Solving SAT for CNF formulas with a
one-sided restriction on variable occurrences

Daniel Johannsen!, Igor Razgon?, and Magnus Wahlstrom?!

! Max-Planck-Institut fiir Informatik, Saarbriicken, Germany
2 Cork Constraint Computation Centre, University College Cork, Ireland

Abstract. In this paper we consider the class of boolean formulas in
Conjunctive Normal Form (CNF) where for each variable all but at
most d occurrences are either positive or negative. This class is a general-
ization of the class of CNF formulas with at most d occurrences (positive
and negative) of each variable which was studied in [Wahlstrom, 2005].
Applying complement search [Purdom, 1984], we show that for every d
there exists a constant v4 < 2 — ﬁ such that satisfiability of a CNF
formula on n variables can be checked in runtime O(vy) if all but at
most d occurrences of each variable are either positive or negative. We
thoroughly analyze the proposed branching strategy and determine the
asymptotic growth constant 4 more precisely. Finally, we show that the
trivial O(2") barrier of satisfiability checking can be broken even for a
more general class of formulas, namely formulas where the positive or
negative literals of every variable have what we will call a d—covering.
To the best of our knowledge, for the considered classes of formulas
there are no previous non-trivial upper bounds on the complexity of
satisfiability checking.

1 Introduction

Design of fast exponential algorithms for satisfiability checking has attracted
considerable attention of various research communities in applied as well as in
theoretical fields of computer science. Since it is unknown how to break the
trivial O(2™) barrier for the runtime of the unrestricted satisfiability problem
(SAT) on n variables, current research concentrates on more efficient satisfia-
bility checking of restricted classes of conjunctive normal form (CNF) formulas.
The most widely considered restriction is &~SAT, including all formulas whose
maximal clause length is at most k. Currently the best runtime is O((Q - %H)”)
for a deterministic algorithm [3], and a stronger but comparable bound for a
randomized one [4]. However, to improve the understanding of how the struc-
ture of a CNF formula influences the efficiency of satisfiability checking, it is
important to study further sub-classes of CNF formulas. Two such sub-classes
are formulas with restrictions on (i) the value of the density m/n (where m is
the number of clauses) and (ii) on the number of occurrences of each variable.
Calabro, Impagliazzo, and Paturi [2] proved that for both classes satisfiability
can be checked in runtime O(y™) with v < 2, and asymptotically related the

bounds of k—SAT, SAT with m/n < A, and SAT with at most d occurrences per
variable to one another, essentially showing that the two latter bounds behave
as the former one with £k = O(log A) and k = O(logd), respectively. For small
values of d, Wahlstrom [7,6] has given a stronger bound for formulas with at
most d occurrences per variable of order O(1.1279(4=2)7),

The main contribution of this paper is extending the boundaries of the classes
of CNF formulas for which satisfiability can be checked faster than in run-
time O(2"). In particular, we continue the line of research of [7], where the
total number of occurrences (positive and negative) of each variable in a CNF
formula F was restricted to at most d. Now, for each variable x of F' we call the
literal ¢ € {x, -z} with less occurrences in F' minor and its negation magjor. We
then only restrict the number of minor literals in F' to be at most d, that is, the
total number of literal occurrences per variable in F' remains unrestricted.

We first study the satisfiability of formulas where for each variable all but one
occurrences are positive or negative and give an algorithm with runtime O*(3"/ 3)
(Theorem 1)3. Then, we propose an algorithm based on complement search [5]
and show that for each fixed d there exists a constant v; < 2 such that the
satisfiability of CNF formulas with at most d minor literals per variable can be
checked in runtime O(v}}) (Theorem 2). Next, we investigate the main parame-
ter of the algorithm closer and bound ~4 by 2 — ﬁ (Theorem 3). Finally, we
further generalize the class of CNF formulas with at most d minor literals per
variable to a class we call CNF formulas with a d—covering and present an algo-
rithm checking satisfiability of such formulas in runtime O* (97 ;) (Theorem 4),
where @)} < 2 is the Fibonacci constant of order d as defined below.

2 SAT for CNF formulas with unique minor literals

In this section we study CNF formulas with exactly one minor literal per variable.

Lemma 1. A CNF formula with at most one minor literal per variable either
contains a clause consisting only of minor literals or is trivially satisfied by
satisfying all magjor literals.

This basic observation allows us to check the satisfiability of such formulas.

Algorithm 1
Input: CNF formula F with set of minor literals M, each occurring once.
Output: TRUE if I is satisfiable, otherwise FALSE.
If F is empty then return TRUE.
If F contains an empty clause then return FALSE.
If F contains a clause C = ({1 V ...V £,) with £1,... L. € M then
let C; = C[¢; = FALSE]* fori € {1,...,7} and
try branches F[¢; = TRUE,C; = FALSE] fori e {1,...,r}
else evaluate F[¢ = FALSE for all £ € M].

3 We use the O*(+) notation to suppress factors polynomial in the length of the input.

* For a literal £ or a clause C' we denote by F[¢/C = TrRUE/FALSE] the residual
formula obtained by assigning TRUE or FALSE to £ or all literals of C, respectively.
If this assigns all literals of a clause to FALSE, then leave the clause as an empty
clause (indicating that a contradiction has been encountered).

According to Lemma 1 this algorithm is correct. The runtime is dominated by
the branching strategy and thus of order max,cy ™" which is worst at r = 3.

Theorem 1. Let n € N and let F be a CNF formula on n variables with at
most one minor literal per variable. Then Algorithm 1 checks the satisfiability
of F in runtime O*(3"/3) C O(1.4423").

Correspondingly, we can express a pseudo-lower runtime bound of 9(2"/ 2)
which holds if the general SAT problem cannot be solved faster than in 2(27).

Lemma 2. Let n € N and v > 1. If the satisfiability of any CNF formula
on n wvariables with at most one minor literal per variable can be checked in
runtime O(y™) then the satisfiability of any (unrestricted) CNF formula on n
variables can be checked in runtime O(y*").

Proof. Every general CNF formula on n variables can be equivalently trans-
formed to a CNF formula on 2n variables such that each minor literal occurs
at most once. For each variable, replace all minor literals by a new variable and
add a clause containing the minor literal and the negation of the new variable.

A similar reduction from 3-CSP improves this pseudo-lower bound to £2(3™/%)
but is omitted due to lack of space.

3 SAT of CNF formulas with at most d minor literals

The following lemma by Purdom [5] allows us to recursively check the satisfia-
bility of CNF formulas with n variables and at most d minor literals per variable
in runtime O(y™) with v < 2.

Lemma 3. Let £ be a literal of a CNF formula F. Then either F[{ = FALSE] is
satisfiable or for all satisfying assignments of F there is a clause C containing £
such that all literals of C are assigned FALSE except for £ which is assigned
TRUE.

The previous lemma allows us to check the satisfiability of CNF formulas with
at most d minor literals per variable by using a branching strategy parameterized
by the branching threshold k for short clauses.

Algorithm 2
Parameter: Branching threshold k for short clauses.
Input: CNF formula F with set of minor literals M
Output: TRUE if I is satisfiable, otherwise FALSE.
If F is empty then return TRUE.
If F contains an empty clause then return FALSE.
If F contains a clause C = (L1 V ...V £,.) with r < k then
try branches F[¢; = ... ={;_1 = FALSE,{; = TRUE] fori e {1,...,r}
else
pick £ € M contained in the clauses C1,...,Cs and
let C! = C;[¢ = FALSE] fori € {1,...,s} and
try branches F[¢{ = TRUE] and F[¢ = TRUE, C] = FALSE] fori € {1,...,s}.

Let T'(n) be the runtime of the algorithms branching procedure (where n is
the number of variables). The runtime of the branch where the shortest clause
is of size r < k is of order T'(n — 1) + ... 4+ T'(n — r) which is at most

Ta(n) = Y T(n—1) (1)

The growth constant of this recursion is known to be the k—th order Fibonacci
number @y, (see, e.g., [8]). That is, Ta(n) € O*(P}), where P, is the unique
solution of the equation #%(2 —) = 1 in the interval (1,2). The number @, is
the golden ratio (1 4 /5)/2, more initial values of &}, are given in Table 1.

The runtime of the branch where the shortest clause is of size at least k£ + 1
is at most Tg(n) =T(n—1)+s-T(n—(k+1)) where s is the number of clauses
containing the eliminated literal. Thus, for s < d, this runtime is at most

Tg(n)=Tn—-1)+d-T(n—1-k). (2)

Hence, the maximum of T4(n) and T (n) is an upper bound on the run-
time T'(n) of Algorithm 2 with parameter k& on CNF formulas with at most d
minor literals per variable. Obviously, T'(n) is strongly influenced by the choice
of k. For example, if we choose k = d + 1, then T'4(n) dominates T (n).

Theorem 2. Let n,d € N and let F be a CNF formula on n variables with at
most d minor literals per variable. Then Algorithm 2 with parameter d+1 checks
the satisfiability of F' in runtime O*(®j,).

In the remainder of this section we see, how to choose the parameter k opti-
mally for every fixed d € N. Suppose that k is also fixed. Then T'(n) is of order 7",
where v € (1, 2) is the smallest constant that satisfies both recursions (1) and (2).

Lemma 4. Letn,d, k € N withd > 2 and let F be a CNF formula on n variables
with at most d minor literals per variable. Then Algorithm 2 with parameter k
checks the satisfiability of F in runtime O*(y™) for all v € (1,2) with

d 1
— << —. 3)
y—1 2-y

Proof. The statement follows by induction on n. (]

A direct consequence of the previous lemma is that the minimal ~y satisfying
condition (3) dominates the growth constant of T'(n) for given d and k. Clearly,
the condition is satisfied for every d > 2 and k € N as v tends to two. On the
other hand, as tends to one, eventually one of the two inequalities is violated.
Thus, a minimal satisfies at least one of the two equations with equality.

On the other hand, if there exists a k such that the corresponding ~y satisfies
both inequalities, then ~y is optimal for all values of k (decreasing k violates the
first inequality while increasing k violates the second one; in both cases we need
to increase 7 to satisfy condition (3) again). This situation occurs if v = 2 — ﬁ.
In this case the lower and the upper bound on v* both have the value d + 1. For
smaller values of 7, condition (3) can never be satisfied.

Lemma 5. Let d € N with d > 2. Then 2 — d%ﬂ is a lower bound on all ~y
satisfying condition (3) for any k € N.

Note that this lower bound is not necessarily attained since k is integral. If
we drop this condition, then for k} = log(d + 1)/(log(2d + 1) — log(d + 1)) both
inequalities in condition (3) become equalities. For k > [k}], the right inequality
in condition (3) is violated for v = 2 — ﬁ, while the left right inequality is
satisfied. For k < |k}] the opposite holds. The further k is apart from £}, the
more we have to increase v to satisfy the violated inequality. Thus one of |k}
and [k)] is optimal, depending for which the corresponding ~ is smaller. Table 1
lists k4, 74 and yp for the initial values of d.

Lemma 6. Let d > 2 and let k}; = 1og(2dl-?-g1()djjg)(d+1)' Moreover, let v4 and g

be the unique solutions of (2 —y4) 'yz[‘kd] =1and (yg—1) 7}3’“” = d in the inter-
val (1,2). Then ~g = min{ya,yp} satisfies condition (3) for kq € {[k}], |k}]}
chosen respectively. Furthermore, in this v4 is minimal for all k.

Finally, we show a closed form upper bound for the runtime of Algorithm 2.

Theorem 3. Let n,d € N with d > 2 and kq and v4 as in Lemma 6. Then
Algorithm 2 with parameter kq checks the satisfiability of a CNF formula on n
variables with at most d minor literals per variable in runtime O((2 — T{H)")

Proof. For d > 2, v is smaller than d/(y — 1) and strictly smaller than 1/(2 —)
divided by d/(y—1). Hence, there exists a k € N such that v =2 — Tlﬂ satisfies
condition (3). The statement follows from Lemma 4 and Lemma 5.

4 Further generalization

We can further generalize Lemma 3 to obtain an algorithm of runtime O(y")
with v < 2 for a class of CNF formulas which neither have short clauses nor a
one-sided restriction on the variable occurrences.

d ka kS YA VB 2— 77 2— 53 Dii1

2 2 2.15064 [1.69562 1.83929 | 1.66667 1.80000 1.83929
3 3 2.47720 | 1.86371 1.83929| 1.75000 1.85714 1.92756
4 3 2.73817 | 2.00000 1.83929| 1.80000 1.88889 1.96595
5 3 2.95602 | 2.11634 1.83929| 1.83333 1.90909 1.98358
6 3 3.14343 | 1.88947 1.92756 | 1.85714 1.92308 1.99196

Table 1. Runtime bounds for Algorithm 2 with parameter k¥ on CNF formulas with
at most d minor literals per variable. For d = 2,...,6 the table shows the following
values: the optimal choice of the branching threshold k4 and the corresponding relaxed
real-valued optimum kJ; the two choices of the optimal growth constant y4 and g
(Lemma 6) with the better one in bold face; the lower bound 2—1/(d+1) (Lemma 5), the
upper bound 2—1/(2d+1) (Theorem 3), and the weak upper bound @4 (Theorem 2).

A covering of a literal £ in a CNF formula F is a set L of literals, such that (i)
no literal and its negation are both in L, (ii) £ is not in L, and (iii) all clauses
of F' containing ¢ also contain a literal of L. We say that F' has a d—covering if
one of the two literals corresponding to each variable has a covering of size d.

It is not hard to see that a CNF formula with clauses of size at least d+1 and
at most d minor literals per variable has a d—covering. But, this weaker condition
is still sufficient for breaking the O(2") runtime barrier.?

Algorithm 3

Input: CNF formula F with set of minor literals M

Output: TRUE if I is satisfiable, otherwise FALSE.

If F' is empty then return TRUE.

If F contains an empty clause then return FALSE.

Pick literal ¢y covered by (1, ...44 and

try branches F[{; = ... =/{;_; = TRUE,{; = FALSE] fori € {0,...,d}

According to Lemma 3 and the definition of a d—covering of a CNF formula F',
any satisfying assignment of F' also satisfies the clause (=y V =€y V -+ - V =ly).

Theorem 4. Let n,d € N. Then Algorithm 8 checks the satisfiability of a CNF
formula on n variables that has a d-covering in runtime O*(Py_ ;).

References

1. N. Alon, D. Moshkovitz, and S. Safra. Algorithmic construction of sets for k-
restrictions. ACM Trans. Algorithms, 2(2):153-177, 2006.

2. C. Calabro, R. Impagliazzo, and R. Paturi. A duality between clause width and
clause density for SAT. Computational Complexity, Annual IEEE Conference on,
0:252-260, 2006.

3. E. Dantsin, A. Goerdt, E. A. Hirsch, R. Kannan, J. M. Kleinberg, C. H. Papadim-
itriou, P. Raghavan, and U. Schoning. A deterministic (2 — 2/(k 4+ 1))" algorithm
for k-SAT based on local search. Theoretical Computer Science, 289(1):69-83, 2002.

4. R. Paturi, P. Pudldak, M. E. Saks, and F. Zane. An improved exponential-time
algorithm for k-sat. J. ACM, 52(3):337-364, 2005.

5. P. W. Purdom. Solving satisfiability with less searching. IEEFE Trans. Pattern Anal.
Machine Intell., 6(4):510-513, 1984.

6. M. Wahlstrom. An algorithm for the SAT problem for formulae of linear length. In
Proceedings of the 18th Annual European Symposium on Algorithms (ESA-2005),
pages 107-118, 2005.

7. M. Wahlstrom. Faster exact solving of SAT formulae with a low number of occur-
rences per variable. In Proceedings of SAT, pages 309-323, 2005.

8. D. Wolfram. Solving generalized Fibonacci recurrences. The Fibonacci Quarterly,
36.2:129-145, 1998.

For fixed d € N we can test for a d-covering of a CNF formula (and also find
it) in runtime O(n'?). However, Parameterized Complexity Theory suggests also a
lower bound of .Q(nd). Furthermore, the problem to compute a minimal covering of a
given CNF formula is a generalization of the hitting set problem, which in polynomial
time cannot be approximated better than within a factor ©(logn) unless P=NP [1].

