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Abstract. A CSP search algorithm, like FC or MAC, explores a search tree during
its run. Every node of the search tree can be associated with a CSP created by
the refined domains of unassigned variables. If the algorithm detects that the CSP
associated with a node is insoluble, the node becomes a dead-end. A strategy of
pruning “by analogy” states that the current node of the search tree can be discarded
if the CSP associated with it is “more constrained” than a CSP associated with some
dead-end node.

In this paper we present a method of pruning based on the above strategy. The
information about the CSPs associated with dead-end nodes is kept in the structures
called responsibility sets and kernels. We term the method that uses these structures
for pruning RKP, which is abbreviation of Responsibility set, Kernel, Propagation.
‘We combine the pruning method with algorithms FC and MAC. We call the resulting
solvers FC-RKP and MAC-RKP, respectively.

Experimental evaluation shows that MAC-RKP outperforms MAC-CBJ on ran-
dom CSPs and on random graph coloring problems. The RKP-method also has
theoretical interest. We show that under certain restrictions FC-RKP simulates FC-
CBJ. It follows from the fact that intelligent backtracking implicitly uses the strategy
of pruning “by analogy”.

1. Introduction

CSP search algorithms use methods for pruning of the search space.
Well-known pruning methods restrict the search space by achieving
some level of local consistency and removing the ’locally-inconsistent’
values (Prosser, 1993; Sabin and Freuder, 1994). However, there are
problem instances where maintaining local consistency provides little
help, for example in a CSP with all variables connected by the in-
equality constraints. Such instances frequently appear as small parts of
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real-world problems. The difficulty of such instances inspired the CSP
community to look for pruning methods based on principles other than
maintaining of local consistency. The strategic direction that has been
proposed is the development of pruning methods for special types of
constraints. Methods of constraint propagation (Regin, 1994; Quim-
per et al., 2004) and of symmetry breaking (Puget, 2005; Focacci and
Milano, 2001; Fahle et al., 2001) fall into this category.

One of the most popular symmetry breaking methods is Symmetry
Breaking by Dominance Detection (SBDD) (Puget, 2005; Focacci and
Milano, 2001; Fahle et al., 2001). Intuitively, the method can be de-
scribed as follows. Every node of the search tree maintained by a solver
(say, Forward Checking) is associated with a CSP. When the algorithm
considers the current node A of the search tree, it checks whether there
is a dead-end node B, such that the CSP associated with A can be
transformed by some symmetry to a CSP associated with B (with
possible restriction of domains). If such a node B is found, the current
node A is rejected without further exploration.

SBDD can be naturally transformed into a pruning method that
works for general CSPs and does not require any prior knowledge about
symmetries of the problem at hand. Instead of associating a node of
the search tree with a CSP, it can be associated with filtered domains
of unassigned variables. Intuitively, the current node of the search tree
can be discarded if the current domains of the unassigned variables are
subsets of the domains of the corresponding variables associated with
some dead-end node. However, this method has little pruning effect for
general CSPs. The reason is that it is very unlikely that the inclusion
relation is satisfied for all the unassigned variables. In addition, the
checking of the inclusion relation requires overhead which affects the
runtime of the algorithm.

We observe that in order to reject the current node A of a search
tree because of its “similarity” to a dead-end node B, there is no need
to check all the unassigned variables. Instead, one can identify for every
dead-end node a subset of unassigned variables that “certify” its failing.
This subset is frequently quite small. We call it a kernel. Now, to discard
the current node A, it is sufficient to verify the inclusion condition only
for the kernel associated with a node B.

The present paper proposes a pruning method based on the idea. We
call the pruning method RKP, which is an abbreviation of Responsibility
sets, Kernels, Propagation (responsibility set is an intermediate struc-
ture used for computing of kernels). We combine the pruning technique
with Forward Checking (FC) (Prosser, 1993) and Maintaining Arc-
consistency (MAC) (Sabin and Freuder, 1994) algorithms. Accordingly,
we call the obtained algorithms FC-RKP and MAC-RKP, respectively.
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We provide both theoretical and empirical evaluation of the pro-
posed method. In the theoretical part, we prove that under certain
restrictions, FC-RKP exactly simulates FC-CBJ (Prosser, 1993) and
show that without these restrictions, the RKP-technique naturally gen-
eralizes pruning by the use of conflict sets. This result is interesting
because the information kept by the structures is very different: respon-
sibility sets and kernels register information about “future conflicts”
(with unassigned variables), while conflict sets register information
about past conflicts (nogoods). A nice consequence of the result is
that it builds a bridge between such apparently different areas of con-
straint reasoning as methods of symmetry breaking and “intelligent
backtracking”.

The empirical evaluation shows that the proposed technique has
better pruning abilities than pruning by the use of conflict sets. In
particular, we compare MAC-RKP and MAC-CBJ on two benchmark
problems: random CSPs and graph coloring problems. According to our
experiments, MAC-RKP is faster than MAC-CBJ on problems with
low density by a factor of 2 to 4.5. As instances become denser, MAC-
RKP saves less computational effort, but even for very dense CSPs
MAC-RKP produces smaller search trees than MAC-CBJ. Moreover,
being carefully implemented with the use of memorization techniques,
MAC-RKP takes less runtime than MAC-CBJ over the whole range
of deunsities. For graph coloring problems the results are even better.
MAC-RKP produces much smaller search trees than MAC-CBJ for the
whole range of graph densities. Accordingly, it takes much less runtime.

The rest of the paper is organized as follows. Section 2 presents
the necessary background. Section 3 develops the theory related to
the proposed pruning methods. Section 4 describes FC-RKP. Section
5 proves that FC-CBJ can be simulated by a restriction of FC-RKP.
Section 6 presents MAC-RKP. Section 7 describes the experimental
evaluation. Section 8 concludes the paper.

2. Preliminaries

2.1. NOTATIONS AND TERMINOLOGY

The present paper considers binary CSPs. A binary CSP Z consists of
three parts. The first part is a set of variables. Every variable has a
domain of values. We denote a value val of a variable v by (v, val). The
set of domains of variables is the second part of Z. A pair of values
of different variable is either compatible or incompatible (conflicting).
The set of all compatible pairs of values of a pair of variables u and v
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is called the constraint between u and v. The set of all constraints is
the third part of Z.

A set P of values of different variables is consistent (satisfies all the
constraints) if all the values of P are mutually compatible. In this case,
we call P a partial solution of Z. Let (u,val) € P. Then we say that
P assigns u. Accordingly, (u,val) is the assignment of u in P. If P
assigns all the variables, it is a solution of P. The task of CSP is to
find a solution of Z or to derive that no solution exists.

Generally, not every partial solution is a subset of a full solution. If
P is not a subset of any solution, it is called a nogood. Note that some-
times in the literature, the notion of nogood has a broader meaning:
it includes also set of assignments with inner conflicts. We emphasize
that in the present paper a nogood is always consistent.

Finally, we extend the notion of compatibility. A value (u,val) is
compatible with a partial solution P if the following two conditions
hold:

— if u is assigned by P then (u,val) € P;

— (u,val) is compatible with all the assignments of P.

2.2. THE FC ALGORITHM

In this section we present the Forward Checking algorithm (FC) (Har-
alick and Elliott, 1980; Prosser, 1993). Algorithms 1, 2, 3, and 4 present
the pseudocode of FC.

In our representation, the FC algorithm maintains 3 auxiliary data
structures: CurSol, assigned, and validity. CurSol is an ordered list
of assignments. It contains the current partial solution maintained by
FC. Note that although a partial solution is a set by definition, it is
convenient to represent it as an ordered list in the algorithm. There are
two reasons that support the ordered list representation. First, because
in the backtrack stage FC performs an operation of removal of the last
assignment of the current partial solution. Second, it will sometimes
be convenient to refer to a prefix of the current partial solution. On
the other hand, in order to prove properties of various algorithms,
we frequently refer to CurSol as a set not as a list. This is done for
convenience because otherwise we would have to use phrases like “let P
be the partial solution contained in C'urSol” which disturbs readability
and makes the proofs much longer.

The Boolean array assigned has one entry per variable. assigned[v] =
true means that the variable v is assigned by the current partial solu-
tion. Otherwise, assigned[v] = false. We refer to the former variables
as assigned and to the latter variables as unassigned.
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Algorithm 1 FORWARD CHECKING

1: Let Z be the CSP being solved
2: CurSol + 0

3: for every variable v of V(Z) do
4:  assigned[v] < false

5. for every value (v,val) do

6: validity[(v,val)] = VALID
7:  end for

8: end for

9: R = ferec()

10: if R= SUCCESS then

11:  Print CurSol

12: else

13:  Print FAIL

14: end if

During the execution of FC, values are frequently removed from their
domains and restored back. To remember which values are removed and
which are not, the algorithm maintains the array wvalidity with one
entry per value of the underlying CSP. If validity[(v,val)] = VALID,
the value is not removed. For the removed values, there are two possible
ways to mark the corresponding entry of validity. These are discussed
during the description of the pseudocode. We call the set of values of
a variable v that are not removed at a particular moment of execution
of FC the current domain of v.

Algorithm 1 shows the initial part of FC. The structures CurSol,
assigned and validity are initialized and the function fc_rec() is called.
We assume that the above structures are global, that is they can be
read and updated by function fc_rec.

Function fe_rec() (Algorithm 2) is the main component of FC be-
cause it implements the enumeration mechanism. The pseudocode can
be divided into three parts. The first part (lines 1-6) processes the stop-
ping conditions. The second part (lines 7-21) appends an assignment
to the current partial solution and applies fc_rec recursively. The third
part runs for the case when fc_rec fails to find a solution.

The initial part of fc_rec checks two stopping conditions (lines 1-6).
If all the variables are assigned, the function propagates the SUCCESS
message to the upper level. If there is a variable with an empty current
domain, the FFAIL message is propagated.

When fc_rec executes line 7, it is guaranteed that there are unas-
signed variables and the current domains of all unassigned variables are
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Algorithm 2 fc_rec()

if all variables are assigned then
Return SUCCESS

end if

if there is a variable v with an empty current domain then
Return FAIL

end if

Select an unassigned variable v

assigned[v] < true

while the current domain of v is not empty do

10:  Select a value (v,val) from the current domain of v

11:  Append (v,val) to CurSol

12:  felookahead({v,val))

132 R+« ferec()

14: if R=SUCCESS then

© % DG W

15: Return R

16: else

17: ferestore_val()

18: validity[(v,val)] + INV ALID
19: Remove (v,val) from CurSol
20: end if

21: end while

22: Set walidity[(v,val)] to VALID for all (v,val) where
validity[(v,val)] = INVALID

23: assigned[v] < false

24: Return FAIL

Algorithm 3 fc_lookahead({v,val))

1: for every variable u with assigned[u] = false do

2. for every value (u,val') with validity[(u,val’)] = VALID do
3 if (v,val) is incompatible with (u,val’) then

4 validity[(u,val')] + |CurSol|

5: end if

6: end for

7: end for
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Algorithm 4 fc_restore_val()

1: for every variable u with assigned[u] = false do
2:  for every value (u,val’) with validity[(u,val")] = |CurSol| do

3: validity[(u,val")] < VALID
4: end for
5: end for

not empty. An unassigned variable v is selected in line 7, its entry in the
assigned array is updated in line 8. The cycle in lines 9-21 scans over all
values of the current domain of v. A value (v,val) is selected from the
current domain of v (line 10) and appended to CurSol (line 11). Then
function fc_lookahead (Algorithm 3) is applied. This function removes
all valid values of unassigned variables that are incompatible with
(v,val). Note that the function inserts to the corresponding entries of
the validity array the length of the current partial solution. This length
specifies which values has been removed because of incompatibility with
(v, val)

In the final part of the cycle, fc_rec is recursively applied and further
processing depends on the returned message R. If R = SUCCESS, this
message is propagated to the upper level. Otherwise, fc_rec restores all
the values that were removed because of incompatibility with (v, val)
(function fc_restore_val described in Algorithm 4), updates the entry
of validity corresponding to (v,val), and removes (v, val) from CurSol.
Further execution of fc_rec depends on the size of the current domain
of v. If the size is greater than 0, another value is selected in the next
iteration of the cycle. Otherwise, the function exits from the cycle,
restores VALID for all entries marked by INV ALID in the cycle and
propagates the FFAIL message to the upper level.

Now we extend our terminology. We call the triplet (CurSol, assigned, validity)
a state of FC. Observe that the execution of FC can be represented by a
sequence of states. However, not all states are of interest. For example,
in a state that occurs before or during the execution of fc_lookahead,
some entries of the validity array may be inconsistent because fc_lookahead
has not processed them yet. Therefore the states we consider include
the initial state and those states that occur after assigning a variable
or after backtracking.

Consider a state S, where validity[(v,val)] = INVALID (that is,
(v, val) is removed by backtracking). We denote by nogood((v,val)) the
partial solution that caused discarding of (v, val). To obtain nogood({v, val))
in the given state S, let P be the prefix of CurSol that precedes the
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current assignment of v (if v is unassigned then P = CurSol). Then
nogood({v,val)) = P U {{v,val)}.

It is worth noting that the operations in lines 7 and 10 of Algorithm 1
are non-deterministic. This fact has particular importance for successful
application of FC because it allows us to select an arbitrary unassigned
variable and to assign it with an arbitrary value from its current do-
main. The heuristics that can be used for selecting a variable and a
value can dramatically speed up the execution of FC. Much research
has been devoted to the development of good heuristics (for example
(Gent et al., 1996; R.Wallace, 2005; Frost and Dechter, 1995)).

3. The pruning technique

In this section, we develop the theory related to the main idea pro-
posed by the present paper. The proposed pruning technique is inspired
by the methods of substitutability (Choueiry and Noubir, 1998) and
Symmetry Breaking by Dominance Detection (SBDD) (Fahle et al.,
2001; Focacci and Milano, 2001). According to the substitutability
condition, the current partial solution maintained by FC is a nogood
if the domain of the last variable u of the current partial solution has
a value (u,val;) removed by backtracking which is compatible with all
values of the current domains of unassigned variables

The substitutability condition is checked only for the removed values
of the last variable assigned by the current partial solution. In contrast,
SBDD regards the removed values of all the variables of the current
partial solution (Fahle et al., 2001; Focacci and Milano, 2001). A nat-
ural extension of substitutability checking is to try to do the same.
However, straightforward checking of the substitutability condition for
all the variables does not work. Consider, for example, the CSP shown
in Figure 1.

Consider a state where CurSol = ((v1,2),(v2,2)) and (vy,1) is
removed by backtracking. In this state, the unassigned variables are
vg and vg. Observe that every value in the current domain of the
unassigned variables is compatible with (vi,1). Therefore we might
deduce that CurSol is a nogood. However, this is not the case because
appending to CurSol the assignments (v3, 1) and (v4, 1) actually results
in a full solution!

At first glance, this phenomenon seems strange because a partial
solution is just a consistent set of values and two assignments of the
current partial solution do not seem different. To understand the be-
haviour, observe that the correctness of the substitutability condition
is based on the fact that in any solution containing CurSol an assign-
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Figure 1. Incorrect approach of generalization of substitutability checking

ment (u,val) € CurSol can be replaced by a removed value (u,val).
This replacement is valid only if (u,val;) is compatible with all the
assignments of CurSol other than (u,val). This requirement automat-
ically holds if u is the last variable assigned by CurSol: in this case
nogood({u,valy)) = CurSol \ {(u,val)} U {{u,val;)}. However, this
requirement does not necessarily hold if u is not the last variable. In
particular, (u,val;) can be incompatible with the assignment of any
variable “later” than u. Observe that in the example above, (v1,1) is
incompatible with (v2,2). Thus we may conclude that the additional
requirement for the substitutability condition is that all assignments
inserted into CurSol after (u,val) are compatible with (u,valy).

It is convenient to describe the generalized substitutability condition
using the following definition of a neutral variable.

DEFINITION 1. A wvariable v is neutral with respect to a value (u,val)
if at least one of the following two conditions holds:

— v is assigned a value that is compatible with (u,val);

— all values of the current domain of v are compatible with (u,val).

Now, the generalized substitutability condition can be formulated
as follows (Razgon and Meisels, 2003):

PROPOSITION 1. Consider a state that occurs during erecution of
FC. Assume that there is a value (u,val;) removed by backtracking
such that all the variables that are not assigned by mogood({u,vali))
are neutral with respect to (u,valy). Then CurSol is a nogood.

Proof. Assume by contradiction that the statement is not true and
let P be a solution of the underlying CSP that contains CurSol. Also,
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Figure 2. Generalized substitutability checking

let (u,val) be the assignment of u in CurSol, and let P;, P> and P3 be
disjoint subsets of P, where P; is the subset of CurSol placed before
(u,val), Py is the subset of CurSol placed after (u,val), and Ps assigns
the variables unassigned by CurSol. Clearly, P = P; U {(u,val)}UP,U
Ps.

Observe that (u,val;) is compatible with P; only because nogood({u, vali)) =
Py U (u,valy). Also, (u,val;) is compatible with P» and Ps because the
variables assigned by these partial solutions are neutral with respect
to (u,valy). Thus, if we replace in P (u,val) by (u,val;), we will get
another solution of the underlying CSP. However, this new solution will
contain nogood({u,valy)), which contradicts the definition of a nogood.
[ |

We demonstrate the application of the generalized substitutability
condition on the CSP shown in Figure 2. Consider the state of FC where
CurSol = ({v1,2), (v2,1)) and (v1,1) has been removed by backtrack-
ing. Observe that variables vy, v3, v4, and v5 are neutral with respect
to (v1, 1) Then, according to Proposition 1, CurSol is a nogood, which
is easy to verify.

We observe that to discard the current partial solution it is not
necessary that all the variables considered in Proposition 1 be neutral
with respect to (u,val1). This is presented formally by introducing the
notion of a responsibility set.

DEFINITION 2. Let P be a nogood of a CSP Z. A set S of variables
is a responsibility set of P if there is no consistent extension of P that
assigns all the variables of S.

For example, in the CSP shown in Figure 2, a responsibility set of
{<Ula 1)} is {IU31 U47U5}-

firstjourps.tex; 8/10/2006; 20:30; p.10



11

Assume that the search algorithm maintains an array resp whose
entries correspond to the values of the underlying CSP. For a value
(u,val) removed by backtracking, resp[(u, val)] is a responsibility set of
nogood({u,val)). Given the resp-array the following pruning condition
can be stated.

PROPOSITION 2. Consider a state that occurs during erecution of
FC. Assume that there is a value (u,val;) removed by backtracking
such that all the variables of resp[(u,valy)] are neutral with respect to
(u,valy). Then CurSol is a nogood with a responsibility set resp[{u,vali)]\
A, where A is the subset of resp[(u,valy)] assigned by CurSol.

Proof. Assume by contradiction that there is a partial solution P
that contains CurSol and assigns all the variables of resp[(u, valy)].

Let (u,val) be the assignment of u in P. Then, analogously to the
proof of Proposition 1, we distinguish three subsets of P: P; containing
assignments appended to CurSol before (u,val); P, containing assign-
ments appended to CurSol after (u,val); Ps assigning variables that
are not assigned by CurSol.

Analogously to the proof of Proposition 1, we can observe that
(u,valy) is compatible with P, P, and P3. Then, replacing (u,val) by
(u,valy) we get another partial solution, that contains nogood({u, valy))
and assigns all the variables of resp({u,valy)) in contradiction to the
definition of a responsibility set.

Let V(Ps3) be the set of variables assigned by Ps and observe that
CurSol = P; U {(v1,val)} U P,. Taking into account that P3 is an
arbitrary partial solution Consistent with CurSol, it follows that any
consistent extension Of CurSol to the variables of V(P3) is a no-
good. That is V(P3) is a responsibility set of CurSol. By definition,
V(Ps) includes all the variables of resp[(v1,val)] that are not assigned
by CurSol. Denote by A the variables of resp[(v1,val)] assigned by
CurSol. It follows that V(Ps) = resp[{u,val;)] \ A. R

To demonstrate the application of Proposition 2, consider the CSP
shown in Figure 3. Note that the CSP there is almost the same as that
of Figure 2. The differences are that variables vy, vs are called wv1gg,
V900, respectively, and that we assume that the CSP has many other
variables. Similarly to the previous example, we assume that CurSol =
((v1,2), (v2,1)) and that (v1,1) has been removed by backtrack. Ob-
serve that {vs,v100,v200} is a responsibility set of nogood({(vi,1)) =
{(v1,1)}. Therefore, the neutrality of these variables with respect to
(v1,1) is sufficient to deduce that CurSol is a nogood.

Checking neutrality only for variables of resp({u,vali)) has the
following two advantages.
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Figure 3. Generalized substitutability checking

— The neutrality checking of an unassigned variable is a relatively
heavy operation. The set resp[(u,val;)] may include only a small
subset of all the unassigned variables, which essentially speeds up
the checking procedure.

— It is more likely that the pruning condition will be satisfied.

We can further speed up the pruning procedure since it is not neces-
sary to check explicitly the neutrality of all variables of resp[(u,valy)].
In our last example (Figure 3), we can see that it makes no sense to
check the neutrality of v with respect to (v1,1) because as a result of
appending (v1,1) to the current partial solution, no value is removed
from the current domain of vs.

We suggest that it is sufficient to check neutrality only for the set of
variables whose domains have values incompatible with (u,val;) and
compatible with the other assignments of nogood({u, val;)). We provide
a formal definition of this set.

DEFINITION 3. Let P be a nogood of a CSP Z and let S be a respon-
sibility set of P. Let (u,val) € P. The kernel of (u,val) with respect to
P and S is a set K C S of all the variables of S whose domains have
values that are incompatible with (u,val), but are compatible with the
other values of P.

Returning again to our last example, we see that the kernel of (v, 1)
with respect to nogood({v1,1)) and {vs, v100,v200} is {v100, V200 }-

Assume that FC is modified so that it associates with every value
(u,val1) removed by backtracking a set ker[{u, val;)] which is the kernel
of (u,valy) with respect to nogood({u,val;)) and resp[{u,valy)]. Then
Proposition 2 can be reformulated as follows.
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PROPOSITION 3. Consider a state that occurs during erecution of
FC. Assume that there is a value (u,val1) removed by backtracking
such that all the variables of ker[(u,valy)] are neutral with respect to
(u,valy). Then CurSol is a nogood with a responsibility set resp[{u,val)]\
A, where A is the subset of resp[(u,valy)] assigned by CurSol.

Proof. The present proposition will directly follow from Proposition
2 if we show that every variable of resp[{u,vali)] \ ker[{u,vali)] is
neutral with respect to (u,val).

Let w € resp[(u, valy)] \ ker[(u,val1)]. We shall show that all values
of the current domain of w are compatible with (u, val;) (observe that
in this case w is neutral with respect to (u,val;) even if it is assigned).

Let (u,val) be the assignment of w in P, and let P; be the sub-
set of CurSol preceding (u,val). Note that nogood({(u,val;)) = P, U
{(u,valy)}. By the definition of resp[(u,val;)], w is not assigned by
P;. Taking that into account and considering that P; is a subset of
the current partial solution, we get that all the values of the current
domain of w are compatible with P;. It follows that, if some value of
the current domain of w is incompatible with (u,val;) then w must
belong to ker[(u,val;)] in contradiction to the selection of w. W

The condition in Proposition 3 allows much quicker checking than
the condition suggested by Proposition 2 because |ker({u,vali))| is
at most the number of variables that have values incompatible with
(u,valy), while resp({u,val;)) might have an arbitrary size. The im-
provement in runtime is especially pronounced for CSPs of low density.

4. The FC-RKP algorithm

4.1. ALGORITHM DESCRIPTION

In this section we describe a modification of FC that performs addi-
tional pruning according to the techniques described in the previous
section. We call the resulting algorithm FC-RKP (RKP is the abbre-
viation of Responsibility sets, Kernels and Pruning). The pseudocode
is presented in Algorithms 5, 6, 7, 8. The former three algorithms are
based on Algorithms 1, 2, and 3 but perform a number of additional
operations. To emphasize the differences, the operations or structures
that do not appear in Algorithms 1, 2, and 3 are emphasized by boxes.
Algorithm 5 describes the initialization procedure of FC-RKP.
Algorithm 6 describes procedure fc_rkp_rec, the main engine of FC-
RKP. We describe in detail the differences of fc_rkp_rec from fc_rec.
First of all, note that the FFAIL message returned by fc_rkp_rec con-
sists of two components: the FAIL token itself and the subset UR(v)
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Algorithm 5 FC-RKP

Let Z be the CSP being solved
CurSol +
for every variable v of V(Z) do
assigned[v] < false
for every value (v, val) do
validity[(v,val)] = VALID
‘resp[(v,val)] = @‘
end for
end for
R = ferkp_rec()
: if R=SUCCESS then
Print CurSol
. else
Print FAIL
: end if

© @ DG W
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of variables that consists of the variable v whose empty domain caused
the FFAIL message and the union of resp entries of all the values of v
(the message is explicitly constructed in lines 5 and 37).

In lines 7-10, the F'AIL message is returned if the pruning condition
stated in Proposition prop:ker is satisfied. The pruning condition is
checked in line 8 by applying the function fc_rkp_check_neutrality.
Algorithm 8 presents pseudocode of the function. If the condition is not
satisfied, fc_rkp_rec performs an iteration of variable instantiation.

A variable to be assigned is selected in lines 11-12 of fc_rkp_rec.
Lines 14-17 list the actions related to assigning a variable. Note that the
function of lookahead applied in line 17 of Algorithm 6 and described
in Algorithm 7 returns the set of variables whose values have been re-
moved. This set initializes ker[(v,val)]. The final content of the entry is
computed when the assignment is discarded. The function fc_rkp_recis
recursively applied in line 18. Further execution depends on the answer
it returns. If the answer is SUCCESS, it is propagated to the upper
level. Otherwise, fc_rk_rec starts the process of backtracking.

The backtracking process is described in lines 21-31. Lines 21-23 are
analogous to the backtracking operations of fc_rec (Algorithm 2). The
set resp[(v,val)] is computed in line 24. The kernel of (v,val) is com-
puted in line 25. Recall that the kernel is a subset of resp[(v, val)] that
contains variables having in their current domains values incompatible
with (v,val). However, the incompatible values are identified by the
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Algorithm 6 fc_rkp_rec()

1:

25:
26:
27:
28:
29:

30:
31:
32:
33:
34:

35:

36:
37:

2
3
4
5:
6:
7
8
9

if all variables are assigned then
Return SUCCESS

: end if
. if there is a variable v with the empty current domain then

Return | (FAIL,UR(v))]
end if
‘R « ferkp_check_neutrality() ‘

. if [R # SUCCESS | then

Return R

10: end if
11:
12:
13:
14:

15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

Select an unassigned variable v
assigned[v] < true
while the current domain of v is not empty do
Select a value (v,val) From the current domain of v
Append (v,val) to CurSol
ker[(v,val)] | < fc_rkp-lookahead({v,val))
R« ferkprec()
if R=SUCCESS then
Return R
else
fe_restore_val()
validity[(v,val)] <~ INV ALID
Remove (v,val) from CurSol

Let resp[(v,val)] be the second component of R‘

ker[(v,val)] < ker[(v,val)] N resp[(v,val)]
if | ker[(v,val)] = (0 | then

Set resp[(v,val)] to O for all (v,val) with validity[(v,val)] = INVALID
Set validity[(v,val)] to VALID for all (v,val) with validity[(v,val)] = INVALID

assigned[v] < false

Return R

end if
end if
end while
‘Set resp[(v,val)] to () for all (v,val) with validity[(v,val)] = INVALID

Set walidity[(v,val)] to VALID for all (v,val) with
validity[(v,val)] = INVALID

assigned[v] < false

Return ‘ (FAIL,UR(v)) ‘
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lookahead function, so the straightforward computation of the kernel
is redundant. Instead, ker[(v,val)] is initialized in line 16 to the set
of all variables whose current domains have values incompatible with
(v,val). What remains to be done in line 25 is to find the intersection
of this set with resp[(v,val)].

In lines 26-31, fcrkp-rec checks whether ker[(v,val)] is empty. If
it is, an additional backtrack is executed. Note that this mechanism
resembles FC-CBJ. Further in the paper we show the validity of this
intuition by proving that FC-RKP is a generalization of FC-CBJ.

If the variable v fails to be assigned then fc.rkp_rec executes a
backtrack (lines 34-37).

Algorithm 7 fc_rkp_lookahead({v,val))

1:
2: for every variable u with assigned[u] = false do

3:  for every value (u,val’) with validity[(u,val’)] = VALID do
4: if (v,val) is incompatible with (u,val’) then

5 validity[(u,val")] + |CurSol|

6 ‘kernel +— kernel U {u} ‘

7

end if
8: end for
9: end for

10: ‘Return kernel ‘

Algorithm 8 fc_rkp_check_neutrality()

1. for every value (u,wval) such that validity[(u,val)] = INVALID

do
if all variables of ker({u, val)) are neutral with respect to (u,val)
then

3 Let A be the subset of resp({u,val)) assigned by CurSol

4 Return (FAIL,resp({u,val)) \ A)

5: else

6: Return SUCCESS

7

8

»

end if
. end for
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4.2. CORRECTNESS PROOF

To prove the correctness of FC-RKP, one must prove soundness, termi-
nation, and completeness. The soundness and termination of FC-RKP
follow from the soundness and termination of FC. It remains to prove
completeness, that is, to show that removal of values by FC-RKP does
not cause a loss of a solution.

The completeness of FC-RKP is based on the following two lemmas.

LEMMA 1. When FC-RKP removes a value (u,val) because of its
incompatibility with the current partial solution, resp[{u,val)] is set to

0.

Proof. Assume that (u, val) is removed because of incompatibility with
the last value of CurSol. Observe that resp[(u,val)] is not changed
when (u,val) is removed. Thus, to prove that resp[(u,val)] = 0, it is
enough to show that the entry resp[{u,val)] contained () before the
removal of (u,val).

To show this, note, that initially resp[(u,val)] = 0. The content
of resp[{u, val)] can change only if (u,val) is removed by backtracking.
However, when the value is restored to the current domain, resp|{u, val)]
is reinitialized to (. W

LEMMA 2. Ewvery time when FC-RKP removes a value (u,val) by
backtracking, the set recorded in resp[(u,val)] is a responsibility set of
nogood[(u, val)].

Proof. Recall that the backtracking process is initiated by a FAIL
message returned by the recursive call in line 17 of Algorithm 6. The
second component of the message is recorded by FC-RKP in resp[(u, val)].
Note that for the recursive call of fc_rkp_rec that performs backtrack-
ing, nogood({u,val)) is just CurSol. Therefore, it is sufficient to show
that every time when fc_rkp_rec returns F'AI L, the second component
of the FFAIL message is the responsibility set of CurSol.

There are four possible reasons why fc_rkp_rec returns FAIL.

1. An unassigned variable with an empty current domain is detected
(lines 4-6 of Algorithm 6).

2. The function fc_rkp_check_neutrality returns the F'AIL message
(lines 7-10 of Algorithm 6).

3. The kernel of the value removed in the last backtrack is empty
(lines 26-31 of Algorithm 6).
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4. An attempt to assign a variable in the main cycle (lines 13-33) has
failed. In this case the F*AIL message is returned in lines 34-37.

Let us consider a chronological sequence of states that cause gener-
ation of the FAIL message and prove the present lemma by induction
on this sequence.

Consider the state when fc_rkp_rec returns F AIL for the first time.
There are no values removed by backtracks yet, hence the only rea-
son that caused the function to return FAIL is an empty current
domain of some unassigned variable v. All values of v are removed
because of incompatibility with CurSol, that is, their corresponding
resp-entries are empty (Lemma 1). Therefore the second component of
the FAIL message is {v}. Observe that {v} is indeed a responsibility
set of CurSol. Thus the lemma holds for the first state of the considered
sequence.

Consider the state which is not first in the analyzed sequence and
assume that the theorem holds for all the previous states.

In this state, the FAIL message can be caused by any of the four
reasons stated previously. Assume it is caused by the first or by the
last ones. This would mean that there is an unassigned variable v with
an empty current domain (the values of v can be removed either by
incompatibility or by backtracking). Let S be the second component of
the FAIL message returned by fc.rkp_rec. Let us show that S is the
responsibility set of CurSol.

If all values of v are incompatible with CurSol, then the situation
is analogous to that considered for the first step of the induction.

If the domain of v includes values compatible with CurSol, we
let (v,val’) be such a value. Observe that (v,val’) has been removed
by backtracking and that nogood({v,val’')) = CurSol U {{v,val’)}.
By the induction assumption, resp[(v,val’)] is a responsibility set of
nogood((v,val')). Observe that resp[(v,val’)] C S\ {v} by definition of
S (see line 37 of Algorithm 6). It follows that S\ {v} is a responsibility
set of nogood({v,val’)). Thus, the extension of CurSol by appending
any compatible value of v, produces a nogood with a responsibility set
S\ {v}. Consequently, CurSol itself is a nogood with a responsibility
set S.

If a return of FAIL was caused by the second reason then there
is a value (w,val’) removed by backtracking such that all variables of
ker[{(w,val")] are neutral with respect to (w,val"). The present lemma
holds in this case according to the induction assumption and Proposi-
tion 3. The third reason is just a degenerated case of the second reason,
so the validity of the lemma follows again from Proposition 3. B

THEOREM 1. FC-RKP is complete.

firstjourps.tex; 8/10/2006; 20:30; p.18



19

Proof. According to Lemma 2, CurSol is a nogood whenever its
LAST assignment is discarded. The completeness of FC-RKP follows
immediately from this fact. B

5. Responsibility sets as an alternative representation of
conflict sets and eliminating explanations.

In this section we show that responsibility sets are at least as informa-
tive as conflict sets by proving that the FC-CBJ algorithm (Prosser,
1993) can be simulated by using responsibility sets and kernels. Then
we briefly argue that algorithms based on eliminating explanations
(Ginsberg, 1993; Jussien et al., 2000) can be also represented by re-
sponsibility sets by showing that an eliminating explanation of a value
can be extracted from a responsibility set associated with that value.

We start with a brief overview of FC-CBJ. The algorithm enhances
the pruning power of FC by maintaining data structures called conflict
sets. Intuitively, the conflict set of a variable v is the set of variables
whose assignments are “culprits” for removing values of v.

We denote the conflict set of v by conf(v). Initially, the conflict
sets of all variables are empty. When assignment (u,val) is appended
to the current partial solution and the propagation procedure removes
(v,val') because of its incompatibility with (u,val), the conflict set of
v is updated as follows: conf(v) + conf(v) U{v}.

The backtracking procedure of FC-CBJ is more complicated than
that of FC. Like FC, FC-CBJ backtracks if the current domain of some
unassigned variable v is emptied. However, it does not simply backtrack
to the last assigned variable, but rather to the last assigned variable that
belongs to conf(v). Let u be the variable FC-CBJ jumps to. Then the
backtrack procedure of FC-CBJ performs the following operations:

— unassigns u and all variables that were assigned after u and re-
moves appearances of these variables from all conflict sets;

— restores to the current domains of unassigned variables all values
that are compatible with the new current partial solution;

— removes from the current domain of u its last assignment;

updates conf(u) as follows: conf(u) < conf(u) U conf(v) \ {u}.
Consider a modification of FC-RKP that does not execute lines 7-

10 of Algorithm 6. That is, the only additional pruning it performs is
initiating a sequence of backtracks until the ker-entry of the removed
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value is not empty. We call this modification FC-RKP2. The following
theorem shows that FC-RKP2 is analogous to FC-CBJ.

THEOREM 2. Assume that FC-RKP2 and FC-CBJ are applied to
the same CSP and have the same ordering heuristics of variables and
values. Then their executions are identical with the only difference that
instead of each backjump, FC-RKP2 performs a sequence of consecutive
backtracks.

Proof.
To prove the theorem, we need to show the following;:

— whenever FC-CBJ performs an assignment, FC-RKP2 performs
the same assignment;

— whenever FC-CBJ performs a backjump, FC-RKP2 performs a se-
quence of consecutive backtracks that “ends” at the same variable.

The former follows from our assumption that FC-CBJ and FC-
RKP2 use the same ordering heuristics for variables and values. Let
us prove the latter.

The proof is by induction on the chronological sequence of back-
jumps generated by FC-CBJ. The following structures are relevant for
a backjump:

— the value (u, val) removed by the backjump (backjump ends at the
variable u and discards the current assignment of u);

— the variable v whose empty domain caused the backjump;

— the current partial solution P at the moment when the backjump
starts to execute;

— the assignments (uq,valy), ..., (ug,valy) of the current partial so-
lution appended after the last variable of the conflict set (these are
the variables FC-CBJ jumps over).

Consider the first backjump in the sequence. It occurs because every
value of the domain of v is incompatible with some assignment of P. The
last assignment of P necessarily removed some values of v. Otherwise,
the domain of v would be empty before the last assignment. Therefore
(u,val) is the last assignment of P and FC-CBJ backjumps only one
variable backwards. Observe that FC-RKP2 does the same, because
both algorithms performed the same sequence of assignments up to the
dead-end.
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Before we move to the induction step, let us point to an interesting
connection between con f(v) and resp[(u,val)]. Note that for the basic
step, conf(v) is the set of all variables whose assignments removed
values of v. Denote by rm(({u,val)) the set of variables whose assign-
ments removed values from the variables of resp[(u, val)]. Observe that
the relation rm((u,val)) = conf(v) holds for the basic step because
resp[(u,val)] = {v}. We are going to show that the relation holds for
all backjumps and this will help us prove the theorem.

Let us move to the induction step and consider a backjump which is
not the first in the sequence. Denote the values of v by vall,...val},.
Assume that the values val,...val] are removed by incompatibility
with assignments of P and the others are removed by backjumps. Then
conf(v) = CoUCiy1U...UCy,, where Cj is the set of variables whose
assignments removed values of v, and Cj, for ¢ from [ + 1 to m, is the
set contributed to conf(v) by (v,val;) when it was removed.

At the same time, FC-RKP2 also performs a backtrack initiated
by emptying the domain of v (because all previous assignments and
backtracks of both algorithms were the same by the induction assump-
tion). Let RS be the set returned by fc_rkp_rek in line 37. RS can be
represented as {v} U resp[(v,val; )] U...Uresp[(v,valy,)]. Then the
set of variables whose assignments removed values from the domains of
RS is Co Urm((v,val},;))U...Urm((v,valy,)) which by the induction
assumption equals Co U Ci41 U... U Cp, = conf(v).

As far as FC-CBJ jumps directly to u, none of {u; ...ux} belongs
to conf(v). In other words, none of (u1,valy) ... (ug,val;) removes the
values of RS. Therefore, when FC-RKP2 backtracks to (ug,valg), the
corresponding ker-set will be empty. For the same reason,
ker({(ug—1,valg_1)),...,ker({u1,val;)) will all be empty. Therefore, FC-
RKP2 will perform a sequence of consecutive backtracks until it reaches
(u,val). As a result, resp[(u,val)] will be set to RS. Consequently,
rm({u,val)) = conf(v). R

Theorem 2 shows that responsibility sets and kernels provide an
alternative representation of conflict sets. This representation is at least
as informative as conflict sets: as was shown in the proof of the theorem,
conflict sets can be extracted from responsibility sets. Responsibility
sets and kernels also open up additional possibilities of pruning. If we
only process the case of empty kernels, we obtain FC-CBJ. Alterna-
tively, we can create appropriate propagation mechanisms for kernels
of size 1, of size 2, and for larger sizes. This is, in fact, what FC-
RKP does. Therefore, FC-RKP can be considered as a generalization
of FC-CBJ.

Furthermore, we believe that responsibility sets have enough power
to represent eliminating explanations (Ginsberg, 1993; Jussien et al.,
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2000). Consider the set rm(({u,val)) utilized in the proof of Theorem
2 and let P’ be the subset of the current partial solution that assigns
the variables of rm((u,val)). By definition, P’ contains the only as-
signments that remove values from resp[(u, val)]. It follows that P’ is
a nogood. Consequently, P\ (u,val) is an eliminating ezplanation of
(u,val). We conjecture that with the above representation, one can
simulate algorithms like MAC-DBT (Jussien et al., 2000) and CCFC-
(Bacchus, 2000) ! by introducing minor modifications to FC-RKP.

Speaking more abstractly, Theorem 2 together with the subsequent
argumentation draw a connection between such virtually different ar-
eas of constraint reasoning as techniques of pruning “by analogy”,
like symmetry breaking (Fahle et al., 2001; Focacci and Milano, 2001)
or substitutability (Choueiry and Noubir, 1998), and methods of in-
telligent backtracking (Prosser, 1993; Ginsberg, 1993; Jussien et al.,
2000; Bacchus, 2000). It follows from the above discussion that all
of these methods use the information acquired by a constraint solver
during execution in a similar manner.

6. The MAC-RKP algorithm

6.1. DESCRIPTION OF THE ALGORITHM

The MAC-RKP algorithm is a combination of Maintaining Arc-Consistency
(MAC) (Sabin and Freuder, 1994) and the pruning technique that uses
responsibility sets and kernels. We describe MAC-RKP by explaining
the modifications introduced to FC-RKP in order to obtain MAC-RKP.

First of all, MAC-RKP, as any algorithm using MAC, must achieve
Arc-Consistency (AC) at the preprocessing stage. Next, the appropri-
ate lookahead procedure must be applied. In particular, instead of
the fc.rkp-lookahead function, the maintain_ac_rkp (Algorithm 9)
function is applied.

The next step is to design a function of restoring values removed
during lookahead. For this purpose, the function fc_restore_val used
in FC-RKP is slightly modified. That is, we set the resp-entries of
values restored by the function to .

The last modification for constructing MAC-RKP is to design a
function for checking neutrality. As for FC-RKP, the function decides
that the current partial solution is a nogood if there is a value (u,val)

! The structures associated with removed values in algorithms CCFC and CCFC-
are not originally called eliminating explanations, but it is not hard to show their
equivalence.
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Algorithm 9 maintain_ac_rkp({v,val))

1: ac_queue <

2: kernel < ()

3: for every variable u with assigned[u] = false do

4:  for every value (u,val’) with validity[(u,val’)] = VALID do

5 if (v,val) is incompatible with (u,val’) then
6 validity[(u,val")] < |CurSol|

7: enqueue(ac_queue, (u,val'))

8 kernel < kernel U {u}

9 end if

10: end for

11: end for

12: while ac_queue is not empty do
13:  (u,val") = dequeue(ac_queue)
14:  for every variable w except u do

15: for every value (w,val”) do

16: if (w,val") is incompatible with all the values of the current
domain of u then

17: validity[(w,val")] « |CurSol|

18: Let UR be the union of resp entries of all values of u

19: resp[(w,val”)] = URU {u}

20: enqueue(ac_queue, (w,val"))

21: end if

22: end for

23: end for
24: end while
25: Return kernel

removed by backtracking such that every variable of ker[(u, val)] is neu-
tral with respect to (u,val). An important difference from FC-RKP is
the method of computing a responsibility set accompanying the FFAIL
message. The resulting respounsibility set must include the resp-entries
of all values incompatible with (u,val) that belong to the domains of
variables of ker[(u,val)]. This mechanism of computing responsibility
sets is implemented by the function mac_rkp_check_neutrality (Algo-
rithm 10). MAC-RKP uses this function instead of fc_rkp_check_neutrality.
In this function every time a new value (u,val) removed by back-
tracking is checked, the variable RS is initialized to resp[(u,val)]. Then
every time the function detects a variable w € ker[{u,val)], it adds to
RS the union of resp-entries of all values of w that are incompatible
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Algorithm 10 mac_rkp_check_neutrality()

1: for every value (u,val) such that validity[(u,val)] = INVALID
do
RS « resp[(u, val)]
for every variable w of ker|[(u,val)] do
if w is neutral with respect to (u,val) then
Let UR be the union of resp entries of all values of w that
are incompatible with (u,val)
RS +— RSUUR
else
Goto line 14
end if
10: end for
11:  Let A be the subset of RS assigned by CurSol
122 Return (FAIL,RS\ A)
13: end for
14: Return SUCCESS

Ul Wy

with (u,val). If the function returns the FAIL message, the obtained
set without assigned variables is returned as the second component of
the message.

At first glance, the updating of RS executed in line 6 of Algorithm
10 seems redundant. However, this is actually necessary for preserving
consistency. Let us consider the following example.

Assume that the CSP shown in Figure 4 is solved by MAC-RKP.
Also assume that (v1,1) has been removed and associated with a resp-
entry {va, v3,vs}, and that the current partial solution is {(v1,2) }. Then
(vs,2) is removed because of incompatibility with (v1,2), and (vg,1) is
removed after that because it is incompatible with the current domain
of vs (remember that AC is achieved during lookahead). The entry
resp[(vy, 1)] is set to {vs}. After removing (ve, 1), the variables vg, vs,
and vy become neutral with respect to (v1,1). That is (v1,2) can be
removed. However, it is not correct to set resp[(vi,2] = {ve,vs,v4}
because it is not a responsibility set of {(vg,1)}; this is clear when we
consider, for example, a partial solution {(v1, 2), (ve, 1), (vs, 1), (v4,2) }.
Thus vs must be added to resp[{v1,2)].

6.2. PROOF OF COMPLETENESS OF MAC-RKP

The completeness of MAC-RKP can be proven analogously to the
completeness of FC-RKP. The main task is to show that whenever
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Figure 4. A CSP on which computing of responsibility sets for MAC-RKP is
demonstrated

a value (u,wval) compatible with CurSol is removed, resp[(u,val)] is
a responsibility set of nogood({(u,wval)). The same inductive form of
proof is used. That is, we consider the sequence of states that cause
generation of the FAIL message and prove the above statement by
induction on the sequence. However, to prove completeness of MAC-
RKP, one also has to consider those cases of removal that cannot occur
during the execution of FC-RKP. The rest of the section concentrates
on these cases only. In particular, we prove two propositions; the first
considers removal of a value during maintaining of AC, the second
proposition proves correctness of a responsibility set returned by the
mac_rkp_check_neutrality function.

PROPOSITION 4. Consider a state that occurs during erecution of
MAC-RKP. Let u and v be two unassigned variables. Assume that a
value (u,val) of the current domain of u is in conflict with all the values
of the current domain of v. Assume also that for every removed value
(v,val') of v associated with a non-empty resp-entry, resp[(v,val’)] is
a responsibility set of nogood({v,val")). Then CurSol U (u,val) is a
nogood with a responsibility set RS U {v} where RS is the union of
responsibility sets of all the removed values of v.

Proof. Assume that the resp-entries associated with all the removed
values of v contain (). This means that all the removed values of v
are incompatible with CurSol. Considering that (u,val) conflicts with
all the values of the current domain of v, we obtain that CurSol U
{(u,val)} conflicts with all the values of the original domain of v. That
is CurSol U {(u,val)} is a nogood with a responsibility set {v}.
On the other hand, if the domain of v contains values with non-
empty resp-entries, let (v, val’) be such a value. Observe that nogood({v,val')) C
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CurSol U {{u,val), (v,val')}. This means that the latter cannot be ex-
tended to a partial solution that assigns all the variables of resp|[(v, val’)]U
RS. Tt follows that CurSol U{(u,val)} cannot be extended to a partial
solution that assigns all the variables of RS U {v} B

PROPOSITION 5. Consider a state that occurs during execution of
MAC-RKP. Let (u,val) be a value removed by backtracking. Assume
that every variable of ker[(u,val)] is neutral with respect to (u,val).
Then CurSol is a nogood with a responsibility set computed by the
mac_rkp_check_neutrality function regarding (u,val).

Proof. Let R be the responsibility set returned by mac_rkp_check_neutrality
as the second component of the F*AI L message, when it detects that the
pruning condition is satisfied regarding (u, val). Similarly to the proof
of Proposition 3, we assume by contradiction that there is a partial
solution P that contains C'urSol and assigns all the variables of R.
If P assigns all the variables of ker[(u,val)] with the values of their
current domains, let P’ be the subset of P that contains CurSol and
all the variables of resp[(u,wval)]. The same argumentation that was
used in the proof of Proposition 3 shows that P’ is inconsistent and,
consequently, that P is inconsistent as well.

Now, assume that some variable w € ker[(u, val)] is assigned with a
value (w,val’) that does not belong to the current domain of w. Note
that for FC-RKP such an assumption is incorrect because (w,val’)
would be incompatible with CurSol. However, in the case of MAC-
RKP, the assumption is valid since (w,wval’) can simply be removed
during the enforcement of AC.

Observe that nogood((w,val’)) C CurSol U {(w,val’)} and that all
the variables of resp[(w,val’)] are assigned by P. Let P" be a subset
of P that contains nogood({w,val')) and assigns all the variables of
resp[{w, val')]. By definition of a responsibility set, P” is inconsistent,
and sois P. &

7. Experimental Evaluation

To evaluate the proposed pruning technique, we compare MAC-RKP
to MAC-CBJ (Prosser, 1995). 2 The algorithms are applied to ran-
domly generated CSPs and to random Graph k-Coloring problems.
Two measures of performance are used: the number of nodes visited
and the runtime. For the comparison, it is preferable to use runtime

% The results of comparing FC-RKP to FC-CBJ are similar. We omit them for
the sake of brevity.
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than the number of consistency checks because the latter does not take
into account additional computational overhead. Both of the algorithms
order variables by the Fail-First heuristic (Haralick and Elliott, 1980)
which selects a variable with the smallest current domain size. The
values within each variable are ordered by the min-conflict heuristic
(Frost and Dechter, 1995). Every measure is obtained as an average of
50 runs.

Random CSPs are generated given their number of variables, domain
size, density p; and tightness ps (Prosser, 1996). We examine four sets
of instances by fixing the former three parameters and varying the
tightness over the whole [0, 1] range, to get problems of all possible
difficulties (Prosser, 1996). The resulting graphs are shown in Figures
5- 10.

The results for each set of parameters are represented by two graphs:
one on the left side and the other on the right. The left graph compares
the number of nodes visited, the right-hand side one compares the
runtime. The solid-line graphs represent the behaviour of MAC-RKP
and the dotted-line graphs represent the behaviour of MAC-CBJ.

For every set of instances, we consider the values of tightness that
lie close to the phase-transition region for that set of instances. For the
values of tightness that lie outside this region, both of the algorithms
finish with almost no backtracks, so their comparison is uninteresting.

It is clear that the performance of MAC-RKP is much better than
that of MAC-CBJ for CSPs with 5% density. For high density CSPs
(80%), MAC-RKP has only a slight advantage over MAC-CBJ.

The improved performance of MAC-RKP on constraint networks
with low density can be explained as follows. MAC-RKP is likely to
work better when the kernels generated during its run are of a small
size. The size of the kernel of a value (u, val) cannot be greater than the
number of variables that have in their domains values conflicting with
(u,val). For CSPs with low density, every value is constrained with a
relatively small number of variables, which, in turn, causes small kernels
to be produced during the execution of MAC-RKP.

It is particularly interesting that the overhead of MAC-RKP is not
large even for high density random CSPs and that the runtime of MAC-
RKP almost never exceeds the runtime of MAC-CBJ.

The proposed pruning methods and the resulting algorithms turn
out to be especially efficient for Graph k-Coloring problems. We gen-
erate random Graph k-Coloring problems specifying the number of
vertices, the number of colors and the density. The resulting CSP has
the set of variables corresponding to the set of vertices, the domain
of every variable corresponds to the set of colors. The pairs of vari-
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Figure 6. Random CSPs: 10% density

time

domain size 10
density 10

tightness

ables that correspond to the pairs of vertices connected by edges are
constrained by the inequality constraint.

We compare the algorithms on three sets of instances. For every set
of instances, we fix the number of vertices and the number of colors
and vary the density. The fixed parameters are selected as follows. In
the first set of instances the phase transition region occurs for small
densities. In the second set, phase transition occurs for medium densi-
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Figure 10. Random CSPs: runtime for 80% density

ties and in the last set, the hardest instances have a high density. The
results are presented in Figures 11- 13.

It is easy to see that the advantage of MAC-RKP over MAC-CBJ

is very pronounced for the instances of Graph k-Coloring problems.
MAC-RKP outperforms MAC-CBJ by a factor of 1.5 in runtime on
the hard problems of low density (see Figure 11). When the region of
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hard Graph k-Coloring instances is of higher density, (see Figures 12,
13) the improvement factor in runtime becomes greater than 2.

8. Conclusion

In this paper we presented an approach to pruning during CSP search.
This approach uses new data structures called responsibility sets and
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Figure 13. Graph k-Coloring: hard problems of high density

kernels. We justified the proposed approach by experimental results. We
also demonstrated that the presented structures have theoretical inter-
est. They can be shown to be a generalization of conflict sets and thus
they connect two different areas of constraint reasoning: pruning “by
analogy” (Fahle et al., 2001; Focacci and Milano, 2001; Choueiry and
Noubir, 1998), and intelligent backtracking (Prosser, 1993; Ginsberg,
1993; Jussien et al., 2000; Bacchus, 2000).

One can outline two possible directions of further research that relate
to reformulation of the proposed technique to other search problems.

The proposed approach could be applied to CSPs with inequal-
ity constraints using domain-dependent features of such CSPs. Two
facts support the evidence that a successful application is possible.
First, according to our experimental results, MAC-RKP behaves well
on graph-coloring problems. Second, CSPs with inequality constraints
have a structural property that makes possible effective pruning using
responsibility sets as shown in (Razgon and Meisels, 2004). A combina-
tion of the approaches could be particularly useful for CSPs based on
inequality constraints and can be extended to some global constraints
that frequently occur in resource-allocation problems.

The other possible research direction is application of the proposed
technique to SAT, in particular, to the methods of caching that are
used in SAT solvers. Algorithms using caching, memorize unsatisfiable
formulas that occur during search in order to reject the currently con-
sidered set of assignments if the residual formula induced by this set
assignment is “more constrained” than one of the memorized unsatisfi-
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able formulas. Methods of caching proved to be useful for a number
of classes of SAT formulas (Kautz and Selman, 2003). It could be
interesting to reformulate the notions of responsibility set and kernel in
terms of SAT and to apply the notions to the methods of caching so that
instead of memorizing the whole residual formulas, the new algorithms
will memorize only subformulas “responsible” for their unsatisfiability.
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