
Partial kernelization of multiway cut: bounding
the number of vertices with small excess

Igor Razgon ?

Cork Constraint Computation Centre
Computer Science Department, University College Cork, Ireland

i.razgon@cs.ucc.ie

Abstract. We introduce the notion of partial kernelization where in-
stead of bounding the size of the whole input we bound the size of the
part of the input having particular property. We apply this notion to the
multiway cut problem and show how to bound the number of vertices
participating in small isolating cuts. We argue that the proposed results
provide a considerable progress towards understanding the kernelizabil-
ity of the multiway cut problem.

1 Introduction

Partial kernelization. Kernelization is probably the most practically applica-
ble methodology of design of fixed-parameter algorithms. In a simplified form
the kernelization can be defined as follows. Let (I, k1, . . . , kr) be an instance of
a decision problem A where I is the input and k1, . . . , kr are parameters. Ker-
nelization is an algorithm whose runtime polynomial in |I| and the output is
an instance (I ′, k′1, . . . , k

′
r) of problem A equivalent to (I, k1, . . . , kr) 1 and such

that k′1 ≤ k1, . . . k
′
r ≤ kr and (the most important condition!) |I ′| polynomially

depends on k′1, . . . k
′
r. The above methodology is practically important because

kernelization can be perceived as an algorithm of reducing the input size at the
preprocessing stage providing (unlike many other preprocessing algorithms) a
guaranteed upper bound on the size of the resulting instance.

Not all fixed-parameter tractable (FPT) problems admit kernelization. A
recent research direction started from [1] has identified a number of problems
that are not kernelizable unless some widely believed conjecture in the complex-
ity theory fails. There are also problems whose kernelizability is a challenging
open question, for example Directed Feedback Vertex Set (DFVS) [6]. For such
problems it would be interesting to consider algorithms that allow significant
reduction of a considerable portion of the input.

As an attempt to address the above question, we introduce the notion of
partial kernelization. We define it w.r.t. graph-theoretic problems but this defi-
nition is easily extendable to other kinds of problems. Let A be a problem whose
? Supported by Science Foundation Ireland 05/IN/I886
1 The equivalence is in the sense that the output of the former instance is ’YES’ if

and only if the output of the latter instance is ’YES’



input is a labeled graph (G, V1, . . . Vz), i.e. graph with specially identified sub-
sets of its vertices. Let P be a predicate defining a property of vertices of G
w.r.t. V1, . . . Vz. Formally, for each v ∈ V (G), P (G, V1, . . . Vz, v) is either true
or false and the property is satisfied for those vertices where the predicate is
true. Given parameters k1, . . . , kr, we say that A is partially kernelizable w.r.t.
property P if there is a polynomial-time algorithm transforming the instance
(G, V1, . . . Vz, k1, . . . , kr) into an equivalent instance (G′, V ′1 , . . . , V ′z , k′1, . . . , k

′
r)

such that k′1 ≤ k1, . . . k
′
r ≤ kr and |{v ∈ V (G′)|P (G′V ′1 , . . . , V ′z , v) = true}| is

polynomial in k′1, . . . k
′
r. In other words, polynomial kernelization regarding P

significantly reduces the number of vertices having property P . One also needs a
criterion as to whether a particular property is sufficiently interesting to consider
kernelization regarding it. To answer this question, we introduce the notion of
useful partial kernelization. In particular, kernelization regarding property P is
useful if problem A remains intractable even on graphs where all vertices have
property P .

Technical Results. Let (G, T ) be a pair where G is a graph and T ⊆ V (G)
is a subset of its vertices called the terminals. A subset C of V (G) \ C is a
multiway cut (mwc) of (G, T ) if in G \ C no two terminals belong to the same
connected component. Given a parameter k, the mwc problem asks if (G, T ) has
an mwc of size at most k. In this paper we consider partial kernelization of the
mwc problem regarding a property described below.

An isolating cut of t ∈ T is a subset C of V (G) \ T such that in G \C there
is no path from t to T \ {t}. The excess of C w.r.t. t is the difference between
C and the smallest possible size of an isolating cut of t. The excess of a vertex
v ∈ V (G) \ T with respect t ∈ T is the smallest possible r such that there is
a minimal isolating cut C of excess r w.r.t. t such that v ∈ C. The excess of v
is the smallest possible excess w.r.t. a terminal of T . The property P (G, T, v)
considered in this paper is true if and only if v ∈ T 2 or the excess of v is at
most 1. We provide the following results.

– We show that the mwc problem parameterized by k and |T | is partially ker-
nelizable w.r.t. P (G, T, v). More precisely, we show that there is a polynomial-
time algorithm transforming (G, T, k) into an equivalent instance (G′, T ′, k′)
where k′ ≤ k and the number of vertices of v ∈ V (G′) such that P (G′, T ′, v)
is true is at most 3(k′ + 1)|T ′|.

– We prove that the mwc problem remains NP-hard even for class instances
of (G, T ) such that P (G, T, v) is true for all v ∈ G. Thus we demonstrate
that the above kernelization is useful.

– We consider an instance of the multiway cut problem obtained as a result
of the above kernelization. For this instance we show that if a question is
to check existence of a multiway cut of size at most k being a subset of the
vertices of excess 1, the instance can be further kernelized to become of a
size polynomially dependent on k only.

2 To make the description more intuitive, in the sequel of the paper we mainly refer
to partial kernelization regarding vertices of excess 1 without explicit mentioning of
terminal vertices.



Motivation. The mwc problem is a natural generalization of the polynomi-
ally solvable min-cut problem. The mwc problem is well known to be FPT [12,
5]. Understanding the kernelizability is a natural next step of investigation of
this problem from the point of view of parameterized complexity. However, to
the best of our knowledge, currently there are no kernelizability results even for
special cases of the mwc problem.

We believe that the results proposed in this paper provide an important
insight into the kernelizability of mwc problem. Apart from being the first results
in this direction, they create a framework posing a number of natural questions
towards understanding the kernelizability of the mwc problem. These questions
are:

– Is the mwc problem partially kernelizable w.r.t. vertices of excess at most
2? at most 3? any fixed excess s?

– Even if the answer to the previous question is affirmative it may happen
that the resulting set of vertices of excess at most s is of size exponential in
s. Is it possible to get rid of the exponential dependence? Observe that the
affirmative answer to this question will imply kernelizability of the general
mwc problem parameterized by k and |T | because any (minimal) multiway
cut C of size at most k is the union of minimal isolating cuts of size at most
k for all the terminals of T . Therefore, all the vertices of C are of excess at
most k.

– Assuming the affirmative answer to the previous question, is it possible to
get rid of the dependence of |T |? We believe that the answer to this question
is positive and the respective indication is provided by our last result in the
list given in the previous subsection.

Related work Investigation of the methods of coping with NP-hardness of
the mwc problem started from the seminal paper [7], where the NP-hardness
of the problem has been proven and the first fixed-ratio approximation algo-
rithm (for the edge version of problem) has been proposed. This result has been
followed by a row of improved approximation algorithms (see e.g. [4] and [9]).
The first fixed-parameter algorithm for the mwc problem has been proposed
in [12] and a significantly improved algorithm has been proposed in [5]. The
latter algorithm gave rise to the first fixed-parameter algorithms for the DFVS
and min-2CNF deletion problems [6, 15]. Apart from the multiway cut, other
special cases of the multicut problem have been investigated, see e.g. [12, 11, 10]
and some of them have been found kernelizable [3, 2]. The result [2] addresses
the correlation clustering problem whose unweighted version is equivalent to the
edge multicut [8].

Organization of the paper. Section 2 provides additional terminology
and a number of technical statements. Section 3 proves that the mwc problem
is NP-hard even if all non-terminal vertices are of excess 0. Section 4 provides
the partial kernelization (parameterized by k and T ) for vertices of excess at
most 1. Section 5 provides presents the last result in the list provided above in
Technical Results subsection. The proofs omitted due to the space constraints
are postponed to the appendix.



2 Preliminaries

We employ a standard notation related to graphs. In particular, given a graph
G, let C ⊆ V (G). Then G[C] denotes the subgraph of G induced by C and
G \C ≡ G[V (G) \C]. For v ∈ V (G), G \ v ≡ G[V (G) \ {v}] and N(v) is the set
of neighbors of v in G. Also, N(C) ≡ (

⋃
v∈C N(v)) \ C.

Let X and Y be two sets of vertices of the given graph G. A set K ⊆
V (G) \ (X ∪Y ) is an X −Y separator if in G \K there is no path from X to Y .
Let A, B be two disjoint subsets of V (G). We denote by NR(G, A,B) the set of
vertices that are not reachable from A in G \ B Let K1 and K2 be two X − Y
separators. We say that K1 ≥ K2 if NR(G, Y, K1) ⊇ NR(G, Y, K2).

Proposition 1. Let K1 and K2 be two minimal X − Y separators. Then K1 ≤
K2 if and only if K1 \K2 ⊆ NR(G, Y, K2).

Proposition 2. Let K1 and K2 be two minimal X − Y separators. Let Kt
1 =

K1 ∩ NR(G, Y, K2), Kb
1 = (K1 \Kt

1) \ (K1 ∩K2). Accordingly, let Kt
2 = K2 ∩

NR(G, Y, K1) and Kb
2 = (K2 \ Kt

2) \ (K1 ∩ K2) (the superscripts ’t’ and ’b’
correspond to the words ’top’ and ’bottom’). Denote Kt

1 ∪Kt
2 ∪ (K1 ∩K2) and

Kb
1 ∪Kb

2 ∪ (K1 ∩K2) by, respectively, KT and KB. Then both KT and KB are
X − Y separators. Moreover, KB ≥ K1 and KB ≥ K2.

Let {u, v} ∈ E(G). We define graph Gu←v as the graph obtained from G \ v
by making u adjacent to all the vertices of N(v) \ (N(u)∩ {u}). In other words,
Gu←v is obtained by contraction of {u, v} where the new vertex obtained as a
result of contraction is identified with u.

Theorem 1. [[5] (Theorem 3.2.)] Let (G, T = {t1, . . . , tm}) be an instance
of the mwc problem. Let v be a non-terminal vertex adjacent to t1 and assume
that there is a minimum isolating cut of t1 that does not contain v. Then the
instances (Gt1←v, T ) and (G, T ) have the same size of a smallest mwc.

3 Usefulness of partial kernelization w.r.t. vertices of
small excess

Theorem 2. The mwc problem is NP-hard even if all the non-terminal vertices
of the graph in the considered mwc instance are of excess 0.

Proof. We provide a polynomial time reduction from the NP-hard problem
Vertex Cover (VC) for graph of Max-Degree 3 into the problem of computing a
smallest mwc for a graph where all the non-terminal vertices of of excess 0.

So, let G be a graph of max-degree 3. Clearly, G can be colored in at
most 4 colors and this coloring can be computed in a polynomial time. So,
let A1, A2, A3, A4 be a partition of V (G) into 4 independent sets. Introduce new
vertices t1, t2, t3, t4 and make each ti be adjacent to all the vertices of Ai. Let G′

be the resulting graph and consider the instance (G′, {t1, . . . , t4}) of the mwc



problem. Observe that C ⊆ V (G) is a VC of G if and only if it is a mwc of
(G′, {t1, . . . , t4}). Indeed, assume that C is a VC of G. Then in G′ \ C the only
remaining edges are incident to ti. Since, by construction, no two distinct ti and
tj have a common neighbor, it follows that no two terminals of {t1, . . . , t2} belong
to the same connected component of G′ \C, i.e. C is a mwc of (G′, {t1, . . . , t4}).
Conversely, assume that C is a mwc of (G′, {t1, . . . , t4}). If C is not a VC of G
then there is {u, v} ∈ E(G) disjoint with C. Clearly, u and v belong to distinct
partition classes of {A1, . . . A4}. Assume w.l.og. that u ∈ A1 while v ∈ A2. Then
t1, u, v, t2 is a path between t1 and t2 in G′ \ C in contradiction to being C a
mwc of (G′, {t1, . . . , t4}).

Now, perform the following operation. Whenever G′ has an edge {ti, v} such
that v does not participate in a minimum isolating cut of ti, perform the replace-
ment operation G′ ← G′ti←v. Checking if there is required {ti, v} can be done in
a polynomial time by network flow techniques and the number of iterations is
O(n) because each iteration but the final one decreases the number of vertices
of the resulting graph. So, in a polynomial time we obtain a graph G∗ for which
the above condition is not satisfied for any edge {ti, v}. Applying inductively
Theorem 1, we observe that the size of a minimum mwc of the initial instance
and of (G∗, {t1, . . . , t4}) is the same. Taking into account the above discussion,
it follows that the minimum size of a mwc of (G′, {t1, . . . , t4}) equal the mini-
mum size of a VC of G. Finally, observe that all the non-terminal vertices of G∗

are of excess 0. Indeed, assume that some v ∈ V (G∗) \ {t1, . . . t4} is of a higher
excess. It is not hard to see that v is adjacent to some ti (this property is true
for the initial graph and it is preserved by each contraction). Since the excess of
v is not zero, this means that v does not participate in any minimum isolating
cut of ti and the edge {ti, v} can be further contracted in contradiction to our
assumption regarding G∗. It follows that indeed all the non-terminal vertices of
G∗ are of excess 0, completing the proof. �

4 Bounding the number of vertices of excess at most 1

In this section we present a transformation that reduces the given instance (G, T )
of the mwc problem into one where for each terminal t ∈ T there are at most 3k
vertices participating in a minimal isolating cut of t of excess at most 1. Thus
the number of vertices of excess at most 1 will be at most 3k|T |. We present two
reduction rules, reason about instances where such reduction rules cannot be
applied, and finish this section with showing that such an irreducible instance
can be obtained in a polynomial time. We assume that all the terminals are
mutually non-adjacent because otherwise ’NO’ can be immediately returned.

Reduction Rule 1 Whenever, there is t ∈ T and {t, v} ∈ E(G) such that v
does not participate in some smallest isolating cut of t, replace of G with Gt←v.

Definition 1. An instance (G, T ) of the mwc problem is 1-irreducible if no edge
{t, v}, where t ∈ T , can be contracted by reduction Rule 1 and no two terminals
have a common neighbor.



Lemma 1. Let (G, T ) be a 1-irreducible instance of the mwc problem. Then for
each t ∈ T , N(t) is the only smallest isolating cut of t.

Proof. According to the assumption of the lemma, N(t) is a subset of any
smallest isolating cut of t. On the other hand, N(t) itself is an isolating cut,
implying the lemma. �

Lemma 1 in fact says that the number of vertices of excess 0 in a 1-irreducible
instance is at most k|T | (unless a smallest isolating cut of some terminal is of size
greater than k and ’NO’ can be immediately returned). The rest of the section
shows how to bound the number of vertices of excess 1.

Definition 2. Let (G, T ) be a 1-irreducible instance of the mwc problem and let
t ∈ T . A subset S of N(t) is a coverable set (of t) if there is a minimal isolating
cut K of t of excess 1 such that N(t) \ K ⊇ S. We say that S is a maximal
coverable set (of t) if S is not a proper subset of any coverable set of t.

Our next reduction rule presented later in this section will reduce the number
of vertices of excess 1 w.r.t. t ∈ T per maximal coverable set of t. At the first
glance such reduction looks of little use because the number of maximal coverable
sets might be exponential in k. The following theorem justifies this reduction rule
by showing that the number of maximal coverable sets of k is in fact linear in k.

Theorem 3. Let (G, T ) be a 1-irreducible instance of the mwc problem and let
t ∈ T . Then maximal coverable sets of t are pairwise disjoint.

Proof. Let S1 and S2 be two maximal coverable sets of t. It follows that there
are two minimal isolating cuts K1 and K2 of t such that N(t) \ K1 = S1 and
N(t)\K2 = S2. Assume that S1∩S2 is non-empty. Let Kt

1, K
b
1, K

t
2, K

b
2, KT,KB

be as in the statement of Proposition 2. According to Proposition 2, KB is an
isolating cut of t such that K1 ≤ KB and K2 ≤ KB. It follows that S1 ⊆
NR(G, K1, T \ {t}) ⊆ NR(G, KB, T \ {t}). Consequently, S1 ⊆ N(t) \ KB.
Analogously, it can be shown that S2 ⊆ N(t) \ KB. Since both S1 \ S2 and
S2 \ S1 are non-empty due to their maximality, we conclude that N(t) \KB is
a proper superset of both S1 and S2.

Next, observe that |KB| = |N(t)|+ 1. Indeed, 2(|N(t)|+ 1) = |K1|+ |K2| =
|Kt

1|+|K1∩K2|+|Kb
1|+|Kt

2|+|K1∩K2|+|Kb
2| = (|Kt

1|+|K1∩K2|+|Kt
2|)+(|Kb

1|+
|K1 ∩K2|+ |Kb

2|) = |KT |+ |KB|. According to our assumption N(t) \KB 6= ∅,
therefore |KB| > |N(t)| by Lemma 1. The only possibility to avoid |KB| =
|N(t)| + 1 is to assume that |KB| = |N(t)| + 2 and |KT | = |N(t)|. But then
KT = N(t) by Lemma 1. In this case S1 = Kt

2 and S2 = Kt
1. However, Kt

1 and
Kt

2 are disjoint by construction, while S1 and S2 are not disjoint according to
our assumption. This contradiction proves that |KB| = |N(t)|+ 1.

Finally, observe that KB is a minimal isolating cut of t indeed, otherwise
it follows that there is an isolating cut of size at most |N(t)| which does not
coincide with N(t) in contradiction to Lemma 1.

Thus, in contradiction to the maximality of S1 as a coverable set of t, KB
is a minimal isolating cut of t with excess 1 such that N(t) \ KB is a proper



superset of S1. This contradiction shows that our initial assumption regarding
non-disjointness of two maximal coverable sets of t is false and any two maximal
coverable sets are indeed disjoint. �

Now we are ready to provide the reduction rule that bounds the number of
vertices of excess 1.

Reduction Rule 2 Let (G, T ) be a 1-irreducible instance of the mwc problem.
Replace G by Gu←v whenever there is an edge {u, v} and a terminal t ∈ T
satisfying the following conditions.

– u ∈ N(t), while v /∈ N(t) ∪ {t};
– u belongs to a maximal coverable set S of t;
– there is a minimal isolating cut of t of excess 1 such that N(t) \K = S and

v /∈ K.

The following theorem shows that Reduction Rule 2 is correct.

Theorem 4. Let (G, T ) be a 1-irreducible instance of the mwc problem. Let
{u, v} be an edge of G satisfying the conditions of Reduction Rule 2 w.r.t. a
terminal t. Then the instances (G, T ) and (Gu←v) have the same smallest size
of the multiway cut.

Proof. Let K be a smallest multiway cut of (G, T ) and let C be a minimal
isolating cut of t of excess 1 such that v /∈ C. If v /∈ K then K remains a
multiway cut of (Gu←v, T ) and there is nothing to prove. Assume that v ∈ K.
Denote K∩NR(G, C, T \{t}) by K ′. Denote by C ′ the subset of C \K consisting
of all the vertices w such that in G \ K ′ any path from t to w meets at least
one vertex of C other than w. Finally, denote (K \ K ′) ∪ C ′ by K∗. Arguing
analogously to Theorem 3.2. in [5], we can observe that K∗ is a multiway cut 3

Observe that |K∗| ≤ |K|. By definition of K ′ and C ′, C∗ = (C \ C ′) ∪ K ′

is an isolating cut of t, |C∗| = |C| − |C ′| + |K ′|, and |K∗| = |K| − |K ′| + |C ′|.
Therefore, it is sufficient to ensure that |K ′| ≥ |C ′|. Assume the opposite. In this
case |C∗| < |C|, i.e. C∗ is a smallest isolating cut of t. Since, according to Lemma
1, N(t) is the only such isolating cut, it follows that C∗ = N(t). We claim that
this causes a contradiction. Indeed, no vertex of v ∈ N(t) can belong to C ′ due
to the adjacency of v to t. Consequently, (C \C ′)∩N(t) = C ∩N(t). To ensure
that (C \C ′)∪K ′ = N(t) it is necessary that C \C ′ ⊆ N(t). Taking into account
the disjointness of C ′ and N(t), it is necessary that C \C ′ = C ∩N(t). But then
K ′ = N(t) \ C, a contradiction since v ∈ K ′ \N(t). Thus we have verified that
indeed K∗ ≥ K. To complete the theorem it remains to add that by construction
v /∈ K∗ and it is not hard to verify that K∗ is a mwc of (Gu←v, T ). �

Definition 3. An instance (G, T ) of the mwc problem is 2-irreducible if it is
1-irreducible, for each t ∈ T , |N(t)| ≤ k, and Reduction Rule 2 cannot contract
any edge of G.
3 In the proof in [5] the isolating cut is a smallest one but this fact is not used for the

proof that K∗ is a multiway cut.



Let (G, T ) be a 2-irreducible instance of the mwc problem and let t ∈ T .
Denote the union of all maximal coverable set of t by CS(t). Denote N(CS(t))\
(N(t) ∪ {t}) by CS2(t). The following theorem shows that in a 2-irreducible in-
stance of the mwc problem the number of vertices of excess 1 is linearly bounded
by k.

Theorem 5. Let (G, T ) be a 2-irreducible instance of the mwc problem. For
each t ∈ T , |N(t) ∪ CS2(t)| ≤ 3k and all vertices of excess at most 1 w.r.t. t
belong to N(t) ∪ CS2(t).

Proof. Fix a terminal t and let S be a maximal coverable set of t. Denote
N(S)\ (N(t)∪{t}) by NS. Due to the impossibility of applying Reduction Rule
2, it follows that NS is a subset of any minimal isolating cut K of t of excess 1
such that N(t) \K = S. In fact, by definition of K, NS ∪ (N(t) \ S) is a subset
of any such cut. However, NS ∪ (N(t) \S) is an isolating cut of t. It follows that
|N(S) ∪ (N(t) \ S)| = |N(t)| + 1. Indeed, otherwise, it will follow that there is
no minimal isolating cut K of excess 1 such that N(t) \K = S in contradiction
to being S a maximal coverable set. It follows that |NS| = |S|+ 1. Taking into
account Theorem 3 and that the set CS2(t) is just the union of sets NS over
all maximal coverable sets S of t, |CS2(t)| ≤ 2k. Thus |N(t) ∪ CS2(t)| ≤ 3k as
required.

Assume now that there G has a vertex u of excess at most 1 w.r.t. t which
is not a subset of N(t) ∪ CS2(t). Since, according to Lemma 1, any vertex of
excess 0 w.r.t. t is a subset of N(t), the excess u w.r.t. t is 1. Let K1 be a
minimal isolating cut of t of excess 1 such that u ∈ K1. Let S1 = N(t) \K1. Let
S be the maximal coverable set of t such that S1 ⊆ S. According to Theorem
refcoverdisjoint, S is unique. Let K2 be a maximal isolating cut of t of excess 1
such that N(t) \K2 = S. Let KB be as in the proof of Theorem 3 w.r.t. K1 and
K2. Applying the analogous argumentation, we conclude that KB is a minimal
isolating cut of excess 1 and that N(t) \KB ⊇ S1 ∪ S. Due to the maximality
of S, N(t) \KB = S. Applying the argumentation of the previous paragraph,
we obtain that KB = NS ∪ (N(t) \ S). We derive a contradiction by showing
that at least one vertex of NS belongs to NR(G, K1, T \ {t}) and hence cannot
belong to KB by construction. This contradiction will show the vertex u cannot
exist and complete the proof of the present theorem.

Clearly, t ∈ NR(G, K1, T \ {t}). It follows that S1 ⊆ NR(G, K1, T \ {t}).
Consequently, each vertex of NS1 = N(S1) \ (N(t) ∪ {t}) belongs either to
NR(G, K1, T \ {t}) or to K1. Assume that NS1 ⊆ K1. It follows that NS1 ∪
(N(t)\S1) ⊆ K1. Observe that NS1∪(N(t)\S1) is an isolating cut of t. Due to the
minimality of K1, it follows that NS1∪(N(t)\S1) = K1, i.e. K1 ⊆ N(t)∪CS2(t)
in contradiction to u ∈ K1. �

Theorem 5 shows that the desired bound of vertices of excess at most 1 is
achieved for 2-irreducible instances of the mwc problem. Thus, to claim the
desired partial kernelizability of the mwc problem, it is enough to show that
any instance of the mwc problem can be transformed into 2-irreducible one in a
polynomial time. This is done in the following theorem preceded by two auxiliary
lemmas.



Lemma 2. Let (G, T ) be a 2-irreducible instance of the mwc problem, t ∈ T ,
and S ⊆ N(t). For S ⊆ N(t), it can be checked in a polynomial time whether S
is coverable.

Lemma 3. Let (G, T ) be a 2-irreducible instance of the mwc problem and t ∈ T .
There is a polynomial algorithm that outputs the collection of maximal coverable
sets of t.

Proof. Let H be the graph whose set of vertices is the subset of N(t) con-
sisting of all vertices v such that {v} is a coverable set of t. Two vertices u and
v are adjacent in H if and only if {u, v} is a coverable set of t. According to
Lemma 2, H can be computed in a polynomial time. We claim that the sets
of vertices of connected components of H are the maximal coverable sets of t.
Clearly, the theorem immediately follows from this claim.

To prove the above claim, let U be a set of vertices of a connected component
of H and let u1, . . . , ur be the vertices of U ordered in such a way that for each i
from 1 to r, H[Ui] is connected, where Ui = {u1, . . . , ui}. We first show that each
Ui is a coverable set of t The proof is by induction on i. U1 and U2 are clearly
coverable sets by construction of H. So, assume that i ≥ 3 and assume w.l.o.g.
that {ui−1, ui} ∈ E(H). By the induction assumption and the construction of H,
there are sets S1 and S2 that are supersets of, respectively, Ui−1 and {ui−1, ui}
and such that there are minimal isolating cuts K1 and K2 of t, both having
excess 1 and such that S1 = N(t)\K1 and S2 = N(t)\K2. Arguing analogously
to the proof of Theorem 3, we conclude that Ui is a coverable set. Consequently,
U = Ur is also a coverable set. To show that U is a maximal coverable set,
assume that there is a vertex v ∈ N(t) \ U such that U ∪ {v} is a coverable
set. But then, both {v} and {ur, v} are coverable sets. It follows that v is a
vertex of H adjacent to ur. Consequently, v belongs to the set of vertices of the
connected component of ur, namely to U , a contradiction completing the proof
of the required claim and of the present theorem. �

Theorem 6. The mwc problem is partially kernelizable w.r.t. to vertices of
excess at most 1.

Proof sketch According to Theorem 5, it is sufficient to show that that the
given instance (G, T ) of the mwc problem can be transformed in a polynomial
time into an equivalent 2-irreducible instance without increasing the parameter
and the number of terminals. This can be done by O(n) removal of common
neighbors between the terminals and application of Reduction Rules 1 and 2.
The only part of this algorithm whose polynomial time computability is non-
trivial is computing the maximal coverable sets of terminals in order to check
applicability of Reduction Rule 2. That this part can be efficiently computed
follows from Lemma 3. �

5 A tighter kernelization under an additional assumption

Let (G, T ) be a 2-irreducible instance of the mwc problem ad k be a parameter.
The 1-mwc problem asks if (G, T ) has an mwc consisting of vertices of excess



at most 1. In this section we show that the 1-mwc problem is kernelizable being
parameterized by k only. The motivation behind considering the 1-mwc is that
the approach to its kernelization may be useful for getting rid of the parameter
|T | in case we know how to kernelize the mwc parameterized by k and |T |.

The algorithm described in this section is an adaptation of a simple kernel-
ization of the VC problem [14]. The subtle point of this adaptation is that it is
applied to sets of vertices rather than to single vertices as in the case of VC.

Denote
⋃

t∈T ({t} ∪ N(t) ∪ CS2(t)) by V ′. Since we are interested to find a
smallest multicut which is a subset of V ′, we get rid of all the vertices that are
not in V ′. In particular, we replace G with a graph obtained from G[V ′] by
adding edges between any two nonadjacent vertices u and v that are adjacent
to the same connected component of G \ V ′. It is not hard to verify that all the
multiway cuts that are subsets of V ′ are preserved by this transformation (see
e.g. Proposition 2.5. in [13]).

Let T = {t1, . . . , tm} and assume that the vertices of G are partitioned into
sets C1, . . . Cm such that for each Ci, ti ∈ Ci and G[Ci] is connected. We say
that such partition is nice. In addition, we say that a non-terminal vertex v ∈ Ci

is removable v is adjacent to at least k + 2 partition classes other than Ci and
G[Ci] \ v is connected.

Lemma 4. Let C1, . . . Cm be a nice partition and let v ∈ Ci be a removable
vertex. Then (G \ v, T ) has a multiway cut of size k− 1 if and only if (G, T ) has
a multiway cut of size k.

Lemma 4 inspires the following reduction rule.

Reduction Rule 3 Let C1, . . . , Cm be a nice partition. Then while k ≥ 0 and
there is a removable vertex v of some Ci, replace G with G \ v, Ci with Ci \ {v}
and k with k − 1. If there are no removable vertices then perform the following
’cleaning’ operations. If k = 0 and at least two terminals are connected then
return ’NO’. If all the terminals have been separated then return ’YES’. If G
has a connected component G′ containing at most one terminal exclude this
component from G, replace G with G \ V (G′), T with T \ V (G′) and each Ci

with Ci \ V (G′).

Corollary 1. Reduction Rule 3 is correct.

In order to apply Reduction Rule 3, we introduce the following nice parti-
tion. For each ti ∈ T , N(ti) ∪ {ti} ⊆ Ci; for each remaining vertex v, choose
an arbitrary ti such that v ∈ CS2(ti) and introduce v into Ci. Note that by
construction, each vertex of G belongs to {ti} ∪ N(ti) ∪ CS2(ti) of some ti, so
this rule is well defined.

Observe that the above partition is nice. Indeed, for each ti, the vertices of
N(ti) are adjacent to ti and each vertex of CS2(ti) is adjacent to some vertex of
N(ti). It follows that all the vertices of each G[Ci] belong to the same connected
component with ti. Consequently, G[Ci] is connected.



To understand the effect Reduction Rule 3, we specify a class of vertices of G
and prove two its properties. In particular, we say that the set {ti} ∪CS(ti) are
internal vertices of ti and a vertex is internal if its an internal vertex of some ti.

Lemma 5. Let v be an internal vertex and let Ci be the partition class contain-
ing v. Then v is adjacent to at most k + 1 partition classes other than Ci.

Proof. If v = ti then v is not adjacent to any partition class besides Ci.
Otherwise, v ∈ S where S is a maximal coverable set of ti. The only neighbors
of v that can belong to other partition classes are the vertices of NS = N(S) \
(N(t)∩ {t}). As argued in the proof of Theorem 5, NS is a subset of a minimal
isolating cut of ti of excess at most 1. Consequently, |NS| ≤ k+1. Consequently,
the vertices of NS cannot belong to more than k + 1 partition classes. �

Lemma 6. Let Ci be a partition class and let V ′ ⊆ Ci be an arbitrary subset of
non-internal vertices. Then G[Ci] \ V ′ is connected.

Proof. By definition ti ∈ Ci \V ′. Each vertex of N(ti) \V ′ is adjacent to ti.
Each vertex of CS2(ti) \ V ′ is, by definition, adjacent to some internal vertex
that belongs to N(ti), i.e. to some vertex of Ci \V ′ adjacent to ti. It follows that
all the vertices of G[Ci] \ V ′ are connected to ti. �

Now we are ready to state the effect Reduction Rule 3.

Theorem 7. Let (G, T, k) be a 2-irreducible instance of the mwc problem such
that V (G) =

⋃
t∈T ({t} ∪ N(t) ∪ CS2(t)) and let (G∗, T ∗, k∗) be the instance

obtained from (G, T, k) as a result of application of Reduction Rule 3 (on the as-
sumption that no stopping condition occurred). Denote |T ∗| by m1. Let C1 . . . Cm

be the initial nice partition of V (G) and let C∗1 , . . . C∗m1
be the partition of V (G∗)

resulting from application of Reduction Rule 3. Then each C∗i is adjacent to at
most 3k(k + 1) classes C∗j other than C∗i .

Proof. We are going to show that for each C∗i and for each v ∈ C∗i , v is
adjacent to at most k + 1 classes C∗j other than C∗i . Taking into account that
according to Theorem 5, Ci has at most 3k + 1 vertices, the theorem will follow.

Assume w.l.o.g. that C∗i is a subset Ci, i.e. elimination of some terminals
has not changed their enumeration. If there is some v ∈ C∗i adjacent to at least
k + 2 classes C∗j different from C∗i then v is clearly adjacent to at least k + 2
classes Cj different from Ci. Consequently, v is a non-internal vertex according
to Lemma 5. Moreover, according to the same lemma, all the vertices in Ci \C∗i
are non-internal ones. Consequently, C∗i \ {v} = Ci \ ((Ci \ C∗i ) ∩ {v}) induces
a connected subgraph of G and hence of G∗ (the latter is an induced subgraph
of G). It follows that in this case v is a removable vertex in contradiction to the
fact that Reduction Rule 3 has terminated on (G∗, T ∗, k∗) due to the absence
of removable vertices. It follows that v cannot be adjacent to more than k + 1
partition classes C∗j other than C∗i . �

Corollary 2. The 1-mwc problem is polynomially kernelizable.



Proof sketch. Theorem 7 implies that if graph H has too many edges then
it has a large matching and hence the instance (G∗, T ∗, k∗) cannot have a mul-
tiway cut of size at most k. This in turn causes the kernelizability of the 1-mwc
problem.
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mial kernel for multicut in trees. In STACS, pages 183–194, 2009.

4. Gruia Calinescu, Howard J. Karloff, and Yuval Rabani. An improved approxi-
mation algorithm for multiway cut. Journal of Computer and System Sciences,
60(3):564–574, 2000.

5. Jianer Chen, Yang Liu, and Songjian Lu. An improved parameterized algorithm
for the minimum node multiway cut problem. In WADS, pages 495–506, 2007.

6. Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon. A fixed-
parameter algorithm for the directed feedback vertex set problem. Journal of the
ACM, 55(5), 2008.

7. Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou, Paul D. Seymour,
and Mihalis Yannakakis. The complexity of multiterminal cuts. SIAM J. Comput.,
23(4):864–894, 1994.

8. Dotan Emanuel and Amos Fiat. Correlation clustering - minimizing disagreements
on arbitrary weighted graphs. In ESA, pages 208–220, 2003.

9. Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Multiway cuts in node
weighted graphs. Journal of Algorithms, 50(1):49–61, 2004.

10. Georg Gottlob and Stephanie Tien Lee. A logical approach to multicut problems.
Inf. Process. Lett., 103(4):136–141, 2007.
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A Proofs omitted from the main body of the paper

Proof of Proposition 1 Assume first that K1 ≤ K2. Assume that there is
v ∈ K1 \K2 such that v /∈ NR(G, Y, K2). Due to the minimality of K1 there is a



path p from X to Y that includes v and does not include any other vertex of K1.
Let pv be the prefix of p ending at v. Since v /∈ NR(G, Y, K2), there is path p′

from v to Y that does not pass through K2. Let p′′ be the X −Y walk obtained
by appending p′ to the end of pv. Since K2 is a X − Y separator, p′′ intersects
with K2. Since p′ does not intersect with K2, pv intersects with K2. Let w be
a vertex of K2 in pv and let pw be the prefix of pv and hence of p. By our
assumption about p, pw does not intersect with K1. Also, there is a path from
w to Y that does not intersect with K1 because otherwise w ∈ NR(G, Y, K1) in
contradiction to K1 ≤ K2. It follows that there is a path from X to Y in G\K1,
a contradiction, confirming such v does not exist.

Conversely, assume that K1 \K2 ⊆ NR(G, Y, K2). Assume by contradiction
that NR(G, Y, K1) * NR(G, Y, K2). Let v ∈ NR(G, Y, K1) \ NR(G, Y, K2).
Observe that there is a path pv from v to Y whose intermediate vertices do not
intersect with K2. If v /∈ K2 such path exist by selection of v, otherwise such
path exists by the minimality of K2. Since v ∈ NR(G, Y, K1), pv contains a
vertex w ∈ K1 \K2. But this means that w is followed in pv by a vertex of K2,
a contradiction. �

Proof of Proposition 2. We prove that KT is an X−Y separator, for KB
the argument is similar. Assume that KT does not separate X from Y and let p
be a X−Y path in G \KT . By definition of K1 and K2, p necessarily intersects
with Kb

1∪Kb
2. Let v be the first vertex of Kb

1∪Kb
2 occurring in p as it is traversed

from X to Y . Let pv be the prefix of p ending at v. Assume w.l.o.g. that v ∈ Kb
1.

By definition of Kb
1, there is path from v to Y that does not intersect with K2.

Also observe that pv does not intersect with K2. Indeed, it does not intersect
with Kb

2 because otherwise, v is not the first vertex of Kb
1 ∪Kb

2 occurring in p in
contradiction to our assumption and pv does not intersect with K2 \Kb

2 as being
a subset of KT . It follows that Y is reachable from X in G \K2, a contradiction
proving that KT indeed separates X from Y .

Now, observe that KB ≥ K1 and KB ≥ K2. We prove only the former, the
reasoning for the latter is similar. Assume that KB � K1. It follows that there
is a vertex v /∈ K1 which is not reachable from Y in G \K1 and regarding which
either v ∈ KB or v is reachable from Y in G \KB.

If v ∈ KB then v ∈ Kb
2. By definition of Kb

2, all of its vertices are reachable
from Y in G\K1, a contradiction. It remains to assume that v is reachable from
Y in G \KB. Let p′ be a path from v to Y in G \KB. By our assumption p′

intersects with K1 \KB = Kt
1 ⊆ KT . Let w be the last vertex of KT occurring

in p′ being traversed from v to Y . Since K1 ∪K2 ⊆ KB, w ∈ Kt
1 ∪Kt

2. Assume
w.l.o.g. that w ∈ Kt

1. Let pw be the suffix of p′ starting at w. Observe that
pw does not intersect with K2. Indeed, pw does not intersect with Kt

2 by our
assumption about w and it does not intersect with K2 \Kt

2 as being a subset of
KB. However, this is a contradiction since w is not reachable from y in G \K2.
Thus we have shown that KB ≥ K1 and KB ≥ K2. �

Proof of Lemma 2. Split each vertex of S into many copies, say (10n +
100). Then compute a minimum isolating cut K of t. If |K| = |N(t)| + 1 then
return ’YES’. Otherwise, return ’NO’. Assume that this algorithm returns ’YES’.



Observe that the isolating cut K witnessing the ’YES’ answer does not contain
any of the new copies of the vertices of S (otherwise, its size would be much
larger than |N(t)| + 1). Due to the minimality of K, it follows that K is a
minimal isolating cut of t of excess 1 such that S ⊆ N(t) \K. Thus S is indeed
a coverable set.

Conversely, assume that there is a minimal isolating cut K of t with excess
1 such that S ⊂ N(t) \K. Then K remains an isolating cut of t after splitting
of the vertices of S. Moreover, since N(t) is the only isolating cut of t of size
|N(t)|, K is the smallest isolating cut of t. Thus in this case the algorithm cannot
returns ’YES’. Thus we have verified correctness of the above algorithm. �

Proof of Theorem 6. According to Theorem 5, it is sufficient to show
that that (G, T ) can be transformed in a polynomial time into an equivalent
2-irreducible instance without increasing the parameter and the number of ter-
minals. This can be done by an algorithm that iteratively performs as follows.
If there are two terminals having a common neighbor v, replace G by G \ v and
reduce parameter by 1. If all the terminals get separated then return ’YES’. If
k = 0 and some terminals are not separated then return ’NO’. If the condition
of Reduction Rule 1 is satisfied then apply Reduction Rule 1. If the instance is
1-irreducible the condition of Reduction Rule 2 is satisfied then apply Reduc-
tion Rule 2. The algorithm finishes when the last iteration has not provided any
reduction of the graph. Since each iteration decreases the number of vertices of
the graph, there are O(n) iterations. Applying inductively Theorems 1 and 4,
we observe that the algorithm correctly returns ’YES’ or correctly returns ’NO
or returns a 2-irreducible instance of the mwc problem equivalent to the origi-
nal one. Therefore it only remains to verify that the applicability of reduction
rules can be checked in a poly-time. For Reduction Rule 1, this can be easily
done by network flow techniques. The same can be said about Reduction Rule 2
provided we know the maximal coverable sets of each terminal of T . Therefore
the theorem follows from Lemma 3. �

Proof of Lemma 4. Assume that (G, T ) has a multiway cut of size k. Then
this cut necessarily contains v. Indeed, consider k + 2 arbitrary partition classes
other than Ci adjacent to v. Assume w.l.o.g. that they are C1, . . . Ck+2. If v
does not belong to some multiway cut C then, in order to separate t1, . . . tk+2

at least k + 1 of C1, . . . Ck+2 must contribute a vertex to C, i.e. |C| ≥ k + 1, a
contradiction. Thus, in the considered case, (G\v, T ) indeed has a multiway cut
of size at most k + 1.

Conversely, if (G, T ) does not have a multiway cut of size at most k then,
clearly (G \ v, T ) does not have a multiway cut of size at most k − 1. �

Proof of Corollary 1. The correctness of the iterative removal of vertices
follows from inductive application of Lemma 4 to each iteration and from ob-
serving that after each removal, the resulting partition remains nice. The only
non-trivial part of the ’cleaning’ algorithm is the removal of connected com-
ponents containing at most 1 terminal. The vertices of these components are
redundant because they do not participate in any path between distinct two
terminals. �



Proof of Corollary 2. As specified by the reasoning above, an instance of
the 1-mwc problem can be transformed in a polynomial time into the instance
(G∗, T ∗, k∗) of the mwc problem as appears in the statement of Theorem 7. Let
H be a graph on C∗1 , . . . C∗m1

from the statement of Theorem 7 such that two
classes Ci and Cj are adjacent in H if and only if they are adjacent in G, i.e. if
there is {u, v} ∈ E(G∗) such that u ∈ C∗i while v ∈ C∗j . According to Theorem
7, the degree of each vertex of H is at most 3k(k + 1). We claim that if H has
more than 6k2(k + 1) edges then G has a matching of size at least k + 1. Indeed,
let M be the largest matching of H and assume that |M | ≤ k. It follows that
each edge of H is incident to at least one vertex of M . Since |V (M)| ≤ 2k and
the degree of each vertex is at most 3k(k + 1), the number of available edges is
at most 6k2(k + 1) as required.

Observe that if H has a matching of size at least k+1 then (G∗, T ∗) does not
have a multiway cut of size at most k. Indeed, let M be a matching of H of size
at least k + 1 and let {C∗i , C∗j } be an edge of M . It follows that G∗[C∗i ∪ C∗j ] is
connected and therefore, to separate C∗i and C∗j , at least one vertex of C∗i ∪C∗j
has to be contributed. Let {C∗i1 , C

∗
j1
}, . . . , {C∗ir

, C∗jr
} be the edges of M . Taking

into account that for any distinct x, y, C∗ix
∪ C∗jx

, is disjoint with C∗iy
∪ C∗jy

at least k + 1 vertices have to be contributed to separate all the terminals of
T ∗. It follows that if H has more than 6k2(k + 1) edges, ’NO’ can be returned
immediately. If ’NO’ is not returned then H ahs at most 12k2(k + 1) vertices.
Taking into account that each C∗i has at most 3k + 1 vertices (the additional 1
is on the account of ti), G∗ has at most 36k2(k + 1)2 vertices in case ’NO’ is not
returned. Thus we have established a polynomial kernelizability of the 1-mwc
problem with O(k4) of the resulting kernel size. �


