
Complexity analysis of heuristic CSP search
algorithms

Igor Razgon

Computer Science Department, University College Cork, Ireland
i.razgon@cs.ucc.ie

Abstract. CSP search algorithms are exponential in the worst-case. A
trivial upper bound on the time complexity of CSP search algorithms
is O∗(dn), where n and d are the number of variables and the maximal
domain size of the underlying CSP, respectively.
In this paper we show that a combination of heuristic methods of con-
straint solving can reduce the time complexity. In particular, we prove
that the FC-CBJ algorithm combined with the fail-first variable order-
ing heuristic (FF) achieves time complexity of O∗((d − 1)n), where n
and d are the number of variables and the maximal domain size of the
given CSP, respectively. Furthermore, we show that the combination is
essential because neither FC-CBJ alone nor FC with FF achieve the
above complexity. The proposed results are interesting because they es-
tablish connection between theoretical and practical approaches to CSP
research.

1 Introduction

CSP search algorithms are exponential in the worst-case. An upper bound on
the time complexity of CSP search algorithms is O∗(dn), where n and d are the
number of variables and maximal domain size, respectively (we use O∗ notation
to suppress polynomial factors in the complexity expression). This upper bound
is obtained by taking into account that a search algorithm assigns n variables
and for every variable, the branching factor is at most d. Thus the O∗(dn) upper
bound is not ”tight”. On the other hand, in the constraint satisfaction area there
are many sophisticated pruning techniques. An interesting question is, whether
a combination of heuristic pruning methods can reduce the time complexity.

In this paper we answer the question affirmatively. In particular, we show
that the FC-CBJ algorithm [5] combined with the fail-first variable ordering
heuristic (FF) [4] has the worst-case time complexity of O∗((d− 1)n). Further-
more, we show that the use of both the conflict-directed backjumping and the
FF are essential for reducing complexity by demonstrating that FC-CBJ with
no specified ordering heuristic and FC with FF both have a complexity greater
than O∗((d− 1)n).

We do not claim that the combination of FC-CBJ with the FF achieve the
best time complexity for constraint satisfaction problem. In fact, there are meth-
ods that solve CSP much more efficiently [3]. The main contribution of the

present paper is providing evidence that the complexity of CSP solving can be
improved by using heuristic methods that were designed for the purely ”practi-
cal” purpose of improving the runtime of CSP solving on real-world instances.

The results proven in this paper also provide theoretical insight into the
strength of ”most constrained first” ordering heuristics studied in [2]. The fact
that FF improves the complexity of FC-CBJ while leaves the complexity of FC
unchanged indicates that the strength of an ordering heuristic depends on the
underlying search algorithm.

The rest of the paper is organized as follows. Section 2 contains the relevant
background. Section 3 is the central in the paper. In this section we prove that
FC-CBJ with FF has worst-case complexity of O∗((d−1)n). In Section 4 we show
that neither FC with the FF nor FC-CBJ do not achieve the above complexity.
Section 5 concludes the paper.

2 Preliminaries

2.1 Notations and terminology

The present paper considers only binary CSPs. A CSP Z consists of three com-
ponents. The first component is a set of variables. Every variable has a domain
of values. We denote a value val of a variable v by 〈v, val〉. The set of domains
of variables comprises the second component of Z. The constraint between vari-
ables u and v is a subset of the Cartesian product of the domains of u and v.
A pair of values (〈u, val1〉, 〈v, val2〉) is compatible if it belongs to the constraint
between u and v. Otherwise the values are incompatible (conflicting). The set
of all constraints comprises the third part of Z.

A set P of values of different variables is consistent (satisfies all the con-
straints) if all the values of P are mutually compatible. In this case, we call P a
partial solution of Z. If we let 〈u, val〉 ∈ P , we say that P assigns u. Accordingly,
〈u, val〉 is the assignment of u in P . Let V ′ be a subset of the set of variables
assigned by P . We denote by P (V ′) the subset of P that assigns V ′. If P assigns
all the variables, it is a solution of P . The task of a CSP search algorithm is to
find a solution of Z or to report that no solution exists.

Generally, not every partial solution is a subset of a full solution. If a par-
tial solution P is not a subset of any solution, it is called a nogood. Note that
sometimes in the literature, the notion of nogood has a broader meaning in
that it includes also a set of assignments with inner conflicts. In the present
work a nogood is a specific case of a partial solution, that is, a consistent set of
assignments.

2.2 The FC, FC-CBJ algorithms, and FF ordering heuristic

Forward Checking algorithm (FC) [5] is a CSP search algorithm based on enu-
meration of partial solutions. It starts from the empty partial solution. In every
iteration, FC selects an unassigned variable, assigns it with a value and appends

to the current partial solution. The characteristic feature of FC is that whenever
new assignment is added to the current partial solutions, the values of unas-
signed variables that are incompatible with the new assignment are temporarily
removed from the domains of the variables. Therefore, when we consider some
state that occurs during execution of FC, we frequently refer to the current
domain of some variable v, having in mind the subset of values that were not
removed from the domain of v.

If FC assigns all the variables of the underlying CSP, it returns a solution.
However, during the iterative enlargement of the current partial solution, the
current domain of some unassigned variable might be emptied. In this case, FC
backtracks, that is, discards the last assignment of the current partial solution
and replaces it by another assignment of the same variable. Note that when
an assignment is discarded, all the values, removed because of incompatibility
with the assignment, are restored in their current domains. It may also happen
that FC cannot replace the discarded assignment by another one. In this case it
backtracks again. Finally, it might happen that FC tries to backtrack, but the
current partial solution is empty. In this case, FC reports insolubility.

Fig. 1. CSP used for illustration of work of search algorithms

We demonstrate a possible scenario of execution of FC on the CSP shown in
Figure 1, where ellipses represent variables, black circles represent values, arcs
between values represent conflicts. FC starts from the empty current partial
solution. Then 〈v1, 1〉 is appended to the current partial solution and 〈v4, 1〉 is
removed because of incompatibility with 〈v1, 1〉. The next assignment appended
to the current partial solution is 〈v2, 1〉; the assignment causes removal of 〈v5, 1〉.
The next appended assignment is 〈v3, 1〉. Then FC adds to the current partial
solution assignment 〈v4, 2〉; as a result, 〈v5, 2〉 is removed, the domain of v5 is
emptied and FC backtracks.

Performing backtrack, FC discards 〈v4, 2〉 and removes it from the current
domain of v4. As well, 〈v5, 2〉 is restored in the current domain of v5. The back-

tracking empties the domain of v4, hence FC backtracks again, discarding 〈v3, 1〉
and restoring 〈v4, 2〉. Note that 〈v4, 1〉 is not restored because it was removed by
incompatibility with 〈v1, 1〉, which still belongs to the current partial solution
Then 〈v3, 2〉 is appended to the current partial solution. After that FC appends
again 〈v4, 2〉 which causes three consecutive backtracks discarding assignments
〈v4, 2〉, 〈v3, 2〉, and 〈v2, 1〉. Then FC appends 〈v2, 2〉 to the current partial so-
lution. The assignment 〈v3, 1〉 appended next is discarded after a number of
iterations. After appending of assignments 〈v3, 2〉, 〈v4, 1〉 and 〈v5, 1〉, FC obtains
a full solution, which is returned.

States of a search algorithm The execution of a CSP search algorithm can be
represented as a sequence of atomic operations of updating of the current par-
tial solution (addition or removal of assignments) accompanied by appropriate
updating of the maintained data structures in order to preserve consistency. The
information recorded in the data structures before the beginning of the execution
or after performing an atomic operation constitutes a state of a search algorithm.
Thus a sequence of states is another possible representation of a search algorithm.
We use this representation in the present paper, in order to prove properties of
the analyzed algorithms.

Forward Checking with Conflict-directed Backjumping (FC-CBJ) is a modi-
fication of FC that can backtrack more than 1 step backwards (backjump). The
completeness of enumeration is preserved by maintaining conflict sets of vari-
ables. In a given state of FC-CBJ, the conflict set of a variable v, denoted by
conf(v), contains all variables whose assignments in the current partial solution
are ”culprit” for removing values from the current domain of v. In particular,
if P is the current partial solution then every removed value 〈v, val〉 of v is
incompatible with P (conf(v)) or P (conf(v)) ∪ {〈v, val〉} is a nogood.

The detailed description of FC-CBJ is quite technical and long, hence we list
only those features of the algorithm that are relevant to the theorems we are
going to prove.

– Initially all conflict sets are empty.
– Whenever a value 〈u, val〉 is appended to the current partial solution and a

value of an unassigned variable v is removed as a result of incompatibility
with 〈u, val〉, u is added to conf(v).

– Whenever the empty domain of a variable v causes backtrack, FC-CBJ back-
jumps to the last assigned variable u that appears in conf(v) and discards
the assignment of this variable. The assignments of variables that were ap-
pended to the current partial solution after the assignment of u are just
canceled as if they were not performed at all (of course, with the restoring of
values removed by these assignments). Note that removing an assignment of
a variable from the current partial solution, FC-CBJ removes appearances
of this variable from all conflict sets.

– Whenever the empty current domain of a variable v causes backtrack and
the backtrack process discards the assignment of a variable u, conf(u) is set
to conf(u) ∪ conf(v) \ {u}.

Assume that the CSP illustrated on Figure 1 is processed by FC-CBJ. In
the beginning, the execution is similar to that of FC with the only difference
that whenever new assignments are appended to the current partial solution the
conflict sets of the corresponding variables are updated. In particular adding
assignment 〈v1, 1〉 causes adding v1 to conf(v4), v2 is added to conf(v5) as a
result of appending of 〈v2, 1〉. Note that the assignment 〈v3, 1〉 does not cause
updating of conflict sets. Finally the assignment 〈v4, 5〉 causes adding v4 to
conf(v5). The first backtrack of FC-CBJ is caused by the empty domain of v5.
At the time of the backtrack, conf(v5) = {v2, v4}, hence FC-CBJ jumps to v4.
Note that before the backtrack, conf(v4) = {v1}. After backtrack the set is
updated to {v1, v2} as a result of union with conf(v5) and removing of v4. Also,
v4 is removed from conf(v5).

The second backtrack occurs because of emptying of the domain of v4. Be-
cause the last variable in conf(v4) is v2, FC-CBJ jumps over v3 and discards the
assignment of v2. Thus FC-CBJ avoids processing of an unnecessary assignment
〈v3, 2〉 performed by FC after the second backtrack.

CSP search algorithms do not specify explicitly the order of selection of
variables to be assigned. This job is done by ordering heuristics. One of the
simplest and the most successful ordering heuristics is called Fail-First (FF) [4].
Every time when a new variable must be assigned, FF selects a variable with the
smallest size of the current domain. The time complexity of FF is linear in the
number of unassigned variables. The implementation of FF requires maintaining
array of domain sizes of variables which is updated dynamically when values
are removed or restored. All what FF does is selection of the minimal element
among the entries of the array that correspond to the domains of unassigned
variables.

Consider the execution of FC with FF on the CSP of Figure 1, assuming that
in case of existence of two or more variables with the smallest domain size, one
is selected according to the lexicographic ordering.

Initially, the current domains of all the variables are of equal size, so v1

is assigned with 1. After removing of 〈v4, 1〉 as a result of the assignment, v4

becomes the variable with the smallest domain size, so 〈v4, 2〉, the only remaining
value is appended to the current partial solution. The value 〈v5, 2〉 is removed
because of the incompatibility with 〈v4, 2〉, hence v5 becomes the variable with
the smallest domain size and the assignment 〈v5, 1〉 is added to the current
partial solution. The values 〈v2, 1〉 and 〈v3, 1〉 are incompatible with 〈v5, 1〉,
hence they are removed from the current domain of v2 and v3. The next two
iterations append to the current partial solution 〈v2, 2〉 and 〈v3, 2〉. The obtained
full solution is returned after that.

The above example demonstrates the strength of FF, because it allows to
avoid backtracks during processing of the given CSP.

2.3 Complexity of backtrack algorithms

All complete CSP search algorithms (those that return a solution if one exists or
report insolubility otherwise) have exponential time-complexity. Discussing as-

pects related to the complexity of backtracking algorithms, we follow two agree-
ments:

– We express the time-complexity (upper bound) by O∗ notation [7], which
suppresses the polynomial factor. For example, instead of O(n2 ∗ 2n), we
write O∗(2n). Note, that for a constant d > 1 O∗((d − 1)n) is smaller than
O∗(dn) because O∗(dn) = O∗((d/d− 1)n ∗ (d− 1)n), where (d/(d− 1))n is a
growing exponential function that cannot be suppressed by the O∗ notation.
On the other hand, given constants d and k, O∗(dn+k) is the same as O∗(dn)
because O∗(dn+k) = O∗(dk ∗ dn), where dk can be suppressed as a constant.

– We express the time complexity of a CSP search algorithm by the number of
partial solutions generated by the algorithm. This is a valid representation
because the time complexity can be represented as the number of partial
solutions multiplied by a polynomial factor which is ignored by the O∗ no-
tation.

The worst-case complexity of FC and FC-CBJ when applied to a CSP with
n variables and maximum domain size d is widely considered to be O∗(dn).

The Ω∗-notation is used to express the lower bound on the complexity of
exponential algorithms. The constant and polynomial factors are suppressed
analogously to the O∗-notation.

3 FC-CBJ combined with FF has O∗((d−1)n) complexity

In this section we will show that the use of heuristic techniques can decrease
the complexity of a search algorithm. In particular we prove that the FC-CBJ
algorithm [5] combined with the FF heuristic [4] has a worst-case complexity of
O∗((d−1)n), where n and d are the number of variables and the maximal domain
size, respectively. During the proof, we extensively use the notion of maximal
partial solution.

Definition 1. Let P be a partial solution explored by a search algorithm during
solving a CSP Z. Then P is maximal if it is not a subset of any other partial
solution visited by the algorithm during solving Z.

We now prove a theorem that states an upper bound on the number of
maximal solutions explored by FC-CBJ with FF. The overall complexity of FC-
CBJ with FF will follow from this result.

Theorem 1. FC-CBJ with FF applied to a CSP Z with n ≥ 2 variables and
maximal domain size d explores at most M(n) = d∗Σn−2

i=0 (d−1)i maximal partial
solutions.

In order to prove the theorem, we need an additional lemma.

Lemma 1. Let Z be a CSP with the maximal domain size d. Consider a state
S of FC-CBJ that occurs during processing of Z. Let P be the current partial

solution maintained by FC-CBJ in this state. Assume that in P is not empty
and that the current domain size of every unassigned variable is d. Let Z ′ be a
CSP created by the current domains of unassigned variables. Assume that Z ′ is
insoluble. Then, after visiting state S, the execution of FC-CBJ is continued as
follows: FC-CBJ detects insolubility of Z ′, immediately discards all the values of
P , reports insolubility, and stops.

Proof. Considering that d is the maximum possible domain size, we infer
that the current domains of the unassigned variables are the same as their initial
domains. It follows that all values of the original domains of the unassigned
variables are compatible with all values of P . Consequently, the conflict sets of
all the unassigned variables are empty.

Observe that when processing Z ′, a variable assigned by P does not appear
in any conflict set of a variable of Z ′. This observation can be verified by induc-
tion on the sequence of events updating the conflict sets of Z ′. Note that the
observation holds before FC-CBJ starts to process Z ′, because all the conflict
sets are empty (see the argumentation in the previous paragraph). Assuming
that the observation holds for the first k events, let us consider the k + 1-th
one. Assume that v is the variable whose conflict set is updated. If this updating
results in insertion of the currently assigned variable then the variable being
inserted belongs to Z ′ which is not assigned by P . Otherwise, conf(v) is united
with the conflict set of another variable u of Z ′. However, conf(u) does not
contain variables assigned by P by the induction assumption.

If Z ′ is insoluble, FC-CBJ will eventually discard P . This means that FC-
CBJ will arrive at a state in which the current domain of a variable v of Z ′

is empty and conf(v) does not contain any variable of Z ′. On the other hand,
conf(v) will not contain any variable assigned by P . That is, the conflict set of v
will be empty. Consequently, FC-CBJ will jump “over” all the assigned variables,
report insolubility of Z, and stop. �

Now we are ready to prove Theorem 1.
Proof of Theorem 1. We prove the theorem by induction on n. For the

basic case assume that n = 2. Let v1 and v2 be the variables of Z and assume
that v1 is assigned first. Consider the situation that occurs when v1 is assigned
with a value 〈v1, val〉. If the value is compatible with at least one value in the
domain of v2, FC-CBJ returns a solution. Otherwise, it instantiates 〈v1, val〉 with
another value of v1 or reports insolubility if all values of v1 have been explored.
Thus, every value of v1 participates in at most one partial solution. Keeping in
mind that there are at most d such values, we get that at most d partial solutions
are explored. Observe that M(2) = d. That is, the theorem holds for n = 2.

Assume that n > 2 and that the theorem holds for all CSPs having less than
n variables. We consider two possible scenarios of execution of FC-CBJ.

According to the first scenario whenever the current partial solution is not
empty (at least one variable has been already instantiated), FC-CBJ combined
with FF selects for instantiation a variable with the current domain size smaller
than d. Then FC-CBJ explores a search tree in which at most d edges leave the
root node and at most d− 1 edges leave any other node.

Note that when FC-CBJ has assigned all the variables but one, it does not
execute branching on the last variable. If the domain of the last variable is not
empty, FC-CBJ takes any available value and returns a full solution. Otherwise,
it backtracks. It follows that in the search tree explored by FC-CBJ only the first
n − 1 levels can contain nodes with two or more leaving edges. The branching
factor on the first level is d, but the branching factor of a node at any other of
n− 2 remaining levels is d− 1. Consequently, the number of leaves of the search
tree is at most d ∗ (d− 1)n−2. Taking into account that the leaves of the search
tree correspond to the maximal partial solutions, we see that in the considered
case, FC-CBJ explores at most d∗ (d−1)n−2 ≤M(n) maximal partial solutions.
Thus, the theorem holds in the case of the first scenario.

If the first scenario does not occur then FC-CBJ, having at least one variable
instantiated, selects for assignment a variable with the current domain size d.
Consider the first time when such a selection occurs and denote by P the current
partial solution maintained by FC-CBJ in the considered state. Denote by Z ′

the CSP created by the current domains of variables that are no assigned by P .
Proceeding the execution, FC-CBJ solves Z ′. If Z ′ is soluble then FC-CBJ finds
a solution of Z ′, returns its union with P , and stops.

The case when Z ′ is insoluble is the main point in the proof of the
theorem. Note that FC-CBJ uses FF. If a variable with the current domain
size d is selected, the current domain sizes of the other unassigned variables are
at least d. On the other hand, d is the maximal possible domain size, hence
the current domain sizes of the other variables are exactly d. By Lemma 1,
FC-CBJ stops after detecting insolubility of Z ′. (Note that both FC-CBJ and
FF contributed to the validity of this claim. The contribution of FF is ensuring
that the current domains of all the unassigned variables are exactly d. The
contribution of FC-CBJ is explained in the proof of Lemma 1. Note also that
Lemma 1 has been proven for the general case of FC-CBJ, hence it holds, in
particular, for FC-CBJ combined with FF.)

Thus we have shown that whenever FC-CBJ selects a variable with the cur-
rent domain size d given that the current partial solution is non-empty, the
algorithm always stops when the solving of Z ′ is finished.

The number of maximal partial solutions visited by FC-CBJ in this case
equals the number of maximal partial solutions explored before visiting P plus
the number of maximal partial solution explored after visiting P .

Recall that we consider the first time during the execution when a variable
with the current domain size d is selected given that the current partial solution
is not empty. Therefore, before arriving to the considered state, FC-CBJ explores
at most d∗(d−1)n−2 maximal partial solutions, according to the argumentation
provided for the first scenario.

All maximal partial solutions explored after visiting P are visited during
solving of Z ′. Therefore every maximal partial solution P1 visited after exploring
of P can be represented as P1 = P ∪ P2, where P2 is a maximal partial solution
of Z ′ (non-maximality of P2 contradicts maximality of P1). Thus the number

of maximal partial solutions explored after visiting of P equals the number of
maximal partial solutions explored by FC-CBJ during solving of Z ′.

Considering that P is not empty, it follows that Z ′ contains at most n − 1
variables. By the induction assumption, FC-CBJ explores at most M(n − 1)
of maximal partial solutions during solving of Z ′. Thus the overall number of
maximal partial solutions is at most d ∗ (d − 1)n−2 + M(n − 1) = M(n), what
completes the proof for the second scenario. �

Corollary 1. FC-CBJ with FF explores O∗((d−1)n) maximal partial solutions.

Proof. By definition of M(n), M(n) ≤ dn(d− 1)n−2 = O∗((d− 1)n). �

We have shown that the number of maximal partial solutions explored by
FC-CBJ with FF is bounded by O∗((d− 1)n). Clearly, every partial solution is
a subset of some maximal partial solution. On the other hand, every maximal
partial solution serves as a subset of at most n partial solutions. Indeed, every
partial solution generated by FC-CBJ corresponds to a node of the search tree
explored by FC-CBJ. Note that subsets of the given partial solution P corre-
spond to the ancestors of P in the search tree. Taking into account that every
path from the root to a leaf in the search tree has a length of at most n, we
infer that P cannot have more than n ancestors. Consequently, the number of
partial solutions explored by FC-CBJ is at most the number of maximal partial
solutions multiplied by n. Thus we have proved the following theorem.

Theorem 2. The complexity of FC-CBJ with the fail-first ordering heuristic is
O∗((d− 1)n).

To understand the strength of the theorem, consider the following corollary.

Corollary 2. FC-CBJ with FF efficiently solves any CSP with at most two
values in every domain.

Proof. If a CSP contains at most two values in every domain then d = 2.
Substituting d = 2 to the statement of Theorem 2, we get that FC-CBJ with FF
solves such a CSP in O∗(1n) with is a polynomial according to the definition of
O∗ notation. �

The collection of CSPs with at most 2 values in every domain is a well-known
polynomially-solvable CSP class. According to Corollary 2, FC-CBJ recognizes
CSPs from this class without any additional ”domain-dependent” procedures.

4 Both FC with FF and FC-CBJ have a complexity
greater than O∗((d− 1)n)

It may seem that a combination of FC-CBJ with FF is far too complex to
achieve the purpose of reducing complexity. We will show that this is not so.
In particular, we will show that both FC (without CBJ) with FF and FC-CBJ
alone have a complexity greater than O∗((d− 1)n).

Let us start by the analyzing of the complexity of FC with FF. We prove
that for every n there is a CSP Z with n + 1 variables and d values in every
domain (d is an arbitrary number) such that in order to solve Z, the algorithm
generates at least dn partial solutions. Let v1, . . . , vn+1 be the variables of the
considered CSP. Every value of vn conflicts with every value of vn+1. There are
no other conflicts in the CSP. This CSP is illustrated in Figure 2.

Fig. 2. A hard CSP for FC with FF

We assume that if during the search there are two or more variables with the
smallest current domain size, FC with FF will select the first of them according to
lexicographic ordering. This is a valid assumption, because we are going to refute
the claim that FC with FF has a better complexity than O∗(dn). It is implied by
the claim that if there are two or more variables with the smallest current domain
size, these variables can be ordered arbitrarily. Therefore, to refute the claim, it
is sufficient to show that FC combined with FF and a particular ordering in the
case of existence of two or more variables with the smallest domain size has a
complexity greater than O∗((d− 1)n).

Observe that the source of insolubility of Z is that vn and vn+1 have no
pair of compatible values. However, FC with the heuristic described above will
not be able to recognize the insolubility source, because it will assign first v1,
then v2, and so on. Note that to refute Z, the algorithm will have to explore
all the partial solutions assigning variables v1, . . . , vn. Clearly, there are at least
dn such partial solutions. Denoting n + 1 by m we obtain that for every m
there is a CSP with m variables such that FC with FF explores at least dm−1

partial solutions solving this CSP. That is, the complexity of FC with FF is
Ω∗(dm−1) = Ω∗(1/d ∗ dm) = Ω∗(dm) as claimed.

Let us now analyze the complexity of FC-CBJ. Note that if some CSP search
algorithm has a complexity of O∗((d−1)n) then for any value of d, the algorithm
explores O∗((d−1)n) partial solutions. Consequently, to prove that an algorithm
has a greater complexity, it is enough to show that the above does not happen

for at least one d. This is the way we show that FC-CBJ alone has a greater
complexity than O∗((d − 1)n). Note that we are free to choose an ordering
heuristic for FC-CBJ because FC-CBJ does not specify any particular ordering
heuristic.

Let Z be a CSP with n+ 1 variables v1, . . . vn+1 . The domain of each vari-
able contains n values, say, val1, . . . , valn. The only conflicts of Z are found
between the values of vn+1 and the values of other variables. In particular, a
value 〈vn+1, vali〉 conflicts with all the values of variable vi. The CSP is illus-
trated in Figure 3. We assume that FC-CBJ orders variables lexicographically.

Fig. 3. A hard CSP for FC-CBJ

The source of insolubility of Z is that every value of vn+1 conflicts with the
domain of some variable from v1, . . . , vn. However, FC-CBJ is unable to recognize
the source of insolubility because it assigns vn+1 last, according to the specified
ordering heuristic. Observe that all maximal partial solutions generated by FC-
CBJ are of the form {〈v1, vali1 , 〉, . . . , 〈vn, valin〉}, because no assignment to a
proper subset of {v1, . . . , vn} can discard all the values of vn+1. Clearly, there are
nn partial solutions of the above form and we shall show that FC-CBJ explores
all of them, which proves that for any given n, there is d for which there is a
class of CSPs that cannot be solved by FC-CBJ in O∗((d− 1)n).

To show that FC-CBJ explores all the partial solutions of the form
{〈v1, vali1 , 〉, . . . , 〈vn, valin〉}, it is sufficient to show that FC-CBJ never back-
jumps more than 1 step backwards when applied to Z. First, we show that
FC-CBJ never backjumps when explores a maximal partial solution. Actually,
an assignment of every vi conflicts only with 〈vn+1, vali〉. That is, every assign-
ment of a maximal partial solution conflicts with the unique value of vn+1. This
means that when the current domain of vn+1 is emptied, all the variables of
{v1, . . . , vn} appear in conf(vn+1). Therefore, after discarding the assignment of
vn, the set {v1, . . . , vn} \ {vn} is added to the conflict set of vn. Further, when
the domain of vn is emptied, FC-CBJ has no choice but to backtrack to vn−1.

Tracing further the execution of FC-CBJ, we observe that whenever an as-
signment of vi is discarded, the set {v1, . . . , vi−1} is added to conf(vi). Hence,
when the current domain of vi is emptied, FC-CBJ backtracks to vi−1. This
argumentation shows that FC-CBJ applied to Z with lexicographic ordering
heuristic never backjumps and thus explores at least nn partial solutions.

5 Conclusion

In this paper we presented complexity analysis of a few heuristic algorithm for
solving of CSPs. In particular, we proved that FC-CBJ combined with FF has
time-complexity of O∗((d − 1)n). We have also demonstrated that the above
combination of techniques is necessary is order to reduce complexity. In partic-
ular, we have proven that FC with FF as well as FC-CBJ without an ordering
heuristic both have a complexity greater than O∗((d− 1)n).

The results presented can be further generalized. Note that the only property
of FF used in the proof of Theorem 1 is that FF does not select a variable
with the largest current domain. Consequently, the result of Theorem 1 can
be generalized for a combination of FC-CBJ with any heuristic that has the
above property. Note also that FC-CBJ can be replaced by another intelligent
backtracking algorithm like MAC-CBJ [6] or CCFC- [1].

References

1. Fahiem Bacchus. Extending forward checking. In Principles and Practice of Con-
straint Programming, pages 35–51, 2000.

2. C. Beck, P. Prosser, and R. Wallace. Trying again to fail-first. In CSCLP 2004,
pages 41–55, 2004.

3. D. Eppstein. Improved algorithms for 3-coloring, 3-edge coloring and constraint
satisfaction. In SODA-2001, pages 329–337, 2001.

4. R. M. Haralick and G.L. Elliott. Increasing tree search efficiency for constraint
satisfaction problems. Artificial Intelligence, 14:263–313, 1980.

5. P. Prosser. Hybrid algorithms for the constraint satisfaction problem. Computa-
tional Intelligence, 9:268–299, 1993.

6. P. Prosser. MAC-CBJ: maintaining arc consistency with conflict-directed back-
jumping. Technical Report Research Report/95/177, Dept. of Computer Science,
University of Strathclyde, 1995.

7. G. Woeginger. Exact algorithms for np-hard problems: A survey. In Combinatorial
Optimization: ”Eureka, you shrink”, LNCS 2570, pages 185–207, 2003.

