
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Journal of Discrete Algorithms 7 (2009) 191–212

Contents lists available at ScienceDirect

Journal of Discrete Algorithms

www.elsevier.com/locate/jda

Faster computation of maximum independent set and parameterized
vertex cover for graphs with maximum degree 3

Igor Razgon

Computer Science Department, University College Cork, Ireland

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 20 September 2008

Keywords:
Maximum independent set
Exact exponential algorithms
Vertex cover
Parameterized complexity

In this paper we propose an O (1.0892n) algorithm solving the Maximum Independent Set
problem for graphs with maximum degree 3 improving the previously best upper bound
of O (1.0977n). A useful secondary effect of the proposed algorithm is that being applied
to 2k kernel, it improves the upper bound on the parameterized complexity of the Vertex
Cover problem for graphs with maximum degree 3 (VC-3). In particular, the new upper
bound for the VC-3 problem is O (1.1864k +n), improving the previously best upper bound
of O (k2 ∗ 1.194k + n). The presented results have a methodological interest because, to the
best of our knowledge, this is the first time when a new parameterized upper bound is
obtained through design and analysis of an exact exponential algorithm.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we study the complexity of a problem of computing a maximum independent set (MIS) of a graph with
maximal degree 3. We give this problem a short name MIS-3. We propose an algorithm solving the problem in O (1.0892n)

time. This improves upon a recent method reported in [2] which solves the problem in O (1.0977n).1

A good side effect of the algorithm proposed in the present paper is that it allows to improve the upper bound on the
complexity of the parameterized Vertex Cover problem for graphs with maximal degree 3 (we call this problem VC-3). The
approach is to solve the MIS-3 problem for the 2k kernel existing for the VC-3 problem according to [4] and to take the
complement. The resulting parameterized complexity is O (1.08922k + n) < O (1.1864k + n), which improves the currently
best upper bound O (k21.194k + n) achieved by Chen et al. [4] for this problem. To the best of our knowledge, this is the
first time where a new parameterized upper bound has been obtained through design and analysis of an exact exponential
algorithm.

The rest of the introduction consists of 4 subsections. In the first one we overview the existing methods of solving the
MIS-3. In the second subsection we introduce the terminology and notations which are necessary for the description of
the proposed algorithm. In the third subsection we outline the main ingredients of the proposed algorithm with particular
emphasis on the features that allow to get a runtime better than the runtime of other algorithms solving the MIS-3 problem.
The structure of the rest of the paper is outlined in the fourth subsection.

E-mail address: i.razgon@cs.ucc.ie.
1 At the time when the paper was first submitted (February 2006), the best algorithm for the MIS-3 problem was the one proposed in [10] which solved

the problem in O (1.1034n).

1570-8667/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.jda.2008.09.004

Author's personal copy

192 I. Razgon / Journal of Discrete Algorithms 7 (2009) 191–212

1.1. Overview of the algorithms solving the MIS-3 problem

The existing exact algorithms for solving the MIS-3 problem can be classified into a number of groups according to their
underlying methodology.

The first groups includes branch-and-prune based methods, which solve the general MIS problem (not just MIS-3) but
whose complexity is measured in terms of the number of edges rather than the number of vertices. The result for the graphs
of max-degree 3 is obtained as by-product by taking into account that the number of edges in such graphs are at most 1.5
times the number of vertices. The first algorithm of this group is due to Beigel [1]. This algorithm runs in O (1.1259n). This
upper bound has been improved by Fürer [8] who proposed an O (1.1120n) algorithm for the MIS-3 problem. Very recently
this upper bound has been improved to O (1.0977n) by Bourgeois et al. [2].

The second group includes algorithms proposed by Chen et al. [3–5], which respectively introduce O (1.161n), O (1.1504n),
and O (1.1255n) upper bounds on the complexity of the MIS-3 problem. These algorithms are branch-and-prune methods
solving the parameterized VC-3 problem which is complementary to the MIS-3 problem. The transformation of the com-
plexity expression for the VC-3 to the complexity expression for the MIS-3 is based on the fact that the size of the smallest
vertex cover of a connected n-vertex graph with max-degree 3 does not exceed (2n + 1)/3. An interesting feature of the
algorithm proposed in [4] is the separate treatment of so-called alternating paths i.e. paths where the first and the last
vertices have degree 3 and vertices of degree 3 alternate with vertices of degree 2. In particular, the authors proved that
the vertices of degree 3 can be either simultaneously selected to a MIS of the given graph or simultaneously removed. If the
alternating path is long enough then the branching decision based on this statement very efficiently reduces the problem
size. This statement plays a crucial role in isolating the case where all vertices of the given graph have degree 3. We use
this approach in the present paper for the same purpose.

Fomin and Høie proposed an algorithm [7] which stays away from other algorithms in that it is not based on the branch-
and-prune methodology. In particular, the authors proved that for a sufficiently large n the path-width on an n-vertex graph
of max-degree 3 can be bounded by a number very close to n/6. The authors show that this fact allows to solve the MIS-3
problem in O (1.2225n) by a dynamic programming algorithm. The same upper bound as of [7] was obtained independently
by Kojevnikov and Kulikov [9] through solving the MAX-2-SAT problem.

1.2. Notations

In this paper the notion graph refers to a simple undirected graph, all vertices of which have degree at most 3. This
property is implicitly assumed for all graphs considered in the paper. For example, proving some claim we can say some-
thing like ‘let v1, v2, v3 be the neighbors of vertex u’ without explicitly recalling that by definition the degree of u is at
most 3, hence it cannot have more neighbors.

Let G = (V , E) be a graph. The sets of vertices and edges of G are denoted by V (G) and E(G), respectively. Let S ⊆ V (G).
We denote by G[S] the graph induced by S and by G \ S the graph induced by V (G) \ S . If S consists of a single vertex v ,
we write G \ v rather than G \ {v}.

For u ∈ V (G), we denote NG(u) the set of neighbors of u in G . Let us introduce a number of related notations. N+
G (u)

denotes the set NG(u) ∪ {u}. For a set S ⊆ V (G), NG(S) = (
⋃

u∈S NG(u)) \ S , N+
G (S) = NG(S) ∪ S . If the considered graph is

clear from the context, the subscripts may be omitted for the notations presented in the paragraph.
A set S ⊆ V (G) is independent if no two vertices of it are adjacent in G . S is a maximum independent set (MIS) if it is

largest subject to this property.
We call a connected component of G a small component if it contains at most 50 vertices of degree 3.2 We denote by

SmallVert(G) the set of all vertices that belong to the small components of G and by SmallVert3(G) the set of all vertices
of degree 3 that belong to the small components of G . We say that S is a good cut if one of the following conditions is
satisfied:

• |S| � 2 and |SmallVert3(G \ S)| � 1;
• |S| = 3 and |SmallVert3(G \ S)| � 5;
• |S| = 4 and |SmallVert3(G \ S)| � 10.

If a good cut S consists of a single vertex u, we sometimes call u a good cut vertex.

1.3. Overview of the algorithm and its analysis

We present the proposed algorithm in the form of a function FindIndep(G) whose output is a MIS of the given graph G .
Function FindIndep(G) makes a branching decision depending on the conditions satisfied by G . An example of a branching
decision is the selection of a vertex v ∈ V (G) and returning the larger set of {v}∪FindIndep(G \ N+(v)) and FindIndep(G \ v).
This branching decision has two branches on the first of which v is selected to the returned set, on the other one v is

2 Number 50 is selected arbitrarily as a sufficiently large constant.

Author's personal copy

I. Razgon / Journal of Discrete Algorithms 7 (2009) 191–212 193

removed. On each branch FindIndep(G) is applied recursively to the respective residual graph. In the algorithm description
we present the conditions checked by FindIndep(G) and the branching decisions specified by each condition.

The upper bound on the complexity of FindIndep(G) is derived by a standard methodology of analysis of exact algorithms
presented, for example, in [11]. The approach is to fix the notion of problem size and to analyze the problem size reductions
made by the branching decisions. The simplest measure of problem size is |V (G)|, for the input graph G . In this paper we
employ a more sophisticated measure expressing problem size as the number of vertices of G having degree 3. The reason is
that such vertices determine the exponential complexity of the algorithm: if there are no vertices of degree 3 then a MIS of
the given graph can be found efficiently. Moreover, measuring the problem size as the number of vertices of degree 3 allows
better reduction of the problem size as compared to the simplest measure. According to the measure, a vertex is considered
“removed” not only if it is actually removed from the graph but also when its degree is reduced, which essentially increases
the number of “removed” vertices at each branch.

In the main part of the algorithm we assume that the graph is nontrivial, that is all its vertices are of degree at least 2,
there are no adjacent vertices of degree 2, there are no vertices of degree 2 whose neighbors are adjacent, there are no two
vertices of degree 2 having the same pair of neighbors. We show that if the input graph is trivial then there is always a
vertex guaranteed to belong to a MIS of G . Iteratively selecting such vertices to the returned set, the algorithm eventually
“reduces” the input graph to a nontrivial one. A nontrivial graph G can be represented by graph C(G), where vertices of
degree 2 are replaced by edges connecting their neighbors. Thus the graph C(G) has two types of edges: normal ones, i.e.
existing in G and odd ones replacing the vertices of degree 2. We show that two ends of an odd edge either both belong
to a MIS of G or none of them belongs to a MIS of G . This fact allows to branch on sets of vertices rather than on single
vertices, which essentially improves the complexity of the algorithm.

The following conditions are checked by FindIndep(G) regarding C(G): presence of a good cut vertex, presence of a good
cut of size 2, presence of a good cut of size 3, presence of a cycle of length 4, presence of a cycle of length 3, presence
of an odd edge, presence of a good cut of length 4, and the case where none of the previous conditions is satisfied. The
branching decision made by FindIndep(G) is specified by the first satisfied condition in the above list.

The design and analysis of branching decisions for all the above conditions except the last one are based on a relatively
easy analysis of the subgraphs induced by the vertices lying close to the vertex being selected by the considered branching
decision. For the case where the underlying graph has no small cuts, triangles, rectangles, or odd edges, such approach does
not seem to work and more sophisticated means are needed. To achieve the required upper bound in this case, we apply
two techniques.

First we employ a branching decision, the last branch of which is based on the assumption that the independent sets
constructed on the previous branches are not largest ones. A simple decision based on this paradigm first selects a vertex
v then one of the neighbors of v and then the remaining two neighbors of v . This branching decision is based on an
observation that if v does not belong to any MIS of G then at least 2 neighbors of v do. We use a more sophisticated
branching decision which on the last branch selects four additional vertices besides the remaining two neighbors of v .
This branching decision is not valid in general, hence we apply it only if graph G has certain properties which make this
branching decision valid.

The second applied technique is a method of selection a candidate vertex having particular properties which allow to
prune vertices of the branches so that the desired runtime is achieved. The property of the selected vertices is sophisticated
in the sense that from the description of the algorithm it is not trivial to see that at least one required vertex exists and we
explicitly prove the existence in the analysis part.

1.4. Structure of the paper

The rest of the paper is organized as follows. Section 2 presents the branching decisions that reduce a trivial graph to a
nontrivial one. Section 3 consider the branching decisions made in case C(G) has a good cut vertex or a good vertex cut of
size 2. Section 4 introduces additional notations and lemmas which are necessary for the further description. Sections 5–10
contain the rest of the description of the algorithm. Section 11 presents the correctness proof, complexity analysis and the
upper bound on the parameterized complexity of the VC-3 problem.

In this paper we present the algorithm in a non-standard form. Instead of providing a pseudocode followed by its
correctness proof and complexity analysis, we partition the description into a number of sections. Each section presents
the branching decisions corresponding to a particular condition. The correctness proof of these branching decisions and
the reduction of problem size caused by them are presented in the same section. The final section only summarizes the
results obtained throughout the paper. We believe that such a form of description has the advantage that the reader can
concentrate on the analysis of a particular branching decision of the algorithm without having to remember a dozen of
other cases.

2. Initial simplification

We say that a graph G is nontrivial if the following conditions are satisfied regarding G .

(1) Each vertex of G has degree at least 2.

Author's personal copy

194 I. Razgon / Journal of Discrete Algorithms 7 (2009) 191–212

Fig. 1. Transformation from G to C(G).

(2) There are no two adjacent vertices of degree 2.
(3) The neighbors of each vertex of degree 2 are nonadjacent.
(4) There are no two vertices of degree 2 adjacent to the same pair of neighbors.

The first operation performed by FindIndep(G) is simplifying G in case it is trivial. In particular, if G has a vertex u of
degree at most 1 or of degree 2 with both its neighbors adjacent then the set {u}∪FindIndep(G \ N+(u)) is returned. If G has
two vertices u1 and u2 of degree 2 adjacent to the same pair of neighbors then the set {u1, u2}∪FindIndep(G \ N+({u1, u2}))
is returned. Finally, if there are two adjacent vertices u1 and u2 of degree 2, the algorithm works as follows. If these vertices
are adjacent to the same vertex u then return {u1} ∪ FindIndep(G \ N+(u1)). If the remaining neighbors v1 and v2 of u1
and u2 are distinct then let G ′ be the graph obtained by the removal of {u1, u2} from G and introducing the edge between
{v1, v2} (if there is no such an edge in G). Let S = FindIndep(G ′). Select one vertex u′ ∈ {u1, u2} which is nonadjacent to S
(since v1 and v2 are adjacent in G ′ there is necessarily such a vertex). Return S ′ ∪ {u′}.

Eventually, as a result of the above operations, F indIndep is applied to a nontrivial graph (note that an empty graph is
also a nontrivial one). Let us prove correctness of the simplification operations.

Lemma 1.

(1) If graph G has a vertex u having degree at most 1, or degree 2 and adjacent to 2 adjacent vertices, this vertex belongs to a MIS of
G.

(2) If graph G has two nonadjacent vertices u1 and u2 of degree 2 having the same pair of neighbors then there is a MIS of G containing
both u1 and u2 .

(3) If graph G has two adjacent vertices u1 , u2 of degree 2 then at least one of them is contained in a MIS of G.

Proof.

(1) Let S be a MIS of G , u /∈ S . Then S contains exactly one neighbor v of u. Observe that (S \ {v}) ∪ {u} is a MIS of G .
(2) Let v1 and v2 be the 2 neighbors of u1 and u2. Let S be a MIS of G such that at least one of u1 and u2 is not contained

in S . Hence at least one of {v1, v2} is contained in S . Consequently both u1 and u2 are not contained in S . Observe
that (S \ {v1, v2}) ∪ {u1, u2} is another MIS of G .

(3) Let v1 and v2 be the remaining neighbors of u1 and u2. Let S be a MIS of G such that both u1 and u2 are not contained
in S . Consequently, both v1 and v2 are contained in S . Replacing v1 by u1 produces another MIS containing u1. �

From this point and to the end of the description of the algorithm, we consider the behavior of F indIndep applied to a
nontrivial graph.

Given a nontrivial graph G , we introduce graph C(G) obtained from G as follows. Each vertex of degree 2 (which is
adjacent to two vertices of degree 3 by definition) is replaced by an edge between its neighbors. If vertex v is replaced by
edge e, we say that v corresponds to e. Observe that C(G) does not have multiple edges because otherwise condition 3 or 4
of the definition of a nontrivial graph is violated. Thus C(G) is a simple cubic graph. An example of transformation from G
to C(G) is shown in Fig. 1. We call the edges of C(G) existing in G normal edges, the new edges are odd. A cycle of C(G)

is a normal cycle if all its edges are normal. Otherwise, it is an odd cycle. In Fig. 1, edges {u, x}, {w, y}, {w, x}, {x, y} are
normal ones, the other edges are odd ones. The cycle w, y, x is normal, the other cycles are odd.

3. Further simplification

In this section we consider the cases where the underlying graph G is empty or it has a small component or it has a
good vertex cut of size at most 2.

Author's personal copy

I. Razgon / Journal of Discrete Algorithms 7 (2009) 191–212 195

If G is empty then FindIndep(G) returns the empty set. This is the only case where FindIdep does not apply itself recur-
sively, so it serves as the stopping condition for the function.

If G has a small component G ′ then find a MIS S ′ of G ′ in a constant time and return S ′ ∪ FindIndep(G \ V (G ′)).
The correctness of behavior of FindIndep(G) in the last two cases is obvious.
Assume that G has a good cut vertex u. Let V 1 = SmallVert(G \ u), V 2 = (V (G) \ {u}) \ V 1. Let S1 be a MIS of G[V 1]

and let S2 be a MIS of G[V 1] \ N(u) (both are computed in a constant time without recursive application of FindIndep). If
|S1| > |S2| then return S1 ∪ FindIndep(G[V 2]). Otherwise, return S2 ∪ FindIndep(G \ V 1).

Lemma 2. If G has a good cut vertex u then FindIndep(G) returns a MIS of G provided that the recursive call applied by FindIndep(G)

returns a correct answer.

Proof. Let S be the set returned by FindIndep(G) in the considered case. Let S1 and S2 be as in the description of the
algorithm.

Assume first that |S1| > |S2|. Clearly S is a MIS of G \ u. Therefore, the only possible reason why S is not a MIS of
G is that any MIS of G contains u. Let S∗ be a MIS of G , |S∗| > |S| by our assumption. Observe that |(S∗ \ {u}) ∩ V 2| �
FindIndep(G[V 2]) and that |(S∗ \ {u}) ∩ V 1| < |S1|. Consequently, |S∗ \ {u}| � |S| − 1, that is |S∗| � |S|, a contradiction.

If |S1| is not greater that |S2| then S is the union of a MIS of G[V 1] and a MIS of G \ V 1. Since S ∩ (V 1 ∩ N(u)) = ∅, S is
an independent set. Thus, since S is the union of MISes of two disjoint graphs whose set of vertices partition the graph G ,
S is a MIS of G . �

Assume that G has a good vertex cut {u1, u2}. Let V 1 = SmallVert(G, {u1, u2}), V 2 = (V (G) \ {u1, u2}) \ V 1. Let the sets S ′ ,
S ′(u1), S ′(u2), S ′(u1, u2) be a MIS of G[V 1], a MIS of G[V 1] \ N(u1), G[V 1] \ N(u2), a MIS of G[V 1] \ N({u1, u2}), respectively.
The operations performed by FindIndep(G) are described the list below. Each item starts with a condition. We assume that
FindIndep(G) performs operations corresponding to the first satisfied condition in the list below.

(1) |S ′| = |S ′(u1, u2)|. Return S ′(u1, u2) ∪ FindIndep(G \ V 1).
(2) |S ′(u1)| < |S ′(u2)| = |S ′|. Return S ′(u2) ∪ FindIndep(G[V 2 ∪ {u2}]).
(3) |S ′(u2)| < |S ′(u1)| = |S ′|. Return S ′(u1) ∪ FindIndep(G[V 2 ∪ {u1}]).
(4) |S ′(u1)| = |S ′(u2)| = |S ′|. Let G∗ be the graph obtained from G \ V 1 by introducing an edge between u1 and u2 if they

are not adjacent. Let S∗ = FindIndep(G∗). Let S ′′ be one of S ′(u1), S ′(u2) nonadjacent with S∗ (such a set necessarily
exist because u1 and u2 cannot belong both to S∗). Return S∗ ∪ S ′′ .

(5) |S ′(u1, u2)| � |S ′| − 2. Return S ′ ∪ FindIndep(G[V 2]).
(6) None of the previous conditions is satisfied. Let G ′ be a graph obtained from G \ V 1 by introducing a new vertex w

adjacent to u1 and u2. Let S∗ = FindIndep(G ′). If exactly one of {u1, u2} belongs to S∗ , remove this vertex from S∗;
remove w as well in case w ∈ S∗ . Let S ′′ be the resulting set. If {u1, u2} ⊆ S ′′ , return S ′(u1, u2) ∪ S ′′ . Otherwise return
S ′ ∪ S ′′ .

Lemma 3. If G has a good vertex cut {u1, u2} then FindIndep(G) returns a MIS of G provided that the recursive call applied by
FindIndep(G) returns a correct answer.

Proof. Let S be the set returned by FindIndep(G). Assume first that |S ′| = |S ′(u1, u2)|. In this case S is the union of a MIS
of G[V 1] and a MIS of G \ V 1. The set S is independent because no vertex of N({u1, u2}) ∩ V 1 is contained in S . Thus, since
S is the union of MISes of two disjoint graphs whose set of vertices partition the graph G , S is a MIS of G .

Assume now that |S ′(u1)| < |S ′(u2)| = |S ′|. Arguing as for the previous case, one can see that FindIndep(G) returns a
MIS of G \ u1. Assume by contradiction that any MIS of G contains u1 and let S∗ be a MIS of G . Observe that S∗ \ {u1}
can be partitioned into S ′

1 = (S∗ \ {u1}) ∩ (V 2 ∪ {u2}) and S ′
2 = (S∗ \ {u1}) ∩ V 1. Clearly, |S ′

1| � FindIndep(G[V 2 ∪ {u2}]) and
|S ′

2| � |S ′(u2)| − 1. It follows that |S∗ \ {u1}| � |S| − 1, hence |S∗| � |S|. The case where |S ′(u2)| < |S ′(u1)| = |S ′| can be
proven symmetrically.

Assume now that |S ′(u1)| = |S ′(u2)| = |S ′|. Arguing as for the case where |S ′| = |S ′(u1, u2)|, we see that S is a MIS of a
graph obtained from G by making u1 and u2 adjacent. Assume that S is not a MIS of G . Then any MIS S∗ of G contains
both u1 and u2. Consequently, |S∗ ∩ V 1| � |S ′| − 1 and |S∗ ∩ (V (G) \ V 1)| � |FindIndep(G ′)| + 1. Thus |S∗| = |S∗ ∩ V 1| + |S∗ ∩
(V (G) \ V 1)| � |S ′| + |FindIndep(G ′)| = |S|, a contradiction.

Assume now that |S ′(u1, u2)| � |S ′| − 2. Observe that S is the largest independent set of G subject to non-including u1
and u2. Assume that a MIS S∗ of G includes exactly one of u1, u2. Then |S∗ ∩ (V (G) \ V 1)| � |S ∩ (V (G) \ V 1)| + 1 and
|S∗ ∩ V 1| � |S ∩ V 1| − 1, that is, we get “compensation” in total. Similarly, if we assume that both u1 and u2 belong to S
then |S∗ ∩ (V (G)\ V 1)| � |S ∩ (V (G)\ V 1)|+ 2 and |S∗ ∩ V 1| � |S ∩ V 1|− 2, the latter is by our assumption in the considered
case.

Finally, consider the last case. Clearly in this case |S ′(u1, u2)| = |S ′(u1)| = |S ′(u2)| = |S ′| − 1. Denote by α(G) the size of
a MIS of G . Let G ′ be as in the last item of the above list of cases.

Author's personal copy

196 I. Razgon / Journal of Discrete Algorithms 7 (2009) 191–212

Assume that α(G) = α(G[V 1]) +α(G \ V 1). This only possible if α(G[V 2]) = α(G \ V 1). Observe that in this case α(G ′) =
α(G \ V 1) + 1 (G ′ is as defined in the description of the case) and any MIS of G ′ contains the new vertex w . Clearly,
|S ′′| = α(G \ V 1). Taking into account that |S ′| = α(G[V 1]) and that S is a disjoint union of S ′ and S ′′ , |S| = α(G).

Now assume that α(G) < α(G[V 1])+α(G \V 1). We will show that in this case |S| � α(G[V 1])+α(G \V 1)−1. If the set S∗
returned by FindIndep(G ′) contains w or exactly one of u1 or u2 then, after the transformation, the size of the resulting set
S ′′ is at least α(G \ V 1)−1 because |S ′′| � α(G ′)−1 � α(G \ V 1)−1. In this case |S| = |S ′′|+ |S ′| � α(G \ V 1)−1+α(G[V 1]).

Finally, if the set S∗ returned by FindIndep(G ′) contains both u1 and u2 then |S ′′| = α(G \ V 1). Consequently, |S| =
|S ′′| + |S ′(u1, u2)| = α(G \ V 1) + α(G[V 1]) − 1. �
4. Odd components, FNSes, and related claims

This section presents additional terminology and related claims. They are necessary for further description of the pro-
posed algorithm.

For u ∈ V (C(G)), we denote by OddCompC(G)(u) the set of vertices of C(G) consisting of u and the vertices connected to
u by paths consisting of odd edges only (the subscript may be omitted, if there is no risk of confusion).

The following lemmas will be very useful for the correctness proof of the proposed algorithm.

Lemma 4. Assume that there is a MIS of G that does not contain some vertices of OddComp(u). Then there is a MIS of G that does not
contain any vertex of OddComp(u).

Proof. Let D be the largest subset of OddComp(u) such that there is a MIS of G disjoint with D . If D = OddComp(u), there
is nothing to prove. Otherwise, observe that any MIS of G \ D is a MIS of G . Since in C(G) the vertices of D are connected
to the vertices of OddComp(u) \ D by paths consisting of odd edges only, G \ D contains a vertex v of degree 1 adjacent to
a vertex w ∈ OddComp(u) \ D . Clearly, v belongs to a MIS of G \ D (Lemma 1). Hence there is a MIS of G \ D , which is, in
turn, a MIS of G disjoint with D ∪ {w} in contradiction to our assumption. �

The following corollary immediately follows from Lemma 4.

Corollary 1. There is a MIS of G including OddComp(u) or there is a MIS of G non-intersecting with the vertices of OddComp(u).

Now we define the notion of a First Nontrivial Successor (FNS) of the given graph G . A graph G ′ is a successor of G if
FindIndep(G ′) is applied during processing of FindIndep(G) (for example, an empty graph is always a successor of G). Graph
G ′ is a nontrivial successor (NS) of G , if G ′ is a nontrivial graph and does not have a good vertex cut of size at most 2. Graph
G ′′ is intermediate between G and G ′ , if G ′′ is a successor of G and G ′ is a successor of G ′′ . Graph G ′ is a first nontrivial
successor (FNS) of G , if G ′ is an NS of G and there is no other NS G ′′ of G , which is intermediate between G and G ′ .

If G is nonempty then each branch applied by FindIndep(G) leads to exactly one FNS G ′ of G: for any intermediate graph
G ′′ between G and G ′ , FindIndep(G ′′) applies only one branch (as described in the previous two sections), this sequence of
successors can eventually leads to exactly one FNS. As described in the next 4 sections, the branching decision made by
FindIndep(G) involves at most 3 branches, hence G has at most 3 FNSes. For the convenience, we introduce special notations
for these FNSes. In order to do this, we order the branches of FindIndep(G) according to the appearance of their description
in the text of the paper. Then the first branch leads to an FNS of G denoted by G L (the letter ‘L’ associated with the left
branch in the search tree), the last branch leads to an FNS denoted by G R . If FindIndep(G) applies three branches then the
second (the middle) branch leads to the FNS of G denoted by G M .

We conclude the section by a number of lemmas which will be useful for obtaining upper bounds on the sizes of FNSes
of G .

Lemma 5. Let G ′ be a FNS of a nontrivial graph G obtained as a result of making some branching decision on G (selecting vertices to
the independent set, removing them from the graph, etc.). Assume that as a result of application of this branching decision to G some
vertex u remains of degree 1. Then both u and its neighbor v are removed from G ′ .

Proof. Let G ′′ be the residual graph obtained as a result of applying of the branching decision. Let S be the set of all one-
degree and isolated vertices of G ′′ selected by FindIndep(G ′′) to be included to the returned set. If u ∈ S then clearly both u
and v are removed from G ′ .

Assume that u /∈ S . In order to understand why it can happen, consider the process of transformation of G ′′ into a
nontrivial graph. It starts from iterative selection into the returned set of all the vertices having degree at most 1 and
removal of their neighbors. If at the end of the process, u has not been selected then it has been removed as a neighbor of
one of the selected vertices. The only neighbor of u is v . Consequently, v is selected to the returned set and u is removed,
as a result, they are both removed from G ′ . �

Author's personal copy

I. Razgon / Journal of Discrete Algorithms 7 (2009) 191–212 197

Lemma 6. Let G ′ and G be as in the previous lemma. Assume that as a result of the branching decision transforming G into G ′ , two
neighbors of some vertex u in C(G) are removed from G ′ . Then u itself is removed from G ′ .

Proof. Let G ′′ be as in the proof of Lemma 5. If vertex u has degree at most 1 in G ′′ then see Lemma 5. Otherwise, let v1
and v2 be 2 neighbors of u in C(G) which do not belong to V (G ′′). It follows that either {u, v1} or {u, v2} is an odd edge in
C(G) and the vertex w of degree 2 corresponding to this odd edge belongs to V (G ′′). Moreover, this vertex w has degree 1
in V (G ′′) because one end of the corresponding odd edge is removed. The statement now follows from Lemma 5. �
Lemma 7. Let G and G ′ be as in the previous lemmas. Assume that a vertex u ∈ V (C(G)) does not belong to V (G ′).Then none of the
neighbors of u in C(G) belongs to V (C(G ′)).

Proof. Let v be a neighbor of u in C(G) which is not removed from V (G ′). If the edge {u, v} is a normal one then the
degree of v is at most 2 in G ′ , hence v does not belong to V (C(G ′)). If the edge {u, v} is an odd one then the vertex
corresponding to this edge is removed from G ′ as having degree 1 or by selection of u. Consequently, the degree of v is
again at most 2 in G ′ and the vertex cannot belong to V (C(G ′)). �
Lemma 8. Let G ′ and G be as in the previous lemmas. Assume that as a result of the branching decision transforming G into G ′ , all
vertices of OddComp(u) for some vertex u ∈ V (C(G)) are selected into the returned set. Then all the neighbors of u in C(G) are removed
from G ′ and the vertices lying at distance 2 from u in C(G) are removed from C(G ′).

Proof. Let v be a neighbor of u in C(G). If the edge {u, v} is an odd one then v ∈ OddComp(u) and removed from G by the
assumption of the lemma. If {u, v} is a normal edge then v is removed from G ′ as being a neighbor of a vertex selected to
the returned independent set. That the vertices lying at distance 2 from u in C(G) are removed from C(G ′) follows from
Lemma 7. �
5. A good cut of size 3

Let {z1, z2, z3} be a good cut of C(G). Let S = SmallVert(C(G) \ {z1, z2, z3}). We may assume that each zi is adjacent to 2
vertices outside S ∪ {z1, z2, z3} or that |S| � 10 for otherwise, if, for example, z1 is adjacent to only one vertex v1 outside
S ∪{z1, z2, z3} (if it is adjacent to none, z1 can be excluded from the cut at all leaving the cut to be of size at most 2, what is
processed in the previous section), the algorithm can replace z1 by v1 getting a 3-cut separating a superset of S . Proceeding
in such a way, the algorithm eventually gets a 3-cut satisfying one of the above conditions. In this case we observe that
|S| � 5. Indeed if this is not so then |S| = 4 and each zi is adjacent to 2 vertices outside S ∪ {z1, z2, z3}. Consequently, each
zi is adjacent to exactly one vertex wi within S . All of w1, w2, w3 are pairwise distinct because otherwise the existence of a
good cut of size 2 follows. Let w4 be the remaining vertex of S . Since C(G) is a cubic graph, w4 is adjacent to w1, w2, w3.
Now we get a contradiction: w1, w2, w3 cannot simultaneously have degree 3. In particular, to avoid one of them to be of
degree 4, C(G)[{w1, w2, w3}] can contain at most one edge. Consequently, one of {w1, w2, w3} remains of degree 2. This
contradiction shows the correctness of our observation that |S| � 5.

In the considered case, FindIndep(G) returns the larger set of OddComp(z1) ∪ FindIndep(G \ N+(OddComp(z1))) and
FindIndep(G \ OddComp(z1)). The correctness of this behavior follows from Corollary 1. Let us compute the sizes of FNSes
of G .

Lemma 9. In the considered case, |V (C(G L))| � |V (C(G))| − 10 and |V (C(G R))| � |V (C(G))| − 8.

Proof. Observe that the vertices of S belong neither to G L not to G R , otherwise these graphs are trivial or satisfy one of
the cases considered in Section 3 (the mere removal of z1 from G leaves the vertices of S separated from the rest of the
graph by a vertex cut of size 2).

It follows that both |V (C(G L))| and |V (C(G R))| are at most |V (C(G))| − |S|. If |S| = 10, there is nothing to prove further.
Otherwise, z1 is adjacent to 2 vertices y1, y2 outside S ∪ {z1, z2, z3}. Taking into account that z1, y1, y2 are removed from
both V (C(G L)) and V (C(G R)) (Lemma 7) and that |S| � 5 by definition, |V (C(G L))| � |V (C(G))| − 8 and |V (C(G R))| �
|V (C(G))| − 8. It remains to find 2 additional vertices removed from C(G L). Note that there are at least two vertices w1,
w2 different from y1, y2 and adjacent to y1, y2 (otherwise y1, y2 can be separated from the rest of the graph by a cut
of size at most 2). Vertices w1, w2 cannot belong to S since y1, y2 are not adjacent to any vertex of S by definition.
Vertices w1, w2 are removed from C(G L) by Lemma 8. Hence w1, w2 are the desired two additional vertices removed from
C(G L). �
6. Processing a rectangle

In this section we describe behavior of FindIndep(G), if C(G) has a rectangle (a cycle of length 4).

Author's personal copy

198 I. Razgon / Journal of Discrete Algorithms 7 (2009) 191–212

Fig. 2. A rectangle of C(G) and surrounding vertices.

Pick a rectangle of C(G) and denote its vertices by u1, . . . , u4. The next lemma creates the necessary basis for justifying
the behavior of FindIndep for the considered case.

Lemma 10. There are vertices v1, . . . , v4, w1, . . . , w4 connected to u1, . . . , u4 as shown in Fig. 2. (Notice, we claim that the
graph shown in Fig. 2 is a subgraph of C(G) but not an induced subgraph of C(G). There may be edges between vertices
v1, . . . , v4, w1, . . . , w4 not shown in Fig. 2, but they are not relevant for our discussion.)

Proof. Note first that u1 is not adjacent to u3 as well as u2 is not adjacent to u4 because otherwise either u1, . . . , u4 is
disconnected from the rest of the graph or there is a good cut of size 2. Let S = NC(G)({u1, . . . , u4}). To avoid a good cut
of size at most 3, |S| = 4 and each vertex of S is adjacent to exactly one vertex of {u1, . . . , u4} analogously to vertices
{v1, . . . , v4} shown in Fig. 2.

Now, let T = NC(G)(S) \ {u1, . . . , u4}. Observe that for each K ⊆ S , |NC(G)(K) ∩ T | � |K |. Indeed, if otherwise, then (S \
K) ∪ (NC(G)(K) ∩ T) is good cut of size at most 3. Consider now a bipartite graph (S, T , E ′), where E ′ are the edges of C(G)

having one end in S , the other in T . By Hall’s Theorem (see, for example, [6, Theorem 2.1.2]), the considered bipartite graph
has a matching of size 4. Let w1, . . . , w4 be the vertices matched to v1, . . . , v4, respectively, in such a matching. The edges
of the matching together with the edges connecting v1, . . . , v4 to u1, . . . , u4 and together with the rectangle formed by
u1, . . . , u4 form the desired subgraph of C(G). �

Now we are ready to present the behavior of FindIndep(G) in case C(G) contains a rectangle. The presentation is divided
into a number of subsection depending on the status of the edges of the considered rectangle denoted by R .

6.1. Rectangle R is normal

In this case FindIndep(G) returns the larger set of {u1, u3} ∪ FindIndep(G \ N+({u1, u3})) and {u2, u4} ∪ FindIndep(G \
N+({u2, u4})). Let us justify correctness of this behavior.

Lemma 11. Assuming that the recursive calls to FindIndep are correct, one of the above sets is a MIS of G.

Proof. Assume that the former set is not a MIS of G . In other words, there is no MIS of G containing both u1 and u3.
Assume that there is a MIS of G containing u1 only. Such a MIS can be represented as {u1} ∪ S ′ , where S ′ is a MIS of
G \ N+(u1). Since u3 has degree 1 in G \ N+(u1), we may assume u3 ∈ S ′ (Lemma 1), i.e. both u1 and u3 are included into
a MIS of G in contradiction to our assumption. We get a similar contradiction assuming that there is a MIS of G containing
only u3.

It follows that neither u1 nor u3 is contained in a MIS of G or, in other words that a MIS of G \ {u1, u3} is a MIS of G .
Since both u2 and u4 have degree 1 in G \{u1, u3} and they are nonadjacent, they are both contained in a MIS of G \{u1, u3}
(Lemma 1) and, consequently, in a MIS of G . Thus, the latter set considered by FindIndep is a MIS of G . �

Now we compute upper bounds on the size of FNSes of G .

Author's personal copy

I. Razgon / Journal of Discrete Algorithms 7 (2009) 191–212 199

Lemma 12. In the considered case, at least one of the following statements is true.

(1) |V (C(G L))| � |V (C(G))| − 10 and |V (C(G R))| � |V (C(G))| − 8;
(2) |V (C(G L))| � |V (C(G))| − 8 and |V (C(G R))| � |V (C(G))| − 10;
(3) |V (C(G L))| � |V (C(G))| − 9 and |V (C(G R))| � |V (C(G))| − 9.

Proof. Since all of {u1, . . . , u4} are removed from both G L and G R , neither of v1, . . . , v4 belong to V (C(G L)) or to V (C(G R))

(Lemma 7). Thus we obtain that |V (C(G L))| � |V (C(G))| − 8 and |V (C(G R))| � |V (C(G))| − 8. Further tightening of the
upper bounds can be obtained by considering the status of edges {u1, v1} and {u3, v3}. If both they are normal edges
then v1 and v3 are removed from G L and, as a result, w1 and w3 do not belong to V (C(G L)) (Lemma 7) satisfying the
first statement. Assume that both the edges are odd. Excluding of u1 and u3 on the second branch, leaves the vertices
corresponding to edges {u1, v1} and {u3, v3} to be of degree 1. This causes removal of v1 and v3 from G R (Lemma 5) and,
as a result, removing of w1 and w3 from V (C(G R)) (Lemma 7), which satisfies the second statement. Finally, if exactly one
of {u1, v1} and {u3, v3} is odd, say the former w.l.o.g., then, arguing as in the previous case one gets that w3 is removed
from V (C(G L)), while w1 is removed from V (C(G R)), satisfying the third statement. �
6.2. R has exactly one odd edge

We assume w.l.o.g. that this edge is {u1, u2}. Let t3 and t4 be vertices of G defined as follows. If the edge {u3, v3} is
a normal one then t3 = v3, otherwise t3 is the vertex corresponding to the edge {u3, v3}. Vertex t4 is defined analogously
with respect to u4 and v4. If G has at least one edge with both ends in OddComp(u1) ∪ {t3, t4} then return FindIndep(G \
OddComp(u1)). Otherwise return the larger set of OddComp(u1) ∪ {t3, t4} ∪ FindIndep(G \ N+(OddComp(u1) ∪ {t3, t4})) and
FindIndep(G \ OddComp(u1)). Let us justify the behavior of FindIndep in the considered case.

Lemma 13. Assuming that the recursive calls to FindIndep return correct outputs, FindIndep returns a MIS of G in the considered case.

Proof. Assume that FindIndep(G \ OddComp(u1)) does not return a MIS of G . By Lemma 4, OddComp(u1) is a subset of a
MIS S of G . Clearly, neither u3 nor u4 are contained in S . Assume that t3 is not contained in S . It follows that exactly one
neighbor of u3 is contained in S , namely u2. Consequently, S \ {u2}∪ {u3} is another MIS of G . In other words, there is a MIS
of G that does not contain some vertices of OddComp(u1). By Lemma 4, there is a MIS of G containing none of OddComp(u1),
that is FindIndep(G \ OddComp(u1)) returns a MIS of G in contradiction to our assumption. It follows that t3 ∈ S . It can be
shown analogously that t4 ∈ S .

Assume now that G has at least one edge with both ends in OddComp(u1) ∪ {t3, t4}. Clearly, OddComp(u1) ∪ {t3, t4}
cannot be a subset of a MIS of G . It follows by the proven above that FindIndep(G \ OddComp(u1)) returns a MIS of G .
Also, according to the previous paragraph, if no two vertices of OddComp(u1) ∪ {t3, t4} are neighbors, one of the two sets
considered by FindIndep(G) is a MIS of G . Thus, FindIndep(G) returns a correct answer in the considered case. �

Now we compute upper bounds on the sizes of FNSes of G .

Lemma 14. If in the considered case FindIndep(G) explores two branches then |V (C(G L))| � |V (C(G))| − 12 and |V (C(G R))| �
|V (C(G))| − 6.

Proof. Selection of u1 and u2 into the constructed MIS causes removal of u3, u4, v1, v2 from G L and removal of w1 and
w2 from C(G L) (Lemma 8). Also, v3 and v4 are removed from G L (being themselves t3 and t4 or their neighbors), which
implies that w3 and w4 are removed from C(G L) (Lemma 7). To summarize, none of the 12 vertices shown in Fig. 2 belongs
to V (C(G L)), from which follows that |V (C(G L))| � |V (C(G))| − 12.

On the second branch, u1 and u2 are removed from G R causing removal of vertices u3, u4, v1, v2 from C(G R) (Lemma 7).
In total, |V (C(G R))| � |V (C(G))| − 6. �
6.3. Rectangle R has at least two odd edges having a common end

Let {u1, u2} and {u2, u3} be these edges. In the considered case, the behavior of FindIndep is straightforward: it selects
the larger set of OddComp(u1) ∪ FindIndep(G \ N+(OddComp(u1))) and FindIndep(G \ OddComp(u1)). The correctness follows
from Corollary 1. The upper bounds on the sizes of FNSes of G are derived in the next lemma.

Lemma 15. In the considered case |V (C(G L))| � |V (C(G))| − 11 and |V (C(G R))| � |V (C(G))| − 8.

Proof. The vertices u1, u2, u3 are selected on the first branch and thus cause removal of u4, v1, v2, v3 from V (G L) and
removal of v4, w1, w2, w3 from V (C(G L)) (Lemma 8). That is, all vertices in Fig. 2, except possibly w4, are removed from
V (C(G L)) which means that |V (C(G L))| � |V (C(G))| − 11.

Author's personal copy

200 I. Razgon / Journal of Discrete Algorithms 7 (2009) 191–212

Fig. 3. A rectangle of C(G) and surrounding vertices.

On the second branch, vertices u1, u2, u3 are removed from G R causing removal of v1, v2, v3 from C(G R) (Lemma 7).
Also, by Lemma 6, u4 is removed from G R and v4 is removed from C(G R) (Lemma 7). In total,

∣
∣V

(
C(G R)

)∣∣ �
∣
∣V

(
C(G)

)∣∣ − 8. �
6.4. None of the considered cases regarding R is satisfied

Clearly, this means that R has exactly two odd edges that do not have a common end. Let {u1, u2} and {u3, u4} be such
edges.

First, FindIndep(G) checks whether there is another rectangle R ′ of C(G) that falls to one of the previous cases. If such
a rectangle R ′ is found, FindIndep(G) behaves with respect to R ′ as described in the previous subsection depending on the
particular case suitable to R ′ .

If there is no rectangle R ′ mentioned in the previous paragraph, FindIndep(G) considers the rectangle R shown in Fig. 2
and checks whether v1 or v2 is adjacent to v3 or v4. In this case FindIndep(G) returns the larger set of OddComp(u1) ∪
FindIndep(G \ N+(OddComp(u1))) and FindIndep(G \ OddComp(u1)).

If none of the previous cases is satisfied, FindIndep(G) checks whether there is a subgraph of G isomorphic to one of
the graphs shown in Fig. 3(a), (b), (c). If such a subgraph is found, FindIndep(G) returns the larger set of OddComp(u1) ∪
FindIndep(G \ N+(OddComp(u1))) and FindIndep(G \ OddComp(u1)), vertices are named according to the appropriate case
shown in Fig. 3.

If none of the above cases is satisfied, FindIndep(G) picks a rectangle R with vertices named as shown in Fig. 2 and
returns the larger set of OddComp(v1) ∪ FindIndep(G \ N+(OddComp(v1))) and FindIndep(G \ OddComp(v1)).

The correctness of the behavior of FindIndep(G) described in this section follows from Corollary 1. Let us analyze upper
bounds on the sizes of FNSes of G .

Lemma 16. In the considered case, at least one of the following statements is true.

(1) |V (C(G L))| � |V (C(G))| − 10 and |V (C(G R))| � |V (C(G))| − 8;
(2) |V (C(G L))| � |V (C(G))| − 8 and |V (C(G R))| � |V (C(G))| − 10;
(3) |V (C(G L))| � |V (C(G))| − 9 and |V (C(G R))| � |V (C(G))| − 9;
(4) |V (C(G L))| � |V (C(G))| − 12 and |V (C(G R))| � |V (C(G))| − 6.

Proof. If FindIndep(G) finds a rectangle satisfying the condition of one of the previous subsections, the lemma follows from
Lemmas 12, 14, 15.

If v1 or v2 is adjacent to v3 or v4, we may assume w.l.o.g. that v1 is adjacent to v3. (Although the case where v1
is adjacent to v4 is not isomorphic to the considered one, the upper bounds on the sizes of FNSes of G are derived
analogously.) Consider the first branch. Selection of u1 and u2 causes removal of v1, v2, u3, u4 from G L and of w1, w2, v3, v4
from C(G L) (Lemma 8). Since u3 and v1 are removed from G L , v3 is also removed from G L (Lemma 6) as well as w3 is
removed from C(G L) (Lemma 7). In total, we have shown that 11 vertices are removed from C(G L). In order to satisfy

Author's personal copy

I. Razgon / Journal of Discrete Algorithms 7 (2009) 191–212 201

the last item in the statement of the lemma, we show that there is an additional twelfth vertex removed from C(G L). To
this point consider vertex v2. In Fig. 2, it is adjacent to u2 and w2. Since C(G) is a cubic graph, there must be the third
neighbor w of v2 removed from C(G L) by Lemma 8. If w is not among the vertices shown in Fig. 2 or w = w4, we are
done. If w = v4 then v4 is removed from G L by Lemma 6 causing w4 to be removed from C(G L) by Lemma 7. Finally, it
may be that w = w1 or w = w3, w.l.o.g. assume the former. Then w1 is removed from G L by Lemma 6. Observe that w1
is adjacent to some vertex y which is not among the 11 vertices considered above because otherwise w2, w3, v4 constitute
a good cut separating vertices u1, . . . , u4, v1, . . . , v3, w1. Vertex y removed from C(G L) by Lemma 7 is the desired twelfth
vertex. Thus in any case |V (C(G L))| � |V (C(G))| − 12. The statement for G R is easily verified because removal of u1 and u2
from G R causes removal of v1, v2, u3, u4 from C(G R) (Lemma 7).

Now assume that FindIndep(G) processes the case shown in Fig. 3(a). Note that in this case, the remaining neighbors v3
and v4 of u3 and u4 (not shown in the picture) do not coincide with w1, w2, y1, y2 because as a result we get the case
considered in the previous paragraph. By Lemma 8, all vertices shown in Fig. 3(a) together with v3 and v4 are removed
from C(G L), thus implying |V (C(G L))| � |V (C(G))| − 12. The same argumentation as in the previous paragraph shows
u1, . . . , u4, v1, v2 are removed from C(G R) satisfying the last item of the statement of the present lemma.

Assume now that the case shown in Fig. 3(b) is processed. Arguing as in the previous paragraph, we get that
|V (C(G L))| � |V (C(G))| − 11 and |V (C(G R))| � |V (C(G))| − 6. In order to satisfy the last item in the statement of the
lemma, we must show that there is additional vertex removed from V (C(G L)). Note that by Lemma 6, y1 is removed
from G L . If the third neighbor of y1 is anyone besides w1, w2, v3, v4, we are done. Otherwise, there are vertices z1, z2,
z3, z4, not shown in Fig. 3(b), which are neighbors of w1, w2, v3, v4, respectively: this can be verified by the argument
using Hall’s Theorem which was used to prove Lemma 10. Now, if, for example, y1 is adjacent to w1 then applying again
Lemma 6, we see that w1 is removed from G L and z1 is the desired twelfth vertex removed from V (C(G L)) (Lemma 7).

Consider now the case shown in Fig. 3(c). We observe that the remaining neighbors v3 and v4 of u3 and u4 do not
coincide with and do not adjacent to w1 and w2 in order to avoid appearance of a good cut of size at most 3 or a small
connected component. Let y1 and y2 be the remaining neighbors of w1 and w2 respectively. These neighbors should be
different on order to avoid a good cut of size 3. Observe that all the vertices in Fig. 3(c) together with y1, y2, v3, v4 are
removed from V (C(G L)): v1, v2 are removed from G L by Lemma 8, they cause removal of w1, w2 from G L by Lemma 6
which, in turn, causes removal of y1 and y2 from C(G L) (Lemma 7), u3, u4, v3, v4 are removed from C(G L) by Lemma 8.
As in the previous paragraphs, u1, . . . , u4, v1, v2 are removed from V (C(G R)). It follows that |V (C(G L))| � |V (C(G))| − 12
and |V (C(G R))| � |V (C(G))| − 6.

Consider the remaining case. In this case v1 is adjacent to v2 in C(G) because, up to isomorphism, all possible cases
where v1 is not adjacent to v2 were considered in the previous paragraph. By the same reason v3 is adjacent to v4.
Furthermore, the edge {v1, v2} is odd because otherwise we would get a rectangle of a type considered in the previous
subsections. The resulting configuration is shown in Fig. 3(d). Observe that removal of v1 and v2 produces a trivial graph
which initiates the simplification process described in Section 2. As a result of this simplification, u1, . . . , u4, v3, v4 are
removed from both G L and G R by the operations described in Section 2. Taking into account that w1, w2 are removed from
both G L and G R by Lemma 7, the first statement of the lemma is satisfied. �
7. Processing of triangles

7.1. There is a triangle of C(G) with at least 2 odd edges

Let u1, u2, u3 be such a triangle of C(G). Assume that there are two odd edges, say {u1, u2} and {u2, u3}. Let t1 and t2
be the vertices of G corresponding to these edges. The vertices u1, t1, u2, t2, u3 create a pentagon in G . At most 2 vertices
of this pentagon can be included to a MIS of G and t1, t2 are the only two vertices which are not adjacent to any vertex
outside the pentagon. It follows that there is a MIS of G including t1 and t2: in any other MIS, the vertices of the pentagon
can be replaced by t1 and t2 without reducing the size of the set and without violating the nonadjacency property. It follows
that the only branch needed on the triangle u1, u2, u3 is removal of u1, u2, u3. Similar reasoning applies to the case where
all edges of the triangle are odd with the only difference that 3 vertices corresponding to the odd edges are taken to the
MIS.

7.2. Each vertex of C(G) belongs to a triangle

In this case FindIndep(G) picks an arbitrary vertex u1 and returns the larger set of OddComp(u1) ∪ FindIndep(G \
N+(OddComp(u1))) and FindIndep(G \ OddComp(u1)). The correctness of this behavior follows from Corollary 1. Let us com-
pute the upper bounds on the sizes of FNSes of G .

Lemma 17. In the considered case |V (C(G L))| � |V (C(G))| − 12 and |V (C(G R))| � |V (C(G))| − 6.

Proof. We start from observing that u1 participates in a subgraph of G isomorphic to the one shown in Fig. 4. Let u1, u2,
u3 be a triangle containing u1. The remaining neighbors v1, w1, t1 of u1, u2, u3 are pairwise different because otherwise a

Author's personal copy

202 I. Razgon / Journal of Discrete Algorithms 7 (2009) 191–212

Fig. 4. A possible configuration of triangles in C(G).

rectangle is occurs. Each of v1, w1, t1 participates in a triangle. All this triangles are pairwise disjoint and disjoint from u1,
u2, u3 because otherwise either a rectangle or a vertex of degree 4 occurs. Thus we get the configuration shown in Fig. 4.

When u1 is selected, u2, u3, v1 are removed, the residual graph becomes trivial and the rest of vertices shown in Fig. 4
are removed from C(G L) by the process described in Section 2. On the second branch, to transform a trivial graph obtained
as a result of removal of u1 into a nontrivial one, vertices u2, u3, v1, v2, v3 are removed from C(G R). �

Each vertex being included into a triangle is a sufficient condition for the branching decisions shown in this section but
not a necessary one. The same branching decision may be applied, if there is a triangle u1, u2, u3 surrounded by other
triangles as shown in Fig. 4. Hence in the rest of the subsection, we assume that such a subgraph does not occur in G , i.e.
for each triangle u1, u2, u3 there is an outside neighbor of one of the vertices which does not belong to a triangle.

7.3. The above cases do not hold

Let u1, u2, u3 be an arbitrary triangle of C(G). Let v1 be a neighbor of u1 which does not belong to a triangle. Let v2, v3
be the remaining neighbors of v1 and let w1, . . . , w4 be the remaining neighbors of v2, v3 as shown in Fig. 5(a)–(c). Since
rectangles are forbidden in C(G), all the vertices of w1, . . . , w4 are pairwise different as well as no one of them coincides
with u2, u3. On the same reason, v2, v3 do not coincide with u2, u3. Regarding the neighbors of u2, u3, there may be three
different situations.

First, u2, u3 may be nonadjacent to any other vertex considered above. This situation is shown in Fig. 5(a) (here, vertices
y1 and y2 must be different because otherwise a rectangle is created).

Second (the most involved subcase), exactly one of u2, u3 may be adjacent to some of w1, . . . , w4. We may assume
w.l.o.g. that u3 is adjacent to w4. This situation is shown in Fig. 5(b). Two subcases related to the remaining neighbor of
w4 are possible here. Vertex w4 may be adjacent to vertex y2 different from all the other vertices in the figure or w4 may
adjacent to one of w1, w2, say to w2 but in this case w2 must be adjacent to a vertex different from the vertices shown
in the figure. All other possibilities of neighborhood of w4 contradict to assumption of the section. In particular, w4 cannot
be adjacent to y1 because a rectangle is created. Also, w4 cannot be adjacent to w3 because in this case y1, v2, and the
remaining neighbor of w3 create a good cut of size 3 of C(G). Finally, if w4 is adjacent to w2, the latter has to be adjacent
to an “outside” vertex because otherwise {w1, w3, y1} is a good cut of C(G).

Third, both u2 and u3 may be adjacent to w1, . . . , w4. It is not particularly important for the further discussion, which
exactly vertices of w1, . . . , w4 are adjacent to u2, u3. What important is that to avoid a good cut of size 3, those adjacent
vertices should themselves be adjacent to vertices y1 and y2 (see Fig. 5(c)) that differ from all other vertices shown in the
picture.

To describe the behavior of FindIndep(G), assume first the edge {u1, v1} is odd. In this case, FindIndep(G) returns the
larger set of OddComp(v1) ∪ FindIndep(G \ N+(OddComp(v1))) and FindIndep(G \ OddComp(v1)). The correctness is justified
by Corollary 1. Let us compute upper bounds on the sizes of FNSes of G . On the first branch, selection of u1 and v1 causes
removal of u2, u3, v2, v3 from G L , the rest of the vertices in Fig. 5(a) are removed from C(G L) (Lemma 8). In the situations
shown in Figs. 5(b) and (c), additional explanation is needed regarding the vertices on the top part of the pictures. If u3 is
adjacent to w4 then removal of u3 and v3 from G L causes removal of w4 from G L (Lemma 6) and its outside neighbor y2
(if such one occurs) is removed from C(G L) (Lemma 7). If w4 is adjacent to w2 then, by Lemma 6, removal of w4 and v2
from G L causes removal of w2 from G L , its outside neighbor is removed from C(G L) (Lemma 7). Finally, if u2 is adjacent

Author's personal copy

I. Razgon / Journal of Discrete Algorithms 7 (2009) 191–212 203

Fig. 5. A triangle of C(G) and surrounding vertices.

to w1 (relevant for Fig. 5(c)) then removal of v2 and u2 from G L causes removal of w1 from G L and the removal of its
neighbor y1 from C(G L) (Lemmas 6 and 7). Thus we get that |V (C(G L))| � |V (C(G))| − 12. On the second branch, removal
of u1 and v1 from G R causes removal of u2, u3, v2, v3 from C(G R) (Lemma 7), in total |V (C(G R))| � |V (C(G))| − 6.

If the edge {u1, v1} is normal, our next assumption is that either {u1, u2} or {u1, u3} is an odd edge, it does not matter
which one of them exactly, we assume that it is {u1, u2}. The behavior of FindIndep(G) in the considered case is analo-
gous to the previous case, i.e. FindIndep(G) returns the larger set of OddComp(v1) ∪ FindIndep(G \ N+(OddComp(v1))) and
FindIndep(G \ OddComp(v1)). On the first branch, selection of v1 removes v2, v3, u1 from G L . The vertex t of G correspond-
ing to the edge {u1, u2} remains of degree 1 as a result of removal of u1 hence its neighbor u2 is removed from G L by
Lemma 5. Removal of u1 and u2 causes removal of u3 by Lemma 6. Further reasoning is analogous to the previous case. On
the second branch we observe that after removal of v1, the resulting graph becomes trivial because u1 and the vertex t cor-
responding to the edge {u1, u2} become two adjacent vertices of degree 2. The simplification process necessarily removes u1,
u2, and u3 from C(G R). Also, v2 and v3 are removed from C(G R) by Lemma 7. It follows that |V (C(G R))| � |V (C(G))| − 6.

It remains to consider the cases where the edge {u1, v1} is normal and the triangle u1, u2, u3 is normal or
edge {u2, u3} is odd. Here FindIndep(G) returns the larger set of OddComp(v1) ∪ FindIndep(G \ N+(OddComp(v1))) and
FindIndep(G \ (OddComp(v1) ∪ {u2, u3})). Observe, u1 participates in a MIS of G \ OddComp(v1), hence u2 and u3 can be
safely removed on the second branch. Let us calculate the upper bounds on the sizes of MISes of G . On the first branch,
v1, . . . , v3, u1, . . . , u3, w1, . . . , w4 are removed from C(G L) by Lemma 8. In total, |V (C(G L))| � |V (C(G))| − 10. On the sec-
ond branch, in addition to u1, . . . , u3, v1, . . . , v3, two remaining neighbors of u2 and u3 are removed from C(G R) (Lemma 7).
For any case in Fig. 5, 8 vertices are removed in total.

Thus, we have proved the following lemma.

Lemma 18. FindIndep(G) behaves correctly and at least one of the following two statements holds:

(1) |V (C(G L))| � |V (C(G))| − 10 and |V (C(G R))| � |V (C(G))| − 8;
(2) |V (C(G L))| � |V (C(G))| − 12 and |V (C(G R))| � |V (C(G))| − 6.

8. C(G) contains odd edges

In the rest of the paper we consider situations where C(G) has no good cuts of size at most 3,3 no rectangles and
no triangles. In this situation any vertex u together with its neighbors and neighbors of their neighbors in C(G) create a
subgraph of C(G) shown in Fig. 6: coinciding of any of wi with any of other vertices causes appearance of a rectangle or a
triangle. In this situation, Lemma 8 can be reformulated as follows.

3 Formally, we considered good cuts of sizes 1 and 2 for G , not for C(G), but it is not hard to observe that G has a good cut if and only if C(G) has.

Author's personal copy

204 I. Razgon / Journal of Discrete Algorithms 7 (2009) 191–212

Fig. 6. A vertex u and surrounding vertices of C(G) is case where C(G) has no rectangles and no triangles.

Corollary 2. Let G, G ′ , and u be as in Lemma 8 with the assumption that G satisfies conditions of the present section. Then
|V (C(G ′))| � |V (C(G))| − 10.

Proof. Immediately follows from Lemma 8 by taking into account Fig. 6. �
In this section we consider the case where C(G) has odd edges. Let u be a vertex incident to an odd edge, assume

w.l.o.g. that this edge is {u, v1} (in the rest of the algorithm’s description, each time when we refer to vertex u, we assume
that the vertices around u are named as in Fig. 6). FindIndep(G) returns the larger set of OddComp(u) ∪ FindIndep(G \
N+(OddComp(u))) and FindIndep(G \ OddComp(u)). Correctness of this behavior follows from Corollary 1. Let us compute
the sizes of FNSes of G .

Lemma 19. In the considered case |V (C(G L))| � |V (C(G))| − 12 and |V (C(G R))| � |V (C(G))| − 6.

Proof. By Corollary 2, all vertices shown in Fig. 6 are removed from C(G L). We have to find two additional vertices removed
from that graph. Observe that OddComp(u) = OddComp(v1), hence, by Lemma 8, w1, w2 are removed from G L and their
neighbors are removed from C(G L). Consequently, if w1 and w2 are adjacent to at least two vertices not shown in Fig. 6,
we are done. Consider what happens otherwise.

To avoid a good cut of size at most 3, w1, . . . , w6 are adjacent to at least 4 vertices y1, . . . , y4 not shown in Fig. 6. If w1,
w2 are adjacent to none of them, 4 remaining edges incident to w1, w2 connect them to all of w3, . . . , w6 (otherwise a
rectangle is created). By Lemma 6, all of w3, . . . , w6 are removed from G L , hence their neighbors including all of y1, . . . , y4
are removed from C(G L) by Lemma 7.

Assume that w1, w2 are adjacent to exactly one of y1, . . . , y4, w.l.o.g. we may assume the existence of an edge {w1, y1}.
The remaining three edges incident to w1, w2 connect them to 3 vertices of w3, . . . , w6, say w.l.o.g. to w3, w4, w5, which
in turn are incident to at least one of y2, y3, y4 because otherwise y2, y3, y4 are incident to w6 increasing its degree
to 4. All of w3, w4, w5 are removed from G L by Lemma 6 hence y1 and a vertex of y2, . . . , y4 incident to w3, w4, w5 are
removed from C(G L) by Lemma 7.

To see that |V (C(G R))| � |V (C(G))|−6 observe that u, v1 are removed from G R hence v2, v3, w1, w2 are removed from
C(G R) by Lemma 7. �

In the rest of the description of FindIndep(G), graph C(G) has no odd edges, hence C(G) = G and there is no need to
refer to C(G) anymore.

9. Processing of good cut of size 4

In the present section we consider the behavior of FindIndep(G) if there is a good cut of size 4. Let y1, . . . , y4 be
such a good cut. Let S = SmallVert(G \ {y1, y2, y3, y4}). We may assume that each yi is adjacent to 2 vertices outside of
S ∪ {y1, . . . , y4} or that |S| � 20. Otherwise, applying the iterative replacement shown in the first paragraph of Section 5,
the algorithm constructs a cut satisfying the desired condition. FindIndep(G) returns the largest set among the following
three: {y1} ∪ FindIndep(G \ N+(y1)), {y2} ∪ FindIndep((G \ y1) \ N+(y2)), FindIndep((G \ y1) \ y2). The correctness of such
behavior is obvious. Let us compute the sizes of FNSes of G .

Lemma 20. In the considered case |V (C(G L))| � |V (CG)| − 10, |V (C(G M))| � |V (CG)| − 17, |V (C(G R))| � |V (CG)| − 15.

Proof. The inequality for V (C(G L)) follows from Corollary 2.
When y1 and y2 are removed, S is separated from the rest of the graph by a cut of size 2. Hence, in order to avoid a

good cut of size 2, no vertex of S belongs to G M and to G R . Consequently, there is nothing to prove if |S| � 20. We assume
that the other condition is satisfied, i.e. each of yi has two neighbors outside of the set S ∪{y1, . . . , y4}. Let z1, z2 be these 2
neighbors of y2 and let t1, . . . , t4 be the remaining neighbors of z1, z2. To avoid occurrence of previously considered cases of
the proposed algorithm, none of z1, z2, t1, . . . , t4 coincide. Also, none of t1, . . . , t4 belongs to S because S is separated from
the rest of the vertices by y1, . . . , y4 and z1, z2 do not belong to S ∪ {y1, . . . , y4}. Vertices y2, z1, z2, t1, . . . , t4 are removed

Author's personal copy

I. Razgon / Journal of Discrete Algorithms 7 (2009) 191–212 205

from C(G M) by Lemma 8. Since y2, z1, z2, t1, . . . , t4 is disjoint from S , |{y2, z1, z2, t1, . . . , t4} ∪ S| = |{y2, z1, z2, t1, . . . , t4}| +
|S| � 17, hence |V (C(G M))| � |V (CG)| − 17.

On the last branch vertices z1 and z2 are removed from C(G R) by Lemma 7. Observe that |S ∪{y1, y2, z1, z2}| � 14, hence
at least 14 vertices are removed from C(G R) while we need 15 ones. Consider two neighbors w1, w2 of y1 lying outside
of S ∪ {y1, . . . , y4} and removed from C(G R) by Lemma 7. To avoid a rectangle at least one of w1, w2 (say w1) does not
coincide with z1 nor with z2. Vertex w1 is the desired 15th vertex removed from C(G R). �
10. No rectangles, no triangles, no good cuts, no odd edges

In order to proceed, we extend our notation. For a vertex u ∈ V (G), we denote by L(G, u, i) the set of vertices lying at
distance i from u. For example, in Fig. 6, L(G, u,0) = {u}, L(G, u,1) = {v1, . . . , v3}, L(G, u,2) = {w1, . . . , w6}. The vertices
of L(G, u,3) can be classified into 3 categories. Those that are adjacent to exactly one vertex of L(G, u,2) are called single
vertices with respect to u. Accordingly, there are also double and triple vertices with respect to u.

The first subcase considered by FindIndep(G) occurs, if there exists a vertex u such that there is a triple vertex w with
respect to u.

In this case FindIndep(G) returns the larger set of {u} ∪ FindIndep(G \ N+(u)) and {w} ∪ FindIndep(G \ (N+(w))). The
correctness of this behavior is justified by the following lemma.

Lemma 21. Let u, w ∈ V (G) and assume that w is a triple vertex with respect to u. Then there is a MIS of G that contains u or w.

Proof. Assume that no MIS of G contains u. Then any MIS of G contains at least two neighbors of u. Let v1 and v2 be two
neighbors of u contained in some MIS of G . In other words, a MIS of G ′ = G \ N+({v1, v2}) united with {v1, v2} is a MIS
of G . The lemma will follow if we show that w belongs to a MIS of G ′ .

To this end observe that w does not have two common neighbors with any neighbor of u because otherwise a cycle of
length 4 is induced. Taking into account that w is a triple vertex, it follows that w has exactly one common neighbor with
each neighbor of u. Hence w has degree 1 in G ′ and clearly belongs to at least one MIS of G ′ . �
Lemma 22. In the considered case |V (C(G L))| � |V (C(G))| − 10 and |V (C(G R))| � |V (C(G))| − 10.

Proof. Immediately follows from Corollary 2. �
The following lemma is necessary for correctness proof of FindIndep(G) for the rest of the cases.

Lemma 23. There is a MIS of G containing u or there is a MIS of G containing v1 or there is a MIS of G containing w1 , w2 , v2 , v3 , and
t1 , t2 as in Fig. 7, the latter two vertices are included only if v1 belongs to a pentagon as shown in Fig. 7.

Proof. Assume that no MIS of G contains u or v1 and let S be a MIS of G . S necessarily contains two neighbors of u. Since
v1 /∈ S , both v2 and v3 belong to S . Observe further that both w1 and w2 belong to S . Otherwise, v1 can be added to
S in contradiction to its maximality or v1 can replace a single vertex of {w1, w2} that belongs to S creating a MIS of G
containing v1.

If v1 belongs to the pentagon as shown in Fig. 7 then both t1 and t2 belong to S . Indeed, assume that, for example,
t1 does not belong to S . Taking into account that both w1 and w2 belong to S , w1 is the only neighbor of z1 contained
in S . Hence w1 may be replaced by z1 in contradiction to our conclusion done the previous paragraph that if no MIS of G
contains u or v1 then any MIS of G contains both w1 and w2. �

The rest of the section is divided into three subsections describing the behavior of FindIndep(G) when certain conditions
are satisfied. As usually, it is assumed for the second and the third subsections that the conditions of the earlier subsections
are not satisfied.

10.1. There is a vertex u such that G[L(G, u,2)] contains isolated vertices and (|L(G, u,3)| � 9 or
|L(G, u,3)| + |L(G, u,4) ∩ L(G, v,3)| � 11 for some neighbor v of u)

Let v1 be a neighbor of u such that |L(G, v1,3) ∩ L(G, u,4)| is the largest possible. FindIndep(G) returns the largest
set among S1, S2, and S3 computed as follows. S1 ← {u} ∪ FindIndep(G \ N+(u)), S2 ← {v1} ∪ FindIndep(G \ N+(v1)),
S3 ← {w1, w2, v2, v3} ∪ FindIndep(G \ ({v1} ∪ N+({w1, w2, v2, v3}))). The correctness of the above behavior follows from
Lemma 23.

Lemma 24. In the considered case |V (C(G L))| � |V (C(G))|−10, |V (C(G M))| � |V (C(G))|−10, and |V (C(G R))| � |V (C(G))|−21.

Author's personal copy

206 I. Razgon / Journal of Discrete Algorithms 7 (2009) 191–212

Fig. 7. A possible subgraph of C(G).

Proof. The statement regarding V (C(G L)) and V (C(G M)) immediately follow from Corollary 2. The set of vertices removed
from C(G R) is L(G, u,0) ∪ L(G, u,1) ∪ L(G, u,2) ∪ L(G, u,3) ∪ (L(G, u,4) ∩ L(G, v1,3)) (Lemma 8). All the sets participating
in the union are disjoint, the first 3 sets are those shown in Fig. 6 and contain totally 10 elements. The statement regarding
|V (C(G R))| is obviously true, if |L(G, u,3)|+|L(G, u,4)∩ L(G, v,3)| � 11 for at least one neighbor v of u, because |L(G, u,3)∪
(L(G, u,4) ∩ L(G, v1,3))| is the largest possible among all the neighbors of u. If |L(G, u,3)| � 9 is satisfied, we note that
|L(G, u,4)| � 5 because otherwise a good cut is produced. On the other hand, L(G, u,4) is partitioned into L(G, u,4) ∩
L(G, vi,3) for i = 1,2,3, L(G, u,4) ∩ L(G, v1,3) being the largest. Hence |L(G, u,4) ∩ L(G, v1,3)| � 2 and we get again that
|L(G, u,3) ∪ (L(G, u,4) ∩ L(G, v1,3))| � 11 which implies validity of the statement regarding V (C(G R)). �

Note that in this subsection we do not explore the condition that G[L(G, u,2)] has isolated vertices. This condition will
be explored in the final part of the complexity analysis.

10.2. There is a vertex u such that the graph induced by L(G, u,2) has no edges

An alternative formulation of the considered case is that there are 12 edges between L(G, u,2) and L(G, u,3)

for some u ∈ V (G). In this case FindIndep(G) returns the largest set among S1, S2, and S3 computed as follows.
S1 ← {u} ∪ FindIndep(G \ N+(u)), S2 ← {v1} ∪ FindIndep(G \ N+(v1)), S3 ← {w1, w2, v2, v3} ∪ FindIndep(G \ ({v1} ∪
N+({w1, w2, v2, v3}))) where v1 is the neighbor of u such that the number p(v1) of vertices of L(G, u,4) removed from
V (C(G R)) is the largest possible. The correctness follows from Lemma 23.

Lemma 25. In the considered case |V (C(G L))| � |V (C(G))|−10, |V (C(G M))| � |V (C(G))|−10, and |V (C(G R))| � |V (C(G))|−21.

Proof. The statement regarding V (C(G L)) and V (C(G M)) immediately follows from Corollary 2. The following sets of ver-
tices are removed from V (C(G R)) by Lemma 8: L(G, u,0), . . . , L(G, u,3), L(G, v1,3) ∩ L(G, u,4) (the latter set of vertices
as being neighbors of neighbors of w1 and w2). Observe also, the double vertices of L(G, u,3) are removed from V (G R)

independently on the choice of v1 (Lemma 6), hence their neighbors in L(G, u,4) are removed from V (C(G R)) (Lemma 7).
Taking into account these observations, we show that L(G, u,3) together with the vertices of L(G, u,4) removed from
V (C(G R)) are at least 11 vertices which, together with 10 vertices of L(G, u,0)∪ L(G, u,1)∪ L(G, u,2) constitute the desired
21 vertices removed from V (C(G R)).

Taking into account that there are 12 edges between L(G, u,2) and L(G, u,3) and that there are no triple vertices
in L(G, u,3), it follows that |L(G, u,3)| � 6. If |L(G, u,3)| = 6, all vertices of L(G, u,3) are double, hence all vertices of
L(G, u,4) are removed from C(G R) independently on the choice of v1. Note that |L(G, u,4)| � 5, otherwise a good cut
occurs. Hence L(G, u,3) ∪ L(G, u,4) constitute the desired 11 vertices in the considered case.

Consider now the case of |L(G, u,3)| = 7. In this case 5 vertices of L(G, u,3) are double ones (taking into account 12
edges connecting L(G, u,2) and L(G, u,3)). Let C be the subset of L(G, u,4) adjacent to these double vertices. Observe that
|C | � 3 because otherwise C together with the single vertices of L(G, u,3) constitute a good cut. If |C | � 4 then C together
with the 7 vertices of L(G, u,3) constitute the desired 11 vertices removed from V (C(G R)) independently on the choice of
v1. If |C | = 3, we show that there is a neighbor v1 of u such that p(v1) � 4. To this end, take a vertex w ∈ L(G, u,4) \ C
(there must be such a vertex since |L(G, u,4)| � 5, see the previous paragraph). This vertex w is adjacent to a single vertex
y ∈ L(G, u,3), which is, in turn, adjacent to a vertex w1 ∈ L(G, u,2). Let v1 be the neighbor of w1 in L(G, u,1). Observe
that if v1 is selected by FindIndep(G) as the neighbor of u then |C | ∪ {w} are removed from V (C(G R)). In other words,
p(v1) � 4.

Assume now that |L(G, u,3)| = 8. In this case we have to show that there is a neighbor v1 of u with p(v1) � 3. If there
is a neighbor v1 of u with |L(G, v1,3) ∩ L(G, u,4)| � 3, the statement follows immediately. Otherwise, taking into account

Author's personal copy

I. Razgon / Journal of Discrete Algorithms 7 (2009) 191–212 207

that |L(G, u,4)| � 5 and each element of L(G, u,4) belongs to L(G, v,3) for some neighbor v of u, there are two neighbors
v1 and v2 such that L(G, v1,3) ∩ L(G, u,4) is disjoint with L(G, v2,3) ∩ L(G, u,4) and the size of each of these sets is 2.
Besides that, L(G, u,3) contains 4 double vertices and least one of them has a neighbor y in L(G, u,4) (otherwise, single
vertices of L(G, u,3) constitute a good cut). This vertex y is removed from C(G R) independently on the choice of v1 (see
the first paragraph of the proof) and it does not belong to at least one of L(G, v1,3) ∩ L(G, u,4) or L(G, v2,3) ∩ L(G, u,4)

(remember these sets are disjoint!), let us say to the former one. It follows that p(v1) � 3. Finally, note that the case where
|L(G, u,3)| = 9 was analyzed in the previous subsection and hence cannot happen in the considered case according to our
assumption. �
10.3. No one of the above cases happens

In this case FindIndep(G) branches on a vertex satisfying a particular condition. We define this condition and then prove
that a vertex satisfying this condition exists.

We say that a vertex u of G is adjacent to a pentagon if there is a neighbor v of u participating in a cycle of size 5, which
does not include u and the two vertices of this cycle, which are not neighbors of v belong to L(G, u,3); in this case we
also say that this cycle certifies u.

We say that vertex u ∈ V (G) is good if it is adjacent to a pentagon and G[L(G, u,2)] contains isolated vertices.

Theorem 1. In the considered case there is at least one good vertex in G.

Proof. Assume first that for any u ∈ V (G), G[L(G, u,2)] contains isolated vertices. In this case it remains to find a vertex
adjacent to a pentagon. Pick an arbitrary vertex u. If it is adjacent to a pentagon, we are done. Otherwise consider the graph
G ′ = G[L(G, u,2)]. Since the condition of the previous subsection is not satisfied, G ′ contains at least one edge.

Assume that G ′ has an isolated edge, i.e. an edge whose ends do not incident to any other edge. This situation is shown
in Fig. 8(a), where the isolated edge is {w2, w3}. We emphasize that there may be additional edges between vertices of
L(G, u,2) but not incident to w2 nor to w3. We show that vertex v3 is adjacent to a pentagon. Indeed, consider the
pentagon {u, v1, v2, w2, w3}. The only condition that needs to be verified is that both w2 and w3 belong to L(G, v3,3). But
assuming otherwise implies an edge between {w2, w3} and {w5, w6} in contradiction to our assumption that {w2, w3} is
an isolated edge. Note that we considered the only possible case of occurrence of an isolated edge up to isomorphism (for
example, w1 and w2 are not adjacent because otherwise a triangle is created).

Assume now that G ′ does not contain an isolated edge but contains exactly two edges. In this case the configuration
shown in Fig. 8(b) is the only possible one up to isomorphism (others induce short cycles). Note that this time the edges
shown in the picture are the only ones that occur in G ′ . Observe that in the considered case, vertex w1 is adjacent to a
pentagon, which is certified by pentagon {v1, u, v2, w3, w2}. Indeed, to force v2 or w3 to be in L(G, w1,2), either edge
{w1, w4} or edge {w1, w5} must occur, in contradiction to our assumption that there are only two edges in G ′ .

Assume now that G ′ does not contain an isolated edge and contains exactly three edges. Then the only possible config-
uration up to isomorphism is shown in Fig. 8(c). Other non-isomorphic configurations are unsuitable because they induce
short cycles. Using argumentation analogous to the previous case, we can show that w1 is adjacent to a pentagon.

Observe that we have considered all possible configurations of G ′: if G ′ has at least four edges then L(G, u,3) has at
most four vertices constituting a good cut.

Assume now that there is a vertex u ∈ V (G) such that G[L(G, u,2)] does not have isolated vertices. As we pointed out
in the previous paragraph, G[L(G, u,2)] cannot have 4 or more edges, hence it has exactly 3 edges none of which share
a common end. Moreover, two vertices of L(G, u,2) adjacent to the same neighbor of u cannot be themselves adjacent: it
causes existence of a triangle. It follows that the placement of the edges shown in Fig. 9 is only possible up to isomorphism.
Note that any neighbor of u is adjacent to a pentagon. For example, v1 is certified by a pentagon u, v2, w4, w5, v3.
Consequently, if for at least one neighbor v of u, G[L(G, v,2)] has isolated vertices, we are done. Consider what happens
otherwise.

Consider vertex v1. Among the vertices shown in Fig. 9(a), vertices v2, w3, v3, w6 belong to L(G, v1,2). Given the edges
{v2, w3} and {v3, w6}, the remaining two vertices y1 and y2 of L(G, v1,2) (one is the neighbor of w1, the other is the
neighbor of w2) must be adjacent in order to satisfy the pattern described in the previous paragraph. Arguing analogously,
we get that y3 and y4, the remaining neighbors of w3, w4, must be adjacent in order to ensure that G[L(G, v2,2)] does
not have isolated vertices as well as y5 and y6, the remaining neighbors of w5 and w6, must be adjacent in order to ensure
that G[L(G, v3,2)] does not have isolated vertices. Let us show that vertices y1, . . . , y6 are pairwise different. There are a
number of ways to show this. For example, assume that y2 coincides with y3. Then to avoid y2 to have degree 4, y4 has
to coincide with y1. However, in this case, y1, y2, y5, y6 constitute a good cut. Arguing analogously we get that y1 and y2
differ from y5, y6 as well as that y3, y4 differ from y5, y6. The vertices shown in Fig. 9(a) together with y1, . . . , y6 create
a subgraph of G shown in Fig. 9(b).

Observe further that each of w1, . . . , w6 is adjacent to a pentagon. For example, w1 is certified by v1, u, v2, w3, w2. It
follows that if for at least one wi , G[L(G, wi,2)] contains isolated vertices, we are done. We will show that otherwise we
get a good cut, which will finish the proof of the present theorem.

Author's personal copy

208 I. Razgon / Journal of Discrete Algorithms 7 (2009) 191–212

Fig. 8. Illustration of proof of Theorem 1.

Fig. 9. Illustration of proof of Theorem 1.

Consider vertex w1. The vertices of L(G, w1,2) shown in Fig. 9(b) are u, v3, w2, y2, y6. Vertex y6 is the only one which
is not engaged into adjacency with other vertices shown in the picture. To ensure that G[L(G, w1,2)] does not have isolated
vertices the remaining neighbor z1 of y1 must be adjacent to y6. Arguing similarly regarding w2 and w5 we get that y2
and y3 must have a common third neighbor z2 as well as y4 and y5 have a common third neighbor z3. Vertices z1, z2, z3
constitute a good cut an example of which is illustrated in Fig. 9(c). �

Now we are ready to present the behavior of FindIndep(G) in the considered case. FindIndep(G) picks a good vertex
u whose existence is guaranteed by Theorem 1. Let v1, w2, z2, z1, w1 be the pentagon certifying u (consider Fig. 7). If
{v2, v3, w1, w2, t1, t2} is an independent set then FindIndep(G) returns the largest set among {u} ∪ FindIndep(G \ N+(u)),
{v1} ∪ FindIndep(G \ {v1}), and {v2, v3, w1, w2, t1, t2} ∪ FindIndep(G \ ({v1} ∪ N+({v2, v3, w1, w2, t1, t2}))). Otherwise the
only difference is that the last branch is not considered. The correctness of such behavior follows from Lemma 23.

Let us prove upper bound on the sizes of FNSes of G .

Lemma 26. In the considered case, if G has 3 FNSes then |V (C(G L))| � |V (C(G))| − 10, |V (C(G M))| � |V (C(G))| − 10, and
|V (C(G R))| � |V (C(G))| − 21. Otherwise |V (C(G L))| � |V (C(G))| − 10 and |V (C(G R))| � |V (C(G))| − 10.

Proof. If G has 2 FNSes then the statement of the lemma immediately follows from Corollary 1. In the rest of the proof we
assume that G has 3 FNSes.

The statement regarding V (C(G L)) and V (C(G M)) immediately follows from Corollary 1. To prove the statement regard-
ing G R we consider the sizes of L(G, u,3) from 5 to 8. By Lemma 8, V (C(G R)) does not contain vertices of L(G, u, i) for
i from 0 to 3 as well as N+(N+({t1, t2})). Denote L(G, u,0) ∪ L(G, u,1) ∪ L(G, u,2) ∪ L(G, u,3) by M B (abbreviation of
Main Block). There are 10 vertices in L(G, u,0) ∪ L(G, u,1) ∪ L(G, u,2). Hence, to prove the statement regarding C(G R), it is
enough to show that the number of vertices removed from C(G R) outside of M B is at least 11 − |L(G, u,3)|. In most cases
we will show that these additional vertices are contained in N+(N+({t1, t2})) and only once in N+(N+({w1, w2})).

In the rest of the proof we denote by SN(t1, t2) the set N(N({t1, t2})) \ (N+({t1, t2})). In other words, SN(t1, t2) consists
of vertices lying at distance 2 from t1 or from t2 and does not include t1, t2, and their neighbors. Note that {t1, t2},
N({t1, t2}), and SN(t1, t2) are 3 disjoint sets, their union equals N+(N+({t1, t2})).

Author's personal copy

I. Razgon / Journal of Discrete Algorithms 7 (2009) 191–212 209

Assume that |L(G, u,3) = 5|. Then both t1 and t2 do not belong to M B . Also |N({t1, t2})\ M B| � 2 and |SN(t1, t2)\ M B| � 2.
Indeed, violation of anyone of these condition implies existence of a good cut. For example, if |SN(t1, t2) \ M B| < 2 then
SN(t1, t2) \ M B together with L(G, u,3) \ {z1, z2} constitute the above good cut. In total, |N+(N+({t1, t2})) \ M B| � 6, as
required.

Assume that |L(G, u,3)| = 6. Here we consider the cases where both t1 and t2 do not belong to M B and where one of
them, say t2, belongs to M B . The case where both t1 and t2 belong to L(G, u,3) cannot occur because otherwise existence
of a good cut would follow.

Assume that both t1 and t2 do not belong to L(G, u,3). Then, to avoid a good cut, we have to assume that |N({t1, t2}) \
M B| > 0 and that |SN(t1, t2)\M B| > 0. Thus we are guaranteed to have at least 4 vertices apart from M B . In the problematic
case where |N+(N+({t1, t2}))\ M B| = 4 (it happens if |N({t1, t2})\ M B| = |SN(t1, t2)\ M B| = 1), there are at least two edges
incident to {t1, t2} such that the other ends of these edges can belong only to L(G, u,3) \ {z1, z2}. Let z ∈ L(G, u,3) \ {z1, z2}
be a vertex incident to one of these edges. Note that z is incident to a vertex y outside of M B and distinct from the vertices
of N+(N+({t1, t2}))\ M B considered before: otherwise L(G, u,3)\{z1, z2, z}∪ SN(t1, t2) is a good cut. Since vertex y belongs
to SN(t1, t2) \ M B , |SN(t1, t2) \ M B| � 2, a contradiction.

Assume that t2 ∈ M B . Then |N({t1, t2}) \ M B| � 2 as well as |SN(t1, t2) \ M B| � 2. Otherwise, a good cut is created.
For example, if |SN(t1, t2) \ M B| = 1 then vertex w ∈ SN(t1, t2) \ M B together with the 3 vertices of L(G, u,3) \ {z1, z2, t2}
constitute a good cut of size 4. Vertex t1 together with at least 2 vertices of N({t1, t2}) \ M B and at least 2 vertices of
SN(t1, t2) \ M B constitute the desired 5 vertices removed from V (C(G R)) besides M B .

Assume that |L(G, u,3)| = 7. Assume first that both t1 and t2 do not belong to M B . Taking into account that only 4 vertices
of N+(N+({t1, t2})) apart from M B are needed in the considered case, there is nothing to prove if both N({t1, t2}) \ M B and
SN(t1, t2) \ M B are nonempty or some of these sets includes at least 2 elements.

Assume that N({t1, t2}) \ M B = ∅. Then at least 3 edges connect t1, t2 to at least 2 vertices z3, z4 of L(G, u,3) \ {z1, z2}.
Observe that there are vertices y3, y4 outside of M B and different from t1, t2 such that y3 is adjacent to z3 and y4 is
adjacent to z4. Otherwise, L(G, u,3) \ {z1, . . . , z4} together with at most one existing vertex of y3, y4 constitute a good cut.
Vertices y3, y4 belong to SN(t1, t2), thus we get the desired 4 vertices of N+(N+({t1, t2})) outside of M B .

If we assume that |N({t1, t2}) \ M B| = 1 but SN(t1, t2) = ∅, the analogous argument helps us to get a contradiction. To
complete the degree of t1 and t2, they have at least one neighbor z3 ∈ L(G, u,3) \ {z1, z2}. This vertex must be in incident to
a vertex y3 outside M B which is different from the 3 vertices considered before, otherwise L(G, u,3) \ {z1, z2, z3} constitute
a good cut (since we assume SN(t1, t2) \ M B = ∅, the only vertex of N({t1, t2}) \ M B is not connected “outwards”). This
vertex y3 belongs to SN(t1, t2) \ M B in contradiction to our assumption.

Consider the case where exactly one of t1, t2, say t2, belongs to L(G, u,3). In this case, to avoid L(G, u,3) \ {z1, z2, t2}
to be a good cut, we get that both N({t1, t2}) \ M B and SN(t1, t2) \ M B are nonempty. If at least one of these sets is of
size 2, we are done. Otherwise, we derive a contradiction. In particular, to complete the degree 3 of t1, it is adjacent to a
vertex z4 of L(G, u,3) \ {z1, z2, t2}. This vertex z4 must be incident to a vertex y4 outside of M B , of N({t1, t2}) \ M B , and
of SN(t1, t2) \ M B because otherwise the only vertex of SN(t1, t2) \ M B together with L(G, u,3) \ {z1, z2, t2, z4} constitute a
good cut. Vertex y4 is the second vertex of SN(t1, t2) \ M B , in contradiction to our assumption.

Finally, consider the case where {t1, t2} ⊂ L(G, u,3). In this case both N({t1, t2}) \ M B and SN(t1, t2) \ M B contain at
least 2 vertices each one. Otherwise if any of these sets consists of at most one vertex w then w (if exists) together with
L(G, u,3) \ {z1, z2, t1, t2} constitute a good cut.

Assume that |L(G, u,3) = 8|. Assume first that neither t1 nor t2 belong to M B . If at least one neighbor of t1 and t2 does
not belong to L(G, u,3), we are done. Otherwise, 3 edges connect t1 and t2 to at least 2 vertices z3, z4 of L(G, u,3)\{z1, z2}.
To avoid L(G, u,3) \ {z1, z2, z3, z4} to be a good cut, z3, z4 must be adjacent to at least one vertex y outside of M B which
is different from t1, t2. Since y ∈ SN(t1, t2), it is the desired third vertex removed from V (C(G R)).

Assume now that exactly one of {t1, t2} (say, t2) belongs to L(G, u,3). Assume first that N({t1, t2}) \ M B = ∅. In this case
t1, in order to be of degree 3, is incident to 2 vertices z4, z5 of L(G, u,3) \ {z1, z2, t2}. These vertices must be incident to
2 vertices y4, y5 outside of M B , which are different from t1: otherwise L(G, u,3) \ {z1, z2, t2, z4, z5} and together with at
most one vertex of y4, y5 constitute a good cut. Vertices y4, y5 (which belong to SN(t1, t2) \ M B) together with t1 are the
desired 3 vertices removed from V (C(G R)).

Now assume that N({t1, t2}) \ M B �= ∅. There is nothing to prove if |N({t1, t2}) \ M B| � 2 or SN(t1, t2) \ M B �= ∅. We
assume the opposite and derive a contradiction. Since |N({t1, t2}) \ M B| = 1, t1 is incident to at least one vertex z4 of
L(G, u,3)\{z1, z2, t2}. This vertex z4 has at least one neighbor y4 outside of M B which is different from t1 and from the only
vertex w of N({t1, t2}) \ M B: otherwise, since w is not adjacent to any vertex of SN(t1, t2) \ M B , L(G, u,3) \ {z1, z2, t2, z4}
constitute a good cut. Vertex y4 belongs to SN(t1, t2) \ M B in contradiction to our assumptions.

Finally, we assume that both t1 and t2 belong to L(G, u,3). In order to avoid L(G, u,3) \ {z1, z2, t1, t2} to be a good cut,
we get that both N({t1, t2}) \ M B and SN(t1, t2) \ M B are nonempty which contributes at least 2 vertices removed from
V (C(G R)) in addition to M B . To complete the proof, we have to show that there one more vertex outside of M B , which
is removed from C(G R). To this end, denote the vertices of L(G, u,3) \ {z1, z2, t1, t2} by z5, z6, z7, z8. Observe that there is
at least one edge between {w1, w2} and {z5, . . . , z8} (recall that vertices w1, w2 are the shown in Fig. 7). Indeed, if not

Author's personal copy

210 I. Razgon / Journal of Discrete Algorithms 7 (2009) 191–212

then |L(G, v1,3) ∩ L(G, u,4)| = 0. Taking into account that |L(G, u,4)| � 5, there is at least one neighbor v of u such that
|L(G, v,3) ∩ L(G, u,4)| � 3, i.e. |L(G, u,3) + L(G, v,3) ∩ L(G, u,4)| � 11 which is an earlier case considered in Section 10.1.
Now, assume w.l.o.g. that w1 is adjacent to z5. As before, we see that z5 is adjacent to some vertex y5 which does not
belong to N({t1, t2}) \ M B as well as to SN(t1, t2) \ M B: otherwise z6, z7, z8 with the only vertex of SN(t1, t2) \ M B form
a good cut. Since this vertex y5 belongs to N+(N+({w1, w2})), it is removed from V (C(G R)) by Lemma 8 and this is the
desired third vertex in the considered case. �
11. Correctness proof, complexity analysis, and a new upper bound for the parameterized VC-3 problem

Theorem 2. FindIndep(G) returns a MIS of G.

Proof. By induction on |V (G)|. The statement is trivial for |V (G)| = 0. For each branching decision applied by FindIndep(G)

if |V (G)| > 0, we have proven correctness of these decisions given the correctness of recursive calls of FindIndep(G) applied
to the residual graphs (Lemma 1, Corollary 1, Lemmas 2, 3, 11, 13, the discussion in Section 7.1, Lemmas 18, 21, 23). Since
the residual graphs have smaller number of vertices than G , the correctness of FindIndep(G) applied to them follows from
the induction assumption. �

In the previous sections we proved a number of lemmas regarding the sizes of FNSes of G . These lemmas are summarized
in the following lemma.

Lemma 27. A nontrivial graph G can have at most 3 FNSes. Assume that G has two FNSes G L and G R . Then at least one of the following
statements happens.

(1) |V (C(G L))| � |V (C(G))| − 10, |V (C(G R))| � |V (C(G))| − 8.
(2) |V (C(G L))| � |V (C(G))| − 11, |V (C(G R))| � |V (C(G))| − 7.
(3) |V (C(G L))| � |V (C(G))| − 12, |V (C(G R))| � |V (C(G))| − 6.

If G has 3 FNSes G L , G M , and G R then at least one of the following statements happens.

(1) |V (C(G L))| � |V (C(G))| − 10, |V (C(G M))| � |V (C(G))| − 17, |V (C(G R))| � |V (C(G))| − 15.
(2) |V (C(G L))| � |V (C(G))| − 10, |V (C(G M))| � |V (C(G))| − 10, and |V (C(G R))| � |V (C(G))| − 21.

Moreover, in the last case |V (C(G L))| = 0 or |V (C(G L))| � |V (C(G))| − 11 or G L has at most two FNSes.

Proof. The upper bounds on the sizes of FNSes provided in the present lemma are obtained in Lemmas 9, 12, 14–20, 22,
24–26. These lemmas compute the upper bounds for all possible branching decisions made by FindIndep(G). Hence at least
one statement in the above two lists is true.

Let us show that the additional requirements hold if the very last statement is satisfied. Assume that |V (C(G L))| > 0.
Recall that G L is obtained by selection of vertex u as shown in Fig. 6. The immediate effect of selection of u to the residual
graph is removal of u and the neighbors of u. The degrees of vertices of L(G, u,2) decrease to 2, the degrees of the rest of
the vertices of G remain the same as they were before the selection of u, i.e. 3 (recall that in the considered case, graph G
is cubic). Also, the vertex u is explicitly selected so that G[L(G, u,2)] has an isolated vertex v , as stated in Sections 10.1,
10.2, and 10.3.4 In other words, as a result of selection of u, v is incident to two vertices y1 and y2 both of degree 3.

If G L is obtained as a result of transformation of the residual graph described in Sections 2 and 3 and this transformation
removes or decreases the degree of at least one more vertex of degree 3, we have |V (C(G L))| � |V (C(G))| − 11. Otherwise,
if a good cut of degree 3 separating or a rectangle or a triangle is detected in C(G L) then G L has two FNSes. If none of
these cases happens then observe that y1 and y2 are connected in C(G L) by an odd edge replacing vertex v . Hence, the
case considered in Section 8 is satisfied. Consequently, C(G L) again has two FNSes. �

Let us call a recursive application of FindIndep to a graph G ′ atomic if during the processing, FindIndep(G ′) does not apply
itself recursively.

Theorem 3. Let G be a nontrivial graph with |V (C(G))| = n. Then the number of atomic recursive calls made during the processing of
FindIndep(G) is at most cn, where c = 1.0892.

Proof. By induction on n. The theorem is clear for n = 0 or if FindIndep(G) does not apply itself recursively. Hence assume
that n > 0 and the theorem holds for any nontrivial G ′ with |V (C(G ′))| < n.

4 This is the place we use the first condition of Section 10.1 and the fact the vertex selection in Section 10.3 is good.

Author's personal copy

I. Razgon / Journal of Discrete Algorithms 7 (2009) 191–212 211

Assume that G has only one FNS G ′ . Graph G is transformed into G ′ by a sequence of consecutive “one-branch” recursive
calls finishing by the call FindIndep(G ′). Clearly, each of these recursive calls is not an atomic one. Consequently, the number
of atomic calls applied during the processing of FindIndep(G) equals the number of recursive calls applied during the
processing of FindIndep(G ′). Taking into account that |V (C(G ′))| < |V (C(G))| (transformation from a nontrivial graph into
its FNS always involves selection or removal of a vertex of degree 3), the statement of the theorem follows by the induction
assumption.

Assume now that G has two FNSes G L and G R . The transformation of G into each one of them involves an operation
of selection or removal of a vertex and a sequence of simplifying recursive call finishing by the call to the respective
FNS. Clearly, none of these calls is an atomic one. It follows that the number of atomic recursive calls applied during
the execution of FindIndep(G) equals the sum of such recursive calls regarding FindIndep(G L) and FinbdIndep(G R). By the
induction assumption, at most cn−kL + cn−kR atomic recursive calls are applied during the processing of FindIndep(G) where
|V (C(G L))| = n−kL , |V (C(G R))| = n−kR . To prove the theorem for the considered case, one must show that cn−kL +cn−kR �
cn or, simplifying the inequality, that c−kL + c−kR � 1.

By Lemma 27, 3 different cases are possible regarding kL and kR : [kL � 10 and kR � 8] or [kL � 11 and kR � 7] or [kL � 12
and kR � 6]. A simple computation shows that for each of these cases c−kL + c−kR � 1. Thus the theorem holds for the case
where G has two FNSes.

Assume that G has 3 FNSes G L , G M , G R . By Lemma 27, there are two possibilities of bounds on the sizes of FNSes. If
the first happens then, analogously to the case with two FNSes, the statement follows from the easily verified inequality
c−10 + c−17 + c−15 � 1. If G L , G M , and G R are bounded by the set of inequalities |V (C(G L))| � |V (C(G))|− 10, |V (C(G M))| �
|V (C(G))| − 10, and |V (C(G R))| � |V (C(G))| − 21 then the reasoning involves additional requirement regarding G L specified
by Lemma 27.

In particular, if |V (C(G L))| � |V (C(G))| − 11 then, analogously to the previous cases, the theorem follows from the easily
verified inequality c−11 +c−10 +c−21 � 1. In the case G L is the empty graph, to prove the desired statement one has to show
that the inequality 1 + cn−10 + cn−21 � cn holds. Dividing all the items by cn , we obtain the inequality c−n + c−10 + c−21 � 1.
Now observe that n � 50 because otherwise FindIndep(G) does not apply itself recursively. The last inequality immediately
follows from this observation.

If none of the above two cases happens regarding G L then G L has 2 FNSes. By Lemma 27 and taking into account
that |V (C(G L))| � |V (C(G))|− 10, [|V (C((G L)L))| � |V (C(G))|− 20 and |V (C((G L)R))| � |V (C(G))|− 18] or [|V (C((G L)L))| �
|V (C(G))|−21 and |V (C((G L)R))| � |V (C(G))|−17] or [|V (C((G L)L))| � |V (C(G))|−22 and |V (C((G L)R))| � |V (C(G))|−16].
Arguing as for the previous cases, one can see that the number of atomic recursive calls made by FindIndep(G) equals the
sum of the amounts of atomic recursive calls made by FindIndep((G L)L), FindIndep((G L)R), FindIndep(G M), FindIndep(G R).
Applying the induction assumption and elimination of cn , one gets that the statement of the theorem immediately follows
from the easily verified inequalities c−20 + c−18 + c−10 + c−21 � 1, c−21 + c−17 + c−10 + c−21 � 1, and c−22 + c−16 + c−10 +
c−21 � 1.

Thus we have proven the statement of the theorem for the cases where G has no FNSes (where FindIndep(G) does not
apply itself recursively) as well for the cases where has 1, 2, or 3 FNSes. By Lemma 27, we have covered all the possible
cases, which concludes the proof of the theorem. �

Now, the complexity of FindIndep(G) can be derived as a corollary from Theorem 3.

Corollary 3. The runtime of FindIndep(G) is bounded by O (1.0892n), where n = |V (G)|.

Proof. We may assume that G is a nontrivial graph because otherwise, it is transformed into a nontrivial graph within
a polynomial time. We will show that the time complexity of FindIndep(G) polynomially relates to the number of atomic
recursive calls made during the execution of FindIndep(G), which is at most 1.0892|V (C(G))| by Theorem 3. Taking into
account that |V (C(G))| � n and that the constant 1.0892 is obtained by rounding the base of the exponent that eliminates
all the polynomial factors, the desired statement will immediately follow.

The operations performed by FindIndep(G) can be classified as decision operations that select vertices to the MIS being
constructed or remove them and auxiliary operations (checking properties of the given graph, updating the residual graph
resulting from the last decision operation, etc). It is clear from the description of FindIndep that the number of auxiliary
operations is polynomially related to the number of the decision operations (auxiliary operations are applied either prior to
a decision operation in order to select an appropriate one or as a result of the decision operation; each decision operation
is accompanied by a polynomial number of auxiliary operations). Consequently, it is sufficient to show that the number of
atomic recursive calls made by FindIndep(G) polynomially relates to the number of decision operations.

There is a one-to-one correspondence between the decision operations made by FindIndep(G) and the general number
of recursive calls (not only atomic ones) made during the execution of FindIndep(G): each decision operation results in a
recursive call as well as each recursive call is a result of some decision operation. For each atomic recursive call, there
is a sequence of consecutive recursive calls that eventually causes the atomic call. Conversely, each recursive call participates
in such a sequence. Each such a sequence has length O (n). Indeed, let FindIndep(G1) be a recursive call in this sequence
and let FindIndep(G2) be its successor. Then |V (G2)| < |V (G1)|. Consequently, each sequence of recursive calls starting from
FindIndep(G) and leading to an atomic call consists of at most n elements.

Author's personal copy

212 I. Razgon / Journal of Discrete Algorithms 7 (2009) 191–212

Thus the general number of recursive calls made by FindIndep(G) is O (n) multiplied by the number of atomic calls.
Considering the one-to-one correspondence of the general number of recursive calls to the number of decision operations,
the corollary follows. �

Using Corollary 3, we easily obtain a new upper bound for the parameterized Vertex Cover problem for graphs with
maximum degree 3 (VC-3). Recall that given a graph G with maximum degree 3 and a constant k, the problem asks
whether there is a vertex cover of size at most k. A nice property regarding this problem [4] states that there is an O (n)

transformation of G into a maximum degree 3 graph G ′ , |V (G ′)| � 2k such that G ′ admits a vertex cover of size at most k
if and only if G does. In terms of parameterized complexity theory, graph G ′ is called a kernel of G .

The parameterized VC-3 problem can be solved regarding G ′ by checking whether the minimum vertex cover of G ′ is
larger than k or not. The minimum vertex cover is a complement of a MIS of G ′ , which can be computed by FindIndep(G ′)
in time O (1.08922k) < O (1.1864k) (Corollary 3). Taking into account that graph G ′ can be obtained from G in O (n), the
VC-3 problem can be solved for graph G in time O (1.1864k + n), which improves over the bound O (k2 ∗ 1.194k + n) [4],
which is currently the smallest one to the best of our knowledge.

Besides improving the upper bound on the VC-3 problem, the above result has a methodological interest. To the best of
our knowledge, this is the first time where a good parameterized algorithm is obtained by design and analysis of an exact
exponential algorithm. Thus the result connects the areas of Exact Complexity and Parameterized Complexity and opens a
new application area of design and analysis of exact algorithms.

References

[1] R. Beigel, Finding maximum independent sets in sparse and general graphs, in: SODA, 1999, pp. 856–857.
[2] N. Bourgeois, B. Escoffier, V. Paschos, An o*(1.0977n) exact algorithm for max independent setin sparse graphs, in: IWPEC, 2008, pp. 55–65.
[3] J. Chen, I. Kanj, W. Jia, Vertex cover: Further observations and further improvements, Journal of Algorithms 41 (2) (2001) 280–301.
[4] J. Chen, I. Kanj, G. Xia, Labeled search trees and amortized analysis: Improved upper bounds for NP-Hard problems, Algorithmica 43 (4) (2005) 245–

273.
[5] J. Chen, L. Liu, W. Jia, Improvement on vertex cover for low-degree graphs, Networks 35 (4) (2000) 253–259.
[6] R. Diestel, Graph Theory, second ed., Springer-Verlag, Heidelberg, 1997.
[7] F. Fomin, K. Høie, Pathwidth of cubic graphs and exact algorithms, Information Processing Letters 97 (5) (2006) 191–196.
[8] M. Fürer, A faster algorithm for finding maximum independent sets in sparse graphs, in: LATIN, 2006, pp. 491–501.
[9] A. Kojevnikov, A. Kulikov, A new approach to proving upper bounds for max-2-sat, in: SODA, 2006, pp. 11–17.

[10] I. Razgon, A faster solving of the Maximum Independent Set problem for graphs with maximal degree 3, in: ACiD 2006, 2006, pp. 131–142.
[11] G. Woeginger, Exact algorithms for NP-hard problems: A survey, in: Combinatorial Optimization, 2001, pp. 185–208.

