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Abstract. We propose a backtrack algorithm that solves a general-
ized version of the Maximum Induced Forest problem (MIF) in time
O∗(1.8899n). The MIF problem is complementary to finding a minimum
Feedback Vertex Set (FVS), a well-known intractable problem. There-
fore the proposed algorithm can find a minimum FVS as well. To the
best of our knowledge, this is the first algorithm that breaks the O∗(2n)
barrier for the general case of FVS. Doing the analysis, we apply a more
sophisticated measure of the problem size than the number of nodes of
the underlying graph.

1 Introduction

Exact exponential algorithms are techniques for solving intractable problems
with better complexity than trivial brute-force exploring of all the possible com-
binations. Examples of such algorithms include: [9] for maximum independent
set, [1] for chromatic number, [3] for 3-COLORABILITY, [2] for 3-SAT, [4] for
dominating set, and others. A recent overview of exact algorithms is provided in
[10].

In this paper we propose an O∗(1.8899n) exact algorithm for solving the
following problem. Given a graph G and a subset K of its vertices, find a largest
superset S of K such that the subgraph of G induced by S is acyclic. If K =
∅ then S is a Maximum Induced Forest (MIF) of G. The complement of S,
V (G)\S, is a minimum Feedback Vertex Set (FVS) of G, i.e. a set of vertices that
participate in all the cycles of G. Computing a minimum FVS is a “canonical”
intractable optimization problem, whose NP-complete version is mentioned in
[7]. To the best of our knowledge, the proposed algorithm is the first that breaks
the O∗(2n) barrier for the general case of FVS. Previous studies [6, 8] describe
exact algorithms only for special cases of FVS.

The proposed algorithm computes MIF using the “branch-and-prune” strat-
egy ([10], Section 4). Using this strategy for computing of MIF is not straightfor-
ward. The reason is that selection of a new vertex for MIF does not necessarily
cause additional pruning: a vertex can be pruned only if it induces a cycle with
the “already selected” vertices. For graphs with a large girth, many vertices must
be selected before at least one can be discarded.
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To overcome this difficulty, we analyze complexity of the algorithm by ap-
plying a more sophisticated measure than the number of vertices of the residual
graph, a strategy suggested in [5]. In particular, we observe that all the “remain-
ing” vertices can be partitioned into the vertices that have neighbours with the
already selected vertices and the vertices that do not have them. We associate the
vertices of the former class with weight 1 and the vertices of the latter class with
weight 1.565, a constant guessed by a computational procedure. The proposed
measure is the sum of weights of all the vertices of the residual graph. Further
analysis yields an upper bound O∗(1.50189m), where m is the value of the ap-
plied measure for the input graph G. We then demonstrate that m ≤ 1.565n,
where n is the number of vertices of G, which results in an upper bound of
O∗((1.501891.565)n). Taking into account that 1.8898 < 1.501891.565 < 1.8899,
this bound is transformed to O∗(1.8899n) by rounding.

The rest of the paper is organized as follows. Section 2 introduces the nec-
essary terminology. Section 3 presents the proposed algorithm. Section 4 proves
correctness of the algorithm and provides complexity analysis 1.

2 Preliminaries

A simple undirected graph is referred in this paper as a graph. A set of vertices of
a graph G is denoted by V (G). Given S ⊆ V (G), we denote by G[S] the subgraph
of G induced by S and by G \ S the subgraph of G induced by V (G) \ S. If S
consists of a single vertex v, we write G\v rather than G\{v}. Two vertices v and
w of G are S-connected if they are adjacent or if there is a path v, p1, . . . , pm, w,
where {p1, . . . pm} ⊆ S.

The set S is a maximum induced forest (MIF) if G[S] is acyclic and S is the
largest set subject to this property 2. In addition, we introduce the notion of a
T -MIF.

Definition 1. Let T ⊆ V (G). A T -MIF of G is a largest superset S of T such
that G[S] is acyclic.

Clearly, the definition makes sense only when G[T ] is acyclic. Observe that a
∅-MIF of G is an ordinary MIF.

To present complexity of algorithms, we use the O∗ notation [10], which
suppresses the polynomial factor. For example, O(n22n) is written as O∗(2n).

3 The algorithm

In this section we present an algorithm for computing a MIF of a given graph.
We start with extending our notation.

Let G be a graph and let T be a subset of its vertices. We recognize the
following classes of vertices of G \ T .

1 Due to space constraints, proofs of some technical lemmas are omitted.
2 It is more convenient for us to represent a MIF as a set of vertices rather than a

subgraph of G.



– Boundary vertices denoted by Bnd(G, T ). The set Bnd(G, T ) contains all
vertices v ∈ V (G \ T ) such that v is adjacent to exactly one vertex of T .

– Conflicting vertices denoted by Cnf(G, T ). The set Cnf(G, T ) contains all
vertices v ∈ V (G \ T ) such that v is adjacent to at least two vertices of the
same connected component of G[T ].

– Free vertices denoted by Free(G, T ). The set Free(G, T ) contains all vertices
v ∈ V (G \ T ) such that v is not adjacent to any vertex of T .

Now we are ready to introduce the algorithm Main MIF (Algorithm 1). It
gets as input a graph G and a subset K of V (G). The algorithm returns (as we
will prove further) a K-MIF of G. Clearly, setting K to ∅ will make the algorithm
to return a MIF of G.

The algorithm Main MIF starts with checking whether G[K] is acyclic.
If not, FAIL is returned immediately (line 1 of Algorithm 1) because no K-
MIF of G exists in this case. Otherwise, the function Find MIF runs (line 2 of
Algorithm 1).

Function Find MIF is the main “search engine” of Main MIF . It is de-
scribed in lines 3-31 of Algorithm 1. The function gets as input a graph G1, and
subsets T1 and K1 of V (G1). The function is supposed to return a T1 ∪K1-MIF
of G1 (provided that G1[T1 ∪K1] is acyclic).

If T1 ∪K1 = V (G1), Find MIF returns T1 ∪K1 (lines 4 and 5 of Algorithm
1). Otherwise, the execution can be divided into four stages: selecting a vertex
v of V (G1) \ (T1 ∪ K1), a recursive call processing the case when v is added
to T1 ∪ K1, a recursive call processing the case when v is eliminated from G1,
and returning the maximum-size set among the ones returned by the above two
recursive calls.

Selection of a vertex v is described in lines 7-11 of Algorithm 1. The vertex is
taken from Bnd(G1, T1) unless the set is empty. In this case, the function selects
an arbitrary vertex that does not belong to T1 ∪K1.

Having selected a vertex v, the function adds it to T1 ∪ K1 (line 12 of
Algorithm 1). The addition is performed by function T Update (Algorithm
2). Applying of T Update in line 12 returns a triplet (G2, T2,K2), in which
T2 ∪K2 = T1 ∪K1 ∪ {v}, v itself and all vertices of K1 that are K1-connected
to v are “moved” to T2, G2 is obtained from G1 by removing all vertices of
Cnf(G1, T2) because every one of them induces cycles being added to T2. Func-
tion Find MIF is applied recursively to (G2, T2,K2) in line 13 and returns a
set S2.

The way a vertex v is selected and then added to T2 ∪K2 ensures that the
inputs (G′, T ′,K ′) of all recursive applications of FindIndep have a number of
invariant properties which are crucial for our analysis (Section 4). Two most
important properties are that any connected component of G′ contains at most
one connected component of G′[T ′], and that there are no edges between vertices
of T ′ and vertices of K ′.

Processing the case, where v is eliminated from G1 (lines 14-29 of Algorithm
1), depends on the number of vertices of V (G1) \ (T1 ∪K1 ∪ {v}) that are K1-
connected to v. If there is at most one such vertex, the function decides that



S2 is a T1 ∪ K1-MIF of G1 and returns it (lines 15-16 of Algorithm 1). The
case when there are exactly 2 such vertices is processed in lines 17-25. The set
W of these two vertices is added to T1 ∪K1 by function K Update (Algorithm
3). This function returns FAIL if G1[T1 ∪ K1 ∪ W ] contains cycles. In this
case, Find MIF returns S2. Otherwise, Find MIF is applied recursively to the
triplet returned by K Update, returns a set S3, and the largest set among S2 and
S3 is returned in line 22. If the number of vertices of V (G1)\(T1∪K1∪{v}) that
are K1-connected to v is at least 3, Find MIF returns the largest set among
S2 and S3, where S3 is returned by the recursive application of Find MIF to
(G1 \ v, T1,K1) (lines 26-28 of Algorithm 1).

Consider the intuition behind the decisions made by the algorithm in lines 15-
25. For this purpose, assume that K1 = ∅. That is, we consider the cases where v
have 1 or 2 neighbours that are not in T1. In the former case, let w ∈ V (G1)\T1

be the considered neighbour of v. Observe that it is safe to add v to T2. Really,
any T1-MIF S of G1 that does not contain v has to contain w (otherwise, we get
contradiction to the maximality of S). In this case replacing w by v in S, we get
another T1-MIF of G1.

Assume now that v is adjacent to vertices w1, w2 ∈ V (G1)\T1 and that v does
not belong to any T1-MIF of G1. Then, any T1-MIF of G1 contains both w1 and
w2, otherwise, arguing as for the previous case, we get a contradiction with our
assumption. A subtle question is where to add w1 and w2. The point is that the
invariant property that every component of G1 contains at most one component
of G1[T1] should not be violated for the inputs of the subsequent recursive calls of
the Find MIF function. To satisfy this requirement, for example, when none of
w1 and w2 have neighbours in T1, the function K Update adds them to K2, not
to T2. That is, even if K = ∅ in the original input, it can be transformed to a non-
empty set in one of subsequent recursive calls of Find MIF . Thus the necessity
to handle the case when v is adjacent to exactly two “remaining” vertices is
what caused the author to consider a generalized version of the MIF-problem.

4 Analysis

The analysis of the Main MIF algorithm is organized as follows. In Section 4.1
we introduce the notion of a Fair Configuration (FC) and prove a number of
properties of FCs. In Section 4.2 we define a search tree generated by function
Find MIF with the nodes corresponding to the inputs of the recursive calls of
Find MIF . We prove that all these inputs are FCs. Then, based on properties of
FCs, we prove correctness of Main MIF (section 4.3) and analyze its complexity
(section 4.4). Due to space constraints, proofs of some technical lemmas are
omitted.

4.1 Fair configurations and their properties

Definition 2. Let G be a graph and let T and K be subsets of V (G). A triplet
(G, T,K) is a Fair Configuration (FC) if the following conditions hold:



Algorithm 1 Main MIF (G,K)

1: if G[K] contains cycles then Return FAIL
2: Return Find MIF (G \ Cnf(G,K), ∅,K)
3: function Find MIF (G1, T1,K1)
4: if T1 ∪K1 = V (G1) then
5: Return T1 ∪K1

6: else
7: if Bnd(G1, T1) is not empty then
8: Select a vertex v ∈ Bnd(G1, T1)
9: else

10: Select an arbitrary vertex v ∈ G1 \ (T1 ∪K1)
11: end if
12: (G2, T2, K2)← T Update(G1, T1, K1, v)
13: S2 ← Find MIF (G2, T2, K2)
14: switch The number of vertices of V (G1) \ (T1 ∪K1 ∪ {v})

that are K1-connected to v
15: case ≤ 1
16: Return S2

17: case 2
18: Let W be the set of vertices of V (G1) \ (T1 ∪K1 ∪ {v})

that are K1-connected to v
19: if K Update(G1 \ v, T1,K1,W ) does not return FAIL then
20: (G3, T3,K3)← K Update(G1 \ v, T1,K1,W )
21: S3 ← Find MIF (G3, T3,K3)
22: Return the largest set of S2 and S3

23: else
24: Return S2

25: endif
26: case ≥ 3
27: S3 ← Find MIF (G1 \ v, T1,K1)
28: Return the largest set of S2 and S3

29: end switch
30: end if
31: end function

Algorithm 2 T Update(G, T,K, v)

1: Let S be the subset of vertices of K that are K-connected to v
2: T ′ ← T ∪ {v} ∪ S
3: K ′ ← K \ ({v} ∪ S)
4: G′ ← G \ Cnf(G, T ′)
5: Return (G′,K ′, T ′)



Algorithm 3 K Update(G, T,K,W )

1: if G[T ∪K ∪W ] contains cycles then Return FAIL
2: if W ∩Bnd(G, T ) = ∅ then
3: Return (G \ Cnf(G,K ∪W ), T,K ∪W )
4: else
5: Let v1 be a vertex of W that belongs to Bnd(G, T )
6: (G′, T ′,K ′)← T Update(G, T,K, v1)
7: {v2} ←W \ {v1}
8: if v2 ∈ Bnd(G′, T ′) then
9: Return T Update(G′, T ′, K ′, v2)

10: else
11: Return (G′ \ Cnf(G′,K ′ ∪ {v2}), T ′,K ′ ∪ {v2})
12: end if
13: end if

– K ⊆ Free(G, T );
– G[T ] and G[K] are acyclic;
– Cnf(G, T ) = Cnf(G,K) = ∅;
– every connected component of G contains at most one connected component

of G[T ].

Due to importance of the notion for the proposed analysis, we demonstrate
it on an example.

Let G be the graph shown in Figure 1, the black circles represent the vertices
of T , the crossed circles represent the vertices of K, the other vertices are repre-
sented by the white circles. Observe that (G, T,K) is a FC. Indeed, there are no
edges between the vertices of T and K, both T and K induce acyclic subgraphs
of G, no single vertex of V (G) \ (T ∪K) makes cycles with T and K. Finally,
every connected component of G contains at most one connected component of
G[T ]. Note that by definition of a FC, the last requirement is not necessary for
G[K]. In our example, the component induced by vertices v9 to v12 contains two
components of G[K].

Lemma 1. Let (G, T,K) be a FC. Then T ∪Bnd(G, T )∪ Free(G, T ) = V (G).
3

Lemma 2. Let (G, T,K) be a FC and let v ∈ V (G) \ (T ∪K). Assume that one
of the following properties holds:

– v ∈ Bnd(G, T );
– Bnd(G, T ) = ∅.

Then (G′, T ′,K ′) = T Update(G, T,K, v) is a FC.

3 In other words, any vertex of V (G) \ T is adjacent to at most one vertex of T .



Fig. 1. A Fair Configuration (FC)

As a result of application of T Update, some vertices change their “roles”.
This statement is described precisely in the following lemma.

Lemma 3. Let (G, T,K) be a FC and let v ∈ V (G) be a vertex such that
(G′, T ′,K ′) = T Update(G, T,K, v) is a FC.

Let w ∈ V (G) \ (T ∪K ∪ {v}) be a vertex, which is K-connected to v. Then

– w /∈ Free(G′, T ′);
– in addition, if w ∈ Bnd(G, T ) then w /∈ V (G′).

Lemma 4. Let (G, T,K) be a FC. Let S ⊆ V (G)\(T∪K) and W ⊆ Free(G, T )\
K be two disjoint sets. Then (G \ S \ Cnf(G \ S,K ∪W ), T,K ∪W ) is a FC.

4.2 The search tree ST

In this section we define a search tree ST explored by Main MIF . The root of
the tree is associated with a triplet (G\Cnf(G,K), ∅,K), where G and K consti-
tute the input of Main MIF . Assume that a node x of ST is associated with a
triplet (G1, T1,K1). The structure of the subtree rooted by x depends on the exe-
cution of Find MIF (G1, T1,K1). If T1∪K1 = V (G1) then x is a leaf. Otherwise,
x has a child associated with the triplet returned by T Update(G1, T1,K1, v),
where v is the vertex selected by Find MIF (G1, T1,K1) in lines 7-11 of Al-
gorithm 1. It is the only child if Find MIF (G1, T1,K1) executes line 16 or
line 24. If line 22 is executed then x has the additional child associated with



K Update(G1 \ v, T1,K1, {v1, v2}); if line 28 is executed, the additional child is
associated with the triplet (G1 \ v, T1,K1).

Lemma 5. ST is of finite size.

Lemma 6. The triplet associated with every node of ST is a FC.

4.3 Correctness Proof.

In this section we will prove correctness of Main MIF by demonstrating that
Main MIF (G,K) returns a K-MIF of G.

Lemma 7. Let (G, T,K) be a FC and let v ∈ V (G) \ (T ∪ K). Let S be a
T ∪K-MIF of G. Then either v ∈ S or any cycle in G[S ∪{v}] involves a vertex
w ∈ V (G) \ (T ∪K ∪ {v}), which is K-connected to v.

Proof. Assume that v /∈ S and let v, v1, . . . vm be a cycle of G[S ∪ {v}] (clearly,
v participates in any cycle of G[S ∪ {v}] because G[S] is acyclic). If either v1 or
vm belongs to V (G) \ (T ∪K), we are done. Otherwise, note that {v1, vm} * T
because v cannot be connected to more than one vertex of T , by Lemma 1.
It follows also that {v1, . . . , vm} * K because the opposite would mean that
v ∈ Cnf(G,K). Assume without loss of generality that v1 ∈ K. Let i be the
smallest index such that vi /∈ K, while vi−1 ∈ K. Note that by definition of a FC
vi /∈ T (because existence of an edge between K and T would follow otherwise).
Thus vi ∈ V (G) \ (T ∪K) and the path v, v1, . . . , vi, all intermediate vertices of
which belong to K, certifies that vi is K-connected to v. �

Lemma 8. Let G be a graph, T ⊂ V (G) such that G[T ] is acyclic, and U ⊆
V (G) \ T . Assume that no T -MIF of G intersects with U . Then any T -MIF of
G \ U is a T -MIF of G.

Lemma 9. Let (G, T,K) be a FC and let v ∈ V (G)\(T ∪K). Let (G′, T ′,K ′) =
T Update(G, T,K, v). Assume that at least one T∪K-MIF of G contains v. Then
any T ′ ∪K ′-MIF of G′ is a T ∪K-MIF of G.

Lemma 10. Let (G, T,K) be a FC. Let v ∈ V (G) \ (T ∪K) be a vertex, which
is K-connected to at most one vertex of G \ (T ∪K ∪ {v}). Let (G′, T ′,K ′) =
T Update(G, T,K, v). Then any T ′ ∪K ′-MIF of G′ is a T ∪K-MIF of G.

Proof. If at least one T ∪K-MIF of G contains v, the statement follows from
Lemma 9. Otherwise, let S be a T ∪K-MIF of G. By Lemma 7, every cycle of
G[S ∪ {v}] contains a vertex of V (G) \ (T ∪ K ∪ {v}), which is K-connected
to v. By the condition of the lemma, there is at most one such a vertex, say,
w. Therefore w participates in all the cycles of G[S ∪ {v}], and removing of w
breaks all the cycles. Clearly, S ∪ {v} \ {w} is a T ∪K-MIF of G containing v,
in contradiction to our assumption. �



Lemma 11. Let (G, T,K) be a FC. Let v ∈ V (G) \ (T ∪K) be a vertex, which
is K-connected to exactly two vertices v1 and v2 of G \ (T ∪K ∪ {v}). Then at
least one of the following two statements is true.

– Let (G1, T1,K1) = T Update(G, T,K, v). Then any T1 ∪K1-MIF of G1 is a
T ∪K-MIF of G.

– K Update(G \ v, T,K, {v1, v2}) does not return FAIL. Moreover, let
(G2, T2,K2) = K Update(G \ {v}, T,K, {v1, v2}).
Then any T2 ∪K2-MIF of G2 is a T ∪K-MIF of G.

Proof. Assume that the first statement does not hold. By Lemma 9, no
T ∪K-MIF of G contains v. Let S be a T ∪K-MIF of G. According to Lemma
7, any cycle in G[S ∪ {v}] involves a vertex of G \ (T ∪K ∪ {v}), which is K-
connected to v. If S contains only one such vertex, say, v1, then removing v1

breaks all the cycles and S ∪ {v} \ {v1} is a T ∪K-MIF of G in contradiction to
our assumption. It follows that {v1, v2} ⊆ S. Clearly, S is a T ∪K∪{v1, v2}-MIF
of G because otherwise we get a contradiction with being S a T ∪K-MIF of G.
It follows that any T ∪K ∪ {v1, v2}-MIF of G is a T ∪K-MIF of G. Then, by
Lemma 8, any T ∪K ∪{v1, v2}-MIF of G \ v is a T ∪K-MIF of G. Consequently
(G \ v)[T ∪K ∪ {v1, v2}] is acyclic and hence K Update(G, T,K, {v1, v2}) does
not return FAIL. Furthermore, it follows from the description of K Update that
T2 ∪K2 = T ∪K ∪ {v1, v2} and G2 is obtained from G \ v by removing vertices
that make cycles with T ∪K ∪ {v1, v2} in G \ v. Thus, any T2 ∪K2-MIF of G2

is a T ∪K-MIF of G by Lemma 8 and the above reasoning. �

Theorem 1. For any triplet (G1, T1,K1) associated with a node of ST ,
Find MIF (G1, T1,K1) returns a T1 ∪K1-MIF of G1.

Proof. Let x1, x2, . . . be an order of nodes of ST such that children are
ordered before their parents; existence of such an order follows from Lemma 5.
The proof is by induction on the sequence. We also use the fact that the triplet
associated with every node x of ST is a FC (Lemma 6).

Clearly, the statement holds for all leaves of ST and, in particular, for x1.
Consider a non-leaf node xi, assuming validity of the theorem for all nodes placed
before, and denote the FC associated with xi by (G1, T1,K1). The FCs associated
with the children of xi are exactly the inputs of the recursive calls performed
by Find MIF (G1, T1,K1). By the induction assumption, these recursive calls
work properly.

If the vertex v picked by Find MIF (G1, T1,K1) is K1-connected to exactly
one vertex of V (G1) \ (T1 ∪K1 ∪ {v}), the correctness follows from Lemma 10;
in the case of two vertices, the correctness follows from Lemma 11; in the case
of three or more vertices, the correctness follows from Lemmas 8 and 9. �

Corollary 1. Let G be a graph and K ⊆ V (G). If G[K] is acyclic,
Main MIF (G,K) returns a K-MIF of G.



4.4 Complexity analysis

In this section we analyse the complexity of Main MIF by deriving the upper
bound on the number of nodes of ST . For the complexity analysis, we asso-
ciate with every node x of ST the measure Y (x) = c|Free(G1, T1) \ K1| +
|Bnd(G1, T1)|, where (G1, T1,K1) is the triplet associated with x, c = 1.565. In
other words, the elements of Free(G1, T1) \K1 are assigned with weight c, the
elements of Bnd(G1, T1) are assigned with weight 1, Y (x) is the sum of all the
weights. The complexity analysis is structured as follows. For a given two nodes
x and z such that x is the parent of z, we evaluate Y (x) − Y (z). Based on the
evaluation, we obtain an upper bound on the number of nodes of the subtree
rooted at x. This upper bound is O∗(α(c)Y (x)), where α(c) is the constant de-
pending on c. For c = 1.565, α(c) = 1.50189. Then we notice that for the root
node r, the value of Y (r) is at most cn, where n is the number of vertices of the
original graph. Thus we obtain the upper bound O∗(1.501891.565n). Taking into
account that 1.8898 < 1.501891.565 < 1.8899, the upper bound obtained after
rounding the base of the exponent is O∗(1.8899n).

The constant c = 1.565 was guessed by a binary search computational pro-
cedure that explored the range from 1.005 to 2 by steps of 0.005 and for every
considered constant c computed α(c)c. The smallest value of this expression was
obtained for c = 1.565.

Lemma 12. Let x be a non-leaf node of ST associated with a triplet (G1, T1,K1),
let a node z associated with a triplet (G2, T2,K2) be a child of x, and let v ∈
V (G1) \ (T1 ∪K1). Then the following statements hold.

1. If (G2, T2,K2) = T Update(G1, T1,K1, v) then Y (z) ≤ Y (x)− ((c− 1)|W |+
1), where W is the set of vertices of V (G1) \ (T1 ∪K1 ∪ {v}) that are K1-
connected to v.

2. If (G2, T2,K2) = K Update(G1\v, T1,K1, {v1, v2}), where {v1, v2} ⊆ V (G1)\
(T1 ∪K1 ∪ {v}), then Y (z) ≤ Y (x)− 3.

3. If (G2, T2,K2) = (G1 \ v, T1,K1) then Y (z) ≤ Y (x)− 1.

Proof. Let z be a child of x associated with (G2, T2,K2) and assume that
(G2, T2,K2) = T Update(G1, T1,K1, v). Recall that all the triplets associated
with the nodes of ST are FCs (Lemma 6). By definition of W and Lemma 1,
the vertices of W can be partitioned into two subsets, W1 ⊆ Free(G1, T1) \K1

and W2 ⊆ Bnd(G1, T1).
Observe that |Free(G2, T2) \ K2| ≤ |Free(G1, T1) \ K1| − |W1|. Really,

Free(G2, T2)\K2 are the vertices of V (G2)\(T2∪K2) that do not have neighbors
in T2. Taking into account that T1 ⊂ T2, T1∪K1 ⊂ T2∪K2, and V (G2) ⊆ V (G1),
it is clear that Free(G2, T2)\K2 ⊆ Free(G1, T1)\K1. Further, applying Lemma
3, we obtain that Free(G2, T2) \ K2 ⊆ (Free(G1, T1) \ K1) \W1. Considering
that W1 ⊆ Free(G1, T1) \ K1, we get the desired inequality. A vertex of W1

can be either removed from G2 or added to Bnd(G2, T2). In the former case the
value of Y (z) is decreased by c with respect to Y (x), in the second case Y (z) is
decreased only by c − 1, because the weight of the vertex is changed from c to



1. We evaluate the maximal possible weight of Y (z), hence we can assume that
all vertices of W1 are moved to Bnd(G2, T2), decreasing Y (z) by (c− 1)|W1|.

The vertices of W2 are removed from G2 by Lemma 3 and vertex v is moved
from Bnd(G1, T1) to T2. These transformations decrease the value of Y (z) with
respect to Y (x) by |W2| + 1. Combining the above argumentation, and taking
into account that c = 1.565, we see that Y (z) ≤ Y (x)−((c−1)∗|W1|+|W2|+1) ≤
Y (x)− ((c− 1)|W |+ 1), proving the first statement.

If the condition of the second statement holds then |Free(G2, T2) \ K2| +
|Bnd(G2, T2)| ≤ |Free(G1, T1) \K1| + |Bnd(G1, T1)| − 3 because v is removed
from G2, v1 and v2 are moved to T2 ∪K2. Removing of anyone of these vertices
decreases Y (z) by at least 1. The second statement immediately follows.

The last statement is immediate when we observe that |Free(G2, T2)\K2|+
|Bnd(G2, T2)| ≤ |Free(G1, T1) \K1|+ |Bnd(G1, T1)| − 1 if the condition of the
last statement holds. �

Let m be an integer such that there is a node x of ST with Y (x) = m. We
denote by F (m) the maximum possible number of nodes of the subtree rooted
at x.

Lemma 13. For any node x of ST , F (Y (x)) is bounded by O∗(1.50189Y (x)).

Proof. Let (G1, T1,K1) be the triplet associated with x. Recall that Y (x) =
c|Free(G1, T1) \K1|+ |Bnd(G1, T1)|. Clearly, Y (x) ≥ 0.

Assume that Y (x) = 0. It is only possible when V (G1) = T1∪K1. According
to Algorithm 1, x is a leaf, hence the lemma holds for this case.

Assume now that Y (x) > 0. Clearly, x is a non-leaf. If x has only one child
z then z is necessarily associated with T Update(G1, T1,K1, v) for some v ∈
V (G1) \ (T1 ∪ K1). By Lemma 12, Y (z) ≤ Y (x) − 1 (the equality holds when
v is not K1-connected to any vertex of V (G1) \ (T1 ∪K1 ∪ {v})). In this case,
F (Y (x)) = F (Y (z)) + 1 = F (Y (x)− l) + 1, where l ≥ 1.

If x has two children, z1 and z2, one of them, say z1, is necessary associated
with the triplet returned by T Update(G1, T1,K1, v). The node z2 is associated
either with K Update(G1 \ v, T1,K1, {v1, v2}) or with (G1 \ v, T1,K1).

In the former case, {v1, v2} is the set of vertices of V (G1)\(T1∪K1∪{v}) that
are K1-connected to v. By the first part of Lemma 12, Y (z1) ≤ Y (x) − (2(c −
1) + 1), by the second part of the same lemma, Y (z2) ≤ Y (x)− 3. Substituting
c = 1.565, we obtain F (Y (x)) = F (Y (z1)) + F (Y (z2)) + 1 = F (Y (x) − l1) +
F (Y (x)− l2) + 1, where l1 ≥ 2.13, l2 ≥ 3.

In the latter case, it follows from the description of Algorithm 1 that v is
K1-connected to at least 3 vertices of V (G1) \ (T1 ∪ K1 ∪ {v}). Consequently,
Y (z1) ≤ Y (x) − (3(c − 1) + 1) and Y (z2) ≤ Y (x) − 1 by the first and the last
parts of Lemma 12. Arguing as for the previous two cases, we obtain F (Y (x)) =
F ((Y (x)− l1) + F (Y (x)− l2) + 1, where l1 ≥ 2.695, l2 ≥ 1.

The last recursive relation for F (Y (x)) yields the worst upper bound. Taking
into account that the upper bound is exponential, we can ignore the additive con-
stant because it contributes only a polynomial factor to the resulting bound. The



upper bound following from the expression F (Y (x)) = F (Y (x)− 1) +F (Y (x)−
2.695) is O∗(βY (x)), where β is the largest root of the equation β2.695 = β1.695+1.
A simple computation shows that 1.50188 < β < 1.50189. �

Theorem 2. The Main MIF algorithm, applied to a graph G with n vertices,
takes O∗(1.8899n) time and a polynomial space.

Proof. Let x be the root node of ST . It is associated with the triplet
(G, ∅,K). Then Y (x) = c|Free(G, ∅)\K|+|Bnd(G, ∅)| = c|Free(G, ∅)\K| ≤ cn,
where c = 1.565. It follows that ST has O∗(1.501891.565n) < O∗(1.8899n) nodes.
The upper bound on the time-complexity of Main MIF can be obtained by
summing up the bounds on the processing time spent to every node of ST .
Observe that processing of a node includes all the operations performed by
Find MIF except the recursive calls (whose processing time is related to other
nodes of ST ). The total time of these operations can be bounded by a polynomial
multiplied to a number of nodes of ST . The resulting polynomial is suppressed
by the O∗ notation, hence O∗(1.8899n) is an upper bound on the time complexity
of Main MIF .

Observe that Find MIF has a polynomial space complexity because it is a
backtrack-like procedure without explicit recording of results related to interme-
diate recursive calls. �
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