
June 23, 2007 19:12 WSPC - Proceedings Trim Size: 9in x 6in ictcsIgorCamera

1

Computing Minimum Directed Feedback Vertex Set in
O∗(1.9977n)

Igor Razgon ∗

i.razgon@cs.ucc.ie

Computer Science Department, University College Cork, Ireland

In this paper we propose an algorithm which, given a directed graph G, finds

the minimum directed feedback vertex set (FVS) of G in O∗(1.9977n) time
and polynomial space. To the best of our knowledge, this is the first algorithm
computing the minimum directed FVS faster than in O(2n). The algorithm

is based on the branch-and-prune principle. The minimum directed FVS is
obtained through computing of the complement, i.e. the maximum induced
directed acyclic graph. To evaluate the time complexity, we use the measure-

and-conquer strategy according to which the vertices are assigned with weights

and the size of the problem is measured in the sum of weights of vertices of
the given graph rather than in the number of the vertices.

1. Introduction

In this paper we consider the following problem: given a directed graph
G, find the maximum acyclic subset (MAS) of G i.e. the largest subset of
vertices of G inducing a directed acyclic graph (DAG). We propose an al-
gorithm solving this problem in O∗(1.9977n) time and polynomial space.
The complement of MAS is the minimum directed Feedback Vertex Set
(FVS). The directed FVS problem is one of the “canonical” NP-hard op-
timization problems whose NP-complete version is mentioned in [8]. Thus
the proposed algorithm solves the directed FVS problems as well. To the
best of our knowledge, this is the first algorithm solving this problem faster
than in O(2n). For the undirected version of the FVS problem, the O(2n)
barrier has been broken by Razgon [9].

The proposed algorithm belongs to the area of exact exponential algo-
rithms whose subject is design of algorithms solving intractable problems

∗I dedicate this paper to my son Gabriel Razgon who was born on 14/04/2007, just one

day before the ICTCS 2007 abstract submission deadline.

June 23, 2007 19:12 WSPC - Proceedings Trim Size: 9in x 6in ictcsIgorCamera

2

faster than brute-force enumeration of all the possibilities (see a tutorial
of Woeginger [10] for introduction to the field). However, the directed FVS
problem is considered challenging and interesting in other areas of Theoret-
ical Computer Science, especially Parameterized Complexity and Approxi-
mation Algorithms. Therefore, the proposed result may be interesting to a
broader audience of researchers as providing a new insight into the nature
of the directed FVS problem.

The proposed algorithm is based on the branch-and-prune approach.
That is, the algorithm selects a vertex v of the given graph G, finds the
largest acyclic subset of G containing v and the largest one without v, and
returns the larger of the above two. These two subsets are found by recur-
sive application of the algorithm to the corresponding residual graphs. The
O(2n) barrier can be easily broken if one shows that selection or removal of
v necessarily causes removal of additional vertices from the respective resid-
ual graph. For example, for the Maximum Independent Set (MIS) problem
that can be easily seen since selection of a non-isolated vertex causes re-
moval of its neighbors. In our case, this is not always possible. For example,
if graph G is strongly connected (that is, the problem cannot be divided
into a number of independent subproblems) and has no cycles of size 2
(that is, selection of vertex v does not cause removal of an additional ver-
tex) then many vertices may be selected or removed before at least one
additional vertex can be eliminated from the residual graph. To overcome,
the difficulty, we associate vertices with weights and measure the size of
the problem as the sum of weights of the vertices rather than the number
of vertices. If the given branching decision does not cause real elimination
of additional vertices, the weights of the vertices which are likely to be re-
moved in the future are decreased. This updating of weights “amortizes”
the effect of vertex elimination among a number of iterations so that each
branching decision gets “a small bit” of the effect sufficient for breaking the
O(2n) barrier.

The above methodology of complexity analysis called Measure-and-
Conquer is quite recent [1,2,4] but proved very successful in the last two
years: it served as a basis of design and analysis of algorithms for such
problems as Dominating Set [7], MIS [5], undirected FVS [3,9], connected
Dominating Set [6].

The rest of the paper is structured as follows. Section 2 introduces the
necessary terminology. Section 3 presents the algorithm, proves its correct-
ness, and describes intuitively why the algorithm breaks the O(2n) barrier.
Section 4 presents complexity analysis of the algorithm which is, essen-

June 23, 2007 19:12 WSPC - Proceedings Trim Size: 9in x 6in ictcsIgorCamera

3

tially, formalization of the intuitive description given in Section 3. Due to
the space constraints, some proofs or parts of them are omitted. †

2. Preliminaries

All graphs considered in the paper are directed graphs without loops and
multiple arcs. Let G be a directed graph with the set of vertices V (G) and
the set of arcs A(G). Let v, w ∈ V (G). If (w, v) ∈ A(G), we say that w is
an entering neighbour of v and v is a leaving neighbour of w.

A subset S of V (G) is a directed Feedback Vertex Set (FVS), if every
directed cycle of G contains at least one vertex of S. We call the complement
V (G)\S of S an acyclic subset of G because it induces an acyclic subgraph
of G. A Maximum Acyclic Subset (MAS) is the complement of a minimum
directed FVS.

Let v ∈ V (G). Graph GC(v) is obtained from G \ v as follows. For each
entering neighbour u of v and for each leaving neighbour w of v, an edge
from u to w is added (if there is no such edge in G). If u is both an entering
and a leaving neighbour of v then u becomes a loop vertex. All loop vertices
are removed from the resulting graph.

Let D be a subset of vertices of G. The graph GC(D) is defined re-
cursively as follows. If D = ∅ then GC(D) = G. Otherwise, GC(D) =
(GC(v))C(D \ {v}) for some v ∈ D. Observe that the definition of GC(D)
makes sense only if D is acyclic in G: otherwise one of the vertices of D will
be eventually removed as a loop vertex and there will be no possibility to
finish up the recursive construction. We say that GC(D) is obtained from
G as a result of contraction of vertices of D.

The complexity of the algorithm proposed in the paper is measured in
terms of O∗ notation [10], which suppresses polynomial factors. For exam-
ple, O(n2 ∗ 2n) is transformed into O∗(2n).

3. The Algorithm

We present the algorithm for computing the MAS of G as a recursive pro-
cedure GetMAS(G, R).

The parameter R is the function on V (G) such that for v ∈
V (G), R(v) is the role of v. Initially, the role of each vertex is UN-
MARKED (UM). During the run of the algorithm, a vertex can change

†The preliminary (unpolished) version of the paper which contains all the proofs is
available at http://www.cs.ucc.ie/ ir2/papers/mas1203.pdf

June 23, 2007 19:12 WSPC - Proceedings Trim Size: 9in x 6in ictcsIgorCamera

4

its role to LEFT MARKED (LM), RIGHT MARKED (RM), WEAKLY
LEFT MARKED (WLM), WEAKLY RIGHT MARKED (WRM), LEFT
MARKED DISCONNECTED (LMD), and RIGHT MARKED DISCON-
NECTED (RMD). The notion of roles is crucial for the complexity analysis
because the vertices are assigned with weights according to their roles. As
well, the roles guide the branching decisions made by the algorithm.

Let us denote by VX(G, R) the set of vertices v of G such that R(v) = X.
In the further description of the algorithm, we frequently refer to the sets
VLM (G, R) ∪ VLMD(G, R) and VRM (G, R) ∪ VRMD(G, R). For the sake of
succinctness we denote these sets by V L(G, R) and V R(G, R), respec-
tively. We refer to the vertices whose roles are UM as unmarked ver-
tices and to the rest of the vertices as marked ones. Also, the vertices of
V L(G, R)∪VWLM (G, R), V R(G, R)∪VWRM (G, R), V L(G, R)∪V R(G, R),
VWLM (G, R) ∪ VWRM (G, R) are referred as left-marked, right-marked,
strongly marked, and weakly marked, respectively.

Below we present the algorithm in the form of a list of items. Each item
begins with the condition written in bold and associated with a short name
in square brackets for easier reference. The condition is followed by the
description of operations to be performed, if this condition is satisfied. The
conditions are presented in the order they are checked by the algorithm. For
each condition but the first one, it is assumed that this condition is checked
only if all the previous conditions are not satisfied. The formal description
is followed by intuitive explanation why the algorithm breaks the O(2n)
barrier.

We assume that the first operation performed by GetMAS(G, R) (prior
to the operations described below) is the balancing operation ensuring
that |V L(G, R)| and |V R(G, R)| differ by at most 3. In particular if
|V R(G, R)|− |V L(G, R)| > 3 then arbitrary |V R(G, R)|− (|V L(G, R)|+3)
vertices of V R(G, R) are selected and their roles in R are changed to
WRM . Symmetrically, if |V L(G, R)| − |V R(G, R)| > 3 then arbitrary
|V L(G, R)| − (|V R(G, R)| + 3) vertices of V L(G, R) are selected an their
roles in R are changed to WLM .

(1) [C1] Graph G has at most 3 vertices. Find a MAS of G efficiently
and return it.

(2) [C2] Graph G has a cycle of length 2. Let v be a vertex
participating in such a cycle. Return the largest set among {v} ∪
GetMAS(GC(v), R′) and GetMAS(G \ v,R). ‡, where R′ is computed

‡We assume that R is projected to the vertices of the graph given as the first parameter.

June 23, 2007 19:12 WSPC - Proceedings Trim Size: 9in x 6in ictcsIgorCamera

5

as follows. If v is unmarked then R′ = R. If v is left-marked then R′ is
obtained from R by setting to WLM the roles of all unmarked entering
neighbors of v. Finally, if v is right-marked then R′ is obtained from
setting to WRM the roles of all unmarked leaving neighbors of v.

(3) [C3] Graph G has two or more strongly connected compo-
nents. Let v1 and v2 be vertices of different strongly connected compo-
nents G1 and G2 that preferably belong to VLMD(G, R)∪VRMD(G, R).
Let T1 = {v1, v2} ∪ GetMAS(GC({v1, v2}), R), T2 = GetMAS(G \
{v1, v2}, R). Return max(T1∩V (G1), T2∩V (G1))∪max(T1∩V (G2), T2∩
V (G2)) ∪ (T1 \ (V (G1) ∪ V (G2)), where max(S1, S2) means the larger
set of S1 and S2.

(4) [C4] V L(G, R) = ∅ or V R(G, R) = ∅. We identify the following two
subcases.

• [C41] There is an unmarked or weakly marked vertex v

with the in-degree at most 3 or the out-degree at most
3. Let v1, . . . , vl (l ≤ 3) be the set of all entering (or leaving)
neighbors of v. The algorithm branches on selection of v, v1, . . . , vl.
In particular, GetMAS(G, R) selects the largest set among {v} ∪
GetMAS(GC(v), R), {v1}∪GetMAS((G\v)C(v1), R), . . . , {vl}∪
GetMAS((G \ {v, v1, vl−1})C(vl), R).

• [C42] The condition C41 is not satisfied Select a vertex v

preferably unmarked or weakly marked. Return the larger set of
{v}∪GetMAS(GC(v), R′) and GetMAS(G\v,R) where R′ = R if
v ∈ V L(G, R)∪V R(G, R) §, otherwise R′ is constructed as follows.
Set the roles of all vertices of GC(v) to UM. Let u1, . . . , u4 be any
4 entering neighbours of v and let w1, . . . w4 be any 4 leaving
neighbours of G. These neighbours necessarily exist because the
condition C41 is not satisfied. Set the roles of u1 . . . u4 in R′ to
be LM and the roles of w1, . . . w4 to be RM. If v has entering
neighbours other than {u1, . . . , u4} set their roles in R′ to WLM.
If there are leaving neighbours of v other than {w1, . . . w4}, set
their roles to WRM.

(5) [C5] The conditions C1 to C4 are not satisfied. We describe
the case assuming that |V L(G, R)| ≤ |V R(G, R)|. If |V L(G, R)| >

|V R(G, R)| then the behavior of GetMAS(G, R) is symmetric with the
difference that the vertices with roles RMD, RM , and WRM are con-

§In the complexity analysis, we show that the case where v ∈ V L(G, R) ∪ V R(G, R)
never happens. We provide it here for the sake of completeness of the description.

June 23, 2007 19:12 WSPC - Proceedings Trim Size: 9in x 6in ictcsIgorCamera

6

sidered instead the vertices with roles LMD, LM , and WLM , respec-
tively. As well, in the places where entering neighbors of left-marked
vertices are mentioned, the leaving neighbors of the respective ver-
tices are considered in the symmetric “right-marked” case. We consider
three subcases of the given condition.

• [C51] All the vertices of V L(G, R) have role LMD or no
vertex of V L(G, R) has an unmarked entering neighbor. ¶

Let v be an arbitrary vertex of V L(G, R). Return the largest set
among {v} ∪GetMAS(GC(v), R) and GetMAS(G \ v,R).

• [C52] There is a left-marked vertex v which does not
belong to VLMD(G, R) and has at least 4 unmarked en-
tering neighbors. Let v1, . . . , v4 be arbitrarily selected un-
marked entering neighbors of v. Return the largest set among
{v}∪GetMAS(GC(v), R′) and GetMAS(G\v,R) where R′ differs
from R in that the roles of v1, . . . v4 are set to LM and the roles
of the rest unmarked entering neighbors of v are set to WLM .

• [C53] Conditions C51 and C52 are not satisfied. Select a
left-marked vertex v with the largest number of unmarked entering
neighbors. Let X be the set of unmarked entering neighbors of v.
For each acyclic subset Y ⊆ X, let GY = (G \ (X \ Y))C(Y)
and return the largest set among TY = Y ∪GetMAS(GY , R′(Y)),
where R′(Y) = R if Y is non-empty. Otherwise, R′(Y) is obtained
from R by setting the role of v to LMD.

Theorem 3.1. Given a directed graph G and a function R assigning roles
to the vertices of G, GetMAS(G, R) finds a MAS of G taking a finite time
and polynomial space.

Now we shall describe intuitively why the algorithm breaks the O(2n)
barrier. The branching rules corresponding to conditions C2, C3, and C41
result in immediate pruning effect. In particular, the branching rule cor-
responding to C2 removes from the residual graph at least one additional
vertex on the selection branch, the branching rule corresponding to C3
removes 2 vertices on both branches, the branching rule corresponding to
condition C41 selects a subset of k + 1 vertices (k ≤ 3) to be included to
the returned MAS, spending only k + 1 branches instead of 2k+1 ones.

¶Again, this case is provided for the sake of completeness only. In the next section we
rule out the possibility of its appearance.

June 23, 2007 19:12 WSPC - Proceedings Trim Size: 9in x 6in ictcsIgorCamera

7

The pruning effect of branching rules corresponding to conditions C42
and C52 is based on our setting that vertices with roles LM or RM have
smaller weight than unmarked vertices (the weakly marked vertices have
the same weight as unmarked). As a result of the selection branch of the
considered branching rules, some unmarked vertices acquire roles LM or
RM reducing the size of the problem which is the sum of weights of vertices
of the underlying graph. To be useful in decreasing of the overall complex-
ity, this weight reduction should be compensated by the real pruning effect
occurring later on during the processing. The idea of the compensation is
based on the invariant stating that for any pair (G, R) to which GetMAS

is applied recursively during the processing, each left-marked vertex is an
entering neighbor of each right-marked vertex (we prove this invariant in
the next section). To understand why it is helpful, consider a sequence of
vertex selection branches, with the first branch corresponding to condition
C42 and the rest corresponding to condition C52. Each of these vertex
selection branches increases the number of left-marked and right-marked
vertices so, if the sequence is long enough, the underlying graph can be
partitioned into the left-marked and right-marked vertices. From this mo-
ment and until one of the partition classes wipes out, either condition C2
or C3 is satisfied which results in a real pruning effect. Really if there is an
edge from a right-marked vertex to a left-marked vertex then the above in-
variant guarantees that the underlying graph has a directed cycle of length
2 satisfying condition C2. Otherwise, left-marked and right-marked vertices
belong to different strongly connected components, that is condition C3 is
satisfied.

The above strategy has two major obstacles. The first obstacle occurs if,
for example, there are no left-marked vertices and there are many vertices
with roles RM . The most undesired event in this situation is applying the
branching rule corresponding to condition C42. On the vertex selection
branch all the vertices with roles RM are unmarked. Since there are many
such vertices, this results in massive increase of the problem size which neu-
tralizes the effect of previous weight reductions. To avoid this obstacle, we
apply the balancing operation which guarantees that the size of V L(G, R)
and V R(G, R) differ by at most 3. However this balancing operation turns
out to be helpless if there are many consecutive calls of the vertex selection
branch corresponding to condition C52 applied to the same side, say to
the left-marked vertices. In this case the pruning effect of weight reduction
might be diminished by the subsequent balancing operation. To avoid this
undesired effect, the vertex selection branch is applied to the smaller side,

June 23, 2007 19:12 WSPC - Proceedings Trim Size: 9in x 6in ictcsIgorCamera

8

i.e. if |V L(G, R)| ≤ |V R(G, R)| then new left-marked vertices are created
otherwise new right-marked ones appear. Combining this “alternating” ap-
plication of the vertex selection branch with the balancing operation has
the desired effect of avoiding the considered obstacle.

The second obstacle that may occur is satisfaction of condition C53.
In this case the weight reduction produced by the vertex selection rule of
condition C52 is insufficient for the complexity improvement. To avoid this
obstacle the algorithm performs an ordinary branching on all combinations
of unmarked entering (or leaving) neighbors of the specified vertex v and
changes the role of v to LMD or RMD on the branch where all the con-
sidered neighbors are removed. This results in weight reduction on that
branch due to our setting that vertices with roles LMD or RMD have
the lowest weight. We prove in the next section that if all the left-marked
vertices of (G, R) have roles LMD (or all right-marked vertices have role
RMD) then left-marked vertices and right-marked ones belong to different
strongly connected components, i.e. condition C3 is satisfied. This ensures
that multiple application of the above branching rule eventually result in a
real pruning effect.

4. Analysis

We start the analysis from introducing additional terminology. Let GIN

be the input graph whose MAS we are interested to compute. Let RIN

be the function assigning role UM to each vertex of GIN . Recall that
GetMAS(GIN , RIN) is the initial application of the considered algorithm.
The set of legal pairs explored by GetMAS(GIN , RIN) includes (GIN , RIN)
and all pairs (G, R) to which GetMAS is recursively applied during the run
of GetMAS(GIN , RIN).

Let (G′, R′) be a legal pair. Recall that the first operation performed by
GetMAS(G′, R′) is the balancing of (G′, R′) producing as a result the pair
(G, R) for which |V L(G, R)| and |V R(G, R)| differ by at most 3 (if the con-
dition is true regarding (G′, R′) then (G′, R′) = (G, R)). Then the appropri-
ate type of recursive branching is selected regarding (G, R). We call (G, R)
a balanced pair (BP). Note that GetMAS(G′, R′) = GetMAS(G, R). If
(G, R) satisfies condition C1, we call (G, R) an atomic balanced pair.

The set of BPs explored by GetMAS(GIN , RIN) can be naturally rep-
resented as a search tree. The root of the tree is (GIN , RIN) (this is a BP
since all the vertices of GIN are unmarked in RIN). Let (G, R) be a node of
the tree. If (G, R) is atomic then this node is a leaf. Otherwise, depending
on the condition satisfied by (G, R), GetMAS(G, R) produces legal pairs

June 23, 2007 19:12 WSPC - Proceedings Trim Size: 9in x 6in ictcsIgorCamera

9

(G′
1, R

′
1), . . . , (G

′
k, R′

k) to which GetMAS is recursively applied. (For exam-
ple, if (G, R) satisfies condition C2 then the produced pairs are (GC(v), R′)
and (G \ v,R), where v and R′ are as shown in the description of the algo-
rithm.) The pairs (G1, R1), . . . , (Gk, Rk) obtained as a result of balancing
of (G′

1, R
′
1), . . . , (G

′
k, R′

k), respectively, are the children of (G, R). Accord-
ingly, (G, R) is the parent of (G1, R1), . . . , (Gk, Rk). Now, we recursively
define the notion of descendants. If (G, R) is atomic, it is the only descen-
dant of itself. Otherwise, the set of descendants of (G, R) include (G, R)
and the union of descendants of the children of (G, R). ‖ If a descendant of
(G, R) is an atomic BP, we call it an atomic descendant of (G, R).

The crucial step of the analysis is ruling out the possibility of application
of the branching rule corresponding to condition C51.

Theorem 4.1. No BP (G, R) satisfies condition C51 and causes
GetMAS(G, R) to check this condition.

In order to prove the theorem, we need two additional lemmas.

Lemma 4.1. For each BP, each left-marked vertex is an entering neighbor
of each right-marked vertex.

Lemma 4.2. Let (G, R) be any BP such that both V L(G, R) and V R(G, R)
are nonempty. Let v ∈ VLMD(G, R), let u be an entering neighbor of v such
that u and v belong to the same strongly connected component. Then u is
a left marked vertex of (G, R). Analogously, if v ∈ VRMD(G, R) and u is a
leaving neighbor of v in the same strongly connected component then u is a
right-marked vertex of (G, R).

Proof of theorem 4.1. Assume by contradiction that there is a BP
(G, R) that satisfies condition C51 and causes GetMAS(G, R) to check
this condition. We assume that condition C51 is satisfied regarding the
left-marked vertices of (G, R), the case with right-marked vertices is sym-
metric. Since GetMAS(G, R) checks condition C51, the earlier conditions
C1 . . .C4 are not satisfied regarding (G, R). That is, both V L(G, R) and
V R(G, R) are nonempty and G is a strongly connected graph. In particular,
there is a path in G from a right-marked vertex to a left-marked vertex.
This path necessarily contains an edge (u, v) such that v is left-marked and
u is not. If u is right-marked then by Lemma 4.1, u and v constitute a cycle

‖We admit that a node is a descendant of itself in order to ensure that an atomic node
has exactly one descendant which will be convenient for the complexity computation.

June 23, 2007 19:12 WSPC - Proceedings Trim Size: 9in x 6in ictcsIgorCamera

10

of size 2, which satisfied condition C2, a contradiction. If u is unmarked
then the second part of condition C51 is not satisfied regarding left-marked
vertices (v has an unmarked entering neighbor of u). It remains to assume
that v ∈ VLMD(G, R) but this contradicts Lemma 4.2. �

Let w,wm,wmd be 3 real numbers so that w > wm > wmd. Let (G, R)
be a BP. We assign each vertex v of G a weight WR(v) according to the role
of v in (G, R). In particular, if v ∈ VUM (G, R)∪VWLM (G, R)∪VWRM (G, R)
then WR(v) = w. If v ∈ VLM (G, R) ∪ VRM (G, R) then WR(v) = wm.
Finally, if v ∈ VLMD ∪ VRMD(v) then WR(v) = wmd. The weight WR(G)
of G is the sum of weights of its vertices. The following theorem provides
an upper bound on the number of atomic descendants of (G, R) depending
on WR(G).

Theorem 4.2. Let (G, R) be a BP. Assume that w = 1, wm =
0.925, wmd = 0.884. ∗∗ Let m = WR(G). Then the number of atomic de-
scendants of (G, R) is at most 1.9977m.

Proof. The proof is by induction on the sequence of balanced pairs sorted
in the reverse chronological order (we are allowed to consider this sequence
due to the finite number of generated BPs as verified by Theorem 3.1). The
first BP in this sequence is atomic, hence the theorem trivially holds for
that pair (this pair is the only atomic descendant of itself). Consider a BP
which is not the first in the sequence assuming that the theorem holds for all
the previous pairs. Since the theorem trivially holds for all atomic BPs, we
may assume that (G, R) is not atomic. In this case the number of atomic de-
scendants of (G, R) is the sum of the numbers of atomic descendants of the
children of (G, R). Let (G1, R1), . . . , (Gk, Rk) be the children of (G, R). De-
note WR1(G1), . . . ,WRk

(Gk) by m1, . . . ,mk, respectively. By the induction
assumption, the number of atomic descendants of each (Gi, Ri) is at most
1.9977mi . We are going to show that 1.9977m1 + · · ·+ 1.9977mk ≤ 1.9977m

which will finish the proof of the theorem. The rest of the proof follows all
the conditions checked by the algorithm and shows that the theorem holds
regarding (G, R) if it satisfies the given conditions. All these conditions
are analyzed in a similar manner. Due to the space constraints, we cannot
provide the analysis of all the conditions. Hence, we prove the analysis of
the most non-trivial condition, which occurs when conditions C1, . . . , C4

∗∗The values are obtained by a computer program which guessed all the triplets of values
from 0 to 1 with interval 0.001 with the objective to minimize c where c is the resulting

constant, 1.9977 in considered case.

June 23, 2007 19:12 WSPC - Proceedings Trim Size: 9in x 6in ictcsIgorCamera

11

are not satisfied and condition C52 is satisfied. According to Theorem 4.1,
the condition C51 cannot be satisfied in the considered case, hence the
algorithm performs the operations associated with condition C52. Then
(G, R) has two children (G1, R1) and (G2, R2) corresponding to selection
and non-selection of the specified vertex v. Due to our agreement that
|V L(G, R)| ≤ |V R(G, R)|, v is a left-marked vertex in (G, R). Condition
C52 explicitly forbids v to have role LMD, hence v has role LM or WLM

in (G, R). We prove these two subcases separately.
Assume first that R(v) = LM The transformation from (G, R) removes

v contributing wm to the decreasing of m1. Next, 4 unmarked entering
neighbors of v change their roles to LM which contributes 4(w − wm)
to the decreasing of m1. Observe that the subsequent balancing operation
does not change roles of the vertices. Really, (G, R) is balanced and, by
our agreement, |V L(G, R)| is not greater than |V R(G, R)|. As a result of
this transformation one strongly marked vertex (namely, v) is removed and
four new ones appear. Clearly, the resulting difference between the number
of strongly left-marked vertices and the strongly right-marked ones is not
greater than 3. Thus m1 = m − wm − 4(w − wm) = m − 4w + 3wm. The
transformation from (G, R) to (G2, R2) removes v decreasing m2 by wm.
Since v is strongly marked, at most one vertex is made weakly marked by the
subsequent balancing operation, which increases m2 by at most w − wmd.
In total m2 ≤ m − wm + (w − wmd) = m − wm − wmd + w. We obtain
that 1.9977m1 + 1.9977m2 ≤ 1.9977m−4w+3wm + 1.9977m−wm−wmd+w =
1.9977m∗(1.9977−4w+3wm+1.9977−wm−wmd+w) < 1.9977m∗0.9998, getting
the last inequality by the substitution of w, wm, and wmd with their values
guessed by the statement of the theorem.

Assume now that R(v) = WLM . This time the removal of v and making
4 unmarked entering neighbors of v to have roles LM decreases m1 by
w + 4(w − wm). However, the resulting number of strongly left-marked
vertices may be greater by 4 than the number of strongly right-marked
vertices (if initially |V L(G, R)| = |V R(G, R)|). Consequently, at most one
strongly right-marked vertex can be made weakly marked by the subsequent
balancing operation which increases m1 by at most w − wmd. In total
m1 ≤ m − w − 4(w − wm) + w − wmd = m − 4w + 4wm − wmd. The
transformation from (G, R) to (G2, R2) removes v thus decreasing m2 by
w. Since w is a weakly marked vertex, its removal does not violate the
difference between the number of strongly left-marked and strongly right-
marked vertices in (G, R), hence the subsequent balancing operation does
not change the roles of the vertices. That is, m2 = m − w. Consequently,

June 23, 2007 19:12 WSPC - Proceedings Trim Size: 9in x 6in ictcsIgorCamera

12

1.9977m1 + 1.9977m2 ≤ 1.9977m−4w+4wm−wmd + 1.9977m−w = 1.9977m ∗
(1.9977−4w+4wm−wmd+1.9977−w) < 1.9977m∗0.968. Thus we have verified
that the theorem holds for both subcases of the considered case.

Corollary 4.1. There is an algorithm that finds the largest acyclic subset
of the given graph GIN in time O∗(1.9977n), where n = |V (GIN)| and space
polynomial in n.

Acknowledgements

This work was supported by Science Foundation Ireland (Grant Number
05/IN/I886).

I would like to thank the reviewers for their very useful comments that
allowed me to essentially improve the presentation of the final version of
the paper.

References

1. D. Eppstein. Quasiconvex analysis of backtracking algorithms. In SODA,
pages 788–797, 2004.

2. David Eppstein. Improved algorithms for 3-coloring, 3-edge-coloring, and
constraint satisfaction. In SODA, pages 329–337, 2001.

3. F. Fomin, S. Gaspers, and A. Pyatkin. Finding a Minimum Feedback Vertex
Set in time O(1.7548n). In IWPEC 2006, pages 184–191, 2006.

4. F. Fomin, F. Grandoni, and D. Kratsch. Some new techniques in design and
analysis of exact (exponential) algorithms. Bulletin of the EATCS, 87:47–77,
2005.

5. F. Fomin, F. Grandoni, and D. Kratsch. Measure and conquer: a simple

O(20.288) independent set algorithm. In SODA, pages 18–25, 2006.
6. F. Fomin, F. Grandoni, and D. Kratsch. Solving Connected Dominating Set

faster than 2n. In FSTTCS, pages 152–163, 2006.
7. F. Fomin, Fabrizio Grandoni, and Dieter Kratsch. Measure and conquer:

Domination - a case study. In ICALP, pages 191–203, 2005.
8. M. Held nad R. Karp. A dynamic programming approach to sequencing prob-

lems. Journal of SIAM, 10:196–210, 1962.
9. I. Razgon. Exact Computation of Maximum Induced Forest. In SWAT 2006,

LNCS 4059, pages 160–171, 2006.
10. G. Woeginger. Exact algorithms for NP-hard problems: A survey. In Combi-

natorial Optimization, pages 185–208, 2001.

