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ABSTRACT
Given an undirected graph G, a collection {(s1, t1), . . . ,(sk, tk)} of
pairs of vertices, and an integer p, the EDGE MULTICUT problem
ask if there is a set S of at most p edges such that the removal of
S disconnects every si from the corresponding ti. VERTEX MUL-
TICUT is the analogous problem where S is a set of at most p ver-
tices. Our main result is that both problems can be solved in time
2O(p3) · nO(1), i.e., fixed-parameter tractable parameterized by the
size p of the cutset in the solution. By contrast, it is unlikely that
an algorithm with running time of the form f (p) · nO(1) exists for
the directed version of the problem, as we show it to be W[1]-hard
parameterized by the size of the cutset.

Categories and Subject Descriptors
F.2 [Theory of Computing]: Analysis of Algorithms and Problem
Complexity

General Terms
Algorithms

Keywords
multicut, fixed-parameter tractability

1. INTRODUCTION
From the classical results of Ford and Fulkerson on minimum

s− t cuts [16] to the more recent O(
√

logn)-approximation algo-
rithms for sparsest cut problems [35, 1, 14], the study of cut and
separation problems have a deep and rich theory. One well-studied
problem in this area is the EDGE MULTICUT problem: given a
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graph G and pairs of vertices (s1, t1), . . . , (sk, tk), remove a min-
imum set of edges such that every si is disconnected from its cor-
responding ti for every 1 ≤ i ≤ k. For k = 1, EDGE MULTICUT

is the classical s − t cut problem and can be solved in polyno-
mial time. For k = 2, EDGE MULTICUT remains polynomial-time
solvable [37], but it becomes NP-hard for every fixed k ≥ 3 [11].
EDGE MULTICUT can be approximated within a factor of O(logk)
in polynomial time [17] (even in the weighted case where the goal
is to minimize the total weight of the removed edges). However,
under the Unique Games Conjecture of Khot [24], no constant fac-
tor approximation is possible [7]. One can analogously define the
VERTEX MULTICUT problem, where the task is to remove a min-
imum set of vertices. An easy reduction shows that the vertex ver-
sion is more general than the edge version.

Using brute force, one can decide in time nO(p) if a solution of
size at most p exists. Our main result is a more efficient exact
algorithm for small values of p (the O∗ notation hides factors that
are polynomial in the input size):

THEOREM 1.1. Given an instance of VERTEX MULTICUT or
EDGE MULTICUT and an integer p, one can find in time O∗(2O(p3))
a solution of size p, if such a solution exists.

That is, we prove that VERTEX MULTICUT and EDGE MULTICUT

are fixed-parameter tractable parameterized by the size p of the so-
lution, resolving a very challenging open question in the area of pa-
rameterized complexity1. (Recall that a problem is fixed-parameter
tractable (FPT) with a particular parameter p if it can be solved in
time f (p) · nO(1), where f is an arbitrary function depending only
on p; see [13, 15, 31] for more background). The question was first
asked explicitly perhaps in [26]; it has been restated more recently
as an open problem in e.g., [20, 8]. Our result shows in particular
that multicut is polynomial-time solvable if the size of the optimum
solution is O( 3

√
logn) (where n is the input size).

One reason why multicut is a fundamental problem is that it is
able to express several other problems. It has been observed that a
correlation clustering problem called FUZZY CLUSTER EDITING

can be reduced to (and in fact, equivalent with) EDGE MULTICUT

[3, 12, 2]. Our results show that FUZZY CLUSTER EDITING is
FPT parameterized by the editing cost, settling this open problem
discussed e.g., in [3].

Related results. The fixed-parameter tractability of multicut
and related problems has been thoroughly investigated in the lit-
erature. EDGE MULTICUT is NP-hard on trees, but it is known to
be FPT, parameterized by the maximum number p of edges that
can be deleted, and admits a polynomial kernel [5, 21]. Multi-

1Independently of our work and using very different techniques
Bousquet et al. [4] (see also their paper in this volume) also proved
the fixed-parameter tractability of multicut.
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cut problems were studied in [20] for certain restricted classes of
graphs. For general graphs, VERTEX MULTICUT is FPT if both
p and and the number of terminal pairs k are chosen as parame-
ters (i.e, the problem can be solved in time f (p,k) · nO(1) [27, 36,
19] for some function f ). The algorithm of Theorem 1.1 is su-
perior to these result in the sense that the running time depends
polynomially on the number of terminals, and the exponential de-
pendence is restricted to the parameter p. For the special case of
MULTIWAY CUT (where terminals in a set T have to be pairwise
separated form each other), algorithms with running time of the
form f (p) · nO(1) were already known [27, 8, 19], but apparently
these algorithms do not generalize in an easy way to multicut. An
FPT 2-approximation algorithm was given in [28] for EDGE MUL-
TICUT: in time O∗(2O(p log p)), one can find a solution of size 2p
if a solution of size p exists. There is no obvious FPT algorithm
for the problem even on bounded-treewidth graphs, although one
can obtain linear-time algorithms if the treewidth remains bounded
after adding an edge siti for each terminal pair [18, 32]. A PTAS is
known for bounded-degree graphs of bounded treewidth [6].

Our techniques. The first two steps of our algorithm follows
[28]. We start by an opening step that is standard in the design of
FPT algorithms. Instead of solving the original VERTEX MULTI-
CUT problem, we solve the compression version of the problem,
where the input contains a solution W of size p+1, and the task is
to find a solution of size p (if exists). A standard argument called
iterative compression [34, 23] shows that if the compression prob-
lem is FPT, then the original problem is FPT. Alternatively, we can
use the polynomial-time approximation algorithm of Gupta [22],
which produces a solution W of size p2 if a solution of size p ex-
ists. In this case, O(p2) iterations of the compression algorithm
gives a solution of size p.

Next, as in [28], we try to reduce the compression problem to
ALMOST 2SAT (delete k clauses to make a 2-CNF formula satisfi-
able; also known as 2CNF DELETION), which is known to be FPT
[33]. However, our 2SAT formulation is very different from the
one in [28]: we introduce a single variable xv only for each vertex
of G, while in [28] there is a variable xv,w for every v ∈ V (G) and
w ∈W . This simpler reduction to ALMOST 2SAT is correct only if
the instance satisfies two quite special properties:

(1) every component of G\W is adjacent to at most two vertices
of W (“has at most two legs”), and

(2) there is a solution S such that every component of G\S con-
tains a vertex of W (“no vertex is isolated from W after re-
moving the solution”).

The main part of the paper is devoted to achieving these proper-
ties. In order to achieve property (1), we show by an analysis of
cuts and performing appropriate branchings that the set W can be
extended in such a way that every component has at most two legs
(Section 5). To achieve property (2), we describe a nontrivial way
of sampling random subset of vertices such that if we remove this
subset by a certain contraction operation (taking the torso of the
graph), then without changing the solution, we get rid of the parts
not reachable from W with some positive probability (Section 4).
This random sampling uses the concept of “important separators,”
which was introduced in [27], and has been implicitly used in [9,
33, 8] in the design of parameterized algorithms. We consider the
random selection of important separators the main new technical
idea of the paper. Subsequently to the current paper, the technique
was applied in the very different context of clustering [25].

Directed graphs. Having resolved the fixed-parameter tractabil-
ity of VERTEX MULTICUT, the next obvious question is what hap-
pens on directed graphs. Note that for directed graphs, the edge

and vertex versions are equivalent. In directed graphs, multicut be-
comes much harder to approximate: there is no polynomial-time
2log1−ε n-approximation for any ε > 0, unless NP ⊆ ZPP [10]. From
the fixed-parameter tractability point of view, the directed version
of the problem received particular attention because DIRECTED

FEEDBACK VERTEX SET or DFVS (delete p vertices to make the
graph acyclic) can be reduced to DIRECTED MULTICUT. The fixed-
parameter tractability of DFVS had been a longstanding open ques-
tion in the area of parameterized complexity until it was solved by
Chen et al. [9] recently. The main idea that led to the solution is
that DFVS can be reduced to a variant (in fact, special case) of DI-
RECTED MULTICUT called SKEW MULTICUT, where the task is
to break every path from si to t j for every i > j. By showing that
SKEW MULTICUT if FPT parameterized by the size of the solution,
Chen et al. [9] proved the fixed-parameter tractability of DFVS. We
show that, unlike SKEW MULTICUT, the general DIRECTED MUL-
TICUT problem is unlikely to be FPT (see the full version [29]).

THEOREM 1.2. DIRECTED MULTICUT is W[1]-hard parame-
terized by the size p of the solution.

Theorem 1.2 leaves open a number of interesting questions. Is DI-
RECTED MULTICUT FPT for a fixed (say k = 2 or k = 3) number
of terminal pairs? Is it perhaps FPT parameterized by both the
solution size and the number terminals (i.e., is there an f (p,k) ·
nO(1) time algorithm)? Is the problem easier on acyclic graphs? Is
the special case DIRECTED MULTIWAY CUT easier? The fixed-
parameter tractability of SKEW MULTICUT suggests that it is not
unreasonable to expect a positive answer to at least some of these
questions. The study of approximation algorithms for cut prob-
lems uncovered deep mathematical connections. It is possible that
the study of these problems from these problems from the view-
point of parameterized complexity and understanding the extremal
combinatorics of small cuts can will lead to further surprising con-
nections.

2. PRELIMINARIES
Let G be an undirected graph and let T = {(s1, t1), . . . ,(sk, tk)}

be a set of terminal pairs. We say that a set S ⊆V (G) of vertices is
a multicut of (G,T) if there is no component of G\S that contains
both si and ti for some 1 ≤ i ≤ k (note that it is allowed that S
contains si or ti). The central problem of the paper is the following:

VERTEX MULTICUT

Input: A graph G, an integer p, and a set T of pairs of ver-
tices of G
Output: A multicut of (G,T) of size at most p or “NO” if no
such multicut exists.

2.1 Compression
The first step in the proof of Theorem 1.1 is a standard technique

in the design of parameterized algorithm: we define and solve the
compression problem, where it is assumed that the input contains
a feasible solution of size larger than p. As this technique is stan-
dard (and in particular, we follow the approach of [28] for EDGE

MULTICUT), we keep this section short and informal.

MULTICUT COMPRESSION

Input: A graph G, an integer p, a set T of pairs of vertices of
G, and a multicut W of (G,T)
Output: A multicut of (G,T) of size at most p, or “NO” if
no such set S exists.

Our main technical contribution is showing that MULTICUT COM-
PRESSION is FPT parameterized by p and |W |.
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LEMMA 2.1. MULTICUT COMPRESSION can be solved in time
O∗(2O((p+log |W |)3+|W | log |W |)).

Intuitively, it is clear that proving Lemma 2.1 could be easier than
solving VERTEX MULTICUT: the extra input W can give us use-
ful structural information about the graph (and as |W | appears in
a running time, a large W is also helpful). What’s not obvious is
how solving MULTICUT COMPRESSION gives us any help in the
solution of the original VERTEX MULTICUT problem. We sketch
two methods.

Method 1. Let us use the polynomial-time approximation algo-
rithm of Gupta [22] to find a multicut W of size at most c ·OPT2,
where c is a universal constant and OPT is the minimum size of
a multicut. If |W | ≥ c · p2, then we can safely answer “NO”, as
there is no multicut of size at most p. Otherwise, we run the al-
gorithm of Lemma 2.1 for this set W to obtain a solution in time
O∗(2O((p+log |W |)3) = O∗(2O(p3)).

Method 2. The standard technique of iterative compression [34,
23] allows us to reduce VERTEX MULTICUT to at most |V (G)| in-
stances of MULTICUT COMPRESSION with |W |= p+1. This tech-
nique was used for the 2-approximation of EDGE MULTICUT in
[28] and its application is analogous in our case. Let (G,T, p) be an
instance of VERTEX MULTICUT. Suppose that V (G)= {v1, . . . ,vn}
and let Gi = G[{v1, . . . ,vi}]. One by one, we consider the instances
(Gi,T, p) in ascending order of i, and for each instance we find a
solution Si of size at most p. We start with S0 = /0. For some i > 0,
we compute Si provided that Si−1 is already known. Observe that
Si−1 ∪{vi} is a multicut of size p+1 for (Gi,T). Thus we can use
the algorithm for MULTICUT COMPRESSION, which either returns
a multicut Si of (Gi,T) having size at most p or returns “NO”. In
the first case, we can continue the iteration with i+1. In the second
case, there is no multicut of size p for (G,T) (as there is no such
multicut even for (Gi,T)), and hence we can return “NO”.

Both methods result in O∗(2O(p3)) time algorithms. However,
we feel it important to mention both, as improvements in Lemma 2.1
might have different effects on the two methods.

It will be convenient to work with a slightly modified version of
the compression problem. We say that a set S ⊆V (G) is a multiway
cut of W ⊆V (G) if every component of G\S contains at most one
vertex of W .

MULTICUT COMPRESSION∗
Input: A graph G, an integer p, a set T of pairs of vertices of
G, and a multicut W of (G,T)
Output: A set S of size at most p such that S∩W = /0, S is
multicut of (G,T) and a multiway cut of W or “NO” if no
such set S exists.

In Sections 3–5, we prove the this problem is FPT:

LEMMA 2.2. MULTICUT COMPRESSION∗ can be solved in time
O∗(2O((p+log |W |)3)).

It is not difficult to reduce MULTICUT COMPRESSION to MULTI-
CUT COMPRESSION∗ (an analogous reduction was done in [28] for
the the edge case). We briefly sketch such a reduction. In order to
solve an instance (G,T,W, p) of MULTICUT COMPRESSION, we
first guess the intersection X of the multicut W given in the input
and the solution S we are looking for. This guess results in at most

∑p
i=1

(|W |
i

)
branches; in each branch, we remove the vertices of X

from G and decrease p by |X |. Thus in the following, we can re-
strict our attention to solutions disjoint from W . Next, we branch
on all possible partitions (W1, . . . ,Wt) of W , contract each Wi into
a single vertex, and solve MULTICUT COMPRESSION∗ on the re-
sulting instance (G′,T′,W ′, p′). One of the partitions (W1, . . . ,Wt)

3 4

1

1

2

2

2

Figure 1: An instance with 7 components. The strong circles
are the vertices of W , the numbers show the number of legs for
each component.

corresponds to the way the solution S partitions W into connected
components, and in this case S is a multiway cut of W ′ in G′.
Thus if the original MULTICUT COMPRESSION instance has a so-
lution S, then it is a solution of one of the constructed MULTI-
CUT COMPRESSION∗ instances. Conversely, any solution of the
constructed instances is a solution of the original instance. As the
number of partitions of W can be bounded by |W |O(|W |), the run-
ning time claimed in Lemma 2.1 follows from Lemma 2.2. Thus
proving Lemma 2.2 implies the main result Theorem 1.1.

2.2 Components and legs
Given an instance (G,T,W, p) of MULTICUT COMPRESSION∗,

we say that a component C of G\W has �-legs if C is adjacent with
� vertices of W . We say that a component is bipedal if it has two
legs. In Sections 3–4, we solve MULTICUT COMPRESSION∗ in the
special case where every component has only one or two legs (we
will call this special case BIPEDAL MULTICUT COMPRESSION∗).

LEMMA 2.3. The BIPEDAL MULTICUT COMPRESSION∗ prob-
lem can be solved in time O∗(2O((p+log |W |)3)).

Let I = (G,T,W, p) be an instance of the BIPEDAL MULTICUT

COMPRESSION∗problem, and let S be a solution for I. The iso-
lated part of the solution is the set of vertices not reachable from
any vertex of W in G \ S. We say that the solution S is nonisolat-
ing if the isolated part is empty, i.e., G \ S has exactly |W | com-
ponents. In Section 3, we show that if the BIPEDAL MULTICUT

COMPRESSION∗ instance has a nonisolating solution, then it can
be found by a quite intuitive reduction to an FPT prolem ALMOST

2SAT. Next in Section 4, we present a randomized algorithm that
modifies the instance such that if a solution exists, then it makes
the solution nonisolating with positive probability. The algorithm
is based on a randomized contraction of sets defined by “important
separators”; we review this concept in Section 2.3. We complete
the proof of Lemma 2.3 by derandomizing this algorithm.

Finally, in Section 5, we show how the general problem can be
reduced to the bipedal case. The reduction is achieved by choosing
an appropriate set B in a component with more than two legs and
guessing, for each vertex v ∈ B, which vertex of W is reachable
from v after removing the solution . Based on these guesses, we
can identify each vertex of B with a vertex of W . We prove that if
the set B is chosen appropriately, then after a bounded number of
branchings, every component has one or two legs.

2.3 Important separators
The concept of important separators were introduced in [27] to

deal with the multiway cut problem. If X is a set of vertices in
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graph G, then we denote by NG(X) the neighborhood of X in G
and define γG(X) := |NG(X)|. We drop the subscript G if it is clear
from the context.

Let G be an undirected graph and let X ,Y ⊆V (G) be two disjoint
sets. A set S ⊆V (G) of vertices is an X −Y separator if S is disjoint
from X ∪Y and there is no component2 K of G\S with K ∩X �= /0
and K ∩Y �= /0. To improve readability, we write s−Y separator
instead of {s}−Y separator if s is a single vertex.

DEFINITION 2.4. Let X ,Y ⊂ V (G) be disjoint sets of vertices,
S ⊆ V (G) be an X −Y separator, and let K be the union of every
component of G \ S intersecting X. We say that S is an important
X −Y separator if it is inclusionwise minimal and there is no X −Y
separator S′ with |S′| ≤ |S| such that K′ ⊃ K, where K′ is the union
of every component of G\S′ intersecting X.

Note that the order of X and Y matters: an important X −Y separa-
tor is not necessarily an important Y −X separator.

We state without proof some properties of Definition 2.4 that are
easy to see:

PROPOSITION 2.5. Let G be a graph, X ,Y ⊆V (G) be two dis-
joint sets of vertices, and S be an important X −Y separator.

1. For every v ∈ S, the set S\{v} is an important X −Y separa-
tor in G\ v.

2. If S is an X ′ −Y separator for some X ′ ⊃ X, then S is an
important X ′ −Y separator.

3. If G[X ] is connected, then S is an important X ′ −Y separator
for every /0 �= X ′ ⊂ X.

4. If S is an X −Y separator in G′ for some supergraph G′ of
G, then S is an important X −Y separator in G′.

The number of important separators were bound in [27] (although
the notation there is slightly different). A better bound is implicit
in [8].

LEMMA 2.6. Let X ,Y ⊆ V (G) be disjoint sets of vertices in
graph G. For every p ≥ 0, there are at most 4p important X −Y
separators of size at most p. Furthermore, we can enumerate all
these separators in time O∗(4p).

3. FINDING A NONISOLATING SOLUTION
BY REDUCTION TO ALMOST 2SAT

The goal of this section is to show that we can solve BIPEDAL

MULTICUT COMPRESSION∗ if there is at least one nonisolating
solution. In Section 4, we show that it is sufficient to solve the
problem under this assumption.

Let x1, . . . , xn be a set of variables; a literal is either a vari-
able xi or its negation x̄i. Recall that a 2CNF formula is a con-
junction of clauses with at most two literals in each clause, e.g.,
(x̄1 ∨ x2)∧ (x̄3)∧ (x1 ∨ x̄4). It is well-known that a satisfying as-
signment for a 2CNF formula can be found in linear time (if ex-
ists). However, it is NP-hard to find an assignment that maximizes
the number of satisfied clauses, or equivalently, to find a minimum
set of clauses whose removal makes the formula satisfiable. Raz-
gon and O’Sullivan [33] gave an O∗(15k) time algorithm for the
problem of deciding if a 2CNF formula can be made satisfiable by
the deletion of at most k clauses; they call this problem ALMOST

2Throughout this paper, when we refer to a component K of a
graph, we consider the set of vertices of this component. We omit
saying “the set of vertices of” for the sake of brevity.

2SAT. We need a variant of the result here, where instead of delet-
ing at most k clauses, we are allowed to delete at most k variables.
An easy reduction gives an algorithm for this variant. If φ is a
2CNF formula and X is a set of variables, then we denote by φ \X
the formula obtained by removing every clause containing a literal
of a variable in X .

THEOREM 3.1. Given a 2CNF formula φ and an integer k, in
time O∗(15k) we can either find a set X of at most k variables such
that φ \X is satisfiable, or correctly state that no such set X exists.

It is not difficult to reduce finding a nonisolating solution to the
problem solved by Theorem 3.1. For each vertex v of G \W , we
introduce a variable whose value expresses which leg of the com-
ponent containing v is reachable from v. This formulation can-
not express that a vertex is separated from both legs. However, as
we assume that there is a nonisolating solution, we do not have to
worry about such vertices.

LEMMA 3.2. Let I = (G,T,W, p) be an instance of BIPEDAL

MULTICUT COMPRESSION∗ that has a nonisolating solution of
size at most p. In time O∗(15p), we can find a (not necessarily
nonisolating) solution.

PROOF. We encode the BIPEDAL MULTICUT COMPRESSION∗
instance I = (G,T,W, p) as a 2CNF formula φ the following way.
For each component C of G \W having two legs, let �0(C) and
�1(C) be the two legs. If component C has only one leg, then let
�0(C) be this leg, and let �1(C) be undefined. For every vertex
v ∈C, let �0(v) = �0(C) and �1(v) = �1(C). We construct a formula
φ whose variables correspond to V (G)\W . The intended meaning
of the variables is that v has value b ∈ {0,1} if v is in the same
component as �b(v) after removing the solution. To enforce this
interpretation, φ contains the following clauses:

• Group 1: (u→ v), (v→ u) for every adjacent u,v∈V (G)\W .

• Group 2: If u is a neighbor of �b(u) for some b ∈ {0,1}, then
there is a clause (u = b).

• Group 3: If (u,v)∈ T, u,v �∈W , and �bu
(u) = �bv

(v) for some
bu,bv ∈ {0,1}, then there is a clause (u �= bu ∨ v �= bv) (e.g.,
if �0(u) = �1(v), then the clause is (u∨ v̄)).

• Group 4: If (u,v) ∈ T, u ∈W , v �∈W , and �b(v) = u for some
b ∈ {0,1}, then there is a clause (v �= b).

This completes the description of φ . Note that no clause is intro-
duced for pairs (u,v)∈T with u,v∈W , but these pairs are automat-
ically separated by a solution that is a multiway cut of W . Further-
more, we can assume that W induces a independent set, otherwise
there is no solution.

We show first that if I has a nonisolating solution S, then remov-
ing the corresponding variables of φ makes it satisfiable. As S is
nonisolating and it is a multiway cut of W , every vertex of G \ S
is in the same component as exactly one of �0(v) and �1(v); let
the value of variable v be b if vertex v is in the same component
as �b(v). It is clear that this assignment satisfies the clauses in the
first two groups. Consider a clause (u �= bu ∨v �= bv) from the third
group. This means that (u,v) ∈ T and �bu

(u) = �bv
(v) = w ∈ W .

If this clause is not satisfied, then u = bu and v = bv. By the way
the assignment was defined, this is only possible if u is in the same
component of G\S as �bu

(u) = w and v is in the same component
of G\S as �bv

(v) = w. Therefore, u and v are in the same compo-
nent of G\S, contradicting the assumption that S is a solution of I.
Clauses in Group 4 can be checked similarly.
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We have shown that φ can be made satisfiable by the deletion of
p variables. By Theorem 3.1, we can find such a set S′ of variables
time O∗(15p). To complete the proof, we show that such a set S′
corresponds to a (not necessarily nonisolating) solution of I. Let
us show first that S′ is a multiway cut of W . Suppose that there
is a path P connecting w0,w1 ∈ W in G \ S′. We can assume that
the internal vertices of P are disjoint from W , i.e., they are in one
component C of G\W with two legs. Thus there is a path P′ from a
neighbor v0 of w0 to a neighbor v1 of w1 in C\S′. Suppose without
loss of generality that �0(C) = w0 and �1(C) = w1. As the clauses
in Group 1 are satisfied, every variable of P′ has the same value.
However, because of the clauses in Group 2, we have xv0 = 0 and
xv1 = 1, a contradiction. Therefore, we can assume that S′ is a
multiway cut of W .

Suppose now that there is some (u,v) ∈ T such that u,v �∈W are
in the same component of G\S′; let P be a u−v path in G\S′. As W
is a multicut of T, it is clear that P goes through at least one vertex
of W . We have seen that S′ is a multiway cut of W , thus P goes
through exactly one vertex of W . Let P = P1wP2 for some path P1
that is fully contained in the component of G\W containing u and
path P2 fully contained in the component containing v. Let bu,bv ∈
{0,1} be such that �bu

(u) = �bv
(v) = w. Group 1 ensures that every

variable of P1 has the same value and Group 2 ensures that the last
variable of P1 has value bu, thus u = bu. A similar argument shows
that v = bv. However, this means that clause (u �= bu ∨ v �= vu) of
Group 3 is not satisfied, a contradiction. Finally, a similar argument
shows that the clauses in Group 4 ensure that pairs (u,v) ∈ T with
u ∈W , v �∈W are separated.

4. MAKING THE SOLUTION NONISOLAT-
ING

In this section, we present a randomized transformation that,
given an instances of BIPEDAL MULTICUT COMPRESSION∗ hav-
ing a solution, it modifies the instance in such a way that the new
instance has a nonisolating solution with probability 2−O(p3). The
main result of this section is a derandomized version of this trans-
formation:

LEMMA 4.1. Given an instance I of the BIPEDAL MULTICUT

COMPRESSION∗ problem, we can construct in time O∗(2O(p3)) a

set of t = 2O(p3) logn instances I1, . . . , It such that

1. If I has no solution, then Ii has no solution for any 1 ≤ i ≤ t.

2. If I has a solution, then Ii has a nonisolating solution for at
least one 1 ≤ i ≤ t.

Thus we can solve BIPEDAL MULTICUT COMPRESSION∗ by con-
structing the instances I1, . . . , It of Lemma 4.1 and applying the al-
gorithm of Lemma 3.2 to each instance. This will prove Lemma 2.3.

4.1 Torsos and nonisolating solutions
The randomized transformation can be conveniently described

using the operation of taking the torso of a graph.

DEFINITION 4.2. Let G be a graph and C ⊆ V (G). The graph
torso(G,C) has vertex set C and two vertices a,b ∈C are adjacent
if {a,b} ∈ E(G) or there is a path P in G connecting a and b whose
internal vertices are not in C.

It is easy to show that this operation preserves separation inside C:

PROPOSITION 4.3. Let C ⊆V (G) be a set of vertices in G and
let a,b ∈C two vertices. A set S ⊆C separates vertices a and b in
torso(G,C) if and only if S separates these vertices in G.

PROOF. Let P be a path connecting a and b in G and suppose
that P is disjoint from the set S. The path P contains vertices from
C and from V (G) \C. If u,v ∈ C are two vertices such that every
vertex of P between u and v is from V (G) \C, then by definition
there is an edge uv in torso(G,C). Using these edges, we can mod-
ify P to obtain a path P′ that connects a and b in torso(G,C) and
avoids S.

Conversely, suppose that P is a path connecting a and b in the
graph torso(G,C) and it avoids S ⊆ C. If P uses an edge uv that
is not present in G, then this means that there is a path connecting
u and v whose internal vertices are not in C. Using these paths,
we can modify P to obtain a path P′ that uses only the edges of G.
Since S ⊆C, the new vertices on the path are not in S, i.e., P′ avoids
S as well.

Let I = (G,W,T, p) be an arbitrary instance of BIPEDAL MUL-
TICUT COMPRESSION∗. Given a set Z ⊆V (G)\W of vertices, the
reduced instance I/Z = (G′,W,T′, p) is defined the following way:

1. The graph G′ is torso(G,V (G)\Z).

2. For every v ∈ V (G), let φ(v) = NG(C) if v belongs to com-
ponent C of G[Z], and let φ(v) = {v} if v �∈ Z. The set T′ is
obtained by by replacing every pair (x,y) ∈ T with the set of
pairs {(x′,y′) | x′ ∈ φ(x),y′ ∈ φ(y)}.

The main observation is that if we perform this torso operation
for a Z that is sufficiently large to cover the isolated part of a hypo-
thetical solution S and sufficiently small to be disjoint from S, then
S becomes an nonisolating solution of I/Z. Furthermore, the torso
operation is “safe” in the sense that it does not create new solutions.

LEMMA 4.4. Let I = (G,T,W, p) be an instance of BIPEDAL

MULTICUT COMPRESSION∗ and let Z ⊆V (G)\W be a set of ver-
tices. If I has no solution, then I/Z has no solution either. Further-
more, if I has a solution S such that Z covers the isolated part and
Z ∩S = /0, then S is a nonisolating solution of I/Z.

PROOF. Let G and G′ be the graphs in instances I and I/Z, re-
spectively. To prove the first statement, we show that if S′ ⊆V (G′)
is a solution of I/Z, then S′ is a solution of I as well. Suppose that
some pair (x,y) of I is not separated by S′. Let P be a path in G\S′
going from x to y. Let x′ and y′ be the first and last vertex of P
not in Z, respectively, and let P′ be the subpath of P from x′ to y′.
(Note that P cannot be fully contained in Z, as it contains at least
one vertex of W .) By the way I/Z is defined, (x′,y′) is a pair in I/Z,
hence S′ separates x′ and y′ in G′ = torso(G,C). Using Prop. 4.3
with C = V (G) \Z, we get that S′ separates x′ and y′ in G, which
is in contradiction with the existence of the path P. A similar argu-
ment shows that there is no path in G\S′ that connects two vertices
of W .

For the second statement, suppose that S is a solution of I with
S∩Z = /0. Let us show that S is a solution of I/Z as well. Suppose
that S does not separate x′ and y′ in G′ for some pair (x′,y′) of I/Z.
Using Prop. 4.3 with C =V (G)\Z, we get that S′ does not separate
x′ and y′ in G, i.e., there is a x′ − y′ path P in G \ S. By the way
the pairs in I/Z were defined, there is a pair (x,y) of I and there
is an x− x′ path P1 such that x′ is the only vertex of P1 not in Z,
and there is a y− y′ path P2 such that y′ is the only vertex of P2
not in Z. Clearly, these paths are disjoint form S. Therefore, the
concatenation of P1, P, P2 is an x− y path in G \ S, contradicting
that S is a solution of I.

To see that S is nonisolating in G′, consider a vertex v of G′ \S.
As v �∈ Z is not in the isolated part of the solution S of I, there is a
path P in G\S going from v to a vertex w ∈W . Again by Prop. 4.3,
this means that there is a v−w path in G′ \S as well, which means
that v is not in the isolated part of the solution S of I′.
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Figure 2: A solution S where the isolated part X consists of 9
important components (the components of G\X and the set W
are not shown in the figure). The isolated part is the disjoint
union of 5 important clusters: C1 ∪C2, C3 ∪C4, C5, C6 ∪C7 ∪C8,
and C9.

4.2 Important components and clusters
In light of Lemma 4.4, what we need to do is to guess a set Z

that covers the isolated part of a solution. Lemma 4.7 below allows
us to restrict our attention to very special sets Z whose boundary is
formed from important separators.

DEFINITION 4.5. A set C ⊆V (G) is an important component if
G[C] is connected and NG(C) is an important C−W separator of
size at most p. For every S ⊆V (G)\W, the important cluster LS is
the (disjoint) union of every important component with N(C) = S.

Observe that every important component is contained in exactly
one important cluster, i.e, the important clusters form a partition
of the important components. Every important C−W separator is
an important v−W separator for every v ∈ C (Prop. 2.5(3)). Thus
Lemma 2.6 gives a bound on the number of important components
that can contain a vertex v.

PROPOSITION 4.6. Every vertex v ∈ V (G) \W is contained in
at most 4p important components and important clusters. Further-
more, all the important components and clusters can be enumer-
ated in time O∗(4p).

Note that the total number of important components and clusters
cannot be bounded by a function of p: for example, it may happen
that almost every vertex of V (G) \W forms an important compo-
nent of size 1.

In the following lemma, we show that there is a solution where
every component of the isolated part is an important component.
We cannot bound the number of these important components by a
function of p, but they can be partitioned into at most 2p isolated
clusters (see Figure 2). This is the reason why we are selecting
important clusters instead of important components in Section 4.3.

LEMMA 4.7. If instance I = (G,W,T, p) of BIPEDAL MULTI-
CUT COMPRESSION∗ has a solution, then it has an inclusionwise
minimal solution where the isolated part is the disjoint union of at
most 2p important clusters.

PROOF. Let S be a solution of I with isolated part R. Recall
that γ(R) is defined as |N(R)|. Let us choose S such that γ(R) is
minimum possible, and among such solutions, |R| (or equivalently,
|R|+γ(R)) is maximum possible. Let C1, . . . , Cs be the components

of G[R]. We show that every Ci is an important component. If this is
true, then these components can be classified into at most 2|S| ≤ 2p

disjoint groups according to the neighborhood N(Ci) ⊆ S. There-
fore, each group can be covered by an important cluster. Observe
that if C and C′ are two important components with N(C) = N(C′)
and C is in the isolated part, then C′ has to be in the isolated part as
well (in particular, the minimality of S implies that C′ cannot con-
tain a vertex of S). Therefore, the union of the at most 2p important
clusters covering the groups is exactly the isolated part, and we are
done.

Suppose that some Ci is not important: in this case, there is an
important component C′

i ⊃ Ci such that γ(C′
i) ≤ γ(Ci). Let S′ :=

(S \N(Ci))∪N(C′
i); it is clear that |S′| ≤ |S|. We claim that S′ is

also a solution of instance I. For this purpose, we first show that
every path P connecting a vertex v ∈ R∪ S with a vertex of W has
to go through S′. Indeed, path P has to go through a vertex of S by
the definition of R. Thus P can be disjoint from S′ and go through
S only if it contains a vertex from N(Ci) \N(C′

i) ⊆ C′
i . However,

N(C′
i) ⊆ S′ separates every vertex of C′

i from W , contradicting the
assumption that P is disjoint from S′.

To show that S′ is a solution of I′, suppose that some x,y ∈ W
or some pair (x,y) is not separated by S′; let P be a x− y path in
G \ S′. Path P has to go through S and a vertex of W , thus by the
previous claim, P goes through S′. This means that S′ is a solution
of I with |S′| ≤ |S| and therefore by the minimality of the solution
S, we have |S′| = |S|. Note that N(Ci) �= N(C′

i), hence |S′| = |S| is
only possible if S �= S′.

Let R′ be the isolated part in solution S′. Again by the previous
claim, every vertex of R∪ S is either in S′ or separated from W in
G\S′, thus R∪S ⊆ R′ ∪S′. Suppose first that R∪S = R′ ∪S′. The
set S contains exactly those vertices of R∪ S that have a neighbor
outside R∪ S (by the minimalty of S). The set S′ has to contain
every such vertex (to separate R′ and W ), thus S ⊆ S′. Howerver,
we have seen that |S|= |S′| and S �= S′, a contradiction. Therefore,
R∪ S ⊂ R′ ∪ S′, and |S′| = |S| implies |R′| > |R|. This contradicts
the maximality of S with respect to the size of the isolated part.

Important separators that induce cliques are nested, hence we can
get a bound of p instead of 4p for the number of such separators.
Lemma 4.10 uses this result to improve the probabilities in the ran-
domized selection.

LEMMA 4.8. Every vertex v ∈V (G)\W is contained in at most
p important clusters X where N(X) is a clique.

PROOF. Assume the opposite. We first show that if X1 and
X2 are important components containing v such that N(X1) and
N(X2) are cliques, then either X1 ⊆ X2 or X2 ⊆ X1. If X1 \X2 �= /0
and X1 is connected, then there is a vertex x1 ∈ X1 ∩N(X2). As
N(X2) is a clique, every vertex of N(X2) is adjacent with x1, im-
plying that N(X2) ⊆ X1 ∪N(X1). If X2 \X1 �= /0, then a symmet-
rical argument shows that N(X1) ⊆ X2 ∪ N(X2). We claim that
N(X1∪X2)⊆ N(X1)∩N(X2) and hence γ(X1∪X2)≤ γ(X1),γ(X2);
as X1 ∪X2 ⊃ X1,X2, this would contradict the assumption that X1
and X2 are important components. Consider a vertex u ∈ N(X1 ∪
X2), which must have a neighbor w ∈ X1 ∪X2. If w ∈ X1 ∩X2, then
u ∈ N(X1)∩N(X2) and we are done. Suppose without loss of gen-
erality that w ∈ X1 \X2. Then u ∈ N(X1)⊆ X2 ∪N(X2), but u �∈ X2
by definition, hence u has to be in N(X2) as well.

We have shown that the important components containing v whose
boundaries are cliques form a chain. This means that there are at
most p of them, as the boundary sizes must be different. Using that
every important component is contained in exactly one important
cluster, we get the bound on the number of important clusters.
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4.3 Randomized selection of sets
By Lemmas 4.4 and 4.7, we need to construct a set Z that is the

union of at most 2p important clusters. As the number of important
clusters cannot be bounded by a function of p, we cannot try all
possibilities. Instead of complete enumeration, we randomly select
important clusters (possibly much more than 2p) and let Z be their
union. What we need is that Z is sufficiently large to cover the at
most 2p important clusters of the isolated part given by Lemma 4.7,
but Z is sufficiently small to be disjoint from S. We want to set the
probabilities such that the probability of this event can be bounded
from below by a function of p. First we present a simpler version of
the proof, where the probability of success is double exponentially
small in p (Lemma 4.9). This simpler proof highlights the main
idea of the randomized reduction. In Lemma 4.10, we improve the
probability to 2−O(p3).

LEMMA 4.9. There is a randomized algorithm that, given an
instance I =(G,W,T, p) of BIPEDAL MULTICUT COMPRESSION∗,
in time O∗(4p) constructs a set Z ⊆ V (G) \W such that if I has a
solution, then I/Z has a nonisolating solution with probability at

least 2−2O(p)
.

PROOF. By Lemma 4.7, there is a solution such that the isolated
part is the disjoint union of at most 2p important clusters. Let us fix
such a hypothetical solution S, and suppose that the isolated part is
the disjoint union of important clusters L1, . . . , Ls. Let X be the set
of all important clusters in G. Let X ′ be a subset of X where every
X ∈ X appears with probability 4−p independently at random. Let
Z be the union of the sets in X ′. If the events

(E1) Z ∩S = /0, and

(E2) L j ⊆ Z for every 1 ≤ j ≤ s

hold, then by Lemma 4.4, I/Z has a nonisolating solution, and we
are done.

Let us estimate the probability that both (E1) and (E2) hold. Let
A= {L1, . . . ,Ls} and let B= {X ∈X | X ∩S �= /0}; we have |A| ≤ 2p

and |B| ≤ p ·4p (by Lemma 4.8, every vertex of S is contained in at
most 4p important clusters). If no member of B is selected, then no
set of X ′ contains a vertex of S, and hence Z∩S = /0. If every mem-
ber of A is selected, then every L j is a subset of Z. Therefore, the
probability that (E1) and (E2) hold can be bounded from below by
the probability of the event that every member of A is selected and
no member of B is selected. As A and B are disjoint, this probability
is at least

(4−p)2p · (1−4−p)p·4p ≥ 4−p·2p · e−2p = 2−2O(p)

(in the inequality, we use that 1+ x ≥ exp(x/(1+ x)) for every x >
−1 and 1−4−p ≥ 1/2).

In order to optimize the success probability, we do the random-
ized selection of important components in two phases: first we se-
lect some important components and add new edges to the graph
and in the second phase we restrict our attention to important clus-
ters whose boundaries are cliques.

LEMMA 4.10. There is a randomized algorithm that, given an
instance I =(G,W,T, p) of BIPEDAL MULTICUT COMPRESSION∗,
in time O∗(4p) constructs a set Z ⊆ V (G) \W such that if I has a
solution, then I/Z has a nonisolating solution with probability at

least 2−O(p3).

PROOF. The randomized algorithm consists of two phases. By
Lemma 4.7, there is a solution S such that the isolated part is the

disjoint union of at most 2p important clusters; let us fix such a
hypothetical solution S and let R be the isolated part.

Let us consider those pairs x,y ∈ S for which there is an x− y
path with internal vertices in the isolated part R. For every such
pair x,y ∈ S, select a component C of G[R] with x,y ∈ NG(C); let

C1, . . . , Cq with q ≤ (|S|
2

) ≤ (p
2

)
be the selected components. Note

that every Cj is an important component.
Phase 1. Let C be the set of all important components; Prop. 4.6

states that these sets can be enumerated. In the first phase, we select
a subset C′ ⊆ C by putting every C ∈ C into C′ with probability
p1 = 4−p independently at random. Then for every component
C ∈ C′, we make NG(C) a clique; let G′ be the graph obtained this
way. Let us estimate the probability that the events

(E1) every C ∈ C′ is disjoint from S,

(E2) G[R] and G′[R] have the same connected components (as ver-
tex sets), and

(E3) G′[NG′(Ci)] is a clique for every 1 ≤ i ≤ q

hold. Let A1 = {C1, . . . ,Cq} and let B1 = {C ∈ C | S ∩C �= /0}.
Clearly, |A1| ≤ p2 and |B1| ≤ |S| · 4p ≤ p · 4p (by Prop. 4.6, ev-
ery vertex of S can be contained in at most 4p members of C). If
no set of B1 is selected, then (E1) holds. If (E1) holds, then we
have NG(K) = NG′(K) for every component K of G[R]. Indeed, the
boundary of K can change only if some x ∈ K and y �∈ K ∪NG[K]
both appear in NG(C) for some C ∈ C′, but such a connected C
would have to contain a vertex of NG(K) ⊆ S as well, contradict-
ing (E1). Therefore, if (E1) holds, then (E2) holds as well and in
particular NG′(Ci) = NG(Ci) for every i. Therefore, assuming that
(E1) holds and every member of A1 is in C′, NG(Ci) = NG′(Ci)
becomes a clique in G′ for every 1 ≤ i ≤ s. Thus the probability
that (E1–E3) hold can be bounded from below by the probability
of the event that every set in A1 is selected and no set from B1 is
selected. As the sets A1 and B1 are disjoint, this probability is at
least (1−4−p)p·4p · (4−p)p2 ≥ e−2p ·4−p3

.
In the following, we assume that (E1–E3) hold. By assumption,

the isolated part of S is the disjoint union of important clusters L1,
. . . , Ls of G with s ≤ 2p. We claim that every L j is an important
cluster of G′. Consider a component K of G[L j]. By (E2), K is a
component of G′[R]. Furthermore, K is an important component of
G′: by Prop. 2.5(4), NG(K) = NG′(K) remains an important K −
W separator in G′. Thus every component of L j is an important
component of G′, which means that G′ has an important cluster
L′

j ⊇ L j. This cluster L′
j is fully contained in the isolated part R:

NG(L′
j)⊆ S and the minimality of S implies that L′

j cannot contain
a vertex of S. By (E2), G[R] and G′[R′] have the same components,
thus L′

j ⊆ R contains the same components as L j .
Phase 2. Let X be the set of all important clusters X in G′ for

which G′[NG′(X)] is a clique. We have seen that (E1–E3) implies
that X contains every L j. Let X ′ be a subset of X where every X ∈
X appears with probability p2 = 1−2−p independently at random.
Let Z be the union of the sets in X ′. If the events

(E4) Z ∩S = /0, and

(E5) L j ⊆ Z for every 1 ≤ j ≤ s

hold, then by Lemma 4.4, I/Z has a nonisolating solution, and we
are done.

Let us estimate the probability that both (E4) and (E5) hold. Let
A2 = {L1, . . . ,Ls} and let B2 = {X ∈X |X∩S �= /0}; we have |A2| ≤
2p and |B2| ≤ p2 (by Lemma 4.8, every vertex of S is contained in
at most p important clusters whose boundary is a clique). If no

475



member of B2 is selected, then no set of X ′ contains a vertex of S,
and hence Z ∩S = /0. If every member of A2 is selected, then every
L j is a subset of Z. Therefore, the probability that (E4) and (E5)
hold can be bounded from below by the probability of the event that
every member of A2 is selected and no member of B2 is selected,
which is at least (2−p)p2 · (1−2−p)2p ≥ 2−p3 · e−2.

Taking into account the probability of success in both phases, we
get that I/Z has a nonisolating solution with probability 2−O(p3).
As the number of important components is at most 4p|V (G)|, the
running time is O∗(4p).

4.4 Derandomization
By running 2O(p3) times the algorithm of Lemma 4.10, we get a

collection of instances that satisfy the requirements of Lemma 4.1
with arbitrary large constant probability. We can derandomize the
algorithm of Lemma 4.10 using the standard technique of splitters.
Recall that an (n,r,r2)-splitter is a family of functions from [n] to
[r2] such that for any subset X ⊆ [n] with |X |= r, one of the func-
tions in the family is injective on X . Naor, Schulman, and Srini-
vasan [30] gave an explicit construction of an (n,r,r2)-splitter of
size O(r6 logr logn).

Observe that in the first phase of the algorithm of Lemma 4.10, a
random subset of a universe C of size n1 = |C| ≤ 4p ·n is selected.
There is a collection A1 ⊆ C of a1 ≤ p2 sets and a collection B1 ⊆ C
of b1 ≤ p ·4p sets such that if every set in A1 is selected and no set
in B1 is selected, then (E1–E3) hold. Instead of the selecting a
random subset, we try every function f in an (n1,a1 + b1,(a1 +
b1)

2)-splitter family and every subset F ⊆ [(a1 + b1)
2] of size a1

(there are
((a1+b1)

2

a1

)
= 2O(p3)) such sets F). For a particular choice

of f and F , we select those sets C ∈ C for which f (C) ∈ F . By the
definition of the splitter, there will be a function f that is injective
on A1 ∪B1, and there is a subset F such that f (C) ∈ F for every A1
and f (C) �∈ F for every B1. For such an f and F , the selection will
ensure that (E1–E3) hold.

In the second phase, we select a random subset of universe X of
size n2 ≤ pn, and there is a collection A2 ⊆ X of size a2 ≤ 2p and
a collection B2 ⊆ X of size b2 ≤ p2 such that if every set in A2 is
selected and no set in B2 is selected, then (E4) and (E5) hold. As in
the first phase, we can replace this random choice by enumerating
the functions of an (n2,a2 +b2,(a2 +b2)

2)-splitter and every sub-

set F̄ ⊆ [(a2 + b2)
2] of size b2 (there are

((a2+b2)
2

b2

)
= 2O(p3) such

sets F̄). This time, we select a set X ∈ X if f (X) is not in F̄ and it
is clear that there is an f and F̄ for which (E4) and (E5) hold.

Let us bound the number of branches of the algorithm. In both
phases, the size of the splitter family is 2O(p) · logn and the there are
2O(p3) possible F . (Note that the splitter family can be constructed
in time polynomial in the size of the family.) Thus the algorithm
produces 2O(p3) · logn instances, proving Lemma 4.1.

5. REDUCTION TO THE BIPEDAL CASE
Let (G,T,W, p) be an instance of the MULTICUT COMPRESSION∗

problem. Let us call a component of G\W having at least two legs
a non-trivial component of G w.r.t. W (when the context is clear,
we will just refer to a non-trivial component). As the solution of
MULTICUT COMPRESSION∗ has to be a set S that is disjoint from
W and a multiway cut of W , the number of non-trivial components
is a lower bound on the size of the solution.

We present an algorithm that solves the given instance of the
MULTICUT COMPRESSION∗ problem either by applying the algo-
rithm for the BIPEDAL MULTICUT COMPRESSION∗ problem (in
case every component has at most two legs) or by recursive appli-

cation to a set of instances whose number is bounded by a function
of p and such that in each instance either the parameter is decreased
or the number of non-trivial components is increased.

The main idea for the branching is the following. Let B be a set of
vertices in G\W and let S be a hypothetical solution for MULTICUT

COMPRESSION∗. We try to guess what happens to each vertex of
B in the solution S. It is possible that a vertex v ∈ B is in S; in this
case, we delete v from the instance and reduce the parameter. If
v is separated away from W , we argue that it can be assumed that
the set separating v from W is an important separator. We guess
this important separator, remove it from the graph, and decrease the
parameter appropriately. Finally, if v is not in S and is not separated
away from W , then it is in the same component as precisely one
w ∈W (as S is a multiway cut of W ). In this case, identifying v and
w does not change the solution.

The following lemma formalizes these observations. Given a set
B of vertices in G \W and a function f : B → W , we denote by
G f the graph obtained by replacing each set {w}∪ f−1(w) with a
single vertex (with removal of loops and multiple occurrences of
edges). To simplify the presentation, we will assume that this new
vertex is also named w. We denote by T f the set of terminal pairs
where each vertex v∈B is replaced by f (v), and we denote by T\B
the set where every pair involving a vertex in B is removed.

LEMMA 5.1. Let K be a non-trivial component of G \W with
set of legs Ŵ and let B ⊆ K. Then (G,T,W, p) has a solution if and
only if one of the following statements is true.

• There is a v ∈ B such that the instance (G\ v,T\ v,W, p−1)
has a solution.

• There is a v ∈ B and an important v − Ŵ separator S′ of
size at most p in G[K ∪Ŵ ] such that the instance (G\S′,T\
S′,W, p−|S′|) has a solution.

• There is a function f : B→Ŵ such that instance (G f ,T f ,W, p)
has a solution.

Lemma 5.1 determines a set of recursive calls to be applied in
order to solve the given instance (G,T,W, p) of the MULTICUT

COMPRESSION∗ problem. It is clear that in each step, the number
of direction we branch into is bounded by a function of p, |B|, and
|W | (recall that the number of v−Ŵ important separators of size at
most p is at most 4p and the number of functions f : B → Ŵ can
be bounded by |Ŵ ||B|). However, in order to ensure that the size of
the search tree is bounded, we need to ensure that the height of the
search tree is bounded as well. This is obvious for the first two type
of branches, as p decreases. The following property ensures that
in every branch of the third type, either the number of nontrivial
components increases or we get an instance that trivially has no
solution.

DEFINITION 5.2. Let K be a non-trivial component and let Ŵ ⊆
W be its set of legs. Let B be a subset of K. We say that B is
a shattering set if for any function f : B → Ŵ one of the follow-
ing statements is true regarding the instance (G f ,T f ,W, p) of the
MULTICUT COMPRESSION∗.

• There is a w ∈ Ŵ such that there is no w− (Ŵ \ {w}) sepa-
rator of size at most p in in G f [K ∪Ŵ ].

• The number of non-trivial components is strictly greater in
G f \W than in G\W.
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Note that the first possibility includes the case when G f [Ŵ ] is not
an independent set. In Section 5.1, we present a polynomial-time
algorithm for finding a shattering set. Together with Lemma 5.1, it
is sufficient to prove the fixed-parameter tractability of the MULTI-
CUT COMPRESSION∗ problem, i.e. to prove Lemma 2.2.

LEMMA 5.3. Given an instance (G,T,W, p) of the MULTICUT

COMPRESSION∗ problem and a component K of G \W with more
than two legs, we can find a shattering set B ⊆ K of size at most 3p
in polynomial time.

5.1 Finding a shattering set
We start with two simple lemmas.

LEMMA 5.4. Let K be a non-trivial component with a set Ŵ
of at least 3 legs. If G[M1] and G[M2] are both connected for two
disjoint sets M1,M2 ⊆ K, then at most one of M1 and M2 can be a
multiway cut of (G[K ∪Ŵ ],Ŵ ).

PROOF. Assume the opposite. Since no two vertices of Ŵ be-
long to the same component of G[K∪Ŵ ]\M1 and |Ŵ | ≥ 3, we can
specify two vertices w′ and w′′ of Ŵ whose respective components
C′ and C′′ in G[K∪Ŵ ]\M1 are disjoint from the connected set M2.
Then there is a w′ −w′′ path in G[K∪Ŵ ] that uses vertices from C′,
then vertices from (the connected set) M1, then vertices from C′′.
This path is disjoint from M2, contradicting the assumption that M2
is a multiway cut.

LEMMA 5.5. Let K be a non-trivial component with a set Ŵ of
at least 3 legs. Let B ⊆ K be a non-shattering set. Then there is
exactly one connected component of G[K \B] which is a multiway
cut of (G[K ∪Ŵ ],Ŵ ).

PROOF. Let f : B → Ŵ be the mapping witnessing that B is not
a shattering set. Let K′ ⊆ K \B be the unique non-trivial compo-
nent of G f \W which is a subset of K. It is easy to see that K′
a component of G[K \B] as well. Furthermore, K′ is a multiway
cut of (G[K ∪Ŵ ],Ŵ ). Otherwise, a path between vertices of Ŵ in
G[K∪Ŵ ]\K′ would correspond to a walk of G f between the same
vertices which belong to a non-trivial component that is a subset
of K but different from K′, in contradiction to the definition of f .
Finally, Lemma 5.4 implies that K′ is the unique connected com-
ponent of G[K \B] being a multiway cut of G[K ∪Ŵ ].

Let K be a non-trivial component with a set of legs Ŵ . Let M ⊆K
be a multiway cut of (G[K ∪Ŵ ],Ŵ ). We call N(M) (i.e the open
neighborhood of M) the boundary of M. For each w∈ Ŵ , the image
I(w) of w is the set of vertices of N(M) reachable from w in G[K ∪
Ŵ ] \M (the image may include vertex w itself). Note that I(w) is
nonempty for any w ∈ Ŵ : consider the first vertex of N(M) on a
path from w to some other leg in Ŵ . For X ⊆ Ŵ , we let I(X) =⋃

w∈X I(w). Let us select a distinguished leg w∗ ∈ Ŵ . We say that
M is good if all of the following conditions are true.

• G[M] is connected.

• N(M) = I(Ŵ ) or, in other words, each vertex of N(M) is
reachable in G[K ∪Ŵ ]\M from some vertex of Ŵ .

• |I(w∗)| ≤ p and |I(Ŵ \{w∗})| ≤ p holds (and hence we have
|N(M)| ≤ 2p).

LEMMA 5.6. Let K be a non-trivial component with a set Ŵ
of at least 3 legs and a distinguished leg w∗. Let M be a good
multiway cut of (G[K ∪Ŵ ],Ŵ ). Then there is a polynomial-time
algorithm that either returns a shattering set of size at most 3p or
a good multiway cut M′ ⊂ M.

PROOF. The desired algorithm first computes a smallest I(w∗)−
I(Ŵ \{w∗}) separator S of G[N(M)∪M] (recall that the images are
nonempty). Observe that S is an inclusionwise minimal w∗ −Ŵ \
{w∗} separator in G[K ∪Ŵ ] (and hence nonempty). We consider
three cases:

1. If |S|> p, then the algorithm returns B := N(M)\Ŵ report-
ing it as a shattering set.

2. If |S| ≤ p and there is a unique connected component M′ of
G[K \(N(M)∪S)] which is a multiway cut of (G[K∪Ŵ ],Ŵ ),
then the algorithm returns M′ reporting it as a good multiway
cut.

3. If |S| ≤ p and there is no such M′, then the algorithm returns
B := (N(M)∪S)\Ŵ reporting it as a shattering set.

This algorithm clearly takes polynomial time. The remaining proof
establishes correctness of the algorithm in each of these three cases.

Case 1. Suppose that B := N(M)\Ŵ is not a shattering set and
let f : B → Ŵ be a function witnessing this. It is not hard to see that
M is a connected component in G f \W whose set of legs is a subset
of Ŵ . We consider three subcases and arrive to a contradiction in
each of them.

Case 1a. M is a trivial component of G f \W . Let w be the
only leg of M. Let w1 and w2 be other two distinct legs of K in
G that are different from w. It follows that f maps every vertex of
I(w1)∪ I(w2) to w implying that there is a w−w1 and w−w2 path
in G f whose internal vertices belong to two different components
on w1 and w2 in G[K∪Ŵ ]\M. Thus G f has at least two non-trivial
components that are subsets of K, in contradiction to the choice of
f .

Case 1b. M is a nontrivial component of G f \W and f (v) = w

for every v ∈ I(w) and w ∈ Ŵ (i.e., each vertex on the boundary
is mapped to its preimage). As the smallest I(w∗)− I(Ŵ \ {w∗})
separator in G[N(M)∪M] is larger than p, G[M∪Ŵ ] does not have
a w∗ −Ŵ \ {w∗} separator of size at most p in contradiction to f
being a witnessing function.

Case 1c. M is a nontrivial component of G f \W and f (v) = w2

for some v ∈ I(w1), w1,w2 ∈ Ŵ , w1 �= w2. By definition of I(w1),
there is a v−w path in G whose internal vertices are fully contained
in K \M. Therefore, there is a w1 −w2 path in G f whose internal
vertices are disjoint from M, implying that G f has a nontrivial com-
ponent which is a subset of K, but distinct from the nontrivial com-
ponent M. Thus the number of nontrivial components increases, a
contradiction.

Case 2. We show first that M′ ⊂M in this case. Clearly, M′ �= M,
as M′ is disjoint from (the nonempty) S ⊆ M. Thus M′ �⊂ M is only
possible if M′ is disjoint from M, but Lemma 5.4 implies that the
two disjoint connected sets M and M′ cannot be both multiway cuts.

For clarity, from now on we use IM(w) and IM′(w) for the im-
age of w on the boundary of M and M′, respectively. Observe that
IM(w)∩N(M′) ⊆ IM′(w) for every w ∈ Ŵ : for every v ∈ IM(w)∩
N(M′), there is a w− v path disjoint from M, which is obviously
disjoint from M′ ⊆ M as well. This immediately implies that ei-
ther IM(w∗) or IM(Ŵ \{w∗}) is disjoint from N(M′): otherwise, a
vertex v1 ∈ IM(w∗)∩N(M′) and a vertex v2 ∈ IM(w∗)∩N(M′) can
be connected by a path P whose internal vertices are in M′ (hence
disjoint from S), and path P can be extended to a w∗ −Ŵ \ {w∗}
path disjoint from S, contradicting the definition of S. Therefore,
either N(M′)⊆ IM(w∗)∪S or N(M′)⊆ IM(Ŵ \{w∗})∪S holds.

To show that |IM′(w∗)| and |IM′(Ŵ \ {w∗})| are both at most
p, we argue as follows. Suppose first that N(M′) ⊆ IM(w∗)∪ S.

477



We show that IM′(Ŵ \{w∗}) = S∩N(M′) and therefore IM′(w∗) =
IM(w∗)∩N(M′), proving the bound on both |IM′(w∗)| and |IM′(Ŵ \
{w∗})|. Note that this implies furthermore that N(M′) = IM′(Ŵ ),
i.e., every vertex of N(M′) is the image of some leg. From IM(w∗)∩
N(M′)⊆ IM′(w∗) we already know that IM′(Ŵ \{w∗})⊆ S∩N(M′).
To show that S∩N(M′) ⊆ IM′(Ŵ \ {w∗}) holds, consider a vertex
s ∈ S ∩N(M′). By the minimality of S, for some w ∈ Ŵ \ {w∗}
there is a w∗ −w path P in G[K ∪Ŵ ] that intersects S exactly in s.
As M′ is a multiway cut, path P has to go through M′. Furthermore,
we can assume that P contains exactly 2 vertices of N(M′). One of
these two vertices is s, and the other has to be a vertex v ∈ IM(w∗)
(as P contains only one vertex of S). It follows that P has a subpath
P1 connecting Ŵ and v, and a subpath P2 connecting Ŵ and s, both
of them disjoint from M′. As v ∈ IM(w∗), path P1 connects w∗ and
v, thus path P2 connects s and w. Therefore, s is in IM′(Ŵ \{w∗}),
what we had to show.

A symmetrical argument (exchanging the role of w∗ and Ŵ \
{w∗}) shows that if N(M′) ⊆ IM(Ŵ \ {w∗})∪ S, then IM′(w∗) =
S∩N(M′), implying the bounds on |IM′(w∗)| and |IM′(Ŵ \{w∗})|.
Thus in both cases, we proved that M′ ⊂ M is a good multiway cut.

Case 3. Assume now that the algorithm returns B :=(S∪N(M))\
Ŵ as a shattering set. This happens because there is no unique com-
ponent of G[K \ (N(M)∪ S)] which is a multiway cut of (G[K ∪
Ŵ ],Ŵ ). According to Lemma 5.5, N(M)∪S is indeed a shattering
set in this case. Clearly, its size is at most 3p.

Lemma 5.3 follows by iterative application of Lemma 5.6.

PROOF (OF LEMMA 5.3). It is not hard to see that K is a good
multiway cut of (G[K ∪Ŵ ],Ŵ ). Let M0 = K. Apply the algorithm
of Lemma 5.6 to M0. The algorithm either returns a shattering set of
size at most 3p or a good multiway cut M1 ⊂M0. In the former case
just return the shattering set, in the latter case, apply the algorithm
of Lemma 5.6 to M1. Continuing this way, we obtain a sequence
M0 ⊃M1 ⊃ . . . of good multiway cuts of decreasing size. It follows
that after at most |V (G)| iterative applications of the algorithm of
Lemma 5.6, a shattering set of size at most 3p will be returned.
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