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Abstract. Given a digraph D, the Minimum Leaf Out-Branching prob-
lem (MinLOB) is the problem of finding in D an out-branching with the
minimum possible number of leaves, i.e., vertices of out-degree 0. We
prove that MinLOB is polynomial-time solvable for acyclic digraphs. In
general, MinLOB is NP-hard and we consider three parameterizations of
MinLOB. We prove that two of them are NP-complete for every value
of the parameter, but the third one is fixed-parameter tractable (FPT).
The FPT parametrization is as follows: given a digraph D of order n
and a positive integral parameter k, check whether D contains an out-
branching with at most n − k leaves (and find such an out-branching if
it exists). We find a problem kernel of order O(k · 2k) and construct an
algorithm of running time O(2O(k log k) +n3), which is an ‘additive’ FPT
algorithm.

1 Introduction

We say that a subgraph T of a digraph D is an out-tree if T is an oriented tree
with only one vertex s of in-degree zero (called the root). The vertices of T of
out-degree zero are called leaves. If T is a spanning out-tree, i.e. V (T ) = V (D),
then T is called an out-branching of D. Given a digraph D, the Minimum Leaf
Out-Branching problem (MinLOB) is the problem of finding an out-branching
with the minimum possible number of leaves in D. Denote this minimum by
�min(D). When D has no out-branching, we write �min(D) = 0. Notice that not
every digraph D has an out-branching. It is not difficult to see that D has an
out-branching (i.e., �min(D) > 0) if and only if D has just one strongly connected
component without incomming arcs [5]. Since the last condition can be checked
in linear time [5], we may often assume that �min(D) > 0.

We first study MinLOB restricted to acyclic digraphs (abbreviated MinLOB-
DAG). MinLOB-DAG was considered in US patent [10], where its application to
the area of database systems was described. Demers and Downing [10] also sug-
gested a heuristic approach to MinLOB-DAG. However no argument or assertion
has been made to provide the validity of their approach and to investigate its
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computational complexity. Using another approach, we give a simple proof in
Section 2 that MinLOB-DAG can be solved in polynomial time.

Since MinLOB generalizes the hamiltonian directed path problem, MinLOB
is NP-hard. In this paper, we consider three parameterizations of MinLOB and
show that two of them are NP-complete for every value of the parameter, but the
third one is fixed-parameter tractable. The parameterized problems and related
results are given in Sections 3 and 4. Further research is discussed in Section 5.

We recall some basic notions of parameterized complexity here, for a more
in-depth treatment of the topic we refer the reader to [9,13,21].

A parameterized problem Π can be considered as a set of pairs (I, k) where I
is the problem instance and k (usually an integer) is the parameter. Π is called
fixed-parameter tractable (FPT) if membership of (I, k) in Π can be decided in
time O(f(k)|I|c), where |I| is the size of I, f(k) is a computable function, and c is
a constant independent from k and I. Let Π and Π ′ be parameterized problems
with parameters k and k′, respectively. An fpt-reduction R from Π to Π ′ is a
many-to-one transformation from Π to Π ′, such that (i) (I, k) ∈ Π if and only
if (I ′, k′) ∈ Π ′ with |I ′| ≤ g(k) for a fixed computable function g and (ii) R is of
complexity O(f(k)|I|c). A reduction to problem kernel (or kernelization) is an
fpt-reduction R from a parameterized problem Π to itself. In kernelization, an
instance (I, k) is reduced to another instance (I ′, k′), which is called the problem
kernel ; |I ′| is the size of the kernel.

It is easy to see that a decidable parameterized problem is FPT if and only if
it admits a kernelization (cf. [13,21]); however, the problem kernels obtained by
this general result have impractically large size. Therefore, one tries to develop
kernelizations that yield problem kernels of smaller size. The survey of Guo and
Niedermeier [14] on kernelization lists some problem for which polynomial size
kernels and exponential size kernels were obtained. Notice that if a kernelization
can be done in time O(nO(1) + f(k)), then we can obtain so-called an addi-
tive FPT algorithms, i.e., an algorithm of running time O(nO(1) + g(k)), where
f(k) and g(k) are independent of n, which is often significantly faster than its
‘multiplicative’ counterpart.

All digraphs in this paper are finite with no loops or parallel arcs. We use
terminology and notation of [5]; in particular, for a digraph D, V (D) and A(D)
denote its vertex and arc sets. The symbols n and m will denote the number of
vertices and arcs in the digraph under consideration.

2 MinLOB-DAG

Let D be an acyclic digraph. We may assume that D has a unique vertex r of
in-degree 0 as otherwise D has no out-branchings. Let V = V (D) and V ′ = {v′ :
v ∈ V }. Let us define a bipartite graph B of D with partite sets X and X ′ as
follows: X = V , X ′ = V ′ \ {r′} and E(B) = {xy′ : x ∈ X, y′ ∈ X ′, xy ∈ A(D)}.

Consider the following algorithm for finding a minimum leaf out-branching T
in an input acyclic digraph D. The algorithm outputs T if it exists and ‘NO’,
otherwise.
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MINLEAF

1. if the number of vertices with in-degree 0 equals 1 then
r ← the vertex of in-degree 0 else return ‘NO’

2. construct the bipartite graph B of D
3. find a maximum matching M in B
4. M∗ ← M
5. for all y′ ∈ X ′ not covered by M do

M∗ ← M∗ ∪ {an arbitrary edge incident with y′}
6. A(T ) ← ∅
7. for all xy′ ∈ M∗ do A(T ) ← A(T ) ∪ {xy}
8. return T

Theorem 1. Let D be an acyclic digraph. Then MINLEAF returns a mini-
mum leaf out-branching if one exists, or returns ‘NO’ otherwise in time O(m +
n1.5

√
m/ logn).

Proof. We start with proving the validity of the algorithm. Observe that an
acyclic digraph has an out-branching if and only if there exists only one vertex
of in-degree zero. Hence Step 1 returns ‘NO’ precisely when �min(D) = 0.

Let M be the maximum matching obtained in Step 2, let V (M) be the set of
vertices of B covered by M , and let Z = X \ V (M) and Z ′ = X ′ \ V (M).

First we claim that Z is the set of the leaves of T , the out-branching of D
obtained in the end of Step 7. Consider the edge set M∗ obtained at the end of
Step 5. First observe that for each vertex y′ ∈ Z ′, there exists an edge of E(B)
which is incident with y′ since r is the only vertex of in-degree zero and thus
no vertex of Z ′ is isolated. Moreover, all neighbors of y′ are covered by M due
to the maximality of M . It follows that M∗ ⊇ M covers all vertices of X ′ and
leaves Z uncovered. Notice that r is covered by M . Indeed there exists a vertex
u such that r is the only in-neighbor of u in D. Hence if r was not covered by
M then u′ would not be covered by M either, which means we could extend M
by ru′, a contradiction.

Consider T which has been obtained in the end of Step 7. Clearly d−T (v) = 1
for all v ∈ V (D) \ {r} due to the construction of M∗. Moreover D does not have
a cycle, which means that T is connected and thus is an out-branching. Finally
no vertex of Z has an out-neighbor in T while all the other vertices have an
out-neighbor. Now the claim holds.

Conversely, whenever there exists a minimum leaf out-branching T of D with
the leaf set Z, we can build a matching in B which covers exactly X\Z among the
vertices of X . Indeed, simply reverse the process of building an out-branching T
from M∗ described at Step 7. If some vertex x ∈ X has more than one neighbor
in X ′, eliminate all but one edge incident with x.

Secondly we claim that T obtained in MINLEAF(D) is of minimum number
of leaves. Suppose to the contrary that the the attained out-branching T is not
a minimum leaf out-branching of D. Then a minimum leaf out-branching can
be used to produce a matching of B that covers more vertices of X than M
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does using the argument in the preceding paragraph, a contradiction. Hence
MINLEAF(D) returns a min leaf out-branching T at Step 8.

Finally we analyze the computational complexity of MINLEAF(D). Each step
of MINLEAF(D) takes at most O(m) time except for Step 3. The computation
time required to perform Step 3 is the same as that of solving the maximum car-
dinality matching problem on a bipartite graph. The last problem can be solved
in time O(|V (B)|1.5

√
|E(B)|/ log |V (B)|) [4]. Hence, the algorithm requires at

most O(m + n1.5
√

m/ log n) time. �	

3 Parameterizations of MinLOB

The following is a natural way to parameterize MinLOB.

MinLOB Parameterized Naturally (MinLOB-PN)
Instance: A digraph D.
Parameter: A positive integer k.
Question: Is �min(D) ≤ k ?

Clearly, this problem is NP-complete already for k = 1 as for k = 1 MinLOB-
PN is equivalent to the hamiltonian directed path problem. Let v be an arbi-
trary vertex of D. Transform D into a new digraph Dk by adding k vertices
v1, v2, . . . , vk together with the arcs vv1, vv2, . . . , vvk. Observe that D has a
hamiltonian directed path terminating at v if and only if �min(D) ≤ k. Since
the problem is NP-complete of checking whether a digraph has a hamiltonian
directed path terminating at a prescribed vertex, we conclude that MinLOB-PN
is NP-complete for every fixed k.

Clearly, �min(D) ≤ n − 1 for every digraph D of order n. Consider a different
parameterizations of MinLOB.

MinLOB Parameterized Below Guaranteed Value (MinLOB-
PBGV)
Instance: A digraph D of order n with �min(D) > 0.
Parameter: A positive integer k.
Question: Is �min(D) ≤ n − k ?
Solution: An out-branching B of D with at most n − k leaves or the
answer ‘NO’ to the above question.

Note that we consider MinLOB-PBGV as a search problem, not just as a de-
cision problem. In the next section we will prove that MinLOB-PBGV is fixed-
parameter tractable. We will find a problem kernel of order O(k · 2k) and con-
struct an additive FPT algorithm of running time O(2O(k log k) + n3). To obtain
our results we use notions and properties of vertex cover and tree decomposition
of underlying graphs and Las Vergnas’ theorem on digraphs.

The parametrization MinLOB-PBGV is of the type below a guaranteed value.
Parameterizations above/below a guaranteed value were first considered by Ma-
hajan and Raman [20] for the problems Max-SAT and Max-Cut; such parameter-
izations have lately gained much attention, cf. [11,15,16,17,21] (it worth noting
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that Heggernes, Paul, Telle, and Villanger [17] recently solved the longstanding
minimum interval completion problem, which is a parametrization above guar-
anteed value). For directed graphs there have been only a couple of results on
problems parameterized above/below a guaranteed value, see [6,12].

Let us denote by K1,p−1 the star digraph of order p, i.e., the digraph with
vertices 1, 2, . . . , p and arcs 12, 13, . . . , 1p. Our success with MinLOB-PBGV may
lead us to considering the following stronger (than MinLOB-PBGV) parameter-
izations of MinLOB.

MinLOB Parameterized Strongly Below Guaranteed Value
(MinLOB-PSBGV)
Instance: A digraph D of order n with �min(D) > 0.
Parameter: An integer k ≥ 2.
Question: Is �min(D) ≤ n/k ?

Unfortunately, MinLOB-PSBGV is NP-complete for every fixed k ≥ 2. To
prove this consider a digraph D of order n and a digraph H obtained from D
by adding to it the star digraph K1,p−1 on p = �n/(k − 1)� vertices (V (D) ∩
V (K1,p−1) = ∅) and appending an arc from vertex 2 of K1,p−1 to an arbitrary
vertex y of D. Observe that �min(H) = p − 1 + �min(D, y), where �min(D, y) is
the minimum possible number of leaves in an out-branching rooted at y, and
that 1

k |V (H)| = p + ε, where 0 ≤ ε < 1. Thus, �min(H) ≤ 1
k |V (H)| if and only if

�min(D, y) = 1. Hence, the hamiltonian directed path problem with fixed initial
vertex (vertex y in D) can be reduced to MinLOB-PSBGV for every fixed k ≥ 2
and, therefore, MinLOB-PSBGV is NP-complete for every k ≥ 2.

4 Solving MinLOB-PBGV

The underlying graph UG(D) of a digraph D is obtained from D by omitting all
orientation of arcs and by deleting one edge from each resulting pair of parallel
edges. For a digraph D, let α(D) denote the independence number of UG(D).

Theorem 2 (Las Vergnas[19]). If a digraph D has an out-branching, then
�min(D) ≤ α(D).

For an out-branching B of D, let L(B) denote the set of leaves of B. We will
prove the following claim which implies the theorem:

Claim 1. Let B be an out-branching of D with more than α(D) leaves. Then D
contains an out-branching B′ such that L(B′) is a proper subset of L(B).

Proof. We will prove this claim by induction on the number n of vertices in D.
For n ≤ 2 the result holds; thus, we may assume that n ≥ 3 and consider an
out-branching B of D with |L(B)| > α(D). Clearly, D has an arc xy such that
x, y are leaves of B. If the in-neighbor p of y in B is of out-degree at least 2, then
L(B′) ⊂ L(B), where B′ = B + xy − py. So, we may assume that d+

B(p) = 1.
Observe α(D − y) ≤ α(D) < |L(B)| = |L(B − y)|. Hence by the induction
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hypothesis, D − y has an out-branching B′′ such that L(B′′) ⊂ L(B − y). Notice
that L(B −y) = L(B)∪{p}\{y}. If p ∈ L(B′′), then observe that L(B′′ +py) ⊂
L(B). Otherwise, L(B′′ + xy) ⊆ L(B) \ {x} ⊂ L(B). �	

A vertex cover of D is a vertex cover of UG(D).

Lemma 1. Let D be a digraph of order n with �min(D) > 0. In time O(1.28k +
n3), we can find either an out-branching of D with at most n − k leaves or a
vertex cover of D of size less than k.

Proof. It is well-known that α(D) + β(D) = n, where β(D) is the minimum
size of a vertex cover of D. First we can use the vertex cover algorithm of [8]
to find a vertex cover of size less than k in time O(1.2745kk4 + kn). If no such
vertex cover exists, we have α(D) ≤ n − k and by Theorem 2, D contains an
out-branching B such that |L(B)| ≤ n − k. To find such an out-branching we
can use the procedure LEAFRED described below, which is just an algorithmic
version of the proof of Claim 1.

The procedure LEAFRED(D, B) takes as an input a digraph D with β(D) ≥ k
and an out-branching B of D and finds a new out-branching with leaves at most
α(D). We may assume that the input out-branching B is a DFS tree. We denote
by p(y) the parent of a leaf vertex y in the given out-branching. The correctness
of LEAFRED(D, B) follows from the proof of Claim 1 and it is not hard to see
that its time complexity is O(n3).

LEAFRED(D, B)
improve ← true
while improve=true do {

while there is an arc xy such that x and y are leaves and d+(p(y)) ≥ 2
do B ← B + xy − p(y)y

if there is an arc xy such that x and y are leaves of B then {
B′′ ← LEAFRED(D − y, B − y)
if p(y) ∈ L(B′′) then B′ ← B′′ + p(y)y
else B′ ← B′′ + xy }

else B′ ← B

if |L(B′)| < |L(B)| then B ← B′ else improve ← false }
return B �	

It follows from Lemma 1 that there is an FPT algorithm that given an instance
(D, k) of the MinLOB-PBGV problem either returns a solution or specifies a
vertex cover of D of size less than k. We are going to show that, in the latter
case, there is a possibility of kernelization. Let U be a vertex cover of D. Let
S ⊆ U , u ∈ U (we allow S = ∅). We denote by V (S, u) a subset of vertices w
of V (D) \ U such that (u, w) ∈ A(D) and N+(w) = S. Let NList be the set of
all non-empty items V (S, u). Now we create a set V ′ according to the following
algorithm called KERNEL.
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1. V ′ ← ∅
2. let all the elements of NList be unmarked
3. while NList has at least one unmarked item V (S, u) do

if |V (S, u) \ V ′| ≤ 2|U | then
V ′ ← V ′ ∪ V (S, u) else
V ′ ← V ′∪W , where W is an arbitrary subset of 2|U | vertices of V (S, u)\
V ′

endif
mark V (S, u)

endwhile
4. V ′ ← V ′ ∪ U
5. if D has a vertex v∗ with in-degree 0 then V ′ ← V ′ ∪ {v∗}
6. return V ′

Let D′ be the subgraph of D induced by V ′. The following lemma claims that
D′ can serve as a kernel of D with respect to the MinLOB-PBGV problem.

Lemma 2. (D, k) is a ‘YES’ instance of the MinLOB-PBGV problem if and
only if (D′, k) is.

Proof. In order to prove this lemma it is more convenient to think of the MinLOB-
PBGV problem as a problem of constructing an out-branching with at least k
non-leaf vertices rather than at most n − k leaf vertices.

Assume that (D′, k) is a ‘YES’ instance of the MinLOB-PBGV problem and
let B′ be an out-branching of D′ having at least k non-leaf vertices. By definition
of V ′, every vertex w of V (D)\V ′ has at least one in-neighbor p(w) which belongs
to U ⊆ V ′. Add each such vertex w to B′ together with arc (p(w), w). Clearly,
the resulting graph B is an out-branching of D whose set of non-leaf-vertices
is a superset of the set of non-leaf vertices of B′. Thus, B has at least k non-
leaf vertices which shows that (D, k) is a ‘YES’ instance of the MinLOB-PBGV
problem.

Assume now that (D, k) is a ‘YES’ instance of the MinLOB-PBGV problem
and let B be an out-branching of D having at least k non-leaf vertices. Let B∗

be the subgraph of B induced by a set of vertices V ∗ defined as follows.

1. V ∗ contains all vertices of U and all the non-leaf vertices of B.
2. Let u be a non-leaf vertex such that the set X(u) of children of u which are

leaf vertices of B and belong to V (D) \ U is non-empty. Then V ∗ contains
exactly one vertex of X(u).

Since all the non-leaf vertices of B belong to V ∗, B∗ is an out-tree. In addition,
observe that every non-leaf vertex of B remains a non-leaf vertex in B∗. Indeed,
consider an arbitrary non-leaf vertex u. If at least one child v of u is a non-leaf
vertex itself or v ∈ U then v is included in V ∗ according to the first item of
definition of V ∗. Otherwise, all the children of u are leaf vertices which belong
to V (D) \ U . According to the second item of the definition of V ∗ at least one
such child belongs to V ∗. It follows that B∗ is an out-tree with at least k non-leaf
vertices.
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Let v1, . . . , vt be the vertices of V ∗ enumerated in some arbitrary order. Fol-
lowing this order, we associate with each vi a vertex ui ∈ V ′ according to the
following procedure. If vi ∈ V ′ then ui = vi. Otherwise observe that the in-degree
of vi is at least one. Associate with vi a vertex w such that w is the parent of vi

in B∗ if vi is a non-root and an arbitrary in-neighbor of vi in D otherwise. Let
ui be an arbitrary vertex of V (N+(vi), w) ∩ V ′ which is not equal to uj for any
j < i.

Statement 1. The procedure of construction of u1, . . . , ut is sound in the sense
that if vi /∈ V ′, the procedure always finds an available vertex for ui.

Proof of Statement 1. Observe that for vi /∈ V ′, we have |V (N+(vi), w) ∩ V ′| ≥
2|U | by the description of the kernelization algorithm. Since ui is chosen among
vertices in V (N+(vi), w) ∩ V ′ for each vi /∈ V ′, it suffices to show that the
number of vertices of V (D) \ U among u1, . . . , ut does not exceed 2|U |. Indeed,
by construction of u1, . . . , ut, we have vi ∈ U if and only if ui ∈ U . Therefore,
we may equivalently show that |(V (D) \ U) ∩ V ∗| ≤ 2|U |.

The vertices of V (D) \ U in V ∗ can be either non-leaf or leaf vertices. Each
of the non-leaf vertices has a child in U and, of course, no two vertices share a
child. Therefore the number of these vertices is at most U . On the other hand,
by construction of V ∗, each non-leaf vertex of B∗ has at most one child which
is a leaf vertex of V (D) \ U . Taking into account that the parent of a vertex
of V (D) \ U may be only a vertex of U , it follows that the number of vertices
of the second category is also at most |U | and the overall number of vertices of
V (D) \ U in B∗ is at most 2|U | as required. �	
Statement 2. Let (vi, vj) be an arc of B∗. Then (ui, uj) ∈ A(D′).

Proof of Statement 2. The statement is clearly true if vi = ui and vj = uj . If
vi �= ui but vj = uj, the statement follows because by selection of ui, ui has the
same out-neighborhood as vi. If vi = ui but vj �= uj then the statement follows
because by selection of uj, the parent of vj in B∗ is an in-neighbor of uj in D
and hence in D′. Finally the case where vi �= ui and vj �= uj cannot happen
because, by definition of a vertex cover, there is no arc between two vertices of
V (D) \ U . �	
It follows from the combination of statements that graph D′ has a subgraph B1
whose set of vertices is u1, . . . , ut and which is isomorphic to B∗. Observe that
any vertex of V ′ \ V (B1) has an in-neighbor among the vertices of B1. Indeed,
any vertex w of V ′ \ V (B1) belongs to V (D) \ U . Hence all the in-neighbors
of w in D belong to U and thus to V (B1). Consequently, if w does not have
in-neighbors in V (B1), the in-degree of w in D is 0. It follows that w is the
root vertex of B and hence the root vertex of B∗. By construction of u1, . . . , ut,
we have w is necessarily one of ui-s, a contradiction. Therefore for each vertex
w of V ′ \ V (B1), we can select an in-neighbor p(w) ∈ V (B1) of w in D′. Add
vertex w and arc (p(w), w) to B1 for each w ∈ V ′ \ V (B1), and let B2 be the
resulting digraph. It is not hard to see that B2 is an out-branching of D′ with
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at least k non-leaf vertices, which shows that (D′, k) is a ‘YES’ instance of the
MinLOB-PBGV problem. �	

Combining Lemmas 1 and 2 we obtain the following theorem.

Theorem 3. The MinLOB-PBGV problem is FPT. In particular, there is an
O(1.28k + n3) time algorithm which given an instance (D, k) of the MinLOB-
PBGV problem, either produces a solution or reduces the instance (D, k) to an
instance (D′, k) where |V (D′)| = O(k · 2k).

Proof. It follows from Lemma 1 that there is an O(1.28k + n3) algorithm which
finds either vertex cover U of D of size at most k − 1 or produces an out-
branching with at most n − k leaves. Assume that the algorithm has found a
vertex cover U such that |U | < k. Consider the transformation from (D, k) to
(D′, k) performed by the algorithm KERNEL given the vertex cover U . Lemma
2 proves that (D, k) is a ‘YES’ instance if and only if (D′, k) is. We will show
that this transformation takes O(n3) time and |V (D′)| = O(k · 2k) and that will
complete the proof.

For S ⊆ U , let VS = {x ∈ V (D)\U : N+(x) = S}. Going through all vertices
of D one by one and comparing their out-neighborhoods, we can find all sets VS

in time O(n3). Now for each fixed u ∈ U we can construct all non-empty sets
V (S, u) in time O(n2). Thus, all non-empty sets V (S, u) can be found in time
O(n3). Given the whole list NList, the construction of V ′ requires O(n3).

Let us now compute the number of vertices of D′. In terms of |U |, the number
of elements of sets V (S, u) which belong to V ′ is at most 2|U |·2|U|. In addition at
most |U | + 1 vertices are added to V ′ at the end of KERNEL. Thus the number
of vertices of V ′ is O(|U | · 2|U|) = O(k · 2k) since |U | < k. �	

Thus we have shown that the MinLOB-PBGV problem has a kernel of order
proportional to k · 2k. Now we are going to clarify how we explore this kernel
in order to get the desired out-branching. A straightforward exploration of all
possible out-branchings (using, e.g., the main algorithm of [18]) is not a good
choice because the number of different out-branchings may be up to pp−1, where
p = |V (D′)| = (k · 2k). Indeed, by the famous Kelly’s formula the number
of spanning trees in the complete graph Kp on p vertices equals pp−2. In the
complete digraph on p vertices, one can get p out-branchings from each spanning
tree of Kp by assigning a vertex to be the root.

In order to achieve a better running time we provide an alternative way of
showing the fixed-parameter tractability of the MinLOB-PBGV problem based
on the notion of tree decomposition.

A tree decomposition of an (undirected) graph G is a pair (X, U) where U is
a tree whose vertices we will call nodes and X = {Xi : i ∈ V (U)} is a collection
of subsets of V (G) (called bags) such that

1.
⋃

i∈V (U) Xi = V (G),
2. for each edge {v, w} ∈ E(G), there is an i ∈ V (U) such that v, w ∈ Xi, and
3. for each v ∈ V (G) the set of nodes {i : v ∈ Xi} form a subtree of U .
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The width of a tree decomposition ({Xi : i ∈ V (U)}, U) equals maxi∈V (U){|Xi|−
1}. The treewidth of a graph G is the minimum width over all tree decompositions
of G. We use the notation tw(G) to denote the treewidth of a graph G.

By a tree decomposition of a digraph D we will mean a tree decomposition of
the underlying graph UG(D). Also, tw(D) = tw(UG(D)).

Theorem 4. There is a polynomial algorithm that, given an instance (D, k) of
the MinLOB-PBGV problem, either finds a solution or establishes a tree decom-
position of D of width at most k.

Proof. By Lemma 1, there is a polynomial algorithm which either finds a solution
or specifies a vertex cover C of D of size at most k. Let I = {v1, . . . , vs} = V (D)\
C. Consider a star U with nodes x0, x1, . . . , xs and edges x0x1, x0x2, . . . , x0xs.
Let X0 = C and Xi = X0 ∪ {vi} for i = 1, 2, . . . , s and let Xj be the bag
corresponding to xj for every j = 0, 1, . . . , s. Observe that ({X0, X1, . . . , Xs}, U)
is a tree decomposition of D and its width is at most k. �	

Theorem 4 shows that an instance (D, k) of the MinLOB-PBGV problem can
be reduced to another instance with treewidth O(k). Using standard dynamic
programming techniques we can solve this instance in time 2O(k log k)nO(1). On
the first glance it seems that this running time makes the above kernelization
redundant. However, although the O(k · 2k) kernel is not polynomial, it is much
smaller than 2O(k log k). Therefore if we first find the kernel and then establish the
tree decomposition, the resulting dynamic programming algorithm will run in
time 2O(k log k) + nO(1) without changing the constant at k log k. More precisely,
Theorem 3 and Theorem 4 imply the following corollary.

Corollary 1. Let D a digraph of order n. Suppose that a tree-decomposition
of D of width k is specified. Suppose also that given this tree-decomposition the
MinLOB-PBGV problem can be solved in time 2ck log knO(1). Then for any in-
stance (D, k), the MinLOB-PBGV problem can be solved in time O(2ck log k+dk +
1.28k + n3), where d is a constant.

Proof. The additional dk at the exponent follows from replacing nO(1) by
(k2k)O(1). To obtain a vertex cover of size at most k, if one exists, takes O(1.28k+
kn) time. The kernelization can be done in O(n3) time by Theorem 3. �	

The above results imply the following:

Theorem 5. The MinLOB-PBGV problem can be solved by an additive FPT
algorithm of running time O(2O(k log k) + n3).

5 Discussion and Further Research

We have proved that MinLOB-PBGV is FPT. It would be interesting to check
whether MinLOB-PBGV admits significantly more efficient FPT algorithms, i.e.,
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algorithms of complexity O(cknO(1)), where c is a constant. The same question is
of interest for the following related problem, which is the natural parametrization
of the Maximum Leaf Out-Branching problem.

MaxLOB Parameterized Naturally (MaxLOB-PN)
Instance: A digraph D.
Parameter: A positive integer k.
Question: Does D have an out-branching with at least k leaves?

Alon et al. [1,2] proved that this problem is FPT for several special classes of
digraphs such as strongly connected digraphs and acyclic digraphs, and Bonsma
and Dorn [7] proved that the problem is FPT. Note that in the three papers,
MaxLOB-PN algorithms are of running time O(2k(log k)O(1) · nO(1)).

Interestingly, MaxLOB-PN remains NP-complete even when the given digraph
D is acyclic [3], which is in a clear contrast with MinLOB-PBGV unless P=NP.
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