
BRANDY 122 6 7 6 6 0.00 0.00 0.00 0.05
CAPRI 126 — 40 37 34 > 1h 0.00 0.00 0.05
CYCLE 700 — 34 34 34 > 1h 0.02 0.06 1.64
CZPROB 912 1 1 1 1 0.27 0.02 0.03 1.73
D2Q06C 980 — 67 67 67 > 1h 0.02 0.11 3.56
D6CUBE 122 — 61 52 46 > 1h 0.02 0.00 0.16
DEGEN2 444 — 234 233 226 > 1h 0.02 0.03 0.83
DEGEN3 1503 — 822 819 813 > 1h 0.17 0.53 16.91
DFL001 6022 — 2818 2818 2802 > 1h 1.53 5.87 166.05
E226 100 15 18 17 16 1.09 0.00 0.00 0.03
ETAMACRO 145 12 20 20 20 0.47 0.00 0.00 0.09
FFFFF800 178 — 50 41 41 > 1h 0.00 0.02 0.14
FINNIS 325 — 121 120 119 > 1h 0.00 0.02 0.31
FIT1D 10 6 6 6 6 0.00 0.00 0.00 0.00
FIT1P 1 0 0 0 0 0.00 0.00 0.00 0.03
FIT2D 10 6 7 6 6 0.00 0.00 0.02 0.33
FIT2P 4 2 2 2 2 0.00 0.03 0.02 0.76
FORPLAN 61 1 1 1 1 0.00 0.00 0.00 0.05
GANGES 822 — 83 83 77 > 1h 0.03 0.05 1.89
GFRD-PNC 616 — 68 68 68 > 1h 0.03 0.05 0.78
GREENBEA 970 — 48 48 45 > 1h 0.06 0.12 3.46
GREENBEB 970 — 48 48 45 > 1h 0.03 0.17 3.42
GROW15 15 0 0 0 0 0.00 0.00 0.00 0.02
GROW22 22 0 0 0 0 0.00 0.00 0.00 0.02
GROW7 7 0 0 0 0 0.00 0.00 0.02 0.02
ISRAEL 30 8 9 9 8 0.02 0.00 0.00 0.00
KB2 15 1 1 1 1 0.00 0.00 0.00 0.00
LOTFI 105 18 24 22 19 11.23 0.00 0.00 0.02
MAROS-R7 50 0 0 0 0 0.00 0.05 0.05 0.83
MAROS 340 11 17 15 11 0.23 0.00 0.03 0.33
MODSZK1 374 — 237 237 237 > 1h 0.02 0.02 0.30
NESM 232 10 13 11 10 0.03 0.02 0.03 0.19
PEROLD 235 — 28 25 24 > 1h 0.00 0.00 0.12
PILOT.JA 318 16 18 16 16 11.72 0.00 0.02 0.31
PILOT 337 — 45 42 41 > 1h 0.00 0.03 0.70



Instance n kmin k1 k3 k80 t t1 t3 t80

PILOT.WE 295 — 34 29 28 > 1h 0.00 0.02 0.34
PILOT4 151 3 3 3 3 0.00 0.02 0.02 0.08
PILOT87 479 — 77 76 70 > 1h 0.03 0.02 1.25
PILOTNOV 329 19 21 21 19 201.29 0.03 0.00 0.59
RECIPE 61 0 0 0 0 0.00 0.00 0.00 0.02
SC105 75 16 17 17 17 12.56 0.00 0.00 0.02
SC205 148 — 36 36 36 > 1h 0.00 0.02 0.03
SC50A 35 8 8 8 8 0.02 0.00 0.02 0.00
SC50B 33 6 6 6 6 0.02 0.00 0.00 0.00
SCAGR25 299 0 0 0 0 0.03 0.00 0.02 0.19
SCAGR7 83 0 0 0 0 0.02 0.00 0.00 0.02
SCFXM1 154 12 13 12 12 0.30 0.00 0.00 0.08
SCFXM2 308 — 26 26 24 > 1h 0.00 0.00 0.22
SCFXM3 462 — 39 38 36 > 1h 0.02 0.02 0.56
SCORPION 214 1 1 1 1 0.02 0.00 0.00 0.14
SCRS8 281 9 9 9 9 0.06 0.00 0.02 0.19
SCSD1 39 0 0 0 0 0.03 0.00 0.02 0.02
SCSD6 74 0 0 0 0 0.14 0.00 0.02 0.02
SCSD8 199 0 0 0 0 0.59 0.00 0.00 0.09
SCTAP1 120 0 0 0 0 0.00 0.00 0.00 0.03
SCTAP2 470 0 0 0 0 0.00 0.00 0.03 0.53
SCTAP3 620 0 0 0 0 0.00 0.00 0.06 0.92
SEBA 408 — 274 271 269 > 1h 0.00 0.05 1.95
SHARE1B 49 4 5 4 4 0.00 0.00 0.00 0.02
SHARE2B 36 6 6 6 6 0.00 0.02 0.00 0.00
SHELL 536 2 2 2 2 1.51 0.00 0.02 0.51
SHIP04L 394 — 36 36 36 > 1h 0.02 0.05 0.53
SHIP04S 394 — 36 36 36 > 1h 0.00 0.02 0.41
SHIP08L 762 — 64 64 64 > 1h 0.05 0.08 1.87
SHIP08S 762 — 64 64 64 > 1h 0.02 0.03 1.31
SHIP12L 1141 — 96 96 96 > 1h 0.03 0.14 3.71
SHIP12S 1141 — 96 96 96 > 1h 0.03 0.12 2.76
SIERRA 1161 — 400 399 387 > 1h 0.02 0.05 2.71
STAIR 82 8 11 10 8 0.02 0.00 0.02 0.03
STANDATA 245 — 53 53 53 > 1h 0.00 0.00 0.17
STANDGUB 247 — 53 53 53 > 1h 0.02 0.02 0.19
STANDMPS 353 — 54 54 54 > 1h 0.00 0.02 0.31
STOCFOR1 56 0 0 0 0 0.00 0.00 0.00 0.00
STOCFOR2 1306 — 258 258 243 > 1h 0.05 0.12 3.88
TUFF 175 16 26 17 16 0.58 0.02 0.00 0.11
VTP.BASE 30 4 6 4 4 0.00 0.00 0.00 0.00
WOOD1P 74 0 0 0 0 0.02 0.00 0.00 0.11
WOODW 329 0 0 0 0 0.00 0.00 0.05 0.78



Instance n kmin k1 k3 k80 t t1 t3 t80

Total average — 79.3 78.3 76.9 — 0.03 0.10 2.66
Optimal set average 5.8 7.0 6.6 6.1 32.26 0.00 0.01 0.19

The results with SGA+VC are not provided since SGA+VC managed to improve
SGA only for four instances: D6CUBE (kSGA+V C = 59), DEGEN2 (kSGA+V C =
230), DEGEN3 (kSGA+V C = 806), and DFL001 (kSGA+V C = 2809). Note that in the
three of these instances k80 < kSGA+V C . Since the running time of SGA+VC usually
exceeds that of SGA80 and the quality of SGA+VC is not much different even from
that of SGA, SGA+VC appears to be of little practical interest. However, SGA+VC
demonstrates that there is no need to replace Step 4 of SGA by a more powerful heuristic
or exact algorithm.

Observe that the exact algorithm completed its computations for 54 instances out
of the total of 93, and for 52 instances the running time was at most 1 minute. Note
that SGA achieved the optimal solution in 33 out of 54 cases, SGA3 in 39 cases and
SGA80 in 49 cases. Observe that in almost all the cases feasible for the exact algorithm,
SGA80, being much faster than the exact algorithm, managed to compute an optimal
solution! Although SGA80 is slower than SGA and SGA3, it is much more precise and
its running time is still reasonable. It follows that SGA80 is the best choice with respect
to the tradeoff between running time and precision. Note that this conclusion can be
made only given the knowledge about the optimal solution and without the considered
FPT algorithm such knowledge would be very hard to obtain (for example, the instance
PILOTNOV with n = 329 and kmin = 19 would hardly be feasible to a brute-force
exploration of all

(
329
19

)
possibilities).

6 Conclusions

In this paper we have demonstrated a novel way of use of an FPT algorithm where it
does not substitute heuristic methods but is used to compare them. As a case study, we
considered heuristics for the problem of extracting a maximum-size reflected network
in an LP problem. The main conclusion of our empirical study is that the slowest heuris-
tic, which provided only a minor improvement over the other ones and was basically
disregarded due to this fact, has turned out to be the best among the heuristics under
consideration because, being reasonably fast, it often produces an optimal solution. The
FPT algorithm in this case has helped us to check whether a solution returned by the
heuristic being analyzed is indeed optimal.

We believe that this way of applying FPT algorithms can be useful for other prob-
lems as well. One candidate might be the problem of finding whether the given CNF
formula has at most k variables so that their removal makes the resulting formula Re-
nameable Horn. This is called the Renameable Horn deletion backdoor problem and
was recently shown FPT [22]. Heuristics for this problem are widely used in modern
SAT solvers for identifying a small subset of variables on which an exponential-time
branching is to performed [19]. Currently it is unclear whether substituting a heuristic
approach by the exact FPT algorithm would result in a better SAT solver. But even if



it is not the case, the exact algorithm can be still of a considerable use for ranking the
heuristic techniques, especially as producing small Renameable Horn backdoors is vi-
tally important for reducing the exponential-time impact on the runtime of SAT solvers.
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