
A Faster Solving of the Maximum In-
dependent Set Problem for Graphs with
Maximal Degree 3
Igor Razgon

abstract. We present an O(1.1034n) algorithm computing a max-
imum independent set of a graph with maximal degree 3. This result
improves currently best upper bound of O(1.1255n) for the problem
obtained by Chen et al [2].

1 Introduction

Maximum independent set problem (MIS) is one of the most extensively
studied problems in the area of exact algorithms. The best existing algo-
rithms are proposed by Fomin et al [5] (O(1.2210n), polynomial space) and
Robson [7] (O(1.1893n), exponential space). A special case of the problem
is finding a MIS for a graph with max-degree 3 (MIS-3). Currently, the best
upper bound for the problem was achieved by Chen et al [2]. Their algo-
rithms takes O(1.1255n). This is a slight improvement of the O(1.1259n)
bound provided by Beigel [1].

In this paper we propose a “branch-and-prune” algorithm that solves
a MIS-3 problem in time O(1.1034n). This upper bound is achieved by
combination of three main ingredients. First of all, the size of the residual
graph is measured in the number of vertices of degree 3, without taking
into account the rest of the vertices. Using a non-standard measure is a
strategy that was suggested in [4] and then successfully applied in [5, 3, 6]
for exact solving of various intractable problems. The second ingredient is
simplification of the residual graph after each decision (selecting or removing
of a vertex) made by the algorithm. The graph obtained as a result of
the simplification is cubic, which allows easy application of the above non-
standard measure. The ideas of simplification are similar to those that
appear in [2]. The last ingredient is a compact classification of a variety
of cases that can happen as a result of selection or removing of a vertex.
According to the proposed classification, only four cases are considered: a
vertex cut of size 3, a cycle of length 4, a cycle of length 3, and the case
when none of the above three happens.

2 Razgon

The rest of the paper is structured as follows. Section 2 presents the
necessary notations, Section 3 describes the algorithm, Section 4 introduces
the complexity analysis.

2 Notations

A simple undirected graph G = (V,E) is referred in this paper as a graph,
V (G) and E(G) denote the set of vertices and edges of G, respectively. For
u ∈ V (G), we denote by NG(u) the set of neighbours of u, NG(u) ∪ {u}
is denoted by N+

G (u). For S ⊆ V (G), we denote by NG(S) the set of
neighbours of the vertices of S that do not belong to S; N+

G (S) denotes
NG(S) ∪ S. The subscript may be omitted if there is no risk of confusion.
We denote by G\S the graph induced by V (G)\S. If S consists of a single
vertex u, we write G \ u rather than G \ {u}. If S = V (G1), where G1 is a
subgraph of G, we write G\G1 rather than G\V (G1). Set S is a maximum
independent set of G if the vertices of S are mutually non-adjacent and the
set S is largest subject to this property. We denote by mis(G) the size of a
MIS of G.

Finally, we introduce a non-standard definition which will simplify pre-
sentation of the proposed algorithm. Given a graph G with max-degree 3,
we refer to a connected component of G with at most 20 vertices a small
component.

3 The Algorithm

In this section we present a function FindIndep that, given a graph G
with max-degree 3, returns a MIS of G. The pseudocode is presented in
Algorithm 1, 2, and 3, and 4. The function FindIndep(G) checks whether
G satisfies one of the predefined conditions. The first condition satisfied by
G determines the operations to be performed.

If a condition checked in Algorithm 1 is satisfied then either a MIS of
G is found efficiently or there is a subset of vertices of G to be included
into any MIS of G. The latter happens when G has a small component
or G has a vertex cut of size at most 2, after removing of which a small
component is obtained (in case of vertex cut of size 2, the union of all small
components is required to have at least 2 vertices). The decisions made if
anyone of these conditions is satisfied are nonbranching in the sense that
FindIndep(G) is applied recursively only once. The case of vertex cut of
size 2 requires checking of a number of subcases, therefore we describe it as
a separate function ProcessTwoCut (Algorithm 2).

If none of the above conditions is satisfied, FindIndep(G) calls a func-
tion ProcessBranches(G), which makes a branching decision, i.e. applies
FindIndep(G) to two different subgraphs of G and returns the largest of

The MIS problem for graphs with max-degree 3 3

the two resulting sets. Before looking at the pseudocode, let us extend our
terminology.

Observe first that if ProcessBranches(G) is called, graph G has the
following properties: there are no isolated vertices and vertices of degree 1,
any vertex of degree 2 is adjacent to two nonadjacent vertices of degree 3,
there are no two vertices of degree 2 adjacent to the same pair of vertices.
This observation enables us to define a graph C(G) obtained from G by
replacing each vertex of degree 2 adjacent to vertices u and v by an edge
between u and v. We call the edges of C(G) that appear in G the normal
edges and the edges that replace degree-two vertices the odd edges. A cycle
in C(G) all edges of which are normal is called a normal cycle. Otherwise
it is called an odd cycle.
ProcessBranches(G) tests whether G possesses a number of properties.

The first property detected determines the operation to be performed. For
most of the cases, ProcessBranches(G) calls function V ertexBranch with
G and a particular vertex u as parameters. The function V ertexBranch
returns the largest one of two independent sets. The first set includes u,
all the vertices connected to u by paths of odd edges, and the set returned
by FindIndep applied to the residual graph. The second set is returned by
FindIndep(G \ u).

THEOREM 1. Let G be a graph with max-degree 3. Then FindIndep(G)
returns a MIS of G.

Proof. Omitted due to space constraints. �

4 Complexity Analysis

In this section we analyze complexity of FindIndep(G) for a graph G with
max-degree 3, by evaluation of the number of recursive calls done during
execution of FindIndep(G). Let us extend first the terminology. We say
that G is a non-trivial graph if FindIndep(G) calls ProcessBranches(G).
A graph G′ is a successor of G if FindIndep(G′) is called during processing
of FidIndep(G). If, in addition, G′ is nontrivial, it is a non-trivial successor
(NS) of G. Further, we say that G′ is a first non-trivial successor (FNS) of
G, if G has no NS G′′ such that G′ is a NS of G′′. Note that G can have
at most two FNSes because FindIndep(G) generates a binary search tree.
If G has two FNSes, we call the one explored by the first (chronologically)
branch, the left FNS of G and denote it by GL. Accordingly, the other one
is called the right FNS of G and denoted by GR.

LEMMA 2. Let G be a nontrivial graph such that ProcessBranches(G) ex-
ecutes line 2. Assume that G has 2 FNSes. Then |V (C(GL))| ≤ |V (C(G))|−
8, |V (C(GR))| ≤ |V (C(G))| − 8.

4 Razgon

Algorithm 1 FindIndep(G)

1: if G has no vertices of degree 3 then
2: Find a MIS of G efficiently and return it
3: elseif G has a small component G′ then
4: Let S be a MIS of G′

5: Return S ∪ FindIndep(G \G′)
6: elseif G has an articulation point u such that G \ u has a small com-

ponent G′ then
7: if mis(G′ \N(u)) = mis(G′) then
8: Let S be a MIS of G′ \N(u)
9: Return S ∪ FindIndep(G \G′)

10: else
11: Let S be a MIS of G′

12: Return S ∪ FindIndep((G \G′) \ u)
13: endif
14: elseif G has a vertex cut {u1, u2} such that the union of small compo-

nents G′ of G \ {u1, u2} contains at least 2 vertices then
15: Return ProcessTwoCut(G,G′, u1, u2)
16: else Return ProcessBranches(G)
17: endif

The MIS problem for graphs with max-degree 3 5

Algorithm 2 ProcessTwoCut(G,G2, u1, u2)

1: if mis(G2 \ (N(u1) ∪N(u2))) = mis(G2) then
2: S1 ← FindIndep(G \G2)
3: Let S2 be a MIS of G2 \ (N(u1) ∪N(u2))
4: Return S1 ∪ S2

5: elseif mis(G2 \N(u1)) < mis(G2 \N(u2)) = mis(G2) then
6: S1 ← FindIndep((G \G2) \ u1)
7: Let S2 be a MIS of G2 \N(u2)
8: Return S1 ∪ S2

9: elseif mis(G2 \N(u2)) < mis(G2 \N(u1)) = mis(G2) then
10: This case is symmetric to the previous one
11: elseif mis(G2 \N(u1)) = mis(G2 \N(u2)) = mis(G2) then
12: G′ ← (V (G \G2), E(G \G2) ∪ {{u1, u2}})
13: S1 ← FindIndep(G′)
14: Let S2 be a MIS of G2 \N(S1)
15: Return S1 ∪ S2

16: elseif mis(G2 \ (N(u1) ∪N(u2))) ≤ mis(G2)− 2 then
17: S1 ← FindIndep((G \G2) \ {u1, u2})
18: Let S2 be a MIS of G2

19: Return S1 ∪ S2

20: else
21: G′ ← (V (G \G2) ∪ {w}, E(G \G2) ∪ {{u1, w}, {u2, w}}) (w is not a

vertex of G)
22: S1 ← FindIndep(G′)
23: if {u1, u2} ⊆ S1 then
24: Let S2 be a MIS of G2 \ (N(u1) ∪N(u2))
25: else
26: Let S2 be a MIS of G2

27: S1 ← S1 \ {w, u1, u2}
28: endif
29: Return S1 ∪ S2

30: endif

6 Razgon

Algorithm 3 ProcessBranches(G)

1: if there is a cut {u1, u2, u3} of C(G) such that C(G) \ {u1, u2, u3} has a
small component and the union G of all small components contains at
least 5 vertices then

2: Return V ertexBranch(G, u1) (we assume w. l. o. g. that in
{u1, u2, u3}, u1 has the largest number of neighbours outside G′)

3: elseif C(G) has a normal rectangle (u1, u2, u3, u4) (vertices are listed
according to their appearance in the cycle) then

4: S1 ← {u1} ∪ FindIndep(G \N+(u1))
5: S2 ← FindIndep(G \ {u1, u3})
6: Return max(S1, S2)
7: elseif C(G) has an odd rectangle (u1, u2, u3, u4) (we assume w.l.o.g.

that u1 is incident to at least one odd edge) then
8: V ertexBranch(G, u1)
9: elseif C(G) has a normal triangle (u1, u2, u3) then

10: Let v1 be the outside vertex adjacent to u1 in C(G)
11: if {u1, v1} is a normal edge
12: S1 ← {u1} ∪ FindIndep(G \N+(u1))
13: S2 ← {v1} ∪ FindIndep(G \N+(v1))
14: Return max(S1, S2)
15: else
16: V ertexBranch(G, u1)
17: endif
18: elseif C(G) has an odd rectangle (u1, u2, u3) (we assume w.l.o.g. that

u1 is incident to at least one odd edge) then
19: V ertexBranch(G, u1)
20: else
21: Select an arbitrary vertex u of C(G) (if available, incident to an odd

edge)
22: V ertexBranch(G, u)
23: endif

The MIS problem for graphs with max-degree 3 7

Algorithm 4 V ertexBranch(G, v)

1: Let T be the set of vertices of C(G) including v and the vertices that
are connected to v by odd edges

2: if T is not an independent set in G then
3: Return FindIndep(G \ v)
4: endif
5: Return max(T ∪ FindIndep(G \N+(T)), F indIndep(G \ v))

Proof. Let G′ be as defined in line 1 of Algorithm 3. Let G∗ be a NS of G.
If C(G∗) contains at least one vertex of G′ then, depending on presence of
u2 and u3 in G∗, the latter is not connected or has a vertex cut of size at
most 2 separating a small component, in contradiction to non-triviality of
G∗. It follows that both C(GL) and C(GR) do not contain any vertex of G′,
consequently |V (C(GL))| ≤ |V (C(G))|−5 and |V (C(GR))| ≤ |V (C(G))|−5.
Actually, 5 in the above inequalities can be replaced by 6 because neither
C(GL) nor C(GR) contain u1. That is, if G′ contains 7 or more vertices,
there is nothing to prove, so assume that 5 ≤ |V (G′)| ≤ 6.

Note that u1 has at least one neighbour v1 in C(G) that does not belong
to V (G′) ∪ {u2, u3} for otherwise, {u2, u3} would constitute a vertex cut of
size 2 separating a small component, in contradiction to the non-triviality
of G. If u1 has another neighbour v2 /∈ V (G′) ∪ {u2, u3}, the lemma easily
follows because neither of v1 and v2 is contained in either of V (C(GL)) and
V (C(GR)).

If v1 is the only “outside” neighbour then, by the selection of u1, two other
vertices u2 and u3 also have outside neighbours. Denote these neighbours
by v2 and v3 (note that v1, v2, and v3 do not coincide because in that case
they constitute a vertex cut of size smaller than 3). After removing of u1,
v2 and v3 comprise a cut of size 2 which means that not only the vertices
of G′ but also u2 and u3 are excluded from GL and GR, which proves the
desired inequalities. �

LEMMA 3. Let G be a nontrivial graph such that ProcessBranches(G)
executes lines 4-6 or line 8 and let (u1, u2, u3, u4) be the rectangle picked by
the function. Then there are vertices v1, . . . , v4, w1, w4 that together with the
rectangle form a subgraph of C(G) isomorphic to the one shown in Figure
1 a) 1

1Note that the lemma does not claim that this graph is induced by these vertices.
Additional edges, if exist, do not relevant to the complexity analysis.

8 Razgon

Figure 1. The considered subgraphs of C(G)

Proof. Observe that in the considered case the conditions related to vertex
cuts of size 2 and 3 are not satisfied.

It follows that each vertex of the rectangle has the third neighbour outside
the rectangle and that all these neighbours are distinct. Otherwise, if, for
example u1 and u3 are adjacent or some two vertices have the common third
neighbour, we obtain the case of vertex cut of size 2 or 3 separating a small
component. Denote the neighbours of u1 to u4 by v1 to v4, respectively.

Now, let us concentrate on vertices v1 and v4. Observe that there must be
two distinct “outside” vertices w1 and w4 adjacent to v1 and v4, respectively.
If none of v1 and v4 is adjacent to an outside vertex then v2 and v3 form
a cut of size 2 separating a small component. If there is only one outside
vertex w adjacent to either of v1 and v4 (or to both of them) then {w, v2, v3}
is a cut of size 3 that disconnects a component of size 6. �

LEMMA 4. Let G be a nontrivial graph such that ProcessBranches(G)
executes lines 4-6 or line 8 and let (u1, u2, u3, u4) be the rectangle picked by
the function. Assume that G has two nontrivial successors. Then one of
the following two statements holds:

• |V (C(GL))| ≤ |V (C(G))| − 8 and |V (C(GR))| ≤ |V (C(G))| − 8.

• |V (C(GL))| ≤ |V (C(G))| − 10 and |V (C(GR))| ≤ |V (C(G))| − 6.

Proof. Based on Lemma 3, we consider only the configuration shown in
Figure 1 a). Assume that the rectangle is normal. Then lines 4-6 of Al-
gorithm 3 are performed. It follows that all of u1, . . . , u4 and v1, . . . , v4 do
not belong to V (C(GL)). When u1 and u3 are excluded, the degree of u2

and u4 is 1. It follows that all of u1, . . . , u4 and v1, . . . , v4 do not belong to
V (C(GR)). Thus the first statement holds in the considered case.

The MIS problem for graphs with max-degree 3 9

Assume now that the edge {u1, u4} is odd. Clearly, neither of the vertices
in Figure 1 a) belongs to V (C(GL)). Also, the vertices u1, . . . u4, v1, v4 do
not belong to V (C(GR)), implying the second statement.

Note that the rectangle is either even or odd and in the latter case as-
suming any edge to be odd does not restrict generality (we could prove, for
example, the existence of the outside neighbours for u2 and u3 and then
assume that {u2, u3} is odd). Hence, the lemma follows. �

LEMMA 5. Assume that G is a nontrivial graph and that ProcessBranches(G)
picks a triangle u1, u2, u3 in C(G). Then there are vertices v1, v2, v3, x1, x2, y1, y2

that together with u1, u2, u3 form a subgraph of C(G) isomorphic to the one
shown in Figure 1 b).

Proof. Observe that if ProcessBranches(G) picks a triangle then C(G)
contains no rectangle. Let v1 be the neighbour of u1 in C(G) outside of the
triangle and x1 and x2 be the respective “outside” neighbours of u2 and u3.
Note that v1, x1, x2 are pairwise different because otherwise C(G) contains
a rectangle. Let v2 and v3 be the remaining two neighbours of v1. Note that
the same reason of appearing a rectangle forbids v2 and v3 to coincide with
x1 and x2. Further, both v2 and v3 have neighbours that do not belong
to the already considered vertices, just to avoid being {x1, x2} a vertex cut
separating a small component. Moreover, it is impossible that there is only
one outside vertex y adjacent to v2 or v3 or both because y together with
x1 and x2 constitute a 3-cut. Hence each of v2 and v3 has a “personal”
neighbour y1 and y2, respectively. �

LEMMA 6. Assume that G is a nontrivial graph with two FNSes and that
ProcessBranches(G) picks a triangle u1, u2, u3 in C(G). Then |V (C(GL))| ≤
|V (C(G))|−10 and |V (C(GR))| ≤ |V (C(G))|−6 or |V (C(GL))| ≤ |V (C(G))|−
8 and |V (C(GR))| ≤ |V (C(G))| − 8 or |V (C(GL))| ≤ |V (C(G))| − 9 and
|V (C(GR))| ≤ |V (C(G))| − 7.

Proof. Based on Lemma 6 we consider only configuration presented in
Figure 1 b).

Assume first that lines 11-14 of Algorithm 3 are executed. Then u1, . . . , u3, x1, x2, v1, . . . , v3

are excluded from V (C(GL)), u1, . . . , u3, y1, y2, v1, . . . , v3 are excluded from
V (C(GR)), hence |V (C(GL))| ≤ |V (C(G))|−8 and |V (C(GR))| ≤ |V (C(G))|−
8.

Assume now that line 16 is executed. Clearly neither of vertices in Figure
1 belong to GL. Also, u1, . . . , u3, v1, . . . , v3 do not belong to GR, conse-
quently |V (C(GL))| ≤ |V (C(G))| − 10 and |V (C(GR))| ≤ |V (C(G))| − 6.

10 Razgon

For the case of line 19, note that x1 and x2 must have distinct neighbours
z1 and z2 which are different from u1, . . . , u3, v1, . . . , v3, otherwise, analo-
gously to the argumentation in Lemmas 3 and 5, we can prove existence of
a vertex cut separating a small component.

Assume w.l.o.g, that the edge {u1, u2} is odd. Now we split the proof into
the case where at least one of the remaining edges of the triangle is odd and
the case when both the remaining edges are normal. In the former case all of
u1, . . . , u3, x1, x2, v1, . . . , v3, z1, z2 do not belong to GL, u1, . . . , u3, v1, x1, x2

do not belong toGR, hence |V (C(GL))| ≤ |V (C(G))|−10 and |V (C(GR))| ≤
|V (C(G))| − 6.

If the latter case, all of u1, . . . , u3, x1, x2, v1, . . . , v3, z1 do not belong to
GL. In the branch that excludes u1, the vertex u3 remains of degree 1,
which causes excluding of x2 and z2 by non-branching calls. To sum-
marize u1, u2, u3, v1, x1, x2, z2 do not belong to V (C(GR)), what causes
|V (C(GL))| ≤ |V (C(G))| − 9 and |V (C(GR))| ≤ |V (C(G))| − 7. �

LEMMA 7. Let G be a nontrivial graph and assume that ProcessBranches(G)
executes lines 21-22 of Algorithm 3 and assume that G has 2 FNSes. Then
one of the following statements holds.

1. |V (C(GL))| ≤ |V (C(G))| − 10 and |V (C(GR))| ≤ |V (C(G))| − 6.

2. |V (C(GL))| ≤ |V (C(G))| − 10 and |V (C(GR))| ≤ |V (C(G))| − 10.

3. |V (C(GL))| ≤ |V (C(G))| − 10 and |V (C(GR))| ≤ |V (C(G))| − 4. If
GR has two FNSes then |V (C((GR)L))| ≤ |V (C(GR))| − 10 and
|V (C((GR)R))| ≤ |V (C(GR))| − 6 or
|V (C((GR)L))| ≤ |V (C(GR))|−9 and |V (C((GR)R))| ≤ |V (C(GR))|−
7 or
|V (C((GR)L))| ≤ |V (C(GR))|−8 and |V (C((GR)R))| ≤ |V (C(GR))|−
8

Proof. First of all note that if lines 21-22 are executed then C(G) has no
triangles and no rectangles. Then a vertex u together with its neighbours
v1, v2, v3 and together with their neighbours form a subgraph of C(G) iso-
morphic to the one shown in Figure 1 c). If u is incident to an odd edge,
say, {u, v1} then all the vertices shown in Figure 1 c) do not belong to GL.
Also u, v1, . . . , v3, w1, w2 do not belong to GR. Thus if u is incident to an
odd edge, the first statement holds.

Assume now that all the edges incident to u are normal. By selection
of u this means that all the edges of G are normal. Clearly, |V (C(GL))| ≤
|V (C(G))| − 10. Further, observe that after removing of u, three odd edges

The MIS problem for graphs with max-degree 3 11

are created. If there are no odd edges in C(GR) then the ends of these
odd edges do not belong to C(GR) i.e. |V (C(GR))| ≤ |V (C(G))| − 10 as
in the second statement. Otherwise, one of the conditions before line 19 of
Algorithm 3 is satisfied or a vertex incident to an odd edge is selected in line
21. By Lemmas 2, 4, 6, and by the first statement of the present lemma,
we get the last three inequalities. �

THEOREM 8. For a graph G with n vertices and max-degree 3, FindIndep(G)
returns a MIS of G in O(1.1034n).

Proof. We define a search tree ST (G) generated by FindIndep(G). The
nodes of the tree are associated with the graphs to which FindIndep is
recursively applied during processing of FindIndep(G). Assume w.l.o.g.
that G is nontrivial. Then the root of ST (G) is associated with G. Let x
be a node of ST (G) associated with graph G′. If G′ has no NSes then x is
a leaf. Otherwise the children of x correspond to the FNSes of G′.

Let T (n) be the maximal number of nodes of ST (G) for a graph G with
|V (C(G))| = n. The complexity of FindIndep(G) can be represented as
T (n) multiplied to a polynomial. Taking into account that T (n) is expo-
nential in n, the complexity of FindIndep(G) can be represented as T (n).

If C(G) has a vertex cut of size 3 that separates a union of small com-
ponents with at least 5 vertices then, by Lemma 2, the size of ST (G) is at
most T (n − 8) + T (n − 8) + 1, where the first two items bound the sizes
of subtrees rooted by the FNSes of G and the constant stands for the root
node. Analogously, if C(G) has a rectangle or a triangle then the size of
ST (G) can be bounded by T (n−10)+T (n−6)+1 or T (n−9)+T (n−7)+1
(Lemmas 4 and 6). If C(G) has no appropriate cut of size 3, no triangles,
and no rectangles then by Lemma 7, the size of ST (G) can be bounded by
T (n− 10) +T (n− 10) + 1 or by T (n− 10) +T (n− 14) +T (n− 10) + 2 or by
T (n−10)+T (n−12)+T (n−12)+2 or by T (n−10)+T (n−13)+T (n−11).
In the expression T (n − 10) + T (n − 14) + T (n − 10) + 2, the first three
items bound the number of nodes in ST (GL), ST ((GR)L), and ST ((GR)R),
respectively; the last item represents the nodes of ST (G) associated with G
and GR. The last two expressions can be interpreted analogously.

Taking into account that the size of ST (G) is bounded by T (n), we
obtain that T (n) = T (n− 8) + T (n− 8) or T (n) = T (n− 10) + T (n− 6) or
T (n) = T (n − 9) + T (n − 7) or T (n) = T (n − 10) + T (n − 10) or T (n) =
T (n−10)+T (n−14)+T (n−10) or T (n) = T (n−10)+T (n−12)+T (n−12)
or T (n) = T (n− 10) + T (n− 13) + T (n− 11). The constants in the right-
hand side of the expressions are omitted because they contribute only a
polynomial factor to the resulting exponential function. Due to the same
reason, we do not consider the cases where G has only one FNS. Each one

12 Razgon

of the obtained recursive formulas corresponds to an exponential function.
In particular if T (n) = T (n−k1)+ · · ·+T (n−kl) then T (n) = O(cn), where
c is the largest solution of the equation 1 = 1/ck1 + · · · + 1/ckl . It can be
shown that T (n) is expressed by the recursive formula that corresponds to
a function with the largest base of the exponents. A simple computation
shows that this formula is T (n) = T (n− 10) + T (n− 14) + T (n− 10), and
the resulting exponential function is T (n) = O(1.1034n). �

BIBLIOGRAPHY
[1] Richard Beigel. Finding maximum independent sets in sparse and general graphs. In

SODA, pages 856–857, 1999.
[2] Jianer Chen, Iyad A. Kanj, and Ge Xia. Labeled search trees and amortized analysis:

Improved upper bounds for NP-Hard problems. Algorithmica, 43(4):245–273, 2005.
[3] F. Fomin, F. Grandoni, and D. Kratsch. Measure and conquer: Domination - a case

study. In ICALP, pages 191–203, 2005.
[4] F. Fomin, F. Grandoni, and D. Kratsch. Some new techniques in design and analysis

of exact (exponential) algorithms. Bulletin of the EATCS, 87:47–77, 2005.
[5] F. Fomin, F. Grandoni, and D. Kratsch. Measure and conquer: A simple O(20.288n)

independent set algorithm. In SODA 2006, 2006.
[6] Igor Razgon. Exact computation of maximum induced forest. In SWAT 2006, pages

160–171, 2006.
[7] J. Robson. Finding a maximum independent set in time O(2n/4). In Technical Report

1251-01, LaBRI, Universite Bordeaux I, 2001.

Igor Razgon
University College Cork, Ireland
i.razgon@cs.ucc.ie

