
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Theoretical Computer Science 410 (2009) 4571–4579

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Minimum leaf out-branching and related problemsI

Gregory Gutin a,∗, Igor Razgon b, Eun Jung Kim a
a Department of Computer Science, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
b Department of Computer Science, University College Cork, Ireland

a r t i c l e i n f o

Keywords:
Directed graphs
Out-branchings
Minimum number of leaves
Fixed-parameter tractable
Acyclic directed graphs

a b s t r a c t

Given a digraph D, the Minimum Leaf Out-Branching problem (MinLOB) is the problem of
finding in D an out-branching with the minimum possible number of leaves, i.e., vertices
of out-degree 0. We prove that MinLOB is polynomial-time solvable for acyclic digraphs. In
general, MinLOB is NP-hard andwe consider three parameterizations ofMinLOB.We prove
that two of them are NP-complete for every value of the parameter, but the third one is
fixed-parameter tractable (FPT). The FPT parameterization is as follows: given a digraph D
of order n and a positive integral parameter k, check whether D contains an out-branching
with at most n − k leaves (and find such an out-branching if it exists). We find a problem
kernel of orderO(k2) and construct an algorithm of running timeO(2O(k log k)+n6),which is
an ‘additive’ FPT algorithm. We also consider transformations from two related problems,
the minimum path covering and the maximum internal out-tree problems into MinLOB,
which imply that some parameterizations of the two problems are FPT as well.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

We say that a subgraph T of a digraph D is an out-tree if T is an oriented tree with only one vertex s of in-degree zero
(called the root). The vertices of T of out-degree zero are called leaves and all other vertices internal vertices. If T is a spanning
out-tree, i.e. V (T) = V (D), then T is called an out-branching of D. It is easy to decide whether a digraph contains an out-
branching. In fact, the following holds.

Proposition 1.1 ([2]). A digraph D has an out-branching rooted at vertex r ∈ V (D) if and only if D has a unique strong
connectivity component S of D without incoming arcs and r ∈ S. One can check whether D has a unique strong connectivity
component and find one, if it exists, in time O(m+ n), where n and m are the number of vertices and arcs in D, respectively.

Given a digraph D, the Minimum Leaf Out-Branching problem (MinLOB) is the problem of finding an out-branching with
the minimum possible number of leaves in D. We denote this minimum by `min(D) and if D has no out-branching, we write
`min(D) = 0.
We first study MinLOB restricted to acyclic digraphs (abbreviated MinLOB-DAG). MinLOB-DAG was considered in US

patent [7], where its application to the area of database systems was described. Demers and Downing [7] also suggested
a heuristic approach to MinLOB-DAG. However no argument or assertion has been made to provide the validity of their
approach and to investigate its computational complexity. In fact, the heuristic is not always valid and it is rather slow.
Using another approach, we give a simple proof in Section 2 that MinLOB-DAG can be solved in polynomial time.

I Preliminary extended abstract of this paper appeared in the proceedings of AAIM’08 [Gregory Gutin, Igor Razgon, Eun Jung Kim, Minimum leaf out-
branching problems, in: AAIM, in: Lecture Notes in Computer Science, vol. 5034, 2008, pp. 235–246].
∗ Corresponding author. Tel.: +44 1784414229.
E-mail addresses: gutin@cs.rhul.ac.uk (G. Gutin), i.razgon@cs.ucc.ie (I. Razgon), eunjung@cs.rhul.ac.uk (E.J. Kim).

0304-3975/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2009.03.036

Author's personal copy

4572 G. Gutin et al. / Theoretical Computer Science 410 (2009) 4571–4579

Since MinLOB generalizes the hamiltonian directed path problem, MinLOB is NP-hard. In this paper, we introduce three
parameterizations of MinLOB: (a) `min(D) ≤ k (k ≥ 1), (b) `min(D) ≤ n/k (k ≥ 2), (c) `min(D) ≤ n− k (k ≥ 1), where n is the
number of vertices in D and k is the parameter. We show that (a) and (b) are NP-complete for every value of the parameter,
but (c) is fixed-parameter tractable and has an algorithm of complexity O(2O(k log k) + n6). We also show the existence of
a quadratic order kernel for the parameterized problem (c). These results are considered in Sections 3–5. The problem (c)
was studied by Prieto and Sloper [18,19] for undirected graphs (i.e. symmetric digraphs), where the authors obtained an FPT
algorithm of complexity O(22.5k log knO(1)) and a quadratic order kernel.
In the minimum path covering problem (MinPC), given a digraph D, our aim is to find the minimum number of vertex-

disjoint directed paths, pc(D), covering all vertices of D. Let α(D) denote the maximum number of mutually non-adjacent
vertices ofD. It is well known thatMinPC is polynomial-time solvable for acyclic digraphs, pc(D) ≤ α(D) for every digraphD
(the Gallai–Milgram theorem), and pc(D) = α(D) for every transitive acyclic digraphD (Dilworth’s theorem) [2]. In first part
of Section 6, we describe a simple transformation from MinPC into MinLOB which implies that the parameterized problem
pc(D) ≤ n− k is fixed-parameter tractable, where n is the number of vertices in D and k is the parameter.
Observe that MinLOB can be reformulated as a problem of finding an out-branching with maximum number of internal

vertices. However, while the problem of finding an out-tree with minimum number of leaves in a digraph D is trivial (a
vertex is an out-tree), the problem of finding an out-tree with maximum number of internal vertices (abbreviated MaxIOT) is
not trivial; in fact, it is NP-hard (as it also generalizes the hamiltonian directed path problem). The second part of Section 6
is devoted to the latter problem. Further research is discussed in Section 7.
We recall some basic notions of parameterized complexity here, for a more in-depth treatment of the topic we refer the

reader to [8,11,17].
A parameterized problem Π can be considered as a set of pairs (I, k) where I is the problem instance and k (usually an

integer) is the parameter. Π is called fixed-parameter tractable (FPT) if membership of (I, k) in Π can be decided in time
O(f (k)|I|c), where |I| is the size of I , f (k) is a computable function, and c is a constant independent from k and I . LetΠ be a
parameterized problem. A reduction R to a problem kernel (or kernelization) is a many-to-one transformation from (I, k) ∈ Π
to (I ′, k′) ∈ Π , such that (i) (I, k) ∈ Π if and only if (I ′, k′) ∈ Π , (ii) k′ ≤ k and |I ′| ≤ g(k) for some function g and (iii) R is
computable in time polynomial in |I| and k. In kernelization, an instance (I, k) is reduced to another instance (I ′, k′), which
is called the problem kernel; |I ′| is the size of the kernel. If I ′ is a graph, the number of vertices in I ′ is called the order of the
kernel.
It is easy to see that a decidable parameterized problem is FPT if and only if it admits a kernelization (cf. [11,17]);

however, the problem kernels obtained by this general result have impractically large size. Therefore, one tries to develop
kernelizations that yield problem kernels of smaller size. The survey of Guo andNiedermeier [12] on kernelization lists some
problem for which polynomial size kernels and exponential size kernels were obtained. Notice that due to kernelization we
can obtain an additive FPT algorithm, i.e., an algorithm of running time O(nO(1) + g(k)), where g(k) is independent of n,
which is often significantly faster than its ‘multiplicative’ counterpart.
All digraphs in this paper are finitewith no loops or parallel arcs.We use terminology and notation of [2]; in particular, for

a digraph D, V (D) and A(D) denote its vertex and arc sets. The symbols n andmwill denote the number of vertices and arcs
in the digraph under consideration. The underlying graph UG(D) of a digraph D is obtained from D by omitting all orientation
of arcs and by deleting one edge from each resulting pair of parallel edges. For a digraph D, an independent set (vertex cover,
respectively) of D is an independent set (vertex cover, respectively) of UG(D). We denote the union of in-neighbors (out-
neighbors) of vertices of a set X ⊆ V (D) by N−(X) (N+(X)); let N(X) = N+(X) ∪ N−(X).

2. MinLOB-DAG

Let D be an acyclic digraph. We may assume that D has a unique vertex, r , of in-degree 0 as, by Proposition 1.1, this is a
necessary and sufficient condition for D to have an out-branching. Let B be a bipartite graph with partite sets X = V (D) and
X ′ = {x′ : x ∈ V (D) \ {r ′}} and edge set E(B) = {xy′ : x ∈ X, y′ ∈ X ′, xy ∈ A(D)}. Let m(B) denotes the maximum size of a
matching in B.

Lemma 2.1. We have `min(D) = |X | −m(B).

Proof. A set N of edges of B is called nice if each vertex of X ′ is incident to exactly one edge in N and N contains an edge
incident to r . Let T be an out-branching of D and let f (T) = {xy′ : xy ∈ A(T)}. We will prove that f is a bijection between
all out-branchings of D and all nice edge sets of B. Indeed, if P is an out-branching, then clearly f (P) is a nice edge set. Let N
be a nice edge set and let Q be a spanning subdigraph of D constructed as follows: xy ∈ A(Q) if and only if xy′ ∈ N . Since
every vertex of X ′ is incident to exactly one edge of N , we have d−Q (z) = 1 for each z ∈ V (Q) \ {r}. Since Q is acyclic with a
unique vertex of in-degree 0, Q is connected and, thus, Q is an out-branching. Clearly, Q = f −1(N).
Let T be an out-branching of D and let B[f (T)] be the subgraph of B induced by the set f (T). Observe that the number

of leaves in T equals the number iv(B[f (T)]) of isolated vertices in B[f (T)]. Let N be a nice edge set in B, let m(N) denote
the maximum size of a matching in B[N] and let H be a matching in B[N] of size m(N). Let y′ ∈ X ′ be a vertex of B not
incident to an edge of H and let xy′ ∈ N. Since H is maximum, x is incident to an edge of H . Thus, iv(B[N]) = |X | − m(N)
and `min(D) = |X | −max{m(N) : N is nice}.

Author's personal copy

G. Gutin et al. / Theoretical Computer Science 410 (2009) 4571–4579 4573

Let M be a maximum matching in B and let M∗ be obtained from M by adding to it an edge uv′ ∈ E(B) for each v′ not
covered by M . Notice that r is covered by M . Indeed, there exists a vertex u such that r is the only in-neighbor of u in D.
Hence if r was not covered byM then u′ would not be covered byM either, which means that we could extendM by ru′, a
contradiction. Therefore,M∗ covers r and, by definition, every vertex of X ′ is incident to exactly one edge ofM∗. Thus,M∗ is
nice. Sincem(B) = m(M∗) = max{m(N) : N is nice}, we conclude that `min(D) = |X | −m(B). �

The correctness of the algorithm MINLEAF below follows from the proof of Lemma 2.1. The algorithm inputs an acyclic
digraph D and outputs a minimum leaf out-branching T , if it exists, and ‘NO’, otherwise.

MINLEAF

1. if the number of vertices with in-degree 0 equals 1 then
r ← the vertex of in-degree 0 else return ‘NO’

2. construct the bipartite graph B of D
3. find a maximummatchingM in B and setM∗ ← M
4. for all y′ ∈ X ′ not covered byM do
M∗ ← M∗ ∪ {an arbitrary edge incident to y′}

5. A(T)← ∅
6. for all xy′ ∈ M∗ do A(T)← A(T) ∪ {xy}
7. return T

Let us analyze the computational complexity of MINLEAF. Let n andm be the number of vertices and arcs in D. Each step
of MINLEAF takes at most O(m) time except for Step 3. The computation time required to perform Step 3 is the same as
that of solving the maximum cardinality matching problem on a bipartite graph. The last problem can be solved in time
O(|V (B)|1.5

√
|E(B)|/ log |V (B)|) [1]. Hence, the algorithm requires at most O(m+ n1.5

√
m/ log n) time.

Thus, we have the following:

Theorem 2.2. Let D be an acyclic digraph. Then MINLEAF returns a minimum leaf out-branching if one exists, or returns ‘NO’
otherwise in time O(m+ n1.5

√
m/ log n).

3. Parameterizations of MinLOB

The following is a natural way to parameterize MinLOB.

MinLOB Parameterized Naturally (MinLOB-PN)
Instance: A digraph D.
Parameter: A positive integer k.
Question: Is `min(D) ≤ k ?

Clearly, this problem is NP-complete already for k = 1 as MinLOB-PN for k = 1 is equivalent to the hamiltonian directed
path problem. Let v be an arbitrary vertex ofD. TransformD into a newdigraphDk by adding k vertices v1, v2, . . . , vk together
with the arcs vv1, vv2, . . . , vvk. Observe that D has a hamiltonian directed path terminating at v if and only if `min(Dk) ≤ k.
Since the problem is NP-complete of checkingwhether a digraph has a hamiltonian directed path terminating at a prescribed
vertex, we conclude that MinLOB-PN is NP-complete for every fixed k.
Clearly, `min(D) ≤ n− 1 for every digraph D of order n > 1. Consider a different parameterizations of MinLOB.

MinLOB Parameterized Below Guaranteed Value (MinLOB-PBGV)
Instance: A digraph D of order nwith `min(D) > 0.
Parameter: A positive integer k.
Question: Is `min(D) ≤ n− k ?
Solution: An out-branching B of Dwith at most n− k leaves or the answer ‘NO’ to the above question.

Note that we consider MinLOB-PBGV as a constructive problem, not just as a decision problem. Later in the paper wewill
prove that MinLOB-PBGV is fixed-parameter tractable.
The parameterizationMinLOB-PBGV is of the type below a guaranteed value. Parameterizations above/below a guaranteed

value were first considered by Mahajan and Raman [16] for the problems Max-SAT and Max-Cut; such parameterizations
have lately gainedmuch attention, cf. [10,13–15,17] (it isworth noting thatHeggernes, Paul, Telle, andVillanger [15] recently
solved the longstanding minimum interval completion problem, which is a parameterization above guaranteed value). For
directed graphs there have been only a couple of results on problems parameterized above/below a guaranteed value, see
[3,10].
Let us denote by EK1,p−1 the star digraph of order p, i.e., the digraph with vertices 1, 2, . . . , p and arcs 12, 13, . . . , 1p. Our

fixed-parameter tractability result forMinLOB-PBGVmay lead us to considering the following stronger (thanMinLOB-PBGV)
parameterizations of MinLOB.

Author's personal copy

4574 G. Gutin et al. / Theoretical Computer Science 410 (2009) 4571–4579

MinLOB Parameterized Strongly Below Guaranteed Value
(MinLOB-PSBGV)
Instance: A digraph D of order nwith `min(D) > 0.
Parameter: An integer k ≥ 2.
Question: Is `min(D) ≤ n/k ?

Unfortunately, MinLOB-PSBGV is NP-complete for every fixed k ≥ 2. To prove this consider a digraph D of order n and a
digraph H obtained from D by adding to it the star digraph EK1,p−1 on p = bn/(k− 1)c vertices (V (D) ∩ V (EK1,p−1) = ∅) and
appending an arc from vertex 1 of EK1,p−1 to an arbitrary vertex y of D. Observe that `min(H) = p − 1 + `min(D, y), where
`min(D, y) is the minimum possible number of leaves in an out-branching rooted at y, and that 1k |V (H)| = p + ε, where
0 ≤ ε < 1. Thus, `min(H) ≤ 1

k |V (H)| if and only if `min(D, y) = 1. Hence, the hamiltonian directed path problem with
fixed initial vertex (vertex y in D) can be reduced to MinLOB-PSBGV for every fixed k ≥ 2 and, therefore, MinLOB-PSBGV is
NP-complete for every k ≥ 2.

4. Quadratic order kernel for MinLOB-PBGV

In this section we introduce a reduction rule for the MinLOB-PBGV problem. Using the reduction rule we present a
polynomial-time algorithm that either yields an out-branching with at most n− k leaves or produces a kernel whose order
is bounded by a quadratic function of k.
Let T be an out-branching of a given digraph D and let (u, v) ∈ A(D) \ A(T). We define the 1-change for (u, v) as the

operation to add the arc (u, v) to T and remove the existing arc (p(v), v) from T , where p(v) is the parent (i.e. in-neighbor)
of v in T . We say an out-branching isminimal if no 1-change for an arc of A(D) \ A(T) leads to an out-branching with more
internal vertices, or equivalently, less leaves. For two vertices x, y, we write x ≤T y if there is a path from x to y in T and
especially when x 6= y, we write x <T y. An arc (y, x) ∈ A(D) \ A(T) is T -backward if x <T y. The following is a simple
observation on a minimal out-branching.
Lemma 4.1. Let T be an out-branching of D. Then T is minimal if and only if for every arc (u, v) ∈ A(D) \ A(T) which is not
T-backward arc, the vertex u is internal or d+(p(v)) = 1.
Proof. Suppose the 1-change for (u, v) ∈ A(D) \ A(T) yields an out-branching with less leaves. It is easy to see that (u, v)
is not T -backward, u is a leaf and d+(p(v)) ≥ 2. Conversely if there is an arc (u, v) ∈ A(D) \ A(T)which is not T -backward,
u is a leaf and d+(p(v)) ≥ 2 then 1-change for (u, v) produces an out-branching in which the number of leaves is strictly
decreased. �

Lemma 4.2. Given a digraph D, we can either build a minimal out-branching T with at most n− k leaves or obtain a vertex cover
of size at most 2k− 2 in O(n2m) time.
Proof. Let T be a minimal out-branching. If T has at most n − k leaves, we are done. Suppose it is not. We claim that the
set U = {u ∈ V (D) : u is internal in T } ∪ {u ∈ V (D) : u is a leaf in T and d+(p(u)) = 1} is a vertex cover of D. Since the
set of internal vertices cover all arcs which are not between the leaves, it suffices to show that every arc (u, v) between two
leaves u and v is covered by U . The last statement follows from the fact that T is minimal and Lemma 4.1. What remains is
to observe that the number of internal vertices is at most k−1 and the number of leaves which is the only child of its parent
is at most k− 1 as well.
Now we consider the time complexity of the algorithm. The construction of an out-branching T of D takes O(n + m)

time. Whether T is minimal can be checked in O(nm) time since for every arc (u, v) ∈ A(D) \ A(T) we test the conditions
of Lemma 4.1. Let L be the list of arcs (u, v) ∈ A(D) \ A(T) which violates the minimality of T , i.e. such that u is a leaf and
d+(p(v)) ≥ 2. Whenever L 6= ∅, choose (u, v) ∈ L and transform T by replacing the arc (p(v), v) by (u, v). Accordingly
we update the list L as follows: (1) erase all arcs whose tail is u, which takes O(m) time (2) erase all arcs whose head is
v, which takes O(m) time (3) add to L arcs of the form (x, y) where x is a leaf of the subtree rooted at v and y is a vertex
with d+(p(y)) ≥ 2 on the unique path from the root of T to p(v). This takes O(nm) time. The validation of the update with
(1)–(3) can be easily verified. Since any out-branching has at least one leaf and we decrease the number of leaves of T by 1
at each transformation, after at most n such transformations we obtain an out-branching where no further transformation
can be done. This will be our minimal out-branching. When the minimal out-branching has more than n− k leaves, we can
construct the vertex cover U as above in O(n) time. �

It follows from Lemma 4.2 that we can find either an out-branching which certifies a positive answer for the MinLOB-
PBGV problem or a vertex cover of D of size at most 2k − 2. In the second case, we can remove some redundant vertices
from the large independent set of size at least n− (2k− 2) and obtain an instance of smaller size. The crown structure plays
the fundamental role in this reduction.
Definition 4.3. A crown in a graph G is a pair (H, C), whereH ⊆ V (G) and C ⊆ V (G)withH∩C = ∅ such that the following
conditions hold:
(a) The set of neighbors of vertices in C is precisely H , i.e. H = N(C),
(b) C = Cm ∪ Cu is an independent set, and
(c) There is a perfect matching between Cm and H .

Author's personal copy

G. Gutin et al. / Theoretical Computer Science 410 (2009) 4571–4579 4575

A crown structure is a relatively new idea that allows us to have powerful reduction rules. Its applications have been
wide and successful, which includes a linear order kernel for the vertex cover problem [5,9].
Given a digraph D, let U be a vertex cover of D. Modify U by adding to it the vertex of in-degree 0 if one exists. Let

W = V (D) \ U and observe that W is an independent set. Finding an out-branching with at most n − k leaves can be
reformulated as the problem of finding an out-branching with at least k internal vertices. Herein we define the internal
number of D as the largest possible number of internal vertices of an out-branching of D.
In order to accommodate a crown structure to MinLOB-PBGV problem we create an auxiliary model which is similar to

those considered in [9,19]. In [9,19], the crown structure is successfully used to produce small order kernels and in particular,
[19] used the crown structure to build a tree having as many internal vertices as possible. But if we apply this model to
directed graphs, it may not build an out-branching as desired but produces a set of (disconnected) out-trees. So the model
for undirected graphs does not work for directed graphs. Here we suggest a refined model so that the crown structure can
be used to produce a small order kernel for directed graphs.
Given a directed graph Dwith U andW as above, we build the (undirected) bipartite graph B as follows.

• V (B) = U ′ ∪W , where U ′ = N−(W) ∪ (U × U).
• E(B) = {{xy, w} : xy ∈ U × U, w ∈ W , (x, w) ∈ A(D), (w, y) ∈ A(D)} ∪ {{x, w} : x ∈ U, w ∈ W , (x, w) ∈ A(D)}.

Observe that N−(W) ⊆ U as U is a vertex cover of D and that no vertex ofW in B is isolated since every vertex ofW is of
in-degree at least one in D.

Lemma 4.4. If B contains a crown (H, C = Cm ∪ Cu)with C ⊆ W and Cu 6= ∅, then the internal number of D equals the internal
number of D− Cu.

Proof. We can extend an out-branching T of D − Cu by appending an arc (x, w) ∈ A(D), where w ∈ Cu and x is any in-
neighbor of w. The attachment of such an arc does not decrease the number of internal vertices of T . This shows that the
internal number of D is not smaller than that of D− Cu.
Let a crown (H, C = Cm ∪ Cu) with C ⊆ W and a perfect matching M between H and Cm are given. We start with the

following claim.

Claim 1. Let croot be the root of T . If croot ∈ C, we can modify the perfect matching M into M ′ between H and C ′m ⊆ C so that
croot ∈ C ′m and {ux, croot} ∈ M

′ for some pair vertex ux ∈ U × U.

Proof of Claim 1. Suppose this is not the case. Recall that croot is of in-degree at least 1 since we excluded any vertex of
in-degree 0 fromW . Let u be an in-neighbor of croot in D and x be a child of croot in T . Note that {u, croot}, {ux, croot} ∈ E(B)
and thus u, ux ∈ H .
There are two cases and for each case we can obtain a new perfect matching as follows. Firstly if croot ∈ Cu, simply

exchange it with a vertex c ∈ Cm which is matched to the pair vertex ux by M . This exchange is justified since {ux, croot} ∈
E(B). Secondly suppose croot ∈ Cm but it is matched to a vertex u ∈ N−(W). Since (u, croot), (croot , x) ∈ A(D), we have
the pair vertex ux in U ′ and moreover it is in H . Hence we can find c ∈ Cm which is matched to the pair vertex ux and by
exchanging it with croot we have a new perfect matching. This is possible as we have {ux, croot} ∈ E(B) and (u, c) ∈ A(D),
thus {u, c} ∈ E(B). �

Due to Claim 1, when croot ∈ C wemay always assume that croot ∈ Cm and furthermore that {ux, croot} ∈ M for some pair
vertex ux ∈ (U × U). Notice that x is not necessarily a child of croot in T .
We shall show that the internal number of D− Cu is not smaller than the internal number of D. To see this suppose T is

an out-branching of D and consider the subgraph F = T − C obtained from T by deleting the vertices of C . Obviously F is
a union of out-trees, say F1, . . . , Fl. We will add the vertices of Cm and a set of arcs so that we obtain an out-branching of
D− Cu with as many internal vertices as in T at the end of this process.
Recalling that C ⊆ W is an independent set, it is straightforward to see any vertex c ∈ C falls into one of the three types:

(a) c is a leaf in T hanging to some vertex of F (b) c is an internal vertex in T which has both a parent and children in F (c) c
is the root croot of T and it has at least one in-neighbor in V (D).
Let c1, . . . , ct ∈ C be the vertices that are of type (b) in T . For each ci, 1 ≤ i ≤ t , let Hi = {fpfq ∈ U × U : (fp, ci) ∈

A(T), (ci, fq) ∈ A(T)}. We denote
⋃
1≤i≤t Hi by Hint . For the vertex croot ∈ C , let Hroot = {fpx ∈ U × U : (fp, croot) ∈

A(D) \ A(T), (croot , x) ∈ A(T)}. We set Hroot = ∅ if croot /∈ C . Note that both Hint and Hroot belong to H .
The following procedure defines how to construct an out-tree T ′′ from F . We initialize T ′ ← F and Cint ← ∅.

1. For every fpfq ∈ Hint
1.1 let Hi be the unique set containing fpfq.
1.2 let cpq ∈ Cm be the vertex with {fpfq, cpq} ∈ M
1.3 T ′ ← T ′ + cpq + (fp, cpq)+ (cpq, fq).
1.4 Cint ← Cint ∪ {cpq}.

2. T ′′ ← T ′.
3. If croot /∈ C , return T ′′.

Author's personal copy

4576 G. Gutin et al. / Theoretical Computer Science 410 (2009) 4571–4579

4. If croot /∈ Cint
4.1 T ′′ ← T ′′ + croot .
4.2 for each child x of croot in T , T ′′ ← T ′′ + (croot , x).
4.3 return T ′′.

5. Otherwise
5.1 let fpfq ∈ Hint be the vertex with {fpfq, croot} ∈ M .
5.2 let x be the child of croot in T with x ≤T ′′ fp.
5.3 let cx ∈ Cm be the vertex with {fpx, cx} ∈ M .
5.4 T ′′ ← T ′′ + cx + (cx, x).
5.5 for each child y 6= x of croot in T (if any)
5.5.1 let cy ∈ Cm be the vertex with {fpy, cy} ∈ M
5.5.2 T ′′ ← T ′′ + cy + (fp, cy)+ (cy, y).
5.6 return T ′′.

Claim 2. Step 1 is valid and T ′ at step 2 is a union of out-trees.

Proof of Claim 2. For each fpfq ∈ Hint , the vertex fq ∈ V (F) appears as the second element of the pair vertex in Hint at most
once. The uniqueness of Hi 3 fpfq then follows (step 1.1). Moreover by the construction of Hi, {fpfq, ci} ∈ E(B) and thus
fpfq ∈ N(C) = H , where the last equality follows by the definition of crown. Hence fpfq is uniquely matched to a vertex
cpq ∈ Cm by M (step 1.2). Also {fpfq, cpq} ∈ E(B) implies (fp, cpq), (cpq, fq) ∈ A(D), which implies that T ′ can be properly
constructed (step 1.3).
Now observe that any second element fq of a pair vertex fpfq ∈ Hint is a root of an out-tree in F . Thus for each component

Fq of F , T ′ contains at most one arc entering into its root. Moreover, fp <T ′ fq if and only if fp <T fq, which means that there
is no directed cycle in T ′. Witnessing that all the other vertices have at most one arc entering into it, we conclude T ′ at step
2 is a union of out-trees. �

We claim that the above procedure returns an out-tree T ′′.

Claim 3. Steps 3–5 are valid and T ′′ is an out-tree.

Proof of Claim 3. First consider the case when T ′′ is returned at step 3. With Claim 2, it is enough to show that T ′ is
connected. Let two components Fp and Fq in F be connected by ci in T . Since croot /∈ C , the vertex ci is of type (b) and
thus there exist fp ∈ Fp and the root fq of Fq such that (fp, ci) ∈ A(T), (ci, fq) ∈ A(T). By the construction of Hint , we have
fpfq ∈ Hi ⊆ Hint and the vertex cpq ∈ Cm with {fpfq, cpq} ∈ M connects Fp and Fq in T ′ during the performance of step 1. Hence
T ′ is connected.
If T ′′ is not returned at step 3, we have croot ∈ C . It is important to observe that in this case, the roots of the out-trees in

T ′ at step 2 are exactly the children of croot in T . This is because the root of an out-tree in F has an incoming arc in T ′ if and
only if its parent in T is of type (b).
Secondly suppose that T ′′ is returned at step 4. Then croot does not participate in T ′ and croot in T ′′ is of in-degree 0. By the

observation in the second paragraph, T ′′ is an out-tree.
Thirdly suppose that T ′′ is returned at step 5. In this case croot has been included as an internal vertex to connect two

out-trees in step 1, and the arcs (fp, croot) and (croot , fq) have been included in T ′, where fpfq is the pair vertex found in step
5.1. We want to check that cx and the arc (cx, x) in line 5.3 can be properly picked up. Indeed, the pair vertex fpx belongs to
Hroot ⊆ H and there exists a vertex cx which is matched to the pair fpx. By the construction of B, the arc (cx, x) exists as well.
Hence at the end of step 5.4, T ′′ is a union of out-trees whose roots are cx and the children of croot in T other than x.
If d+T (croot) = 1, T

′′ consists of a single out-tree whose root is cx. Else if d+T (croot) ≥ 2, let y be a child of croot in T and
y 6= x. Since (fp, croot), (croot , y) ∈ A(D), we have the pair vertex fpy in Hroot ⊆ H and fpy is uniquely matched to a vertex
cy. The edge {fpy, cy} implies the existence of the two arcs (fp, cy), (cy, y), hence we can perform step 5.5 properly. Since the
vertex fp is contained in the out-tree rooted at cx ∈ Cm, the addition of these arcs does not create a cycle. As a result we start
at the step 5.5 with |d+T (croot)| out-trees in the beginning and each time we carry out step 5.5.2, the number of out-trees in
T ′′ decreases by 1. Therefore at the end of step 5.5, we end up with a single out-tree T ′′ rooted at cx. �

During the construction of T ′′, we added at least one vertex cpq for each internal vertex ci of type (b) as an internal vertex
of T ′′. Also we added at least one vertex as the root or an internal vertex of T ′′ if croot ∈ C . Hence the number of internal
vertices in C for T ′′ is at least as large as the number of internal vertices in C for T . Thereforewhat remains is to see that every
vertex f of F which is internal in T can be made to remain internal. The only case we need to consider is a vertex f ∈ V (F)
whose children in T are leaves and all belong to C . Suppose f is a leaf in T ′. Since f ∈ N(C) = H , we can uniquely determine
a vertex cf ∈ Cm such that {f , cf } belongs to the perfect matching M . By the construction of T ′′ in the above argument, the
vertex cf is not contained in T ′′ for each such vertex f ∈ V (F) and thus, we may add cf and an arc (f , cf) to T ′′ while keeping
T ′′ as an out-tree. After this procedure each such vertex f is an internal vertex in T ′′, and thus T ′′ has asmany internal vertices
as T .
For any vertex c of Cmwhich does not participate in T ′ constructed so far, we simply add it to T ′′with the arc (f , c) ∈ A(D).

Therefore T ′′ is an out-branching of D− Cu with as many internal vertices as T . This completes the proof. �

Author's personal copy

G. Gutin et al. / Theoretical Computer Science 410 (2009) 4571–4579 4577

In light of Lemma 4.4, we have a reduction rule below.

Reduction rule 1. Given a digraph Dwith a vertex cover U of D andW = V (D)\U , construct the associated bipartite graph
B. If B has a crown (H, C = Cm ∪ Cu)with Cu 6= ∅, remove the vertices of Cu from D.

We need the following theorem to prove our kernelization lemma.

Theorem 4.5 ([9]). Any graph G with an independent set I, where |I| ≥ 2n
3 , has a crown (H, C), where H ⊆ N(I), C ⊆ I and

Cu 6= ∅, that can be found in time O(nm) given I.

Lemma 4.6 (Kernelization Lemma). Let D be irreducible. If |V (D)| > 8k2 + 6k then D has an out-branching with at least k
internal vertices.

Proof. Suppose that D is reducedwith |V (D)| > 8k2+6k, and that D does not have an out-branching with at least k internal
vertices. Since the internal number of D is the same as the internal number of the original digraph, we may assume that D
has an out-branching T .
For |U| < 2k, we have |W | = |V (D) \ U| > 8k2 + 4k and |U ′| = |N−(W) ∪ (U × U)| < 2k + 4k2. Then |W | ≥ 2|V (B)|

3
which means that we have a crown (H, C = Cm ∪ Cu) of Dwith C ⊆ W and Cu 6= ∅ by Theorem 4.5. This is a contradiction
to that D is reduced. �

Proceeding fromwhat has been discussed above, we give a polynomial-time algorithmwhich computes a quadratic order
kernel for the MinLOB-PBGV problem.

KERNELIZATION

1. Build an out-branching T rooted at r by depth-first search.
2. Transform T into a minimal out-branching using 1-change.
3. If the number of leaves of T is at most n− k, return ’YES’.
4. Otherwise Reduce by Rule 1 if possible. If this is not possible, return the instance (it is irreducible).
Let T be the new out-branching obtained by the construction in the proof of Lemma 4.4.
Transform T into a minimal out-branching using 1-change.
Go to line 3.

Step 1–3 take O(n2m) time by Lemma 4.2. At step 4, we can construct the bipartite graph B in time O(n3), and V (B) and
E(B) are bounded by n+ 2k+ 4k2 = O(n2) andm+ 4k2n = O(n3) respectively. Due to Theorem 4.5, in O(n5) time we can
reduce the instance by Rule 1 or declare the instance irreducible. Since the size of an instance is strictly decreased at each
step of the reduction, we conclude that the algorithm KERNELIZATION runs in O(n6) time.

5. Solving MinLOB-PBGV

In order to achieve a better running time we provide an alternative way of showing the fixed-parameter tractability of
the MinLOB-PBGV problem based on the notion of tree decomposition.
A tree decomposition of an (undirected) graph G is a pair (X,U) where U is a tree whose vertices we will call nodes and

X = {Xi : i ∈ V (U)} is a collection of subsets of V (G) (called bags) such that

1.
⋃
i∈V (U) Xi = V (G),

2. for each edge {v,w} ∈ E(G), there is an i ∈ V (U) such that v,w ∈ Xi, and
3. for each v ∈ V (G) the set of nodes {i : v ∈ Xi} form a subtree of U .

Thewidth of a tree decomposition ({Xi : i ∈ V (U)},U) equalsmaxi∈V (U){|Xi|−1}. The treewidth of a graph G is theminimum
width over all tree decompositions of G. We use the notation tw(G) to denote the treewidth of a graph G.
By a tree decomposition of a digraph Dwe will mean a tree decomposition of the underlying graph UG(D). Also, tw(D) =

tw(UG(D)).

Theorem 5.1. There is a polynomial-time algorithm that, given an instance (D, k) of the MinLOB-PBGV problem, either finds a
solution or establishes a tree decomposition of D of width at most 2k− 2.

Proof. By Lemma 4.2, there is a polynomial-time algorithmwhich either finds a solution or specifies a vertex cover C of D of
size atmost 2k−2. Let I = {v1, . . . , vs} = V (D)\C . Consider a starU with nodes x0, x1, . . . , xs and edges x0x1, x0x2, . . . , x0xs.
Let X0 = C and Xi = X0 ∪ {vi} for i = 1, 2, . . . , s and let Xj be the bag corresponding to xj for every j = 0, 1, . . . , s. Observe
that ({X0, X1, . . . , Xs},U) is a tree decomposition of D and its width is at most 2k− 2. �

Theorem 5.1 shows that an instance (D, k) of the MinLOB-PBGV problem can be reduced to another instance with
treewidth O(k). Using standard dynamic programming techniques we can solve this instance in time 2O(k log k)nO(1). We
can further accelerate the solution procedure using kernelization. If we first find the kernel and then establish the tree
decomposition, the resulting algorithm will run in time O(2O(k log k) + n6). Now we have the following result.

Theorem 5.2. The MinLOB-PBGV problem can be solved by an additive FPT algorithm of running time O(2O(k log k) + n6).

Author's personal copy

4578 G. Gutin et al. / Theoretical Computer Science 410 (2009) 4571–4579

6. Related problems

In this section we consider transformations fromMinPC andMaxIOT introduced in Section 1 into MinLOB. We start from
MinPC.
For a digraph D, let pc(D) be the minimum number of vertex-disjoint directed paths in D. We have the following:

Proposition 6.1. Let D = (V , A) be a digraph and let D̂ be the digraph obtained from D by adding a new vertex s and all possible
arcs from s to V . Then pc(D) = `min(D̂).

Proof. Since a collection of p disjoint directed paths in D covering V (D) corresponds to an out-branching of D̂with p leaves,
we have pc(D) ≥ `min(D̂). Let B be an out-branching of D̂with p leaves. We say that a vertex x of B is branching if d+B (x) > 1.
Consider a maximal directed path Q of B containing a leaf but not containing branching vertices. Observe that B − V (Q)
has p − 1 leaves. Thus, we can decompose the vertices of B into p disjoint directed paths. Deleting the vertex s from this
collection of paths, we see that pc(D) ≤ `min(D̂). Thus, pc(D) = `min(D̂). �

Fixed-parameter tractability of MinLOB-PBGV and Proposition 6.1 imply that the parameterized problem pc(D) ≤ n− k
is FPT, too.
For a digraph D and a vertex v in D, let Dv denote the subgraph of D obtained from the subgraph of D induced by all

vertices reachable from v by deleting all arcs entering v. The following result allows us to reduce MaxIOT to MinLOB.

Proposition 6.2. Let D be a digraph and let S be the set of vertices belonging to all strongly connected components of D
without incoming arcs. Let Bv be an out-branching of Dv of minimum number of leaves, and let s be a vertex of S such that
`min(Bs) ≤ `min(Bv) for each v ∈ S. Then Bs is a maximum internal out-tree of D.

Proof. Let T be a solution to MaxIOT for Dwith maximum possible number of leaves and let r be the root of T . Observe that
r ∈ S as otherwise we would be able to extend T to an out-tree T ′ with more internal vertices such that the root of T ′ is in S.
Observe also that T is an out-branching of Dr as otherwise we would be able to extend T to an out-branching T ′ of Dr such
that T ′ has more either leaves or internal vertices than T . Clearly, `min(Br) ≤ `min(Bv) for each v ∈ S. �

Together with the above-proved results, Proposition 6.2 implies that MaxIOT for acyclic digraphs is polynomially-time
solvable and that the problem of finding an out-tree with at least k internal vertices in an arbitrary digraph D is FPT. Recall
that the problem of finding an out-branching with at least k internal vertices has a quadratic order kernel. However, the
problem of finding an out-tree with at least k internal vertices does not have a polynomial size kernel unless PH= Σ3p . This
easily follows from Lemmas 1–3 in [4].

7. Further research

We have proved that MinLOB-PBGV is FPT and suggested an 2O(k log k) · nO(1) algorithm for the problem. Our algorithm
uses a treewidth approach. Very recently, using a different approach Cohen et al. [6] designed a 2O(k) · nO(1) algorithm for
MinLOB-PBGV. An open interesting question is whether MinLOB-PBGV admits a linear order kernel or not.

Acknowledgements

The research of Gutin and Kimwas supported in part by an EPSRC grant. Part of the paper was written when Razgon was
visiting Department of Computer Science, Royal Holloway, University of London. The research of Razgon at the Department
of Computer Science, University College Cork was supported by Science Foundation Ireland Grant 05/IN/I886.

References

[1] Helmut Alt, Norbert Blum, Kurt Mehlhorn, Markus Paul, Computing a maximum cardinality matching in a bipartite graph in time O(n1.5
√
m/ log n),

Information Processing Letters 37 (4) (1991).
[2] Jørgen Bang-Jensen, Gregory Gutin, Digraphs: Theory, Algorithms and Applications, Springer-Verlag, 2000.
[3] Jørgen Bang-Jensen, Anders Yeo, The minimum spanning strong subdigraph problem is fixed parameter tractable, Discrete Applied Mathematics 156
(15) (2008) 2924–2929.

[4] Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, Danny Hermelin, On problems without polynomial kernels (extended abstract), in: ICALP
(1), in: Lecture Notes in Computer Science, vol. 5125, 2008, pp. 563–574.

[5] Benny Chor, Mike Fellows, DavidW. Juedes, Linear kernels in linear time, or how to save k colors inO(n2)) steps, in:WG, in: Lecture Notes in Computer
Science, vol. 3353, 2004, pp. 257–269.

[6] Nathann Cohen, Fedor Fomin, Gregory Gutin, Eun Jung Kim, Saket Saurabh, Anders Yeo, Algorithm for finding k-vertex out-trees and its application
to k-internal out-branching problem, Tech. Report arXiv:0903.0938, March, 2009.

[7] Alan Demers, Alan Downing, Minimum leaf spanning tree, US Patent no. 6,105,018, 2008.
[8] Rod Downey, Mike Fellows, Parameterized Complexity, Springer-Verlag, 1999.
[9] Mike Fellows, Pinar Heggernes, Frances A. Rosamond, Christian Sloper, Jan Arne Telle, Finding k disjoint triangles in an arbitrary graph, in: WG,
in: Lecture Notes in Computer Science, vol. 3353, 2004, pp. 235–244.

[10] Henning Fernau, Parameterized algorithmics for linear arrangement problems, Discrete Applied Mathematics 156 (17) (2008) 3166–3177.
[11] Jörg Flum, Martin Grohe, Parameterized Complexity Theory, Springer-Verlag, 2006.
[12] Jiong Guo, Rolf Niedermeier, Invitation to data reduction and problem kernelization, ACM SIGACT News 38 (1) (2007) 31–45.

Author's personal copy

G. Gutin et al. / Theoretical Computer Science 410 (2009) 4571–4579 4579

[13] GregoryGutin, Arash Rafiey, Stefan Szeider, Anders Yeo, The linear arrangement problemparameterized above guaranteed value, Theory of Computing
Systems 41 (3) (2007) 521–538.

[14] Gregory Gutin, Stefan Szeider, Anders Yeo, Fixed-parameter complexity of minimum profile problems, Algorithmica 52 (2) (2008) 133–152.
[15] Pinar Heggernes, Christophe Paul, Jan Arne Telle, Yngve Villanger, Interval completion with few edges, in: STOC, 2007, pp. 374–381.
[16] Meena Mahajan, Venkatesh Raman, Parameterizing above guaranteed values: Maxsat and maxcut, Journal of Algorithms 31 (2) (1999) 335–354.
[17] Rolf Niedermeier, Invitation to fixed-parameter algorithms, in: Oxford Lecture Series in Mathematics and its Applications, vol. 31, 2006.
[18] Elena Prieto, Christian Sloper, Either/or: Using vertex cover structure in designing fpt-algorithms — the case of k-internal spanning tree, in: WADS,

in: Lecture Notes in Computer Science, vol. 2748, 2003, pp. 474–483.
[19] Elena Prieto, Christian Sloper, Reducing to independent set structure — the case of k-internal spanning tree, Nordic Journal of Computing 12 (3) (2005)

308–318.

