
A CSP Search Algorithm with Reduced
Branching Factor

Igor Razgon and Amnon Meisels

Department of Computer Science,
Ben-Gurion University of the Negev,

Beer-Sheva, 84-105, Israel
{irazgon,am}@cs.bgu.ac.il

Abstract. This paper presents an attempt to construct a ”practical”
CSP algorithm that assigns a variable with 2 values at every step. Such
a strategy has been successfully used for construction of ”theoretical”
constraint solvers because it decreases twice the base of the exponent of
the upper bound of the search algorithm.
We present a solver based on the strategy. The pruning mechanism of the
algorithm resembles Forward Checking (FC), therefore we term it 2FC.
According to our experimental evaluation, 2FC outperforms FC on graph
coloring problems and on non-dense instances of randomly generated
CSPs.

1 Introduction

Partition of domains is a strategy that allows to reduce the size of the search
space explored by a constraint solver. Consider a method based on the strategy
that partitions the domain of every variable into subsets of two values (if a
domain has an odd size than one subset is a singleton). The algorithm scans all
constraint networks obtained by restriction of the domain of every variable to
one of the partition classes. If at least one constraint network being scanned is
soluble, the algorithm returns the solution found. Otherwise, it reports failure.

Assume that the considered constraint network has n variables and the max-
imal domain size is d. Then a simple analysis shows that the algorithm scans
O((d/2)n) constraint networks if d is even and O(((d+1)/2)n) if d is odd. Taking
into account that constraint networks with domains of size at most two can be
solved efficiently [7], we get that these upper bounds determine the search space
size of the considered algorithm. Clearly, this size is much smaller than O(dn)
of FC, MAC, and others.

The strategy of domain partition has been successfully applied to the design
of constraint solvers with exact upper bounds. Sophisticated techniques based
on the strategy are presented in [5, 1]. However, the strategy attracted little
attention of researchers that investigate ”practical” approaches to construction
of complete constraint solvers.

This paper introduces an attempt to construct a ”practical” complete con-
straint solver based on domain partition. The main problem with the strategy



is that the resulting algorithm is not guaranteed to have a solution when all
variables are assigned. Therefore the algorithm could generate many ”long” in-
soluble 2-CNs (constraint networks with domain sizes at most 2) which makes
the actual time of its work close to the theoretical upper bound. To overcome
this difficulty, we introduce the following modifications.

– Variables are assigned one by one. A variable is assigned with 2 values if its
current domain contains at least 2 values. Otherwise, the variable is assigned
with one value. To present this situation in a more general form, we say that
at every step of the algorithm, a variable v is assigned with a subset S of its
current domain.

– Whenever a variable v is assigned with a set of values S, the algorithm
removes all values of unassigned variables that are incompatible with all the
values of S.

– The algorithm backtracks when the current domain of some variable becomes
empty.

– Whenever a variable v is assigned with a set {val1, val2}, a new conflict
is added between any pair (〈v1, val

′
1〉, 〈v2, val

′
2〉) of values of different unas-

signed variables v1 and v2 such that 〈v1, val
′
1〉 conflicts with 〈v, val1〉 and

〈v2, val
′
2〉 conflicts with 〈v, val2〉.

The proposed algorithm resembles FC with the main difference that a variable
can be assigned with 2 values. Therefore we call the algorithm 2FC. The main
property of 2FC is that whenever all variables are assigned, the resulting 2-CN
is guaranteed to have a solution.

In our experimental analysis, we compared 2FC to FC. The main exper-
imental observation is that 2FC strictly outperforms FC on graph k-coloring
problem. The rate of runtime improvement changes from a factor of 2 to 10.
2FC also outperforms FC on randomly generated constraint networks with low
density.

The experimental result suggest that the proposed approach could be useful
in the area of graph coloring. Another possible application of 2FC follows from
the fact that it returns a 2-CN which could have many solutions that can be
efficiently generated. Therefore the algorithm could be useful for dynamic envi-
ronments where constraints frequently change: it might allow quick replacing of
an inconsistent solution by another solution without performing search.

The rest of the paper is organized as follows. Section 2 provides necessary
background. Section 3 presents the 2FC algorithm. Section 4 proves correctness
of the 2FC algorithm. Section 5 demonstrates result of experimental evaluation.
Section 6 outlines directions of further investigation.

2 Preliminaries

The model we consider in the paper is binary constraint network (CN). A CN
Z = 〈V,D,C〉 is a triple consisting of a set of variables V , a set of domains D
and a set of constraints C. Let V = {v1, . . . , vn}. Then D = {D(v1), . . . , D(vn)},



where D(vi) is the domain of values of vi, C = {C(vi, vj)|i 6= j, 1 ≤ i, j ≤ n},
where C(vi, vj) ⊆ D(vi) × D(vj) is the set of all compatible pairs of values of
vi and vj . We refer to the parts of Z as VZ , DZ , and CZ . To emphasize that a
value val belongs to the domain of a variable v, we refer to this value as 〈v, val〉.
In this paper we consider a special case of constraint network, 2-CN, that is a
CN for which every domain has at most 2 values.

Given a CN Z as above, the task of Constraint Satisfaction Problem (CSP)
is to find a set P = {〈v1, val1〉, . . . , 〈vn, valn〉} such that every vali belongs to
the domain of vi and all values of P are mutually compatible (consistent), or to
report that there is no such a set. The set P is called a solution of Z.

A typical CSP search algorithm like Forward Checking (FC) [4] usually cre-
ates a solution in an iterative manner. During its work it maintains a consistent
set of values of a subset of variables and tries to extend it to a solution. This set
of values is called a partial solution. Variables whose values are contained in the
partial solution are called assigned. Other variables are called unassigned. The
present paper introduces an algorithm that can assign a variable with more than
one value. We refer to a set of assigned values maintained by the algorithm as
an extended partial solution. When all variables are assigned, the algorithm has
an extended solution.

The following notion is frequently used further in the paper.

Definition 1. Let Z be a CN and let S be a set of values of Z. A subnetwork
Z ′ of Z induced by S is obtained as follows:

– take to Z ′ only those variables of Z whose values appear in S;
– the domain of every variable v of Z ′ is the intersection of the domain of v

in Z with S;
– two values are compatible in Z ′ if and only if they are compatible in Z.

To illustrate the notion, consider Figure 1. On the left side of the figure there
is a CN Z. Ellipses represent variables, black points represent values, conflicting
values are connected by arcs. The CN Z ′ is a subnetwork of Z induced by the set
of values encircled by additional circles. Note that Z ′ does not contain variable
V4 because no value of the domain of V4 is included in the inducing set of values.
Also note that there are conflicts between 〈V1, 2〉 and 〈V2, 2〉 and between 〈V2, 3〉
and 〈V3, 3〉 because these conflicts appear in the original CN.

Finally, we recall the notions of directional arc and path-consistency.

Definition 2. A value 〈vi, val〉 is consistent with a set of values S if it is com-
patible with at least one value of S.

Definition 3. A CN Z is called directionally arc-consistent with respect to an
order v1, . . . , vn of its variables if every value 〈vi, val〉 is consistent with a domain
of a variable vk whenever k < i.

Definition 4. A pair of values {〈vi, vali〉, 〈vk, valk〉} is consistent with a set of
values S if at least one value of S is compatible with both 〈vi, vali〉 and 〈vk, valk〉.



Fig. 1. Illustration of a CN induced by a set of values.

Definition 5. A CN Z is called directionally path-consistent with respect to the
order v1, . . . , vn of its variables if every pair of compatible values {〈vi, vali〉, 〈vk, valk〉}
is consistent with the domain of a variable vl whenever l < i and l < k.

3 The 2FC Algorithm

In this section we introduce a modification of FC that explores much smaller
search space than FC. In particular, processing a CN with n variables and max-
imal domain size d, the algorithm generates a search tree with O((d/2)n) nodes
if d is even and O(((d+ 1)/2)n) nodes if d is odd.

The first 3 steps of the modification are the following.

1. Variables are assigned with subsets of their current domains. In particular,
let v be the variable being assigned currently. If the current domain of v
is of size at least 2 then v is assigned with a subset S of its domain such
that |S| = 2. Otherwise, if the domain is a singleton, v is assigned with the
domain itself.

2. Once a variable v is assigned with a set S, the algorithm removes from the
domains of unassigned variables all the values that are incompatible with all
the values of S.

3. Unassigning a variable v at the backtrack stage, the algorithm removes from
the current domain of v all values of the set assigned to v.

These 3 steps naturally generalize FC, providing the ability to assign a vari-
able with one value as well as with two values. However the resulting algorithm
has an essential drawback: when all variables are assigned, the CN induced by
the assigned values may be insoluble and this is in contrast to the standard FC
that has a solution when all variables are assigned. Thus the modified FC has a
restricted ability of early recognition of dead-ends.

To illustrate this drawback, consider a CN with variables {v1, v2, v3, v4} and
the domain of every variable {1, 2, 3}. Every 2 variables are connected by the



inequality constraint. Assume that the algorithm assigns v1 with {1, 2}. No value
is deleted from the domains of the unassigned variables because there are values
incompatible with 1, values incompatible with 2, but none that are incompatible
with both of them. In the same way, the algorithm can assign v2, v3, v4 with
{1, 2}. The CN induced by the assigned values is clearly insoluble.

The following claim (proved in the next section) suggests a simple way to
overcome the drawback.

Lemma 1. Let Z be a 2-CN with no empty domain which is directionally arc-
consistent and directionally path consistent with respect to an order v1, . . . , vn of
variables of Z. Then Z is soluble. 1

Thus, to guarantee that whenever all the variables are assigned, the CN
induced by the assigned values is soluble, it is enough to ensure that it is direc-
tionally arc-consistent and directionally path-consistent.

Note that directional arc-consistency is already ensured by the modification
number 2 described above. To ensure directional path-consistency, it is possible
to perform the following operation: Every time a variable v is assigned with a
set S, add a conflict between every pair P of compatible assignments of future
variables such that P is inconsistent with S.

We call the resulting algorithm 2FC. Algorithm 1 introduces its pseudocode.
The algorithm is presented in the form of a recursive procedure that gets a

CN Z as input. In the first 6 lines the termination conditions are checked. In
particular, if Z has no variables, the procedure returns ∅ (lines 1-3), if Z has a
variable with the empty domain, the procedure returns FAIL.

In line 7 a variable u is selected. In line 8 a CN Z ′ is created by removing
from Z the variable u and all its values. Before exploring the domain of u, the
algorithm removes from it all values that conflict with domains of some other
unassigned variable (line 9).

The loop described in lines 10-27 explores the domain of u. In lines 11-15
a subset S of the current domain of u is selected. The set S contains 2 values
unless there is only one value in the current domain of u. After u is assigned
by S, the algorithm removes from the domains of variables of Z ′ all values
inconsistent with S (line 16). If the size of S is 2, the algorithm adds conflicts
between compatible pairs of values of Z ′ that are inconsistent with S (lines 18-
20). Then the function 2FC is applied recursively to Z ′ (line 22). If the output
of the recursive application is not FAIL, the procedure returns the union of the
output with S (line 24). (The operation is correct because the output of 2FC is
either FAIL or a set of values.) Otherwise, if the recursive application returns
FAIL, the algorithm removes S from the domain of u (line 26) and starts a new
iteration of the loop or finishes it if the domain of u is wiped out. In the latter
case the algorithm returns FAIL in line 28.

Note that when 2FC returns a set of values, a solution can from it by the
process described in the proof of Lemma 1. (See the next section.)
1 Note that the suggested sufficient condition of solubility of 2-CNs is weaker than

path-consistency whose sufficiency is proved in [7].



Algorithm 1 function 2FC(Z)

1: if VZ = ∅ then
2: Return ∅
3: end if
4: if There is a variable with the empty domain then
5: Return FAIL
6: end if
7: Select a variable u
8: Z′ ← Z \ u
9: Remove from Dz(u) all values that are inconsistent with domains of unassigned

variables
10: while Dz(u) 6= ∅ do
11: if |Dz(u)| ≥ 2 then
12: S ← {val1, val2}, where val1 and val2 are two values of Dz(u)
13: else
14: S ← Dz(u)
15: end if
16: Remove from the domains of Z′ the values that are inconsistent with S
17: if |S| ≤ 2 then
18: for every pair {〈v1, val

′
1〉, 〈v2, val

′
2〉} of compatible values of Z′ that is incon-

sistent with S do
19: CZ′(v1, v2)← CZ′(v1, v2) \ {{〈v1, val1〉, 〈v2, val2〉}}
20: end for
21: end if
22: R← 2FC(Z′)
23: if R 6= FAIL then
24: Return R ∪ S
25: end if
26: DZ(u) = DZ(u) \ S
27: end while
28: Return FAIL



Consider an example of application of 2FC. Let Z be the CN described above
with variables {v1, . . . , v4}, each domain equal {1, 2, 3} and variables connected
by inequality constraint. Assume that v1 is assigned with {1, 2}. Then 2FC adds
conflicts between every pair of values 1 and 2 of different unassigned variables,
that is between 〈v2, 1〉 and 〈v3, 2〉, between 〈v2, 2〉 and 〈v3, 1〉 and so on. Assume
that in the next iteration, variable v2 is assigned with {1, 2}. Then values 1 and
2 are deleted from the current domains of v3 and v4. In the next iteration, trying
to assign v3, 2FC backtracks, because the only remaining values 〈v3, 3〉 wipes
out the current domain of v4. As a result of backtrack, 2FC unassigns v2. The
only possible next assignment is {3}. After the assignment, 2FC removes 3 from
the domains of v3 and v4. In the next iteration, 2FC tries again to assign v3, but
backtracks because both remaining values 1 and 2 wipe out the domain of v4.
This time, after unassigning v2, the current domain of v2 is finished; therefore
2FC backtracks again and changes the assignment of v1 to {3}. In a few iteration
the algorithm finishes with FAIL because of wiping out of the current domain
of v1.

A drawback of 2FC is large overhead spent to addition of conflicts between
values of unassigned variables. It is not hard to show that O(n2d2) additional
consistency checks per iteration must be spent. The overhead can be reduced if
we observe that 2FC checks compatibility of values of two variables only if one
of these variables is either assigned or selected to be assigned.

Based on the observation we suggest a procedure of adding new conflicts
based on the notion of critical value. Let u be a variable assigned with a set
{val1, val2}. We say that 〈u, val1〉 is critical with respect to a value 〈v, val〉 if
〈v, val〉 conflicts with 〈u, val2〉. Instead of performing lines 18-19 in Algorithm 1,
new conflicts can be added in the following ”lazy” way. Whenever a new variable
v is selected to be assigned, a conflict is added between every pair of compatible
values 〈v, val〉, 〈w, val′〉 that satisfies the following conditions:

– w is an unassigned variable other than u;
– val′ belongs to the current domain of w;
– 〈w, val′〉 conflicts with at least one critical value with respect to 〈v, val〉.

One can calculate that the suggested technique of updating of constraints
takes O(n2d) consistency checks per iteration. We use the technique in our im-
plementation of 2FC. We decided not to describe the method directly in the
pseudocode because it reduces readability of the code and makes the correctness
proof more complicated.

4 Theoretical Analysis.

In this section we prove correctness of 2FC. We start from proving Lemma 1.
Proof of Lemma 1 By induction on n, the number of variables of Z. It

is trivial for n = 1. For n > 1, assign vn with a value valn that belongs to its
domain. Let Z ′ be a 2-CN obtained from Z by removing vn and deleting from the
domains of the rest of variables all values that are incompatible with 〈vn, valn〉.
Observe the following properties of Z ′.



– The domains of all variables of Z ′ are not empty. Really, an empty domain of
some variable v in Z ′ would mean that 〈vn, valn〉 conflicts with all the values
of the domain of v in Z in contradiction to the directional arc-consistency
of Z.

– Z ′ is directionally arc-consistent with respect to the order v1, . . . , vn−1. As-
sume by contradiction that a value 〈vk, val〉 is inconsistent with the domain
of vi, i < k. If the domain of vi in Z ′ is the same as in Z, 〈vk, val〉 is in-
consistent with vi in Z in contradiction to our assumption about directional
arc-consistency of Z. Otherwise, one of the values of the domain of vi is
incompatible with 〈vn, valn〉, the other is incompatible with 〈vk, val〉, while
〈vn, valn〉 and 〈vk, val〉 are compatible. In this case we get contradiction with
out assumption about directional path-consistency of Z.

– Z ′ is directionally path-consistent. For otherwise, if we have two compatible
values 〈vk, valk〉 and 〈vl, vall〉 that wipe out the domain of some variable
vi, (i < k, l), the same situation occurs in Z in contradiction to directional
path-consistency of Z.

Thus Z ′ satisfies all conditions of the lemma and has n−1 variables, therefore
it is soluble by the induction assumption. Let S be a solution of Z ′. Note that
all values of Z ′ are compatible with 〈vn, valn〉. Therefore S ∪ {〈vn, valn〉} is a
solution of Z. �.

The next lemma claims that every extended partial solution generated by
2FC satisfies the conditions of Lemma 1.

Lemma 2. Every extended partial solution generated by 2FC induces a 2-CN
without empty domains, directionally arc-consistent with respect to the chrono-
logical order of assignment of variables, and directionally path consistent with
respect to the same order.

Proof. By induction on the length n of the extended partial solution. It is
clear that the lemma is valid for n = 1. For n > 1, let S be the considered
extended partial solution and let v1, . . . , vn be the order according to which the
variables were assigned. By the induction assumption, the extended partial so-
lution obtained by removing vn satisfies the conditions of the lemma. Therefore,
if S violates these conditions then the values assigned to vn violate either the
directional arc-consistency or the directional path-consistency. Assume that the
former holds. That is, a value val of assigned to vn is inconsistent with all values
assigned to vk (k < n). However, such a situation cannot happen because 2FC
would remove val from the current domain of vn when vk has been assigned. For
the latter, assume that a value val assigned to vn, together with a compatible
value val′ assigned to some vk are inconsistent with the set of values assigned
to some vi (i < k, n). However, such a situation cannot happen as well because
2FC would add a conflict between 〈vk, val′〉 and 〈vn, val〉 when vi was selected
to be assigned. Thus the lemma holds for S. �

Now we are ready to claim the correctness of 2FC.

Theorem 1. The 2FC algorithm is correct.



Proof. To prove correctness, we have to prove that the algorithm terminates
and also that it is sound and complete.

Termination is easy to verify by induction. If the underlying CN has 0 vari-
ables, the algorithm clearly terminates. Otherwise, 2FC selects a variable, assigns
it with some partition class of its domain, and applies recursively to a CN created
by the rest of variables (with updated constraints). By the induction assumption,
every recursive application eventually finishes and also the number of partition
classes in the first variable is finite so the algorithm terminates.

Soundness (solubility of an extended solution returned by 2FC) directly fol-
lows from Lemmas 1 and 2.

It follows from termination and soundness that 2FC always returns FAIL
when processes an insoluble CN. It remains to prove completeness, that is to show
that 2FC always returns a solution when processes a soluble CN. In essence, all
we have to show is that the additional conflicts generated by 2FC do not cause
missing of a solution.

We prove completeness by induction on the number n of variables of the CN.
Completeness follows immediately for n = 1. For n > 1, let v be the variable
that 2FC selects to be assigned first. If the underlying CN is soluble then 2FC
eventually assigns v with a set of values S that belongs to an extended solution.
Then 2FC removes from the domains of the rest of variables all values that are
inconsistent with S and adds conflicts between pairs of compatible values that
wipe S out. Note that neither the removed values can be in the same solution
with any value of S nor pairs of values that are made incompatible. Therefore
2FC is applied recursively to a soluble CN where it finds an extended solution
by the induction assumption. �

5 Experimental Evaluation

It is not hard to show that 2FC explores O(dd/2en) nodes of the search tree and
its running time is the bound multiplied by a polynomial. Clearly, this bound
is much smaller than O(dn) upper bound for FC. However, we are interested
to evaluate the practical merits of 2FC. To do this we compare in this section
actual running times of 2FC and FC.

We implemented the algorithms in Microsoft Visual C++ 6.0 and tested them
on a computer with CPU 2.4GHz and 0.2GB RAM. We used two measures
of computation effort: the number of nodes visited and runtime (in seconds).
For every tuple of parameters of the tested instances, the computation effort
measures were obtained as average of 50 runs.

In our implementation, variables are ordered by the Fail-First heuristic [6]
which takes first a variable with the smallest domain. The values of the variable
being assigned are ordered according to the min-conflict heuristic, that is, values
that conflict with the less number of values in the domains of unassigned variables
are assigned first. (FC assigns the values one by one, while 2FC assigns them in
pairs.)



We compared these algorithms on graph k-coloring problem and on randomly
generated binary CNs.

Given a graph G with n vertices and k-colors, the CN that encodes the
k-coloring problem for G has n variables corresponding to the vertices of G.
The domain of every variable is {1, . . . , k}. Pairs of variables that correspond to
adjacent vertices of G are connected by the inequality constraint.

We generated 3 sets of instances: the first with 60 and 6 colors, the second
with 45 vertices and 8 colors and the third with 30 vertices and 10 colors. For
every set of instances we tried densities from 10% to 90% by steps of 5%.

The results of comparison of 2FC and FC on the first set of instances are
shown on Figures 2 and 3. In this set of instances the phase transition region
falls to the area of small density. Clearly, 2FC performs better than FC on this
set of instances.

Fig. 2. 2FC vs. FC for graphs with 60 ver-
tices and 6 colors (nodes visited)

Fig. 3. 2FC vs. FC for graphs with 60 ver-
tices and 6 colors (runtimes)

The results of comparison of 2FC and FC on the second set of instances are
shown on Figures 4 and 5. In this experiment the graph that are most hard
for coloring have an average density. Note that for denser graphs the rate of
improvement of 2FC with respect to FC grows.

The results of comparison of 2FC and FC on the third set of instances are
shown on Figures 6 and 7. In this experiments the phase transition region falls
to the area of dense graphs. Note that here 2FC exhibits a larger factor of
improvement as compared to the previous cases.

Comparing 2FC and FC on randomly generated CNs, we generated them
using 4 parameters: the number of variables, the domain size, density, and tight-



Fig. 4. 2FC vs. FC for graphs with 45 and
8 colors (nodes visited)

Fig. 5. 2FC vs. FC for graphs with 45 and
8 colors (runtimes)

Fig. 6. 2FC vs. FC for graphs with 30 and
10 colors (nodes visited)

Fig. 7. 2FC vs. FC for graphs with 30 and
10 colors (runtimes)



ness [9]. To generate a set of instances, we fixed the number of variables, the
domain size, and the density and varied the tightness from 10% to 90% by steps
of 5%.

In the first set of experiments, the generated CNs have 60 variables domains
of size 10 and density 10%. Figures 8 and 9 compare the number of nodes visited
and the runtimes, respectively. We can see that 2FC outperforms FC on this set
of instances.

Fig. 8. 2FC vs. FC for CNs with 60 vari-
ables, domain size 10, and density 10
(nodes visited)

Fig. 9. 2FC vs. FC for CNs with 60 vari-
ables, domain size 10, and density 10
(runtimes)

Unfortunately, on denser instances of randomly generated CNs, 2FC works
worse than FC. Moreover, 2FC becomes worse and worse compared to FC as the
underlying CN gets denser. To see this, consider the following two sets of sets of
experiments (Figures 10, 11, 12, and 13). On the set of instances with density
0.2, 2FC continues to perform better in the number of nodes visited while spends
more runtime. However, on the instances with density 0.8, it looks worse with
respect to the both measures.

Thus, according to our experiments, 2FC performs better than FC on graph
coloring problems and non-dense instances of randomly generated CN, while
works worse on denser random CNs.



Fig. 10. 2FC vs. FC for CNs with 50
variables, domain size 10, and density 20
(nodes visited)

Fig. 11. 2FC vs. FC for CNs with 50
variables, domain size 10, and density 20
(runtimes)

Fig. 12. 2FC vs. FC for CNs with 40
variables, domain size 10, and density 80
(nodes visited)

Fig. 13. 2FC vs. FC for CNs with 40
variables, domain size 10, and density 80
(runtimes)



6 Discussion

We introduced the 2FC algorithm which is based on the idea of assigning a
variable with two values instead of one. In this section we discuss possible ap-
plications of the proposed approach and directions of further development.

According to our experimental results, 2FC performs very well on graph k-
coloring problem. This result suggests the possibility of combining the proposed
approach (of assigning a vertex with 2 colors) with branch-and-bound algorithms
that find chromatic numbers of graphs (like [2]). The proposed approach could
also be useful in the area of resource allocation problems because many of such
problems, like timetabling [8], have binary constraint networks with inequality
constraints.

On the other hand, 2FC is not very successful on random constraint networks.
A natural way of improvement of its pruning ability is replacing FC by MAC,
that is design of 2MAC. We expect that 2MAC would behave better with respect
to MAC than 2FC does with respect to FC. This is because maintaining arc-
consistency has a better ability than FC to utilize the conflicts that are added
after every new assignment.

An interesting direction of further research is the application of the ap-
proach to CNs with non-binary constraints. Note that the application cannot
be straightforward because solving a 2-CN with non-binary constraints is NP-
complete in general (it can be shown by reduction from SAT). A possible way to
recognize dead-ends early is maintaining the current extended partial solution
S together with a solution T of the CN induced by S. Every time when S grows
by assigning a new variable, T must grow also. Solving a 2-CN with non-binary
constraints at every iteration of the algorithm could require too much time,
therefore one has to develop heuristic methods of quick solving of such CNs.

2FC could also be useful in dynamic environments where solutions are fre-
quently discarded because of updating of constraints. The set of values returned
by 2FC can contain many solutions and they can be efficiently extracted. There-
fore, there is a chance that once a single solution is discarded, another solution
could be found instantly without applying search.

Finally, there is an intriguing connection of the proposed approach with the
technique of bucket elimination [3]. In its simplest form, the principle of bucket
elimination states that whenever there is an unassigned variable v conflicting
with at most two other unassigned variables, variable v can be eliminated. To
preserve consistency, conflicts must be added between the pairs of values that
wipe out the current domain of v. Note that the described bucket elimination
technique as well as assigning a variable with two values have the following
common paradigm: assign a variable v with a subset s of its domain such that
every minimal consistent partial solution on the ”future” variables that wipes s
out has the size at most 2. Bucket elimination is an ”extremal” realization of
the paradigm where a variable is assigned with the whole domain. Assigning
a variable with only one value is another case of extremal realization. Then
assigning a variable with two values can be considered as some ”intermediate”
case. Continuing the reasoning, we derive that there may be other ”intermediate”



realizations of the paradigm. For example, a more flexible version of bucket
elimination can be considered, where a variable is assigned with a subset of its
values that conflict with at most two unassigned variables.

References

1. O. Angelsmark and P. Jonsson. Improved algorithms for counting solutions in
constraint satisfaction problems. In CP 2003, pages 81–95, 2003.

2. M. Caramia and P. Dell’Olmo. Constraint propagation in graph coloring. Journal
of Heuristics, 8:83–107, 2002.

3. R. Dechter. Bucket elimination: A unifying framework for reasoning. Artificial
Intelligence, 113:41–85, 1999.

4. R. Dechter. Constraint Processing. Morgan Kaufmann Publishers, 2003.
5. D. Eppstein. Improved algorithms for 3-coloring, 3-edge coloring and constraint

satisfaction. In SODA-2001, pages 329–337, 2001.
6. R. M. Haralick and G.L. Elliott. Increasing tree search efficiency for constraint

satisfaction problems. Artificial Intelligence, 14:263–313, 1980.
7. P. Jeavons, D. Cohen, and M. Cooper. Constraints, consistency, and closure. Arti-

ficial Intelligence, 101:251–265, 1998.
8. A. Meisels and A. Schaerf. Modelling and solving employee timetabling problems.

Annals of Mathematics and Artificial Intelligence, 39:41–59, 2003.
9. P. Prosser. An empirical study of phase transition in binary constraint satisfaction

problems. Artificial Intelligence, 81:81–109, 1996.


