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ABSTRACT. We present a method for reducing the treewidth of a grapthewgdrieserving all the
minimal s — ¢ separators. This technique turns out to be very useful tabéshing fixed-parameter
tractability of constrained separation and bipartizapooblems. To demonstrate the power of this
technique, we prove the fixed-parameter tractability of ¢he ¢ Cut, Multicut, and Bipartization
problems (parameterized by the maximal nunibef vertices being removed) with various additional
restrictions (e.g., the vertices being removed from thelyfarm an independent set). These results
answer a number of open questions in the area of parameteodreplexity.

1. Introduction

Finding cuts and separators is a classical topic of comtiigtoptimization and in recent
years there have been an increase of interest in the fixedrgder tractability of such problems
[19, 11, 15, 28, 16, 13, 5, 20]. Recall that a problenfixed-parameter tractabléor FPT) with
parameterk if it can be solved in timef (k) - n®(") for some functionf (k) depending only on
k [10, 12, 21]. In typical parameterized separation probleths parametek is the size of the
separator we are looking for, thus fixed-parameter traiiakiith respect to this parameter means
that the combinatorial explosion is restricted to the sizéhe separator, but otherwise the running
time depends polynomially on the size of the graph.

The main technical contribution of the present paper is arééra stating that given a grah
two terminal vertices, ¢, and a parametet, we can compute in BPT-time a graphG* having the
treewidth bounded by a function &fwhile (roughly speaking) preserving all the minimal- ¢
separators of size at most Combining this theorem with the well-known Courcelle’'sebinem,
we obtain a powerful tool for proving the fixed parametertahdity of constrained separation and
bipartization problems. We demonstrate the power of théauetiogy with the following results.

e We prove that thenINIMUM STABLE s — t CUT problem (Is there an independent $gt
of size at most: whose removal separatesandt?) is fixed-parameter tractable. This
problem received some attention in the community. Our tieghes allow to prove various
generalizations of this result very easily. First, instefiquiring thatS is independent, we
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can require that it induces a graph that belongs to a hergdi@ssg; the problem remains
FPT. Second, in theauLTICUT problem a list of pairs of terminals are givés, t,), ...,
(s¢,ty) and S is a set of at mosk vertices that induces a graph frahand separates;
from t; for everyi. We show that this problem =T parameterized by and/, which is a
very strong generalization of previous results [19, 28]ird ithe results generalize to the
MULTICUT-UNCUT problem, where two sets;, 15 of pairs of terminals are given, arfl
has to separate every pairBf andshould notseparate any pair @f;.

e We prove that th&XACT STABLE BIPARTIZATION problem (Is there an independent set
of size exactlyk whose removal makes the graph bipartite?) is fixed-parametetable
(FPT) answering an open question posed in 2001 by Diaz et al. \#. establish this
result through proving that th&TABLE BIPARTIZATION problem (Is there an independent
set of sizeat mostk whose removal makes the graph bipartite ?}As, answering an open
question posed by Fernau [7].

e As a demonstration, we show that theGE-INDUCED VERTEX CUT (Are there at mosk
edges such that removal of their endpoints separates tven ggrminalss andt?) iSFPT,
answering an open problem posed in 2007 by Samer [7]. Thevatioth behind this prob-
lem is described in [27]. While the reader might not be paltidy interested in this exotic
variant ofs — ¢ cut, we believe that it nicely demonstrates the messagesgfaper. Slightly
changing the definition of a well-understood cut problemallgumakes the problem NP-
hard and determining the parameterized complexity of saciants directly is by no means
obvious. On the other hand, using our techniques, the fizednpeter tractability of many
such problems can be shown with very little effort. Let us titan(without proofs) three
more variants that can be treated in a similar way: (1) séparandt by the deletion of
at mostk edges and at mogt vertices, (2) in a 2-colored graph, separatandt by the
deletion of at mosk black and at most white vertices, (3) in &-colored graph, separate
s andt by the deletion of one vertex from each color class.

Thus our method leads to the solution of several indepenueblems; it seems that the same
combinatorial difficulty lies at the heart of these problen®ur technique manages to overcome
this difficulty and it is expected to be of use for further geshs of similar flavor. Note that while
designingrPT-time algorithms for bounded-treewidth graphs and in paldir the use of Courcelle’s
Theorem is a fairly standard technique, we use this teclerfiouproblems where there is no bound
on the treewidth in the input.

(Multiterminal) cut problems [19, 16, 13, 5] play a myst&i$o not yet fully understood role in
the fixed-parameter tractability of certain problems. HrgthatBIPARTIZATION [25], DIRECTED
FEEDBACK VERTEX SET[6], andALMOST 2-SAT [23] areFPT answered longstanding open ques-
tions, and in each case the algorithm relies on a nonobvisesiiseparators. FurthermoenGe
MULTICUT has been observed to be equivalenFt@zy CLUSTER EDITING, a correlation clus-
tering problem [3, 8, 1]. Thus aiming for a better understagdf separators in a parameterized
setting seems to be a fruitful direction of research. Owiltegxtend our understanding of separa-
tors by showing that various additional constraints candosemmodated. Itis important to point out
that our algorithm is very different from previous paranmiged algorithm for separation problems
[19, 16, 13, 5]. Those algorithms in the literature explbitertain nice properties of separators,
and hence it seems impossible to generalize them for thégonsbwe consider here. On the other
hand, our approach is very robust and, as demonstrated xaarples, it is able to handle many
variants.

The paper assumes the knowledge of the definition of trebwaidd its algorithmic use, includ-
ing Courcelle’s Theorem (see the surveys [2, 14]).
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2. Treewidth reduction

The main combinatorial result of the paper is presented i;jmgbction. We start with some
preliminary definitions. Two slightly different notion oéparation will be used in the paper:

Definition 2.1. We say that a sef of verticesseparatesets of verticesA and B if no component
of G\ S contains vertices from botdd \ S andB \ S. If s and¢ are two distinct vertices of7,
then ans — ¢ separatoris a setS of vertices disjoint from{s, ¢} such thats and¢ are in different
components of7 \ S.

In particular, if S separatest andB, thenAN B C S. Furthermore, given a sét of vertices,
we say that a sef of vertices is @alanced separatoof W if |IWNC| < |IW|/2 for every connected
componentC of G \ S. A k-separatoris a separatof with |S| = k. The treewidth of a graph is
closely connected with the existence of balanced separator

Lemma 2.2([24], [12, Section 11.2])

(1) If G(V, E) has treewidth greater thadk, then there is a séi” C V' of size2k + 1 having
no balanced:-separator.
(2) If G(V, E) has treewidth at most, then every” C V has a balancedk + 1)-separator.

Note that the contrapositive of (1) in Lemma 2.2 says thatvérg W has a balancea-
separator, then the treewidth is at mdst This observation, and the following simple extension,
will be convenient tools for showing that a certain graph loastreewidth.

Lemma 2.3. Let G be a graph,C1, ..., C, subsets of vertices, and lét := (J;_, C;. Suppose
that everylV; C C; has a balanced separatdt; C C; of size at mostv. Then every? C C' has a
balanced separatof C C of sizewr.

Proof. For a givenW C C, let us defineV; := (W N C;) \ (U};l1 Cj;); itis clear that thé¥;’s
form a partition of W. LetS; be the separator correspondingitg. Let S := |J;_, S;. Each
component of7 \ .S contains at mosiV;|/2 vertices ofi¥;, thus each component contains at most
|W|/2 vertices ofiV. ]

If we are interested in separators of graptully contained in a subse&t of vertices, then each
component o7 \ C (or the neighborhood of each componentihcan be replaced by a clique,
since there is no way to disconnect these components witlrateps inC'. The notion of torso and
Proposition 2.5 formalize this concept.

Definition 2.4. Let G be a graph and’ C V(G). The graph tors@, C') has vertex se€ and
verticesa, b € C are connected by an edge{if, b} € E(G) or there is a patt® in G connectingz
andb whose internal vertices are not@n

Proposition 2.5. LetC; C C5 be two subsets of vertices @and leta, b € C two vertices. A set
S C ( separates: andb in torso G, C) if and only if S separates these verticestorso G, Cs).
In particular, by setting’y = V(G), we get thatS C 4 separates: andb in torsd G, C1) if and
only if it separates them itv.

Proof. Assume first thatC, = V(G), that is tors¢G, Cy) = G. Let P be a path connecting
andb in G and suppose tha? is disjoint from a setS. The pathP contains vertices fromi’; and
from V(G) \ Cy. If u,v € C, are two vertices such that every vertex®fbetweenu andv is
from V(G) \ C1, then by definition there is an edge in torsg G, C1). Using these edges, we can
modify P to obtain a pathP’ that connects andb in torso G, C;) and avoidsS.
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Conversely, suppose th&tis a path connecting andb in torsd G, C4 ) and it avoidsS C C.

If P uses an edgev that is not present iy, then this means that there is a path connectiagdv
whose internal vertices are not@. Using these paths, we can modiyto obtain a path?’ that
uses only the edges 6f. SinceS C (4, the new vertices on the path are nofSini.e., P’ avoidsS
as well.

For the general statement observe that it follows from tlegipus paragraph that C C; sep-
aratesz andb in torsqtorsa G, Cs), Cy) if and only if it separates andb in torso G, C2). Now the
statement of the proposition immediately follows from asyeabservation that tor$twrsa G, Cs), C1) =
torsa G, C1). [

Analogously to Lemma 2.3, we can show that if we have a treemiidund on tors@=, C;) for
everyi, then these bounds add up for the union ofdhs.

Lemma 2.6. LetG be a graph and”, ..., C, be subsets df (G) such that for every <i <r,
the treewidth oforsa G, C;) is at mostw. Then the treewidth dbrsd G, C) for C := | J;_, C; is
at most3r(w + 1).

Proof. Let C := |J;_, C; and letW be an arbitrary subset @f. Since tors¢G, C;) has treewidth
at mostw, Lemma 2.2(2) implies that, for every $éf C C;, torsq G, C;) has a balanced separator
S; C C; of size at mostv+ 1. By Proposition 2.5, it follows tha$; is balanced separator f; in G

as well (otherwise, there are two vertices that are seghtyté; in torsq G, C;) but not separated
in G). Thus the conditions of Lemma 2.3 hold, aiid has a balanced separatorC C of size at
mostr(w+1) in G. Again by Proposition 2.5, the sétis a balanced separator @f in torso G, C')

as well. By Lemma 2.2(1), it follows that tore@, C') has treewidth at mostr(w + 1). m

If the minimum size of as — ¢ separator i€, then theexcesof ans — ¢ separatolS is |\S| — ¢
(which is always nonnegative). Note thakiandt are adjacent, then no— t separator exists, and
in this case we say that the minimum size ofsan ¢ separator i$o. The aim of this section is to
show that, for every:, we can construct a sét’ covering all thes — ¢ separators of size at mast
such that tors@=, C’) has treewidth bounded by a function/af Equivalently, we can require that
C' covers every — t separator of excess at mast= k — ¢, where/ is the minimum size of an
s — t separator.

If X is a set of vertices, we denote byX) the set of those vertices W (G) \ X that are
adjacent to at least one vertex & The following result is folklore; it can be proved by a simpl
application of the uncrossing technique (see the Apperalix) it can be deduced also from the
observations of [22] on the strongly connected componehtheoresidual graph after solving a
flow problem.

Lemma 2.7. Let s, ¢t be two vertices in graplr such that the minimum size of an- ¢ separator is
¢. Then there is a collectio®” = {X;,... X,} of sets wherds} C X; C V(G) \ ({t} Ud({t}))
(1 <i < gq), such that

Q) X1 cCcXeC--- C X,

(2) 16(X;)| = ¢ foreveryl <i<gq,and

(3) everys — t separator of sizé is fully contained in J?_, 4(X;).
Furthermore, such a collectioA’ can be found in polynomial time.

Lemma 2.7 shows that the unignof all minimum s — ¢ separators can be covered by a chain
of minimum s — ¢ separators. It is not difficult to see that this chain can leglus define a tree
decomposition (in fact, a path decomposition) of t¢soC'). This observation solves the problem
for e = 0. For the general case, we use inductiorneon

4



Lemma 2.8. Lets, t be two vertices of grapty’ and let/ be the minimum size of an- ¢ separator.
For somee > 0, let C' be the union of all minimaé — ¢ separators havingexcessat moste (i.e.
of size at most = ¢ + ¢). Then there is a®(f(¢,e) - |V (G)|?) time algorithm that returns a set
C’ O C U {s,t} such that the treewidth abrso(G, C’) is at mosty(/, ), for some constant and
functionsf and g depending only o ande.

Proof. We prove the lemma by induction en Consider the collectio&’ of Lemma 2.7 and define
Si == 0(X;) for 1 <i < q. For the sake of uniformity, we defing, := 0, X, := V(G) \ {t},

Sy = {S}, Squl = {t} Forl <i<gq+1,letl; .= X; \ (Xz'fl USifl). Also, forl <i<g+1
and two disjointnon-emptysubsets4, B of S; U S;_1, we defineG; 4 g to be the graph obtained
from G[L; U A U B] by contracting the sed to a vertexa and the seB to a vertexb. Taking into
account that it includes a vertex of somg; thene > 0, we prove the key observation that makes
it possible to use induction.

Claim 2.9. If a vertexv € L; is in C, then there are disjoint non-empty subséts3 of S; U S; 1
such tha is part of a minimak — b separatot, in G; 4 p of size at mosk (recall thatk = £+ ¢)
and excess at most— 1.

Proof. By definition of C, there is a minimak — ¢ separatork of size at mosk that containg.
Let K := K\ L; andK; := K N L;. Partition(S; U S;_1) \ K into the set4 of vertices reachable
from s in G\ K and the setB of vertices non-reachable fromin G \ K. Let us observe that
both A and B are non-empty. Indeed, due to the minimality/6f G has a pathP from s to ¢ such
V(P)N K = {v}. By selection ofv, S;_; separates from s andS; separates from¢. Therefore,
at least one vertex of .S;_; occurs inP beforev and at least one vertex of S; occurs inP after
v. The prefix of P ending atu and suffix of P starting atw are both subpaths i \ K. It follows
thatu is reachable from in G\ K, i.e. belongs tod and thatw is reachable fromin G\ K, hence
non-reachable froma and thus belongs t6.

To see that{, is ana — b separator irG; 4 g, suppose that there is a pathconnectingz and
bin G; 4 p avoiding K. Then there is a corresponding pdthin G connecting a vertex ol and a
vertex of B. PathP”’ is disjoint from K (since it contains vertices df; and(S; U S;_1) \ K only)
and fromK5 (by construction). Thus a vertex &f is reachable froms in G \ K, a contradiction.

To see thatk, is a minimala — b separator, suppose that there is a vettex K, such that
Ky \ {u} is also ana — b separator in7; 4 . SinceK is minimal, there is as — ¢t path P in
G\ (K \ u), which has to pass through Arguing as when we proved thdtand B are non-empty,
we observe thaP includes vertices of botll and B, hence we can consider a minimal subpath
P’ of P between a vertex’ € A and a vertex’ € B. We claim that all the internal vertices of
P’ belong toL;. Indeed, due to the minimality aP’, an internal vertex of”’ can belong either
toL;ortoV(G) \ (K1 UL;US;—1US;). If all the internal vertices of”’ are from the latter set
then there is a path fromf to ¥’ in G \ (K7 U L;) and hence irG \ (K7 U K3) in contradiction to
b’ € B. If P’ contains internal vertices of both sets th@as an edggu, w} whereu € L; while
w e V(G)\ (K1UL;US;—1US;). Butthis isimpossible sincs;_; U.S; separated,; from the rest
of the graph. Thus it follows that indeed all the internaltioers of P’ belong toL,;. Consequently,
P’ corresponds to a path ii; 4 g from a to b that avoidsK> \ u, a contradiction that proves the
minimality of K.

Finally, we show thatX, has excess at most— 1. Let K’ be a minimuma — b separator
in G; 4, p. Observe that; U K is ans — ¢ separator inG. Indeed, consider a path from s
totin G\ (K7 U K}). It necessarily contains a vertexe K-, hence arguing as in the previous
paragraph we notice thdt includes vertices of botd and B. Considering a minimal subpat®’
of P between a vertex’ € A andl’ € B we observe, analogously to the previous paragraph that all
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the internal vertices of this path belongtg. Hence this path correspond to a path betweand
bin G; a p. It follows that P/, and henceP, includes a vertex of), a contradiction showing that
K, U K} is indeed ars — ¢ separator irG. Due to the minimality ofiKy, K/, # (. ThusK; U K}
contains at least one vertex frab, implying thati;, U K, is not a minimums — ¢ separator irG.
Thus|Ks| — | K| = (|K1| + |K2]) — (|K1| + |K3|) < k — ¢ = e, as required. This completes the
proof of Claim 2.9. [

Now we defineC’. Let Cy := [JI¥) Si. Fore = 0, ¢! = C,. Assume thae > 0. For
1 < i < ¢+ 1 and disjoint non-empty subsets B of S; U S;_1, let C; 4, g be the union of all
minimal « — b separators of size at moktand excess at most— 1 in G; 4.5. We defineC’ as
the union ofCy and all sets”; 4 g as above. Observe thé! is defined correctly in the sense that
any vertexv participating in ars — ¢ minimal separator of size at madsindeed belongs t¢”. For
e = 0, the correctness af’ follows from definition of setsS;. Fore > 0, the correctness follows
from the above Claim if we take into account that sihg:jéjll L; UCy =V (G), v belongs to some
L;.

We shall show that the treewidth of togé C’) is at mostg(¢, ¢), a function recursively de-
fined as follows:g(¢,0) := 6¢ andg(¢,e) := 3 - (20 + 3% - (g(¢,e — 1) + 1)) for e > 0. We do
this by showing that in grapty, every sef?” C C’ has a balanced separator of size at n2égfor
e = 0) and at mose/ + 3% - (g(¢,e — 1) + 1) (for e > 0). By Proposition 2.5, it will imply that
in torsa G, C"), W has a balanced separator with the same upper bound. By Len2{i3, 2he
desired upper bound on the treewidth will immediately fallo

LetW C C’ be an arbitrary set. Lt < i < g + 1 be the smallest value such tH&t N X;| >
|[W|/2. Consider the separatdf; U S;_; (whose size is at most(). In G \ (S; U S;_1), the
setsX;_1, L;, andV (G) \ (S; U S;—1 U X,;_1 U L;) are pairwise separated from each other. By
selection ofi, the first and the third sets do not contain more than hal#oflf e = 0, thenC’ is
disjoint with L;, hence the treewidth upper bound follows foe= 0. We assume that > 0 and,
using the induction assumption, will show tH&t N L; has a balanced separat®of size at most
326 (g(¢,e — 1) +1). This willimmediately imply thatS U S; U S;_; is a balanced separator Bf
of size at mos®/ + 3% - (g(¢,e — 1) 4 1), which, in turn, will imply the desired upper bound on
the treewidth of tors@z, C”).

By the induction assumption, the treewidth of tdi€9 4 5, C; a,g) is at mosty(¢, e — 1) for
any pair of disjoint subsetd, B of S; U S;_; such thatG; 4 g has arm — b separator of size at most
k. By the combination of Lemma 2.2(2) and Proposition 2.5pgr@ has a balanced separator of
size at mosy(¢,e — 1) + 1 for any seti; 4 g C C; 4. Let C* be the union ofC; 4 g for all
suchA and B. Taking into account that the number of choicesdoénd B is at most3?, for any
W* C C*, G has a balanced separator of size at 8&st(g(¢, e —1) +1) according to Lemma 2.3.
By definition of C’, W N L; C C*, hence the existence of the desired separgitiotiows.

We conclude the proof by showing that the above(¥etan be constructed in tin@(f (¢, e) -
[V(G)|%). In particular, we present an algorithm whose running tim@©{f(¢,e) - (|V(G)| —
2)?) (we assume that’ has more than 2 vertices), whef€/, e) is recursively defined as follows:
f6,0)=1andf(l,e) = f(f,e —1)-3% + 1fore > 0.

The setsX; can be computed as shown in the proof of Lemma 2.7. Then tlseSsetan
be obtained in the first paragraph of the proof of the presamimia. Their union results i€
which isC’ for e = 0. Thus fore = 0, C’ can be computed in tim@(|V (G)| — 2)?) (instead
of considerings and¢, we may consider their sets of neighbors). Since the cortipatavolves
computing a minimum cut, we may assume ttiat 1. Now assume that > 0. For eachi such
thatl <: < ¢+ 1and|L;| > 0, we explore all possible disjoint subsetsaand B of S; U S;_1. For
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the given choice, we check if the size of a minimum b separator ofr; 4 g is at mostk (observe
that it can be done i (|L;|?)) and if yes, compute the sét; 4 5. By the induction assumption,
the computation take®(f(¢,e — 1) - |L;]%). So, exploring all possible choices dfand B takes
O(f(¢,e —1)-3%.|L;|%). The overall complexity of computing’ is
q+1
O((IV(G) =2)7 + f(t,e = 1) - 3% Y T |Li|").
=1

Since allL; are disjoint and JI*| L, € V(G)\{s,t}, 21 |Li| < |V(G)|-2, hencey 9] (|Li])¢ <
(JV(G)| — 2)¢. Taking into account the recursive expression fof, ¢), the desired runtime fol-
lows. [

Remark 2.10. The recursiony(¢,e) := 3 - (20 + 3% - g(¢,e — 1)) implies thatg(¢, e) is 209,
i.e., the treewidth bound is exponentialfimnde. It is an obvious question whether it is possible to
improve this dependence to polynomial. However, a simpéargte (graphG is then-dimensional
hypercubek = (n — 1)n, s andt are opposite vertices) shows that the functigh, ¢) has to be
exponential. The size of the minimusn- ¢ separator i€ := n. We claim that every vertex of the
hypercube (other thanandt) is part of a minimak — ¢ separator of size at mostn — 1). To see
this, let P be a shortest path connectiangndv. Let P’ = P — v be the subpath aP connectings
with a neighbor’ of v. Let .S be the neighborhood d?’; clearly S is ans — ¢ separator and € S.
However,S \ v is not ans — ¢ separator: the patR is not blocked bysS'\ v asS'\ v does not contain
any vertex farther froms thanv. SinceP’ has at most. — 1 vertices and every vertex has degree
n, we havelS| < n(n — 1). Thusv (and every other vertex) is part of a minimal separator af siz
at mostn(n — 1). Hence if we set := n ande := n(n — 1), thenC contains every vertex of the
hypercube. The treewidth of andimensional hypercube 8(2"/,/n) [4], which is also a lower
bound ong (¢, e).

The following theorem states our main combinatorial toa fiorm that will be very convenient
to use:

Theorem 2.11. [The treewidth reduction theorem]LetG be a graph,S C V(G), and letk be an
integer. LetC' be the set of all vertices @f participating in a minimals — ¢ cut of size at most for
somes, t € S. Then there is arPT algorithm, parameterized by and|S|, that computes a graph
G™ having the following properties:

1) cuscv(a")

(2) Foreverys,t € S, asetK C V(G*) with |[K| < k is a minimals — ¢t separator ofG* if

and only if K C C'U S and K is a minimals — ¢ separator ofG.
(3) The treewidth of7* is at mosth(k, | S|) for some functiorh.
(4) ForanyK C C, G*[K] is isomorphic toG[K].

Proof. For everys,t € S that can be separated by the removal of at nkostrtices, the algorithm
of Lemma 2.8 computes a sét,, containing all the minimak — ¢ separators of size at mokt

By Lemma 2.6, ifC" is the union of these at mo(sf‘) sets, ther’ = torsd G, C’) has treewidth
bounded by a function df and|S|. Note thatG’ satisfies all the requirements of the theorem except
the last one: two vertices @f’ non-adjacent iz may become adjacent i@’ (see Definition 2.4).
To fix this problem we subdivide each edge v} of G’ such thafu, v} ¢ F(G) into two edges add
a vertex between them, and, to avoid selection of this vantexa cut, we split it intdk + 1 copies.
In other words, for each edde, v} € E(G’)\ E(G) we introducek+ 1 new verticesuoy, . . . , w11
and replacqu, v} by the set of edge§{u, w1} ... {u, wri1}, {wr,v}, ..., {wgs1,v}}. LetG* be
7



the resulting graph. Itis not hard to check th&tsatisfies all the properties of the present theorem.
]

Remark 2.12. The treewidth ofG* may be larger than the treewidth 6f. We use the phrase
‘treewidth reduction’ in the sense that the treewidth@fis bounded by a function df and|S|,
while the treewidth of7 is unbounded.

3. Constrained separation problems

Let G be a class of graphs. Given a graph verticess, ¢, and parametek, the G-MINCUT
problem asks ifG has as — ¢ separatoiC' of size at mosk such thatG[C] € G. The following
theorem is the central result of this section.

Theorem 3.1. Assume thatj is decidableand hereditary(i.e. whenevelG € G then for any
V' CV,G[V'] € G). Then thej-MINCUT problem isFPT.

Proof. Let G* be a graph satisfying the requirements of Theorem 2.1¥fer {s,¢}. According
to Theorem 2.11¢z* can be computed inePTtime. We claim thatG, s, ¢, k) is a ‘YES’ instance
of the G-mINcUT problem if and only if(G*, s, t, k) is a ‘“YES’ instance of this problem. Indeed,
let K be ans — t separator irG such that K| < k andG(K) € G. Sinceg is hereditary, we may
assume thak’ is minimal (otherwise we may consider a minimal subseko$eparatings from
t). By the second and fourth properties@f (see Theorem 2.11J{ separates from ¢ in G* and
G*[K] € G. The opposite direction can be proved similarly.

Thus we have established anT-time reduction from an instance of tidemINCUT problem
to another instance of this problem where the treewidth isnded by a function of parameter
k. Now, letG, = (V(G*), E(G*),ST) be a labeled graph whet®I' = {s,t}. We present an
algorithm for construction of a monadic second-ordes@) formula ¢ whose atomic predicates
(besides equality) ar€(x, x2) (showing thatz; andz, are adjacent iriz*) and predicates of the
form X (v) (showing that is contained inX C V'), whose size is bounded by a functionkgfand
G E pifandonly if (G*,s,t, k) is a "YES’ instance of th&-mMINCUT problem. According to
a restricted version of the well-known Courcelle’s Theor@®ee the survey article of Grohe [14],
Remarks 3.19and 3.20), it will follow that theG-MINCUT problem isFPT. The part ofp describing
the separation of andt is based on the ideas from [13].

We construct the formula as

¢ = JC(AtMost,(C) A Separate®”) A Induceg (C)),

where AtMos}, (C) is true if and only if|C| < k, Separate®”) is true if and only ifC' separates the
vertices ofST in G*, Induceg/(C) is true if and onlyC' induces a graph df.
In particular, AtMost(C) states thaC does not havé + 1 mutually non-equal elements: this
can be implemented as
VCl,...,VCkJrl \/ (Ci = Cj).
1<4,j<k+1
Formula Separat¢€’) is a slightly modified formula uvm(cX) from [13] that looks as follows:

VsVE((ST (s)ANST(t)A—(s = t))) — (—C(s)A-C(t)A\VZ(ConnectsZ, s,t) — Jv(C(v)AZ(v)))),

1AIthough the branchwidth aff; appears in the parameter, it can be replaced by the treewfidih since the former
is bounded by a function df if and only if the latter is [26]
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where Connect, s, t) is true if and only if in the modeling graph there is a path fremndt all
vertices of which belong t&. For definition of the predicate Connects, see Definitionir3[13]

To construct InducegC'), we explore all possible graphs having at mbkstertices and for
each of these graphs we check whether it belongs teince the number of graphs being explored
depends ork andg is a decidable class, inePT time we can compile the sé7],...,G.} of
all graphs of at most vertices that belong t§. Let kq,... k. be the respective numbers of ver-
tices of G}, ... G... Then Induceg(C) = Induces(C) V --- Vv Induces(C), where InducegC')
states that induces(. To define Induceslet vy, ... vx, be the set of vertices aF; and define

Adjacencyci, . .., cx,) as the conjunction of alE(c,, ¢,) such that, andv, are adjacent ir".
Then
Induces(C) = AtMost, (C)Ade; . .. 3%( N\ Cle)n N\ e # cyAAdiacencyc, . .. ,cki)>.
1<5<k; 1<z,y<k

Let us now verify that indeeds; = ¢ if and only if (G*, s,t, k) is a 'YES’ instance of the
G-MINCUT problem. Assume first the latter and Igtbe ans — ¢ separator of size at moktsuch
thatG*[S] € G. Let us observe that all the three main conjuncts efuantified byC' are satisfied
whenS is substituted instead. That AtMosi,(S) is true immediately follows from the pigeonhole
principle: if we takek + 1 elements out of a set of at masklements, at leagt of them must be
equal. To show that Separat®$ is true w.r.t.G;, we draw the following line of implications. Set
S separates andt in G*, hence the set of vertices of every path freto ¢ intersects withs, hence
every setZ including as a subset a set of vertices of a path fedim¢ intersects withS. Formally
written, the last statement can be expressed as fok(E€onnect§Z, s, t) — JFv(S(v) A Z(v))),
but this (together with the fact theft is disjoint with {s,¢}) is the right-hand part of the main
implication of Separatgs’), hence Separat€S) is true. To verify that Induceg.S) is true w.r.t.Gq,
let G, € G be the graph isomorphic ©6*[S] and observe that Inducgs') is true by construction.

For the opposite direction assume tldat = . It follows that there is a set of vertices
such that AtMost(C'), Separatgs”), and Induceg(C') are all true. Consequently’| < k. Indeed
otherwise, we can seleét+ 1 distinct elements ofC' that falsify at AtMost(C'). It also follows
that C' is disjoint with {s,¢} and separates from ¢ in G*. Indeeds andt satisfy the left part
of the main implication of Separat&s), hence the right part of it must be satisfied as well. It
immediately implies tha€' is disjoint with s andt. If we assume that’ does not separateandt
then there is & path froms to ¢ avoidingC. Let Z = V(P). Then Connectd (P), s, 1) is true
while Ju(C(v) A Z(v)) is false falsifying last conjunct of the right part of the mamnplication,
a contradiction. Finally, it follows from Inducg$C) that InducegC) is true for somei. By
construction, this means th&t [C] is isomorphic ta&, € G. Thus(G*, s,t, k) is a ‘YES’ instance
of theG-MINCUT problem. m

In particular, 1etG° be the class of all graphs without edges. TBEmMMINCUT is theMINIMUM
STABLE s — t CUT problem whose fixed-parameter tractability has been posed apen question
by Kanj [17]. Clearly,G" is hereditary and hence tig¢-mMINCUT is FPT.

Theorem 3.1 can be used to decide if there is-am separator of sizat mostk having a certain
property, but cannot be used if we are looking f§of ¢t separators of sizexactlyk. We show (with
a very easy argument) that some of these problems actuabniehard if the size is required to
be exactlyk. Let graphG’ be obtained from grapt¥ by introducing two isolated verticesand.
Now there is an independent set of size exaktthat is ans — ¢ separator irG’ if and only if there
is an independent set of sizdn G, implying that finding such a separator is W[1]-hard.



Theorem 3.2. It is W[1]-hard to decide if{G has ans — t separator that is an independent set of
size exactlyk.

Samer and Szeider [27] introduced the notioedde-induced vertex-cahd the corresponding
computational problem: given a graghand two vertices andt, the task is to find out if there
arek edges such that deleting tkadpointsof these edges separateandt. It remained an open
guestion in [27] whether this problem #®T. Samer reposted this problem as an open question in
[7]. Using Theorem 3.1, we answer this question positivélgr this purpose, we introdudg;,
the class of graphs where the number of vertices minus tleeadithe maximum matching is at
mostk, observe that this class is hereditary, and show t&at, ¢, k) is a "YES'-instance of the
edge-induced vertex-cproblem if and only if(G, s,t,2k) is a "YES’ instance of th&j,-mincut
problem. Then we apply Theorem 3.1 to get the following dargl(the proof is in the Appendix).

Corollary 3.3. TheEDGE-INDUCED VERTEX-CUT problem isFpPT.

MULTICUT is the generalization afiiNncuT where, instead of andt, the input contains a set
(s1,t1), ..., (s, tg) Of terminal pairs. The task is to find a s&iof at mostk nonterminal vertices
that separate; andt; for everyl < i < /. MULTICUT is known to berpT[19, 28] parameterized
by £ and /. In the G-muLTICUT problem, we additionally require th&t induces a graph from
G. ltis not difficult to generalize Theorem 3.1 fg-muLTICUT: all we need to do is to change
the construction of such that it requires the separation of each pairt;). We state this here in
an even more general form. In teMuLTICUT-UNCUT problem the input contains an additional
integer?’ < ¢, and we change the problem by requiring for evéry i < /¢ thatS does noseparate
s; andt;.

Theorem 3.4. If G is decidableand hereditarythenG-MULTICUT-UNCUT is FPT parameterized by
kand/.

Theorem 3.4 helps clarifying a theoretical issue. In SecBpwe defined” as the set of all
vertices appearing in minimal— ¢ separators of size at madst There is no obvious way of finding
this set inFPT-time and Lemma 2.6 produces only a supefsetf C. However, Theorem 3.4 can
be used to find”': a vertexw is in C if and only if there is a seb of size at moskt — 1 and two
neighborsv;, v9 of v such thatS separates andt in G \ v, but.S does not separatefrom v; andt
from vy in G\ v (including the possibility that; = s or v = t).

4. Constrained Bipartization Problems

Reed et al. [25] solved a longstanding open question by pgavie fixed-parameter tractability
of the BIPARTIZATION problem: given a grapty and an integek, find a setS of at mostk vertices
such that \ S is bipartite (see also [18] for a somewhat simpler presimtatf the algorithm). In
fact, they showed that th®PARTIZATION problem can be solved by at ma#t applications of a
procedure solvingniNCcuT. The key result that allows to transfommPARTIZATION to a separation
problem is the following lemma.

Lemma 4.1. LetG be a bipartite graph and letB’, W') be a 2-coloring of the vertices. Lé&t and
W be two subsets of (G). Then for anyS, G\ S has a 2-coloring wherés \ S is black andiv' \ S
is white if and only ifS separatesX := (BN B )u (W nW’)andY := (BNW’')U (W N B’).

In this section we consider tligBIPARTIZATION problem: a generalization of tlBPARTIZA-
TION problem where, in addition t&' \ .S being bipartite, it is also required th&tinduces a graph
belonging to a clas§.

10



Theorem 4.2. G-BIPARTIZATION is FPTIif G is hereditary and decidable.

Proof. Using the algorithm of [25], we first try to find a s8¢ of size at most such thatz \ Sy is
bipartite. If no such set exists, then clearly there is naSsgaitisfying the requirements. Otherwise,
we branch into3!°0! directions: each vertex of, is removed or colored black or white. For a
particular branch, leR = {vy,...,v.} be the vertices of, to be removed and leB, (resp.,
W) be the vertices oby having color black (resp., white) in a 2-coloring of the fésg bipartite
graph. Let us call a s&t such thatSN Sy = R, andG\ S is bipartite and having a 2-coloring where
By andW, are colored black and white, respectively, ac@hpatiblewith (R, By, W). Clearly,
(G, k) is a ‘YES’ instance of thg/-BIPARTIZATION problem if and only if for at least one branch
corresponding to partitioR, By, Wy) of Sy, there is a set compatible wittR, By, W) having
size at most and such that7[S] € G. Clearly, we need to check only those branches whigi,]
andG[W;] are both independent sets.

We transform finding a set compatible witR, By, V) into a separation problem. LeB’, V')
be a 2-coloring of7 \ Sp. Let B = N (W) \ Sp andW = N(By) \ So. Let us defineX andY as
inLemma4.1,ie.X ;= (BNB)U(WnW'),andY := (BN W')U (W N B’). We construct
a graphG’ that is obtained fronG by deleting the seB, U W,, adding a new vertex adjacent
with X U R, and adding a new vertexadjacent withY” U R. Note that every — ¢ separator in
G’ containsR. By Lemma 4.1, a sef is compatible with( R, By, Wp) if and only if S is ans — ¢
separator ir’. Thus what we have to decide is whether there is art separatolS of size at most
k such thatG'[S] = G[S] isin G. That is, we have to solve thg&-MINCUT instance(G', s, t, k).
The fixed-parameter tractability of tigBIPARTIZATION problem now immediately follows from
Theorem 3.1. [

Theorem 4.2 immediately implies that te@ABLE BIPARTIZATION problem isFPT. just setG
to be the class of all graphs without edges. This answers am ggpestion of Fernau [7]. Next, we
show that th&EXACT STABLE BIPARTIZATION problem isFPT, answering a question posed by Diaz
et al. [9]. This result may seem surprising because the sjporeding exact separation problem is
WI[1]-hard by Theorem 3.2 and hence the approach of Theor@ns4unlikely to work. Instead,
we argue that under appropriate conditions, any solutiosizsf at mosk can be extended to an
independent set of size exactly

Theorem 4.3. Given a graphz and an integetk, deciding whethe€ can be made bipartite by the
deletion of an independent set of size exaktiy fixed-parameter tractable.

Proof. (Sketch) It is more convenient to consider an annotatedorexs the problem where the
independent set being deleted has to be a subset of @ setV (G) given as part of the input.
Without the annotation) is initially set toV'(G). If G is not bipartite, then the algorithm starts by
finding an odd cycl€’ of minimum length (which can be done in polynomial time) sitiot difficult

to see that the minimality af’ implies that eitheC' is a triangle oiC' is chordless. Moreover, in the
latter case, every vertex notis adjacent to at most 2 vertices of the cycle.

If |V(C)n D| =0, then clearly no subset dp is a solution. Ifl < |V(C) N D| < 3k + 1,
then we branch on selection of each vertex V' (C') N D into the setS of vertices being removed
and apply the algorithm recursively with the paramétéeing decreased biyand the seD being
updated by removal of and N (v) N D. If |V(C) n D| > 3k + 1, then we apply the approach of
Theorem 4.2 to find an independent setC D of size at mosk whose removal makes the graph
bipartite, and then argue th&tcan be extended to an independent set of size exacfly ensure
thatS C D, we may, for example split all verticese V(G) \ D into k + 1 independent copies
with the same neighborhood aslf |\S| = k, we are done. Otherwisg§| = k&’ < k. In this case we
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observe that by the minimality @f, each vertex of (either inC or outsideC) forbids the selection
of at most3 vertices oft’ (C')N D including itself. Thus the number of verticesiofC)N D allowed
for selection is at leastk + 1 — 3k’ = 3(k — k') + 1. Since the cycle is chordless, we can select
k — k' independent vertices among them and thus complesiémbeing of size exactly.

The above algorithm has a number of stopping conditionsptie non-trivial of them occurs
if G is bipartite buttc > 0. In this case we check &|D] hask independent vertices, which can be
done in a polynomial time. [
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Appendix A. Proofs Section 2

Proof of Lemma 2.7Let X = {X},..., X, } be a collection of sets such that (2) and (3) holds. Let
us choose the collection such theis minimum possible, and among such collectiony, ; |X; |*

is maximum possible. We show that for evéry, eitherX; C X, or X; C X; holds, thus the sets
can be ordered such that (1) holds.

Suppose that neitheX; C X; nor X; C X; holds for some; andj. We show that after
replacingX; and.X; in X’ with the two setsX; N X; and X; U X, properties (2) and (3) still hold,
and the resulting collectio””” contradicts the optimal choice &f. The functiond is well-known
to be submodular, i.e.,

[8(X)] +18(X)] = [6(X; 0 X))+ |6(X; U X;)].

Bothd(X; N X;) andd(X; U X;) ares — ¢ separators (because bothn X; andX; U X; contains)
and hence have size at leastThe left hand side i8/, hence there is equality ané( X; N X;)| =
|0(X; U X;)| = ¢ follows. This means that property (2) holds after the regiaent. Observe that
I(Xs N X;)Ud(X; UX;) C6(X;) Ud(X,): any edge that leaveX; N X; or X; U X; leaves
either X; or X;. We show that there is equality here, implying that prop€Blyremains true after
the replacement. It is easy to see thaX; N X;) N 6(X; U X;) C 6(X;) Nd(X;), hence we have

[(XNX;)U8(X,UX;)| = 20— |6(XiNX/)NE(X;0X;)| > 20-[8(X:)N8(X;)| = [8(X:)U8(X;)],
showing the required equality.

If X;NX;orX;UX,; was already present i, then the replacement decreases the size of the
collection, contradicting the choice &f. Otherwise, we have thak;|*> + |X;|? < |X; N X;|* +
| X;UX;]|? (to verify this, simply representX;| as| X;N.X;|+|X;\ X;|, | X;| as| X; N X;|+|X;\ X,
|X; U Xl as|X; N X+ | X; \ X;|+ |X; \ X;| and do direct calculation having in mind that both
|X; \ X;] and|X; \ X;| are greater thafl), again contradicting the choice af. Thus an optimal
collection X’ satisfies (1) as well.

To constructt’ in polynomial time, we proceed as follows. It is easy to chigcgolynomial
time whether a vertex is in a minimums — ¢ separator, and if so to produce such a sepatrgor
Let X, be the set of vertices reachable frann G \ S,. Itis clear thatX, satisfies (2) and if we
take the collectiont’ of all suchX,’s, then together they satisfy (3). If (1) is not satisfiedrttwe
start doing the replacements as above. Each replacemieet décreases the size of the collection
orincrease$ _, | X;|? (without increasing the collection size), thus the procedarminates after
a polynomial number of steps. [

Appendix B. Proofs Section 3.1

Proof of Corollary 3.3.Let G, contain those graphs where the number of vertices minuszbet
the maximum matching is at maist It is not hard to observe théj, is hereditary by noticing that for
anyH € Gy andv € V(H) the difference between the number of vertices and the sigegimum
matching does not increase by removaboft follows from Theorem 3.1 thaf,-MINCUT is FPT.

We will show that theG,-MINCUT with parameteRk is equivalent to the problem of finding
out whethers can be separated fromby removal of a sef that can be extended to the union of
at mostk edges Taking into account that the latter problem is an equiviateformulation of the
EDGE-INDUCED VERTEX-CUT problem, this will complete the present proof.

Assume thatG, s, t, 2k) is a ‘YES’ instance of th&;-MINCUT problem and letS be as — ¢
separator of size at mo2k such thatG[S] € Gi. Sincegy, is hereditary, we may assume ttats
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minimal. LetM be a maximum matching @¥[S]. Then, by definition ofjy, | M| + (|]V(G[S])| —
2|M]) < K or, in other words(|V (G[S])| —2|M|) < k—|M]|. The2|M| vertices ofG[S] (incident
to the matching) are covered hy/| edges. The remaining at mdst- | M| vertices can be covered
by selecting an edge @f incident to each of them (due to the minimality ®f it does not contain
isolated vertices). Thusandt may be separated by removal a set extendible to the uniomudstt
k edges. Conversely, assume thandt can be separated by removal of sebf vertices that can
be extended to the union of at mdsedges ofG. Clearly|S| < 2k. Itis not hard to observe that
the size of the smallest set of edges coverthgquals the size of the maximum matchifdd| of
G[S] plus|V(G]S])| — 2| M| edges for the vertices not covered by the matching. By diefimaf
S, M|+ |V(G[S])| —2|M| < k. Itfollows thatG[S] € Gi. Thus,(G, s,t,2k) is a ‘'YES’ instance
of the G;.-multicut problem. [

Proof of Theorem 3.2Let G be a graph and let’ be a graph obtained fro& by adding two
isolated vertices andt. Clearly, G has an independent set of size exaétl§ and only if G’ has
an independent set of size exacklyseparatings andt¢. Since it is W[1]-hard to check existence
of an independent set of size exadtlyit follows that it is also W[1]-hard to check existence of an
independent set of size exacthseparatings and.

The hardness to check existence of a separator of size yexatt is a clique or a dominating
set can be proven similarly. [

Proof of Theorem 3.4lt is convenient to represent the input of tiemuLTICUT-UNCUT problem
in the form (G, T, T», k), whereT; is the set of pairs of terminals to be separatBdijs a set of
pairs forbidden to be separated. Now apply the transfoonatescribed in the proof of Theorem
2.11 with respect t@ and S, whereS is the set of all terminals participating in the elements of
T, andT,. Let G* be the resulting graph. Since the treewidth(sf depends ork and|S], it in
fact depends ok and|T;| + |T»|. Observe that apart from the properties stated in Theoréf 2.
the graph also possesses the following one. ForGng V(G) N V(G*), the pairs of terminals
of T, are not separated i@ \ C’ if and only if they are not separated @ \ C’. This allows us
to derive that G, T1, T», k) is a "YES’ instance of th€-mMULTICUT-UNCUT problem if and only if
(G*,T1,T», k) is a’YES’ instance of thg/-MuLTICUT-UNCUT problem. Indeed, lef’ be a set of
at mostk non-terminal vertices oF (G) such that inG \ C all pairs terminals of/} are separated,
no pair of Ty is separated, an@[C] € G. Let C* be a minimal subset af’ subject to separation
of the pairs ofT}. Clearly, inG \ C* no pair of T» and, sincej is a hereditary class7[C’] € G.
By construction ofG*, C* separates all pairs df; in G*, does not separate any pair Bf and
G*[C*] € G. Thus, if (G,T1,Ts, k) is a '"YES'-instance of th&/-MULTICUT-UNCUT problem,
(G*,T1,T», k) is a "YES’-instance of this problem as well. The oppositesdiion can be proven
similarly.

Now, let H = (G*,{s1,t1},...{se,t¢}) be a labeled graph where the labels are elements of
T, U Ty. We fix a number’ and assume that the firStpairs are elements @f;, while the rest are
elements off;,. We construct an MSO formul&' of size depending ok and!/ such thatd = F
if and only if (G*,T1,T», k) is a 'YES' instance of th&/-MULTICUT-UNCUT problem. This will
imply the present theorem. Dende;, ¢;} by R;. Then

v ¢
F = 3C(AtMost,,(C) A Induceg (C) A /\ Separateg (C) A [\ —(Separateg,(C))),
i=1 i=041

where AtMost (C) and Induceg(C) are as in the proof of Theorem 3.1, SepargléS) is obtained
from Separatgg’) in the proof of Theorem 3.1 by replacingfI’ by R;. The verification thatF'
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indeed has the desired property can be done similarly todtification of the properties af done
in the proof of Theorem 3.1. [

Appendix C. Proofs Section 4

Proof of Lemma 4.1In a 2-coloring ofG' \ S, each vertex either has the same color ag3h W)

(call it an unchanged vertex) or the opposite color ag3h W) (call it a changed vertex). Observe
that a changed and an unchanged vertex cannot be adjacgnhate the same color either under
(B’,W') or under the considered coloring 6f\ S. Consequently, a changed and an unchanged
vertex cannot belong to the same connected componé&nt §f because this would imply existence
of an edge between a changed and an unchanged verfexs bHlack and4” is white in a 2-coloring

of G\ S, then clearlyX \ S is unchanged antl \ S is changed. Thu$§ has to separat® andY’
inG.

For the other direction, suppose that\ S is separated frory” \ Sin G \ S. We modify the
coloring (B’, W') by changing the color of every vertex that is in the same cctegecomponent
of G\ S as some vertex of . Since all the vertices of the same component are eithehalige
their colors or all remain colored in the same color aghn W), the resulting coloring is a proper
2-coloring of G\ S. By construction, all vertices df have the desired color. Sinéeseparates(
andY’, the vertices ofX \ S are unchanged and hence have the required colors as well. =

Proof of Theorem 4.3 It is more convenient to consider an annotated version gbtblelem where
the independent set being deleted is a subset of B setV(G) given as part of the input. Without
the annotation is initially set toV'(G). The algorithm has the following 4 stopping conditions.

e If £ = 0 andG is bipartite then return 'YES'.

e If £ =0, butG is not bipartite then return 'NO’.

e If £ > 0, butG is bipartite then decide in a polynomial time whetligD] has an indepen-
dent set of size exactly.

e If k> 0andG \ D is not bipartite then return 'NO’.

Assume that no one of the above conditions is satisfied. Thelgorithm starts by finding
an odd cycleC of minimum length (which is known to be doable in polynomiahé, see for
example Section 2 dfitt p: // ww. | ancs. ac. uk/ staff/| etchfoa/articles/odd_
ci rcui t. pdf). Itis not difficult to see that the minimality @f' implies that either” is a triangle
or C' is chordless. Moreover, in the latter case, every verteot in C is adjacent to at most 2
vertices of the cycle. To see this, note first that if the laraftC' is more than 3, then the minimality
of C implies thatv cannot be adjacent with two adjacent verticesCbfas they would form a
triangle). Thus ifv has at least 3 (honadjacent) neighbor€’irthen the length of’ is at least 7 and
v has two neighborg andy whose distance ifd’ is at leasB. Verticesz andy split C' into a path
of odd length and a path of even length. Replacing the evegtfiepath (whose length is at least 4)
with the pathzvy of length 2 gives a shorter odd cycle, contradicting the matity of C.

Since no one of the stopping conditions hold5(C) N D| > 0. If 1 < |[V(C)N D| < 3k +1,
then we branch on selection of each vertex V(C') N D into the setS of vertices being removed
and apply the algorithm recursively with the paramétéeing decreased hlyand the seD being
updated by removal of and N (v) N D. If |V(C) n D| > 3k + 1, then we apply the approach of
Theorem 4.2 to find an independent Seif size at mosk whose removal makes the graph bipartite.
To ensure that C D we may, for example split all verticese V (G) \ D into k£ + 1 independent
copies with the same neighborhoodwasf |S| = k, we are done. Otherwis&§| = k&’ < k. In this
case we observe that by construction each vertéx(efther inC' or outsideC') forbids the selection
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of at most3 vertices of’(C') N D including itself. Thus the number of verticesi6{C) N D allowed

for selection is at leastk + 1 — 3k’ = 3(k — k') + 1. Since the cycle is chordless, we can select
k — k' independent vertices among them and thus compleisieéatbeing of size exactly. Thus

if the algorithm succeeds to find an independent$sef size at mosk whose removal makes the
graph bipartite, it may safely return 'YES'. It is clear tlfwherwise 'NO’ is returned. [
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