
Equivalences on Observable Processes

Irek Ulidowski

Department of Computing

Imperial College of Science, Technology and Medicine

180 Queens Gate

London SW7 2BZ.

E-mail: iu@doc.ic.ac.uk

Abstract

The aim of this paper is to find the finest ‘observ-
able’ and ‘implementable’ equivalence on concurrent
processes. This is a part of a larger programme to de-
velop a theory of observable processes where semantics
of processes are based on locally and finitely observ-
able process behaviour, and all process constructs are
allowed, provided their operational meaning is defined
by realistically implementable transition rules.

Process behaviour which can be established by
so-called local testing but not global testing is
called locally and finitely observable. We define
copy+refusal testing equivalence as indistinguishabil-
ity by copy+refusal tests consisting of traces, refusals
and copying, all of which are local. It is argued that
copy+refusal tests are sufficient for local testing—
adding any other local tests to copy+refusal tests does
not increase their testing power. Hence, copy+refusal
equivalence is the finest observable equivalence.

By examining the structure of transition rules we
propose several conditions which all realistically im-
plementable rules should satisfy. Using these condi-
tions, we define the ISOS format of rules. We show
that the ISOS contexts capture exactly the observ-
able behaviour of processes—ISOS trace congruence
is proved to coincide with copy+refusal equivalence.
Hence, copy+refusal equivalence is also the finest im-
plementable equivalence.

1 Introduction

An essential element of any theory of concurrent
processes is a notion of process equivalence whose pur-
pose is to identify processes with essentially the same
behaviour. But what behaviour do we mean? Con-
sider two of the fundamental equivalences on concur-

rent processes, namely observation equivalence [11]
and trace equivalence [5, 13]. We contend that obser-
vation equivalence, considered as the finest extensional
equivalence, distinguishes between too many processes
— it can examine some process behaviour which can
not be finitely and locally observed. On the other
hand, trace equivalence, based on sequences of visible
actions called traces, is not discriminating enough. It
does not take into account some observable aspects of
process behaviour like action refusals. Thus we can
ask,

what is the finest process equivalence which iden-
tifies processes with exactly the same locally and
finitely observable behaviour?

We take the view that the only reasonable method
to establish the behaviour of processes is by experi-
menting on them and recording and interpreting their
responses [12]. The different experiments proposed
in the concurrency literature [12, 1, 16, 10, 4] can be
divided into two groups. The first consists of the so-
called local experiments. Among these is the attempt
to communicate on channel a (‘pressing the a button’)
[12, 16]. Such an attempt may produce, in finite time,
two kinds of responses: acceptance on a and refusal on
a. We consider them to be the basic observable pro-
cess behaviour. Also, in the first group, is the empty
experiment (meaning stop with either success or fail-
ure) and the delay experiment (pause for some time
before performing the next experiment). The last ex-
periment in this group is copying [1, 10, 4] (make a
finite number of copies of the process, experiment sep-
arately on each of them and put the results together
only at the end). Copying clearly has a local and finite
character. In contrast, the experiment of the second
group has a distinctive global character—it involves
combining at any time the results of all possible runs
of some other experiment on the process. That is why

it is called the global experiment. This experiment is
what Milner calls ‘controlling the weather conditions’
[12]. It is proved in [1] that combined local and global
experiments are powerful enough to test if processes
are observation equivalent. We agree with [10, 4] that
the global experiments are too powerful—they make
some unobservable behaviour observable, and they are
unimplementable. On the other hand, the local exper-
iments depict locally and finitely observable fragments
of process behaviour. As we reject the global experi-
ments we may ask,

what is the finest process equivalence testable by
the local experiments?

As each experiment together with the interpreta-
tion of the process’s responses produces a number of
tests, the obvious candidate for the required equiva-
lence is what is called copy+refusal testing equivalence
[1, 15]. This represents indistinguishability by the set
of copy+refusal tests, CR. In the spirit of the Oper-
ator Completeness result of Abramsky [1] we prove
that adding any monotone and linear testing opera-
tors to CR will not give more testing power. Hence,
we argue that, if we identify the computability and
locality of experiments with the monotonicity and lin-
earity of their induced tests, then copy+refusal equiv-
alence is the finest equivalence testable by the local
experiments.

In order to gain more intuition about copy+refusal
equivalence we also look at it from two different
angles. We compare copy+refusal equivalence with
bisimulation-like equivalences and trace congruences
induced by a number of formats of structured transi-
tion rules.

We start by defining the observational transition
system. This has the form of a derived transition sys-
tem with divergence, where the transition relation ⇒
is labelled by acceptances and refusals of communica-
tions (or actions)— the basic observable process be-
haviour.

It is known that observation equivalence and n-
nested simulation equivalence [8] are strictly finer than
copy+refusal equivalence. This means that, in terms
of testing, we need both local and some form of global
tests to characterise them. We define, on the observa-
tional transition system, a new simulation-like process
relation called refusal simulation. An equivalence as-
sociated with it is strictly coarser than observation
and n-nested simulation equivalences. We prove that,
for sort-finite processes, refusal simulation equivalence
corresponds exactly to copy+refusal equivalence.

Now we turn our attention to trace congruences.
We define two processes to be refusal simulation equiv-

alent iff their responses to copy+refusal testing are
the same. But the responses can be viewed as a
form of generalised traces (by which divergence can
be expressed). Hence, two processes are copy+refusal
equivalent iff they are trace congruent with respect to
a class of process contexts powerful enough to mimic
copy+refusal testing. Since the contexts are built up
from process constructs (operators) we can represent
the class of contexts by a class of process constructs.
However, we can group the constructs according to a
format of transition rules defining their operational se-
mantics. This suggests an alternative way of looking
at process equivalences: we should be able to divide
them into classes each of which is characterised be a
trace congruence induced by a particular format of
transition rules.

It has been shown that (strong) bisimulation can be
characterised by a trace congruence generated by the
pure ntyft/ntyxt format [7], and 2-nested simulation
by a trace congruence of the simpler pure tyft/tyxt
format [8]. However, we feel that many rules in the
above formats, and thus the process constructs whose
operational meaning they define, are not realistically
implementable. Hence we introduce, at some level
of abstraction from the physical details, a notion of
implementability which says how processes are con-
structed. Using this notion, we analyse the struc-
ture of transition rules in order to set a number of
conditions which all realistically implementable rules
should satisfy. These conditions restrict a general for-
mat of rules with negative premises (for example the
ntyft/ntyxt format) to a new format called the Imple-
mentable Structured Operational Semantics, ISOS for
short. Here we can ask,

what is the process equivalence which coincides
with a trace congruence induced by the ISOS for-
mat of rules?

We show that the ISOS trace congruence corresponds
to copy+refusal testing equivalence, proving that
copy+refusal equivalence is the finest observable and
implementable equivalence.

Remark. Since the processes we are discussing
may diverge we shall consider, in general, the pre-
orders on processes rather than the equivalences we
are interested in. The equivalences can be obtained
from the preorders in a standard way.

The paper is organised as follows. In the next sec-
tion we review the basic concepts of testing: local
and global tests, the semantics of tests and the test-
ing preorders. In particular, we define copy+refusal
tests CR and copy+refusal testing preorder. In sec-
tion 3, we introduce several other local tests and

2

prove that adding them to CR does not increase the
power of copy+refusal testing. In the next section we
give a characterisation of copy+refusal preorder by a
simulation-like preorder called refusal simulation. The
second part of the paper begins, in section 5, with the
introduction of our notion of implementability. Then,
using this notion, we identify the ISOS format of tran-
sition rules. Next, in section 6, we define the ISOS
trace precongruence and show that it coincides with
copy+refusal preorder. The last section contains con-
clusions and suggestions for future research.

2 Copy+refusal Testing

In this section we present a notion of testing as a
reliable tool to examine the behaviour of processes.
We argue that all finite and local testing can be done
by copy+refusal testing.

We start by defining a new kind of derived tran-
sition system with divergence. It no only abstracts
from silent behaviour, but it also internalises refusals
of actions. Hence it represents both acceptances and
refusals of actions, i.e. the basic observable aspects
of process behaviour, treating them as equally impor-
tant. For this reason we call it the observational tran-
sition system.

Throughout the paper the usual abbreviations will
be used: p

a
→ for ∃q ∈ Proc. p

a
→ q, p

a
9 for ¬∃q ∈

Proc. p
a
→ q and p

ab
→ for ∃q, r ∈ Proc. p

a
→ q

b
→ r.

Similarly for ⇒.

Definition 2.1 Let (Proc, A ∪ {τ},→, ↑) be a tran-
sition system with divergence. The observational
transition system with divergence is a structure
(Proc, RAct,⇒,⇑) where

• RAct ≡ A ∪ Ã ∪ {ε} where Ã ≡ {ã | a ∈ A}

• ⇒⊆ Proc × RAct × Proc is a derived transition
relation defined as follows:

p
a
⇒ q ≡ p

τ∗

→
a
→ q

p
ã
⇒ q ≡ p

τ∗

→ q
τ
9 & q↓ & q

a
9

p
ε
⇒ q ≡ p

τ∗

→ q

• p⇑ ≡ (∃q. p
ε
⇒ q & q↑) ∨ p

τω

→ .

Notice that we can have both p
a
⇒ q and p

ã
⇒ r. The

last is clearly different from p
a
;.

In the introduction we briefly discussed five types
of experiments: the empty experiment, the attempt to

communicate on a, the delay, copying and the global
experiment. These experiments together with the in-
terpretation of the process’s responses produce five
groups of tests (ei are any experiments and ti are tests
induced by them, for i ∈ I ⊆ N):

• s and f—we stop experimenting with either a suc-
cess or with a failure;

• the attempt to communicate on a. In finite time
two things can happen: either the communica-
tion is accepted—then we continue with the ex-
periment e1; or it is refused in a stable state (no
silent actions τ are possible and thus no diver-
gence: the green light is off [12])—then we con-
tinue with e2. Hence the general form of the test
is at1 + ãt2. However, it is showed in [16] that we
can work with four simpler tests without losing
expressiveness. These tests and their abbrevia-
tions are

at + ãf abbreviated by at,
at + ãs abbreviated by ⌊a⌋t,
ãt + af abbreviated by ãt,
ãt + as abbreviated by ⌊̃a⌋t.

We can think of the above tests as HML for-
mulae on RAct with the satisfaction relation de-
fined over the observational transition system: if
()∗ is a translation function, then (at)∗ = 〈a〉t∗,
(⌊a⌋t)∗ = [a]t∗ as well as (ãt)∗ = 〈ã〉t∗, (⌊̃a⌋t)∗ =
[ã]t∗. Abramsky in [1] uses only two tests: at and
ãt with the last being the same as our ⌊a⌋t.

• delay—wait a while, then continue experimenting
with e1. This gives us the test εt1 ;

• copying—make two copies of the process, per-
form e1 on the first copy and e2 on the second
copy, then ‘combine’ the responses together. In-
formally, if we require both experiments to suc-
ceed then the induced test is t1 ∧ t2, whereas if
we only need a success of one of them then we
obtain t1 ∨ t2.

• global experiment—enumerate all possible runs
of the experiment e1 on the process. We have
two tests ∀t1, ∃t1 and as the notation suggests
we interpret them as all respectively some runs
of the experiment e1 succeed [1].

We call s, f, at, ⌊a⌋t tests the traces and ãt, ⌊̃a⌋t the re-
fusals . Following [1, 16] the language T of tests t is
defined thus:

t ::= s | f | at | ãt | ⌊a⌋t | ⌊̃a⌋t | εt | t ∧ t | t ∨ t | ∃t | ∀t

3

O(s, p) = {⊤}

O(f, p) = {⊥}

O(at, p) =
⋃

{O(t, p′) | p
a
⇒ p′}

∪ {⊥ | p
ã
⇒} ∪ {⊥ | p⇑}

O(ãt, p) =
⋃

{O(t, p′) | p
ã
⇒ p′}

∪ {⊥ | p
a
⇒} ∪ {⊥ | p⇑}

O(⌊a⌋t, p) =
⋃

{O(t, p′) | p
a
⇒ p′}

∪ {⊤ | p
ã
⇒} ∪ {⊥ | p⇑}

O(⌊̃a⌋t, p) =
⋃

{O(t, p′) | p
ã
⇒ p′}

∪ {⊤ | p
a
⇒} ∪ {⊥ | p⇑}

O(εt, p) =
⋃

{O(t, p′) | p
ε
⇒ p′} ∪ {⊥ | p⇑}

O(t ∧ t′, p) = O(t, p) ∧ O(t′, p)

O(t ∨ t′, p) = O(t, p) ∨ O(t′, p)

O(∃t, p) = ∃O(t, p)

O(∀t, p) = ∀O(t, p)

Figure 1.

In Figure 1 we define the ‘meaning’ of tests by the
outcome function O : T × Proc → P [O], after [1, 15].
The set O = {⊤,⊥} is a domain of outcomes. ⊤
represents a success and ⊥ a failure (or divergence) of
a particular run of a test on a process. Since processes
are nondeterministic we need to use subsets of O to
denote the outcomes of all possible runs of the test.
Remark. In Figure 1, by abuse of notation, we write
∧ (∨) for both the testing operator and the binary
operator on P [O] which is just a pointwise extension
of ∧ (∨) on O. Similarly we use ∀ (∃) to denote both
the testing operator and the unary operator on P [O]
defined in Figure 2.

We require some orderings to compare subsets of
O and thus, to compare processes being tested. The
most commonly used ordering is the convex (Egli-
Milner or Plotkin) ordering, ⊑C. We will also use the
lower (Hoare) ordering, ⊑L, and the upper (Smyth)
ordering ⊑U . In fact ⊑C is a partial order and ⊑L, ⊑U

are preorders on P [O]. Also ⊑C = ⊑L ∩ ⊑U .
Now we define a testing relation on processes, ⊏

=,
parametrised by a subset of T in the superscript and
in the subscript by a type of ordering used.

Definition 2.2 Let Y ⊆ T and X ∈ {C, L, U}. A
binary relation ⊏

=

Y

X
on Proc is defined as follows, for

p, q ∈ Proc

p⊏
=

Y

X
q ≡ ∀t ∈ Y. O(t, p) ⊑X O(t, q).

∃X =

{

{⊥} if X = {⊥}
{⊤} otherwise

∀X =

{

{⊤} if X = {⊤}
{⊥} otherwise

Figure 2.

Abramsky showed that, by taking a set S of tests gen-
erated by all testing constructs except ã and ⌊̃a⌋, pre-
order ⊏

=

S

C
coincides with observation preorder ⊏

∼, for
sort-finite transition systems. Clearly, also ⊏

=

T

C
coin-

cides with ⊏
∼.

Phillips investigated in [15] the properties of the
language of copy+refusal tests, CR, generated by:

t ::= s | f | at | ãt | ⌊a⌋t | ⌊̃a⌋t | εt | t ∧ t | t ∨ t.

Clearly ⊏
=

CR

C
is a preorder and ⊏

=

T

C
⊂ ⊏

=

CR

C
.

Example. Consider processes p, q, r and s repre-
sented by their derivation trees in Figure 3. A label
Ω at the node of q denotes divergence i.e. an infinite
unary tree of τ . Let t1 = as, then O(t1, p) = O(t1, q) =
{⊤,⊥}. Hence, O(∀t1, p) = {⊥} but O(∃t1, p) = {⊤}.
Next consider t2 = abcs ∧ abds and t3 = a(bcs ∧ bds).
Clearly we have O(t2, r) = O(t2, s) = {⊤,⊥}, where
⊥ is due to the nondeterministic nature of r and s.
However, O(t3, s) = {⊤,⊥} but O(t3, r) = {⊥}: s
may do a and then both bc and bd whereas r may
not. Hence r and s are not copy+refusal equivalent.
They are refusal (not copying) equivalent [16]. Lastly
consider processes p and q. Clearly they are lower
copy+refusal equivalent, but not upper copy+refusal
equivalent. This is due to the possibility of divergence
of q after a. A test t4 = [a]ãs distinguishes them:
O(t4, p) = {⊤} but O(t4, q) = {⊤,⊥}. 2

Since ⊏
=

CR

C
= ⊏

=

CR

L
∩ ⊏

=

CR

U
, we find it more intuitive

and easier to work with the lower (may) and up-
per (must) parts of copy+refusal preorder, ⊏

=

CR

L
, ⊏

=

CR

U
,

than with ⊏
=

CR

C
. Moreover, it is easy to prove that only

LCR, a subset of CR, formed by

t ::= s | at | ãt | t ∧ t

is required for lower copy+refusal testing. Also, for
upper testing we only need to consider UCR—a subset
of CR generated by

t ::= f | ⌊a⌋t | ⌊̃a⌋t | t ∨ t.

Thus ⊏
=

CR

L
= ⊏

=

LCR

L
and ⊏

=

CR

U
= ⊏

=

UCR

U
.

4

p

�
��	

@
@@R

a τ

q

�
��	

@
@@R

?
τ

τa

Ω

r

�
��	

@
@@R

?

?

?

?

a a

b b

c d

s

?
�

��	
@

@@R

@
@@R

@
@@R

? ? ?

a a

b b b

c d d

Figure 3.

3 Operator Completeness of CR

In the last section we presented CR as the set of
tests induced by the local experiments. One may ask

• are there other interesting experiments which are
local and finite in character?

• does adding tests induced by those experiments
to CR increase its distinguishing power?

We argue (if somewhat informally) that, although
other finite and local experiments can be devised, we
do not gain more distinguishing power by adding the
induced tests to CR. The line of inquiry in this section
is motivated by the Operator Completeness result for
tests S due to Abramsky [1].

Consider the following experiment. We attempt to
communicate simultaneously on finitely many chan-
nels ai (or in the ‘black box’ terminology: simultane-
ously press a finite number of buttons). If we succeed
on ai then we continue with an experiment ei. When
the communication on all ai is refused we continue
with an experiment e. Clearly this experiment is finite
and local. It is proved in [16] that it can be expressed
as the combination of the attempt to communicate on
single channel and copying.

The next experiment we discuss involves copying.
We make n copies of the process, then, for all 1 ≤ i ≤
n, we run an experiment ei on the ith copy obtaining a
set of responses Ri ∈ P [O]. Finally we combine all Ri

by means of some operator op : P [O]n → P [O]. The
experiment can be denoted by OP(e1, . . . , en) and the
induced test as OP(t1, . . . , tn). Notice that the testing
operators ∧,∨ and ∀, ∃ are binary respectively unary
versions of OP. Whether or not adding OP to CR in-
creases its testing power clearly depends on properties

of the operator op. These properties will also deter-
mine the character the experiment OP(e1, . . . , en).

Consider LCR, UCR the may and must parts of
copy+refusal tests. To formalise the idea of adding a
class of testing operators OP to a given set of tests we
use a notion of operator completion (see [1]).

Definition 3.1 LCR′ (UCR′) is the operator comple-
tion of LCR (UCR) obtained by extending the syn-
tax of tests LCR (UCR) by a construct OP(t1, . . . , tn)
(n ≥ 1) for each monotone w.r.t. the lower (upper)
ordering function op : P [O]n → P [O]. The outcome
function O is augmented with

O(OP(t1, . . . , tn), p) = op(O(t1, p), . . . , O(tn, p)).

Lemma 3.2 Adding any monotone w.r.t. the lower
(upper) ordering testing operators to LCR (UCR)
does not increase the power of testing, since for all
p, q ∈ Proc

p⊏
=

LCR

L
q iff p⊏

=

LCR
′

L
q (p⊏

=

UCR

U
q iff p⊏

=

UCR
′

U
q).

Proof. See the next section.
This lemma shows that LCR is a sufficient and nec-
essary set of tests for the may copy+refusal testing
and similarly UCR for the must copy+refusal testing.
Since ∃ is lower monotone then, by lemma 3.2, adding
it to LCR does not increase the distinguishing power.
However, if ∃ is added to UCR it will increase the
power of testing since ∃ is not upper monotone.

Now we return to CR. The question remains: what
class of testing operators can be added to CR without
increasing its testing power? Lemma 3.2 suggests the
answer. Let CR′ be the operator completion of CR
by constructs OP(t1, . . . , tn) for each lower and upper
monotone function op : P [O]n → P [O]. We deduce
that CR and CR′ have the same distinguishing power:

Theorem 3.3 For p, q ∈ Proc p⊏
=

CR

C
q iff p⊏

=

CR
′

C
q.

To shed more light on the type of operators OP, which
can be added to CR without increasing the testing
power, we propose an alternative characterisation of
the operator completion of CR. It would be wrong to
characterise CR′′ as the completion of CR by OP for
each convex monotone function op—both ∀, ∃ are con-
vex monotone but adding them to CR would give us
Abramsky’s tests S. However, imposing another con-
dition on op defined as follows

op(. . . , Xi ∪ Yi, . . .) = op(. . . , Xi, . . .)∪ op(. . . , Yi, . . .),

for all 1 ≤ i ≤ n, seems sufficient. This condition is
called linearity and it means that op preserves union in

5

each argument separately. It tells us how the the out-
come of the experiment op(R1, . . . , Rn) is computed.
By linearity, op(R1, . . . , Rn) equals to

⋃

{op({r1}, . . . , {rn}) | ri ∈ Ri, 1 ≤ i ≤ n}.

This expression says that we run repeatedly the ex-
periments e1, . . . , en on the copies of the process to
obtain partial results op({r1}, . . . , {rn}). Then, at the
end, we put these independent results together to ob-
tain op(R1, . . . , Rn). The next theorem summarises
the main result of the section:

Theorem 3.4 The testing power of CR′′, the oper-
ator completion of CR by constructs OP(t1, . . . , tn)
for each convex monotone and linear function op :
P [O]n → P [O], is the same as that of CR since, for
p, q ∈ Proc, we have

p⊏
=

CR

C
q iff p⊏

=

CR
′′

C
q.

To complete the section we notice (by inspecting
the outcome function O) that the local testing can be
done without the delay operator ε (see [15]). This
suggests a criterion by which a ‘local’ equivalence can
be identified:

• local equivalences are those whose testing char-
acterisations do not depend on the delay test.

Leaving the delay out of the language S decreases its
testing power. Thus observation equivalence is not a
local equivalence also by this criterion.

4 Refusal Simulation

So far we have shown that copy+refusal equiva-
lence is the finest locally and finitely observable testing
equivalence. In this section we argue that it also is a
natural and interesting equivalence on its own, away
from the testing background. We show that it can be
characterised by a simulation-like equivalence, called
refusal simulation, defined on the observational tran-
sition system.

We define refusal simulation in terms of two auxil-
iary relations: L-simulation and U-simulation. These
auxiliary relations represent the lower (may or live-
ness) and the upper (must or safety) parts of re-
fusal simulation. The intention is that, for sort-finite
processes, L-simulation coincides with ⊏

=

CR

L
and U-

simulation coincides with ⊏
=

CR

U
. Notice that refusal

simulation is a generalisation of ready simulation [3]

and of 2
3
-bisimulation [10] and is similar to firework

simulations of Bloom [2].
We define sort-finiteness [1] for the observational

transition system (Proc, RAct,⇒,⇑) as for all p ∈ Proc

{µ ∈ RAct | ∃s ∈ RAct∗. p
s
⇒

µ
⇒} is finite.

Definition 4.1 For the observational transition sys-
tem D we define two families of binary relations ⊏

∼

n

L
,

⊏
∼

n

U
and binary relations ⊏

∼L, ⊏
∼U over Proc as follows:

p⊏
∼

0

L
q, p⊏

∼

0

U
q always (i.e. ⊏

∼

0

L
, ⊏
∼

0

U
= Proc × Proc)

p⊏
∼

n+1

L
q ≡ ∀µ ∈ RAct.

∀p′. p
µ
⇒ p′ implies ∃q′. q

µ
⇒ q′ & p′⊏∼

n

L
q′

p⊏
∼

n+1

U
q ≡ ∀µ ∈ RAct. p⇓ implies

q⇓ &

∀q′. q
µ
⇒ q′ implies ∃p′. p

µ
⇒ p′ & p′⊏∼

n

U
q

p⊏
∼Lq ≡ ∀n. p⊏

∼

n

L
q

p⊏
∼Uq ≡ ∀n. p⊏

∼

n

U
q

We call ⊏
∼L a L-simulation and ⊏

∼U a U-simulation re-
lations. They are preorders on D.
Example. Consider processes p, q, r and s as in Fig-
ure 3. It is easy to see that p⊏

∼Lq and q⊏
∼Lp. On the

other hand q⊏
∼Up but p /⊏∼

U
q: since p⇓ and q⇓ we have

q
a
⇒ Ω, p

a
⇒ 0. However, 0⇓ but Ω⇑. It is clear that

r and s are both L- and U-simulation equivalent. 2

It easy to show by induction on tests that:

Theorem 4.2 For sort-finite observational transition
systems ⊏

∼L = ⊏
=

LCR

L
and ⊏

∼U = ⊏
=

UCR

U
.

Now we define refusal simulation:

Definition 4.3 Refusal simulation, ⊏
∼RS, is a binary

relation over Proc defined as follows

p⊏
∼RSq ≡ p⊏

∼Lq & p⊏
∼Uq.

As a simple consequence of theorem 4.2 we have:

Corollary 4.4 For sort-finite observational transi-
tion systems ⊏

∼RS = ⊏
=

CR

C
.

Now we return to the proof of lemma 3.2. We shall use
the following lemma which states that whatever mono-
tone operators are added to LCR (UCR), we shall not
go beyond the L-simulation (U-simulation) preorders.

Lemma 4.5 For p, q ∈ Proc, p⊏
∼Lq implies p⊏

=

LCR
′

L
q

and p⊏
∼Uq implies p⊏

=

UCR
′

U
q.

Proof. By induction on the depth of tests LCR′ re-
spectively UCR′.
Proof of 3.2. By lemma 4.5 and theorem 4.2.

6

5 The ISOS Format

In the first part of the paper the discussion on
concurrent processes was conducted in a ‘syntax-free’
manner—processes were the states of the observa-
tional transition system. We established which as-
pects of process behaviour were observable, and we
found copy+refusal preorder to be the finest preorder
relating processes with the same observational be-
haviour. In the second part we change our point
of view and consider how concurrent processes are
constructed. We propose a general notion of imple-
mentability which says how complex processes are
built from simpler processes by means of process con-
structs. In order to decide which constructs are re-
alistically implementable we analyse the structure of
transition rules defining their meaning. Guided by our
notion of implementability we define the ISOS format
of rules. Thus, the implementable process constructs
are those whose operational semantics are in terms of
the ISOS rules.

We start by informally defining our notion of im-
plementability. Concurrent processes are thought as
‘black boxes’ with labelled channels on them, and with
a ‘green light’ to indicate the presence or absence of
internal behaviour [12]. Thus, the internal structure
of processes is not known. A new process can be con-
structed by ‘connecting in some way’ the channels of
several simpler processes. The connection is such that
a behaviour of the new process solely depends on the
observable behaviour of the subprocesses and not on
their internal structure or working. We remain inten-
tionally vague as to how the connection of channels is
made, but we concentrate on what behaviour of the
subprocesses the connection uses in order to produce
the behaviour of the new process. Once a process is
built it gains the status of a black box, so it can be
used to construct more complex processes.

Example. For many process constructs the required
connection of channels is quite simple. Consider a
parallel interleaving construct | . Given black boxes
p, q, we construct p | q by putting p, q ‘side by side’.
The channels of p |q are those of p and q. Now consider
the CSP parallel composition operator ‖ of [5]. By
definition, p ‖ q accepts a communication on channel a
iff both p, q can communicate on a. Thus, to construct
p ‖ q we join channels with the same label by the
‘and’ gate, one from p and one from q, into pairs and
disabling all other channels. 2

We analyse the structure of transition rules in the
framework of Transition System Specifications [8, 7],
TSS for short. A TSS is a tuple (Σ, A∪{τ}, R) where Σ

denotes a signature of process constructs (terms over Σ
are called process terms) and A∪{τ} is a set of channel
names (actions). R is a set of structured transition
rules.

Our notion of implementability suggests that the
premises of implementable rules should describe the
behaviour of subprocesses X1, . . . , Xn, and the con-
clusion the behaviour of the implemented process
f(X1, . . . , Xn), for some construct f ∈ Σ. This means
that physical complexity of the implemented process
is strictly larger than that of its subprocesses. Hence,
many rules used in [8, 7] are not implementable, for
example, the following two rules expressing certain
‘global closure properties’:

X
a
→ X ′ Y

a
→ Y ′ s(X ′, Y ′)

ok
→ Z

s(X, Y)
ok
→ Z ′

X
τ
→ X ′ X ′ a

→ X ′′

X
a
→ X ′′

One of the consequences of the black box character
of subprocesses is that we are forced to treat them
as distinct processes. Although in constructing a new
process we may use several copies of a given subpro-
cess, due to their internal nondeterminacy, we have no
method to tell if the copies represent the same subpro-
cess at the time of use. Thus, we require all process
variables X1, . . . , Xn in the premises of implementable
rules to be distinct. The next example shows what
goes wrong when rules not satisfying this condition
are carelessly used.
Example. Consider an unary operator a-and-b which
is intended to show whether or not its argument can
communicate on a and on b. The operational meaning
of a-and-b(X) could be given by the following rule:

X
a
→ X ′ X

b
→ X ′′

a-and-b(X)
ok
→ 0

Now we notice that a-and-b is too ‘powerful’—it can
distinguish between observationally equivalent pro-
cesses p and q shown in Figure 4. This happens be-
cause the premises of the above rule say more about
the behaviour of X than is observationally justifiable:
X can do a and b in the same state rather than just

X can do a and b (X
a
⇒ and X

b
⇒). 2

The next example shows that it is not safe to use
any matching of subprocess names in the premises of
implementable rules.
Example. Consider an unary construct a-then-b
which tells us whether or not its argument can do a

7

p

�
��	 ?

?

b τ

a

q

?
�

��	
@

@@R

?

τb a

a

Figure 4.

and then b. Notice that we are quite vague what the
precise intended meaning of a-then-b is. One possible
rule defining it is

X
a
→ X ′ X ′ b

→ X ′′

a-then-b(X)
ok
→ 0.

As in the previous example the operator a-then-b does
more than intended—it says that the argument com-
municates on a and then immediately on b. The com-
munication on b is observable but whether it happens
immediately (in the state X ′) or after several silent
communications is not observable. As a result of this
extra distinguishing power a-then-b distinguishes be-
tween observationally equivalent (CCS-like) processes
aτb0 and ab0. 2

The consequence of these examples is that

• all process variables in the premises of imple-
mentable rules must be distinct.

Now we are ready to present a first approximation of
the format of implementable rules:

{ Xi
ai→ Yi}i∈I1 { Xi

bi

9}i∈I2

f(X1, . . . , Xr)
a
→ t

where ai, bi, a ∈ A∪{τ}; f is a function name of arity
r; X1, . . . , Xr, Yi are distinct variables in the set of
variables V ; I1, I2 ⊆ {1, . . . , r}; and t ∈ Terms(Σ, V)
is yet unspecified term.

This format of rules is similar to the so-called GSOS
(Structured Operational Semantics with Guarded Re-
cursion) format introduced by Bloom, Istrail and
Meyer in [3]. Inspecting the premises of the above
format we notice that they represent more than the
observable behaviour of subprocesses. It is because we
have not decided yet how to represent the behaviour
of processes, embodied in the ⇒ relation, in terms of
the → relation.
Example. Generality of the above format allows one
to define other unwanted and perverse operators. Con-

sider two unary operators see-τ and no-initial-a de-
fined by the following rules:

X
τ
→ X ′

see-τ (X)
a
→ see-τ(X ′)

X
a
9

no-initial-a(X)
ok
→ 0

We see that they distinguish between observationally
equivalent processes: for see-τ take observationally
equivalent τ0 and ττ0; for no-initial-a take τa0 and
a0. This happens because we defined observable be-
haviour of see-τ(X) and no-initial-a(X) in terms of

unobservable behaviour of X : X
τ
→ and X

a
9. 2

We conclude that the implementable rules must sat-
isfy the following:

• the behaviour of f(X1, . . . , Xr) represented in
the conclusion should only depend on the observ-
able behaviour of X1, . . . , Xr represented in the
premises and

• the unobservable behaviour (i.e. sequences of
τ) of X1, . . . , Xr should always be inherited by
f(X1, . . . , Xr).

In earlier sections we decided that the basic notions of
the observable process behaviour are: (1) performing
a visible action a (a communicating on channel a) and
(2) refusing, in a stable state, to perform a visible
action b (communicate on b), for any a, b ∈ A. Hence,
the premises of implementable rule will look like

{Xi
ai→ Yi}i∈I1 { Xi

τ
9, Xi

bi

9}i∈I2

where ai, bi ∈ A; X1, . . . , Xr, Yi are distinct process
variables in V , I1, I2 ⊆ {1, . . . , r} and r is an arity of
f . Clearly neither of the premises of the rules defining
see-τ and no-initial-a has this form.

The last condition above refers to the behaviour of
f(X) (X stands for X1, . . . , Xr) in the situation where
some of the subprocesses Xi evolve spontaneously by
performing τ actions. Since they are not externally
observable, by our notion of implementability, they
will not cause any observable behaviour or structural
change of f(X). But, they will be inherited by f(X).
This idea is embodied by a τ -rule defined below (intro-
duced in [14] and [2]) where X is the vector X1, . . . , Xr

Xi
τ
→ X ′

i
τ -rule

f(X)
τ
→ f(X)[X ′

i/Xi]

Hence, for all operators f in Σ and all arguments Xi

such that the behaviour of f(X) depends on Xi, we
include an appropriate τ -rule in a set R. These τ -
rules are called the τ -rules associated with R. Thus,

8

we have solved the problem of representing the process
behaviour by using ordinary (→) rules together with
their associated τ -rules.

Now we establish a structure of a term t to which
f(X1, . . . , Xr) evolves. Referring to our notion of im-
plementability, we see that the process term t is built
from what has become of processes X1, . . . , Xr:

• if the behaviour of f(X1, . . . , Xr) depends on Xi

performing a visible action a then Xi can not be
used in t. For, by performing a, Xi ceases to
exist—it evolves to X ′

i. Hence, only X ′
i can be

used in t;

• if the behaviour of f(X1, . . . , Xr) depends on Xj

refusing b then it can be used in t. The reason is
that Xj represents a stable state. Thus observing
the refusal of b does not change Xj, so it is there
for a reuse;

• if the behaviour of f(X1, . . . , Xr) does not de-
pend on Xi then it can be used in t

Hence, the conclusion of implementable rules would
be f(X)

c
→ t, where t ∈ Terms(Σ, {Y1, . . . , Yr}) and

Yi is defined as follows:

Yi =

{

X ′
i if i ∈ I1

Xi otherwise

De Simone’s format of architectural rules of [6] has a
process term t defined in a similar way.

The reader may ask if we allow any form of copy-
ing in our rules. Since in many operating systems it
can be simulated by a simple dumping routine [17]
or, where the system components are geographically
scattered, by a combination of a dump routine and
protocols [9] we choose to have some form of copy-
ing. Moreover, to conform with our requirement of
realistic implementability, we allow only the explicit
form of copying. That means if the identical copies of
a process are required they have to be created before
being used. So we will have some copying operators
and separate rules defining them.

Hence, the last condition which we put on the struc-
ture of ISOS rules says that only explicit form of copy-
ing is allowed:

• a multiple use of identical process variables in
the structure of ISOS rule is only permitted in
the term t of the conclusion.

This contrasts with other forms of copying where
copies are used without being made beforehand, which
we call implicit copying. Among these are the ‘branch-
ing’ in the premises [3, 8] represented by the rule for

a-and-b above and the use in the term t of variables
other than Yi’s [8]. The second form of implicit copy-
ing and the consequences of its use are shown in the
example below.
Example. Consider an unary process construct
a-then-b′ which has the same intended meaning as
a-then-b described above. We could represent this
meaning by the following rules and their τ -rules, which
are not shown:

X
a
→ X ′

a-then-b′(X)
τ
→ then-b(X)

X
b
→ X ′

then-b(X)
ok
→ 0

The rule for a-then-b′ uses implicit copying. The
right hand side of the conclusion uses X although it
evolved to X ′ in order to produce the behaviour of
a-then-b′(X), hence X is not available. This hidden
copying capacity allows a-then-b′ to distinguish be-
tween observationally equivalent processes p and q in
Figure 4. 2

Finally, we are ready to present the main subform
of the ISOS format and the ISOS format itself. We call
it the CR-rule because it expresses both information
about refusals and copying:

{ Xi
ai→ X ′

i}i∈I1 { Xi
τ
9, Xi

bi

9}i∈I2
CR-rule

f(X)
a
→ t

where ai, bi ∈ A, a ∈ A∪{τ}; Xi of X, X ′
i are distinct

process variables; I1, I2 ⊆ {1, . . . , r}; r is an arity of
f and t ∈ Terms(Σ, {Y1, . . . , Yr}) for Yi defined as
before.

Definition 5.1 A TSS (Σ, A, R) is in the ISOS for-
mat iff R consists of CR-rules for each operator in Σ
and the associated τ -rules (and no other rules).

We may extend this definition to talk about a set of
rules R in the ISOS format.

It is clear that the operational semantics of the CCS
choice operator + are not definable by rules in the
ISOS format. The following are not ISOS rules:

X
τ
→ X ′

X + Y
τ
→ X ′

Y
τ
→ Y ′

X + Y
τ
→ Y ′

We notice that the unobservable behaviour of subpro-
cess X (or Y) causes a structural change of X + Y .
If we wished to construct a process p + q from p and
q, we would have to built the ‘connection’ of chan-
nels of p, q in such way that it would be required
to react to the unobservable behaviour of p or q to
make the choice. This is not allowed according to our

9

notion of implementability—only the observable be-
haviour of subprocesses can cause the observable be-
haviour or the structural change of the constructed
process. On the other hand the CSP-like internal and
external choice constructs are are ISOS definable as
well as other CCS-, CSP-like operators.

To conclude this section we present two unary
process constructs a-and-b ′ and a-then-b′′ plus sev-
eral auxiliary constructs and the ISOS rules defining
their operational semantics. The intended meaning of
a-and-b ′ and a-then-b′′ is the same as that of a-and-b
respectively a-then-b discussed above. Due to lack of
space only the CR-rules are shown below but not the
associated τ -rules:

a-and-b ′(X)
τ
→ a-And-b(X, X)

X
a
→ X ′ Y

b
→ Y ′

a-And-b(X, Y)
ok
→ 0

a-then-b′′(X)
τ
→ a-Then-b(X, X)

X
a
→ X ′

a-Then-b(X, Y)
τ
→ then-b(X ′)

X
a
→ X ′

a-Then-b(X, Y)
τ
→ then-b(Y)

The rule for then-b is same as before. We notice that
explicit copying rules have been used. a-then-b′′ is
given as general a meaning as possible due to the in-
clusion of the last two rules. The first says that we
check for b physically after a, the second says that
we check for b only if a happens but not necessarily
after a.

6 Mimicking Copy+refusal Testing by

the ISOS Contexts

The aim of this section is to prove theorem 6.7,
which says that a trace precongruence induced by the
ISOS contexts exactly corresponds to copy+refusal
preorder, ⊏

=

CR

C
.

We begin by defining a transition system with di-
vergence B for a given TSS P = (Σ, A∪{τ}, R) in the
ISOS format. The states (processes) of B are mem-
bers of Terms(Σ), the labels are in A ∪ {τ} and the
divergence predicate is set to empty. The transition
relation of B is the unique transition relation →P gen-
erated by P . Its existence and uniqueness are guaran-
teed by the result for more general ntyft/ntyxt format

in [7]. Hence B = (Terms(Σ), A ∪ {τ},→P , ∅). Us-
ing B, we define the observational transition system

D = (Terms(Σ), RAct,⇒P ,⇑), where p⇑ iff p
τω

→ and
RAct ≡ A ∪ Ã ∪ {ε}.

Theorem 6.7 is proved as follows. We show, in
lemma 6.1, that ⊏

∼RS is a precongruence for the ISOS
contexts (proof in [18]). We introduce a notion of
generalised traces GTraces allowing us to represent
possible divergence. Next, we define three (the lower,
upper and convex) trace preorders. Following the def-
initions on conservative extensions from [7], we intro-
duce three corresponding trace precongruences. Since
⊏
∼RS is ISOS precongruence and since it clearly refines
the convex trace preorder we deduce, in lemma 6.5,
that ⊏

∼RS refines ISOS (convex) trace preorder. This
result together with corollary 4.4 shows that ⊏

=

CR

C
re-

fines ISOS trace preorder. To obtain the other half
of theorem 6.7 we mimic copy+refusal testing by the
ISOS contexts. This is done in lemma 6.6.

Lemma 6.1 Let P = (Σ, A∪ {τ}, R) be a given TSS
in the ISOS format. ⊏

∼RS is a precongruence on the de-
rived transition system D: for all contexts C[]over Σ,
all p, q ∈ Terms(Σ)

p⊏
∼RSq implies C[p]⊏∼RSC[q].

Definition 6.2

Traces(p) ≡ {t | t ∈ RAct
∗ & t 6= ε & ∃q. p

t
⇒ q}

PTraces(p) ≡ {t· | t ∈ RAct
∗ & ∃q. p

t
⇒ q & q⇑}

GTraces(p) ≡ Traces(p) ∪ PTraces(p).

To define trace preorders we require an ordering ≤ on
generalised traces: s ≤ t, s· ≤ t and s· ≤ t· hold if s, t
are traces (possibly ε) and s is a prefix of t.

Definition 6.3

p 4
L

q ≡ GTraces(p) ⊑L GTraces(q)

p 4
U

q ≡ GTraces(p) ⊑U GTraces(q)

p 4 q ≡ p 4
L

q & p 4
U

q.

Definition 6.4 Let F be some format of TSS rules
and P = (Σ, B,R) a TSS in F format. Relations
4F

L
, 4F

U
, 4F , the lower, upper respectively convex F

trace precongruences, are defined as follows: for any
p, q ∈ Terms(Σ) and any TSS P ′ = (Σ′, B′,R′) in F
format which can be added conservatively to P

p 4F

L
q ≡ ∀C[] over Σ ⊕ Σ′. C[p] 4

L
C[q]

p 4
F

U
q ≡ ∀C[] over Σ ⊕ Σ′. C[p] 4

U
C[q]

p 4F q ≡ p 4F

L
q & p 4F

U
q.

10

Lemma 6.5 ⊏
∼RS ⊆ 4ISOS.

Lemma 6.6 Let P = (Σ, A∪{τ},R) be a TSS in the
ISOS format. There is a TSS P ′ = (Σ′, A′,R′) in the
ISOS format which can be added conservatively to P
in such a way that, in P ⊕ P ′, we have

4
ISOS ⊆ ⊏

=

CR

C
.

Proof. Let P ′ = (Σ′, A′,R′) be a TSS defined as fol-
lows. The signature Σ′ consists of a constant 0, unary
prefix operators α for each α ∈ A′, binary, infix oper-
ators +,| , |l, |r and ∧, ∨; the set of action labels A′ is
A∪ Ã∪⌊A⌋ ∪ ⌊Ã⌋ ∪ {τ, s, f, &, #, l, r, ω}. We use & (#)
to encode the ‘and’ (‘or’) testing operators and l, r to
denote the left, right operands. + is the CSP-like ex-
ternal choice operator of [5], ω denotes a success hence
ω̃ denotes a finite failure. We translate copy+refusal
tests into processes by means of a function ()∗:

s∗ = s0

(at)∗ = at∗

(ãt)∗ = ãt∗

f∗ = f0

(⌊a⌋t)∗ = ⌊a⌋t∗

(⌊̃a⌋t)∗ = ⌊̃a⌋t∗

(t ∧ t′)∗ = &(lt∗ + rt′∗)

(t ∨ t′)∗ = #(lt∗ + rt′∗)

The set of rules R′ contains the usual rules for + and
prefixing and the rules given below (with appropriate
τ -rules).
success and failure rules

t
s
→ t′

p |t
ω
→ 0

t
f
→ t′

p |t
τ
→ 0

refusal rules

t
a
→ t′ p

a
→ p′

p |t
τ
→ p′ |t′

t
a
→ t′ p

τ
9

a
9

p |t
τ
→ 0

t
ã
→ t′ p

a
→ p′

p |t
τ
→ 0

t
ã
→ t′ p

τ
9

a
9

p |t
τ
→ p |t′

t
⌊a⌋
→ t′ p

a
→ p′

p |t
τ
→ p′ |t′

t
⌊a⌋
→ t′ p

τ
9

a
9

p |t
ω
→ 0

t
⌊̃a⌋
→ t′ p

a
→ p′

p |t
ω
→ 0

t
⌊̃a⌋
→ t′ p

τ
9

a
9

p |t
τ
→ p |t′

copying rules

t
&
→ t′

p |t
τ
→ p |lt

′ ∧ p |rt
′

t
#
→ t′

p |t
τ
→ p |lt

′ ∨ p |rt
′

t
l
→ t′

p |lt
τ
→ p |t′

t
r
→ t′

p |rt
τ
→ p |t′

E
ω
→ E′

E ∧ G
τ
→ G

E
τ
9

ω
9

E ∧ G
τ
→ 0

G
ω
→ G′

E ∧ G
τ
→ E

G
τ
9

ω
9

E ∧ G
τ
→ 0

E
ω
→ E′

E ∨ G
ω
→ 0

E
τ
9

ω
9

E ∨ G
τ
→ G

G
ω
→ G′

E ∨ G
ω
→ 0

G
τ
9

ω
9

E ∨ G
τ
→ E

It is clear that P ⊕P ′ is a conservative extension of P .
We prove lemma 6.6 by showing that, for p, q ∈ Proc,
t ∈ LCR and t′ ∈ UCR,

p |t∗ 4
L

q |t∗ implies O(p, t) ⊑L O(q, t)

p |t′∗ 4
U

q |t′∗ implies O(p, t′) ⊑U O(q, t′).

Remark. The above rules are similar to the rules in
[1] defining the operational semantics of tests S. A few
changes are made to the copying rules to make them
fit with the ISOS format. However the rules defining
global testing operators ∀, ∃ can not be massaged into
the ISOS format.
The main result of the section is

Theorem 6.7 For sort-finite observational transition
systems we have ⊏

=

CR

C
=4ISOS.

7 Conclusion

We have argued that locally and finitely observable
process behaviour consists of observable sequential be-
haviour (sequences of action acceptances and refusals)
and the local part of branching behaviour. This in-
formation is also present in the structure of imple-
mentable rules: (1) behaviour of terms in the conclu-
sion depends on the observable behaviour of subterms
in the premises and (2) only explicit copying allowed.

We have defined copy+refusal equivalence and
proved it to be the finest locally and finitely observable
process equivalence. In section 4 we introduced a nat-
ural, simulation-like equivalence called refusal simula-
tion equivalence. It characterises copy+refusal equiv-
alence for sort-finite processes. To support our claims

11

about copy+refusal equivalence we have established
the ISOS format of implementable rules such that
ISOS trace congruence coincides with copy+refusal
equivalence. Thus our results are:

two processes are copy+refusal equivalent iff they
are refusal simulation equivalent iff they are ISOS
trace congruent.

It would be interesting to find an ISOS process lan-
guage adequate for ISOS trace congruence. We think
it will contain some form of ‘refusal check’ operator,
prefixing or sequential composition, a form of choice
and parallel operators as well as explicit copying op-
erator. Finding a complete proof system for that lan-
guage would be the next task.

Acknowledgements

I would like to thank Iain Phillips for many stim-
ulating discussions on this work. Mark Ryan, Mark
Dawson and Sarah Liebert helped in preparing the
text. Paul Taylor’s prooftree macros were used to pro-
duce our transition rules. I thank the referees for their
comments and suggestions.

References

[1] S. Abramsky. Observation equivalence as a test-
ing equivalence. Theoretical Computer Science,
53, 1987.

[2] B. Bloom. Strong process equivalence in the pres-
ence of hidden moves. Preliminary report, 1990.

[3] B. Bloom, S. Istrail, and A.R. Meyer. Bisimu-
lation can’t be traced: preliminary report. In
Conference Record of the 15th ACM Symposium
on Principles of Programming Languages, San
Diego, California, 1988.

[4] B. Bloom and A. R. Meyer. Experimenting
with process equivalence. In M. Z. Kwiatkowska,
M. W. Shilds, and R. M. Thomas, editors, Se-
mantics for Concurrency, Leicester 1990, pages
81–95, Berlin, 1990. Springer-Verlag.

[5] S.D. Brookes, C.A.R. Hoare, and W. Roscoe.
A theory of communicating sequential processes.
Journal of the Association for Computer Machin-
ery, 31, 1984.

[6] R. de Simone. Higher-level synchronising devices
in MEIJE-SCCS. Theoretical Computer Science,
37, 1985.

[7] J.F. Groote. Transition system specifications
with negative premises. Technical Report CS-
8950, CWI, 1989. An extended abstract appeared
in J.C.M. Baeten and J.W. Klop, editors, Pro-
ceedings of Concur90 , Amsterdam, LNCS 458,
pages 332-341. Springer-Verlag, 1990.

[8] J.F. Groote and F. Vaandrager. Structured oper-
ational semantics and bisimulation as a congru-
ence. Technical Report CS-8845, CWI, 1988. An
extended abstract appeared in G. Ausiello and M.
Dezani-Ciancaglini, and S. Ronchi Della Rocca,
editors, Proceedings ICALP, 89 , Stresa, LNCS
372, pages 423-438. Springer-Verlag, 1989.

[9] L. Lamport. Time, clocks and the ordering of
events in a distributed system. CACM, 21, 1978.

[10] K.G. Larsen and A. Skou. Bisimulation through
probabilistic testing. Technical Report R 88–
29, Aalborg Universitetscenter, 1988. In 16th
Symp. Principles of Programming Languages,
pages 344-352.ACM.

[11] R. Milner. A Calculus for Communicating Sys-
tems, volume 92 of Lecture Notes in Computer
Science. Springer-Verlag, Berlin, 1980.

[12] R. Milner. A modal characterisation of observ-
able machine behaviours. In G. Astesiano and
C. Böhm, editors, CAAP 81, pages 25–34, Berlin,
1981. Springer-Verlag. Lecture Notes in Com-
puter Science Vol. 112.

[13] R. De Nicola and M. Hennessy. Testing equiva-
lences for processes. Theoretical Computer Sci-
ence, 34, 1984.

[14] R. De Nicola and M. Hennessy. CCS without
τ ’s. In H. Ehrig, R. Kowalski, G. Levi, and
U. Montanari, editors, TAPSOFT ’87, Berlin,
1987. Springer-Verlag. LNCS 250.

[15] I. Phillips. Copy testing. Unpublished manu-
script, 1985.

[16] I. Phillips. Refusal testing. Theoretical Computer
Science, 50, 1987.

[17] A. Skou. Validation of concurrent processes. PhD
thesis, The University of Aalborg, 1989.

[18] I. Ulidowski. A theory of observable processes.
PhD thesis, The University of London, Imperial
College, to appear in 1992.

12

