
Concurrency, Causality and Reversibility: part 1

Irek Ulidowski

University of Leicester

April 2014

Joint work with Iain Phillips (Imperial College London)

Irek Ulidowski (Leicester) CCR: part 1 1 / 48

Overview

Overview

1 Reversing CCS

2 Models of Computation

3 Equivalences

4 Logics for Reversibility

5 Conclusions

Irek Ulidowski (Leicester) CCR: part 1 2 / 48

Reversing CCS

Introduction

Usually computation goes forward only P → Q
But sometimes reversible computation P ↔ Q can be helpful:

Landauer (1961): irreversibility generates heat; logical (ir)reversibility.

Danos and Krivine (2003-2005): Reversible CCS; biological systems.

Glück and Yokoyama (2007): reversible programming language.

Phillips, Ulidowski, Yuen (2006-now): reversibility in concurrency.

Lanese, Krivine, Stefani: reversible π and higher-order π.

Laneve and Cardelli: reversible asynchronous process calculus.

Irek Ulidowski (Leicester) CCR: part 1 3 / 48

Reversing CCS

Reversibility

Reversibility is very common in physics and biochemistry.
In nature reversibility underpins many mechanisms for achieving progress
or change.

e.g. building polymers, signal passing, catalysis

In artificial systems reversibility has a growing number of applications:

saving energy

debugging

recovery from failure
e.g. long-running transactions with compensations

Irek Ulidowski (Leicester) CCR: part 1 4 / 48

Reversing CCS

Reversing CCS

RCCS: Danos and Krivine introduce separate memories to keep track of
past behaviour and the discarded alternatives.

CCSK (CCS with keys): Phillips and Ulidowski (2006-7):

Past behaviour is recorded in the syntax of terms and not on external
devices: convert standard operators to static versions

Predicates are used to control execution of converted terms

One-time keys allow to distinguish individual action occurrences

Symmetry between forward and reverse SOS rules

Irek Ulidowski (Leicester) CCR: part 1 5 / 48

Reversing CCS

Reversing dynamic operators

Action prefixing: standard SOS rule

a.X
a
→ X

We use predicates and past actions a in the forward SOS rules:

std(X)

a.X
a
→ a.X

X
b
→ X ′

a.X
b
→ a.X ′

for all b

where std(X) means that X contains no occurrences of past actions.

Symmetry gives the reverse rules:

std(X)

a.X
a
 a.X

X
b
 X ′

a.X
b
 a.X ′

for all b

Irek Ulidowski (Leicester) CCR: part 1 6 / 48

Reversing CCS

CCS choice:
X

a
→S X ′

X + Y
a
→S X ′

Y
a
→S Y ′

X + Y
a
→S Y ′

for all actions a.

Again use predicates:

X
a
→ X ′ std(Y)

X + Y
a
→ X ′ + Y

Y
a
→ Y ′ std(X)

X + Y
a
→ X + Y ′

and symmetry for reverse rules:

X
a
 X ′ std(Y)

X + Y
a
 X ′ + Y

Y
a
 Y ′ std(X)

X + Y
a
 X + Y ′

Prefixing and choice are now static.

Irek Ulidowski (Leicester) CCR: part 1 7 / 48

Reversing CCS

Occurrences of actions and Keys

The approach so far works for many standard operators.
However sometimes it is necessary to have more control over event
occurrences:

semantic anomalies related to auto-concurrency

ambiguities connected with reversing CCS communication

We use one-time communication keys.

Irek Ulidowski (Leicester) CCR: part 1 8 / 48

Reversing CCS

Keys and Auto-concurrency

The approach so far equates a.a and a |a.

Our solution: Dynamically choose a fresh key (m, n, . . .) when performing
action. Then we can distinguish a |a from a.a:

a |a
a[m]
→ a[m] |a

a[n]
→ a[m] |a[n]

a[m]
 a |a[n] (m 6= n)

By contrast

a.a
a[m]
→ a[m].a

a[n]
→ a[m].a[n] 6

a[m]
 (m 6= n)

Irek Ulidowski (Leicester) CCR: part 1 9 / 48

Reversing CCS

Communication and keys

Without keys we may have strange behaviour:

a |a
τ

→ a |a
a
 a |a

Desirable to link occurrences of a and a together.

Our solution: use keys to lock the two partners in a communication

a |a
τ

→ a[m] |a[m]

The partners agree on the key m. Can only reverse together
Can also proceed separately; can reverse in either order, but not together.

a |a
a[m]
→ a[m] |a

a[n]
→ a[m] |a[n] (m 6= n)

Irek Ulidowski (Leicester) CCR: part 1 10 / 48

Reversing CCS

SOS rules with keys

Action labels are now of the form a[m].
For each rule r add predicates fsh[m](Xi) to the premises of r for each
static i that does not already appear in the premises of r .

CCS prefixing with keys: past actions a are now a[m]:

std(X)

a.X
a[m]
→ a[m].X

X
b[n]
→ X ′

a[m].X
b[n]
→ a[m].X ′

m 6= n

The reformulated CCS parallel:

X
a[m]
→ X ′ fsh[m](Y)

X |Y
a[m]
→ X ′ |Y

Y
a[m]
→ Y ′ fsh[m](X)

X |Y
a[m]
→ X |Y ′

X
a[m]
→ X ′ Y

a[m]
→ Y ′

X |Y
τ [m]
→ X ′ |Y ′

Irek Ulidowski (Leicester) CCR: part 1 11 / 48

Reversing CCS

SOS rules for CCSK

std(X)

a.X
a[m]
→ a[m].X

X
b[n]
→ X ′

a[m].X
b[n]
→ a[m].X ′

m 6= n

X
a[m]
→ X ′ std(Y)

X + Y
a[m]
→ X ′ + Y

Y
a[m]
→ Y ′ std(X)

X + Y
a[m]
→ X + Y ′

X
a[m]
→ X ′ fsh[m](Y)

X |Y
a[m]
→ X ′ |Y

Y
a[m]
→ Y ′ fsh[m](X)

X |Y
a[m]
→ X |Y ′

X
a[m]
→ X ′ Y

a[m]
→ Y ′

X |Y
τ [m]
→ X ′ |Y ′

X
a[m]
→ X ′

X \A
a[m]
→ X ′\A

a /∈ A
X

a[m]
→ X ′

X [f]
f (a)[m]
→ X ′[f]

Irek Ulidowski (Leicester) CCR: part 1 12 / 48

Models of Computation

Transition systems for reversible calculi

Prime graphs: Enjoy several natural properties, eg event determinism,
reverse diamond and forward diamond properties.

Expressive enough to define true concurrency notions such as

causality

concurrency

conflict

What True Concurrency models of computation could be useful?
Configurations ...

Irek Ulidowski (Leicester) CCR: part 1 13 / 48

Models of Computation

Configuration structures

A more general model of processes: stable configuration structures.
These are C = (C , ℓ) where

C is a set of configurations

ℓ is a labelling function on events

A configuration is a set of events: those that have occurred so far.

Various axioms, including:

closed under bounded unions:
if X ,Y ,Z ∈ C then X ∪ Y ⊆ Z implies X ∪ Y ∈ C ;

closed under bounded intersections:
if X ,Y ,Z ∈ C then X ∪ Y ⊆ Z implies X ∩ Y ∈ C .

Irek Ulidowski (Leicester) CCR: part 1 14 / 48

Models of Computation

Winskel’s parallel switch

Bulb b can be lit by connecting switch 0 or switch 1.

C D ∅∅

{0}
{0} {1}

{1}

{0, 1}{0, 1}
{0, b}

{0, b}
{1, b}{1, b}

{0, 1, b}

C is not stable: inclusive or causation (violates bounded intersection)
D is stable: exclusive or causation

Irek Ulidowski (Leicester) CCR: part 1 15 / 48

Models of Computation

Ordering and labels

Each configuration X has a causal ordering ≤X defined by

d ≤X e iff for all configurations Y with Y ⊆ X
we have e ∈ Y implies d ∈ Y .

Furthermore d <X e iff d ≤X e and d 6= e.

Very roughly, d is one of the causes of e, and e is one of the effects of d .

We use a labelling function ℓ to give each event a label (a, b, . . .). Labels
are observable; events are not.

Irek Ulidowski (Leicester) CCR: part 1 16 / 48

Models of Computation

Transitions

Definition

We let X
a
→C X ′ iff X ,X ′ ∈ C and X ′ \ X = {e} with ℓ(e) = a.

Allows us to define bisimulations, etc. And, X
a
 C Y if Y

a
→C X .

Example (Parallel Switch)

ℓ(0) = on, ℓ(1) = on, ℓ(b) = bulb

∅
on
→D {0}

bulb
→ D {0, b}

Irek Ulidowski (Leicester) CCR: part 1 17 / 48

Equivalences

Forward-only equivalences

(van Glabbeek & Goltz, 2001)
Various bisimulation-based equivalences, forward-only.

interleaving bisimulation ≈ib

Expand observations:
A step is a multiset of concurrent labelled events ({a, a, b}).

step bisimulation ≈sb

A pomset is a multiset of partially ordered labelled events (a < b < a).

pomset bisimulation ≈pb

Use order isomorphisms between configurations:

weak history-preserving bisimulation ≈wh

history-preserving bisimulation ≈h

Irek Ulidowski (Leicester) CCR: part 1 18 / 48

Equivalences

Bisimulation

Let C,D ∈ Cstable . A relation R ⊆ CC × CD is an interleaving bisimulation
(ib) between C and D if

1 (∅, ∅) ∈ R ,

2 if (X ,Y) ∈ R then for a ∈ Act

if X
a
→C X ′ then ∃Y ′. Y

a
→D Y ′ and (X ′,Y ′) ∈ R ;

if Y
a
→D Y ′ then ∃X ′. X

a
→C X ′ and (X ′,Y ′) ∈ R .

C and D are ib equivalent (C ≈ib D) iff there is an ib between C and D.

If we replace actions a by steps or pomsets we obtain ≈sb or ≈pb.

If additionally there is an order preserving isomorphism between X ,Y we
get ≈wh and ≈h.

Irek Ulidowski (Leicester) CCR: part 1 19 / 48

Equivalences

Hierarchy of forward-only equivalences

Theorem

≈wh (≈db (≈sb

Example

a |b ≈sb (a |b) + a.b

a |b 6≈db (a |b) + a.b

h

whpb

db

sb

ib

Irek Ulidowski (Leicester) CCR: part 1 20 / 48

Equivalences

Hereditary History-preserving bisimulation

Hereditary history-preserving bisimulation ≈hh (Bednarczyk 1991)

has reversibility in definition (hereditary property)

based on order isomorphisms between sets of events - not really
observations

Canonical equivalence on event structures:
characterisation as open map bisimulation with labelled partial orders as
the observations (Joyal, Nielsen, Winskel 1996).

We would like to characterise ≈hh using observations. Is it possible?

Irek Ulidowski (Leicester) CCR: part 1 21 / 48

Equivalences

History-preserving bisimulations

Let C,D ∈ Cstable and let the sets of configurations be CC ,CD.

Consider a relation R ⊆ CC × CD × P(EC × ED) such that R(∅, ∅, ∅) and
if R(X ,Y , f) then

X Y

X ′ Y ′

f

f ′
e e′

if f and f ′ are isomorphisms, then R is a weak history-preserving
(WH) bisimulation.

if additionally f ′ ↾ X = f , then R is a history-preserving (H)
bisimulation.

Irek Ulidowski (Leicester) CCR: part 1 22 / 48

Equivalences

if f , f ′ and f ′′ are isomorphisms and f ↾ X ′ = f ′′, where

X Y

X ′ Y ′

f

f ′
e e′ and

X Y

X ′ Y ′

f

f ′′
d

d ′

then R is a hereditary weak history-preserving (HWH) bisimulation.

if additionally f ′ ↾ X = f , then R is a hereditary history-preserving
(HH) bisimulation (Bednarczyk 1991).

Irek Ulidowski (Leicester) CCR: part 1 23 / 48

Equivalences

Hierarchy of equivalences

1. The Absorption Law holds only for H and WH

(a |(b + c)) + (a |b) + ((a + c) |b) = (a | (b + c)) + ((a + c) |b)

2. E below and F (E without red transitions) are only WH and HWH
equivalent.

E

a1

a2 a3
a4

b1

b2

b3

b4 Overall:

1 2HH

H HWH

WH

Irek Ulidowski (Leicester) CCR: part 1 24 / 48

Equivalences

Reverse bisimulation

Start with reverse interleaving bisimulation (≈ri−ib).
Match on labels, with reverse as well as forward transitions: if (X ,Y) ∈ R

if X
a
→C X ′ then ∃Y ′. Y

a
→D Y ′ and (X ′,Y ′) ∈ R ;

if Y
a
→D Y ′ then ∃X ′. X

a
→C X ′ and (X ′,Y ′) ∈ R .

if X
a
 C X ′ then ∃Y ′. Y

a
 D Y ′ and (X ′,Y ′) ∈ R ;

if Y
a
 D Y ′ then ∃X ′. X

a
 C X ′ and (X ′,Y ′) ∈ R .

We already saw that a |b 6≈ri−ib a.b + b.a.

The Absorption Law

(a |(b + c)) + (a |b) + ((a + c) |b) = (a | (b + c)) + ((a + c) |b)

holds for ≈h, but not for ≈ri−ib.

Irek Ulidowski (Leicester) CCR: part 1 25 / 48

Equivalences

Auto-concurrency

Reverse bisimulation is insensitive to auto-concurrency: a |a ≈ri−ib a.a

Certainly ≈hh (≈ri−ib.

Theorem (Bednarczyk 1991—prime event structures)

If no auto-concurrency then ≈ri−ib = ≈hh.

We improved this in the SOS 2009 paper to:

Theorem (stable configuration structures)

If no equidepth auto-concurrency then ≈ri−ib = ≈hh.

To cope with auto-concurrency, need to enhance observations.

steps

pomsets

depth

Irek Ulidowski (Leicester) CCR: part 1 26 / 48

Equivalences

Reverse Step bisimulation

Reverse step bisimulation (≈rs−sb) defined as (forward-only) step
bisimulation, with matching on reverse steps as well: if (X ,Y) ∈ R

if X
A
 C X ′ then ∃Y ′. Y

A
 D Y ′ and (X ′,Y ′) ∈ R ;

if Y
A
 D Y ′ then ∃X ′. X

A
 C X ′ and (X ′,Y ′) ∈ R .

We have ≈hh ⊆ ≈rs−sb (≈ri−ib.

Open Question (Bednarczyk 1991)

Does ≈rs−sb = ≈hh ?

Irek Ulidowski (Leicester) CCR: part 1 27 / 48

Equivalences

Counterexample

We discovered that ≈rs−sb 6= ≈hh.

E F
a1a1 a2a2 a3a3

b1b1 b2b2 b3b3

E F
a1a1

a2a2
a3a3

b1b1

b2b2

b3b3

11

22
33

44

55 66 77

88

99

1010
1111

1212
13

Irek Ulidowski (Leicester) CCR: part 1 28 / 48

Equivalences

A Hierarchy of equivalences

We made a detailed study bisimulations rX-Yb that combine reverse
observations X with forward observations Y. For example ri-ib, and rp-ib,
rp-pb, rp-h, ...

h

wh

pb

sb

ib

db

whpb

ri−h

ri−wh

ri−pb

ri−sb

ri−ib

ri−db

ri−whpb

rp−h

rp−wh

rp−pb

rp−sb

rp−db

rp−whpb

rp−ib

rs−h

rs−wh

rs−pb

rs−sb

rs−db

rs−whpb

rs−ib

h−h

h−wh

h−whpb

Irek Ulidowski (Leicester) CCR: part 1 29 / 48

Logics for Reversibility

Logics

We present modal logics which describe how processes can perform
both forward and reverse transitions

These logics correspond to true-concurrency equivalences on stable
configuration structures.

Irek Ulidowski (Leicester) CCR: part 1 30 / 48

Logics for Reversibility

Motivation

Interleaving bisimulation (IB) and
Hennessy-Milner logic (HML) equate a | b and
a.b + b.a but true-concurrency bisimulations
distinguish them.

We aim to extend HML so that it can
characterise true-concurrency bisimulations.

Reverse modalities are useful: a |b satisfies
〈a〉〉〈b〉〉〈〈a〉tt, while a.b + b.a does not. They
are not sufficient, especially in the presence of
auto-concurrency. 〈a〉〉〈a〉〉〈〈a〉tt is satisfied by
both a |a and a.a.

More complex modalities (both forward and
reverse) capture some equivalences up to
history-preserving bisimulation (H) but not
beyond.

HH

HWHH

WHPB

SB

IB

Irek Ulidowski (Leicester) CCR: part 1 31 / 48

Logics for Reversibility

Our solution

Keep track of the identities of events as they execute.

When we perform an event we declare an identifier (x , y , . . .) for that
event, allowing us to refer to it again when reversing it. Now we can write
〈x : a〉〉〈y : a〉〉〈〈x〉tt to say that we reverse the first a, and this is satisfied
by a |a, but not by a.a.

=⇒ can characterise H and HH.

Also, we add declarations (x : a)φ. We can now express 〈〈a〉φ by the
formula (x : a)〈〈x〉φ (where x does not occur (free) in φ).

=⇒ can characterise WH and HWH.

Irek Ulidowski (Leicester) CCR: part 1 32 / 48

Logics for Reversibility

Related work

Many papers on logics with reverse modalities.
Only backtracking allowed. The satisfaction
relations defined over computations (runs).

Nielsen & Clausen 1994: reverse event index
modality, reversing allowed. Characterisation of
HH stated.

Baldan & Crafa 2010: event identifiers,
complex forward-only modalities, no reversing.
Characterisation of SB, PB, H and HH.

HH

HWHH

WHPB

SB

IB

Irek Ulidowski (Leicester) CCR: part 1 33 / 48

Logics for Reversibility

Hennessy-Milner Logic

Action labels a, b, . . .

ϕ ::= tt | ff | ¬ϕ | φ1 ∧ ϕ2 | φ1 ∨ ϕ2 | 〈a〉〉ϕ | [a]] ϕ

We write diamond and box in a non-standard way, to emphasise that they
are forward modalities.

Remark

ff, ∨, [a]] can be derived. Alternatively, ¬ can be omitted.

Satisfaction relation: P |= 〈a〉〉ϕ iff ∃Q. P
a
→ Q |= ϕ

Theorem (Hennessy & Milner 1985)

HML characterises bisimulation (for image-finite labelled transition
systems)

Irek Ulidowski (Leicester) CCR: part 1 34 / 48

Logics for Reversibility

Forward-Reverse Logic

Let us add reverse modalities to get FRL:

ϕ ::= tt | ff | ¬ϕ | φ1 ∧ ϕ2 | φ1 ∨ ϕ2 | 〈a〉〉ϕ | [a]] ϕ | 〈〈a〉ϕ | [[a] ϕ

We can now make true-concurrency distinctions:

a |b |= 〈a〉〉〈b〉〉〈〈a〉tt a.b + b.a 6|= 〈a〉〉〈b〉〉〈〈a〉tt

Theorem

FRL characterises ri-ib bisimulation (for stable configuration structures).

Irek Ulidowski (Leicester) CCR: part 1 35 / 48

Logics for Reversibility

We already saw that a |b 6≈ri−ib a.b + b.a. A formula is 〈a〉〉〈b〉〉〈〈a〉tt.

The Absorption Law

(a |(b + c)) + (a |b) + ((a + c) |b) = (a | (b + c)) + ((a + c) |b)

holds for ≈h, but not for ≈ri−ib. A formula is

〈a〉〉([c]] ff ∧ 〈b〉〉〈〈a〉 [c]] ff)

Irek Ulidowski (Leicester) CCR: part 1 36 / 48

Logics for Reversibility

Step-Reverse Logic, Pomset-Reverse Logic

Step modalities: 〈A〉〉ϕ and 〈〈A〉ϕ. This gives us the logic SRL.
Pomset modalities 〈p〉〉ϕ and 〈〈p〉ϕ. This gives us the logic PRL.
Clearly SRL generalises FRL, and PRL generalises SRL.

a |a |= 〈{a, a}〉〉tt a.a 6|= 〈{a, a}〉〉tt

a |a 6|= 〈a < a〉〉tt a.a |= 〈a < a〉〉tt

Theorem

SRL characterises rs-sb bisimulation and PRL characterises rp-pb
bisimulation (for stable configuration structures).

Irek Ulidowski (Leicester) CCR: part 1 37 / 48

Logics for Reversibility

h

wh

pb

sb

ib

db

whpb

ri−h

ri−wh

ri−pb

ri−sb

ri−ib

ri−db

ri−whpb

rp−h

rp−wh

rp−pb

rp−sb

rp−db

rp−whpb

rp−ib

rs−h

rs−wh

rs−pb

rs−sb

rs−db

rs−whpb

rs−ib

h−h

h−wh

h−whpb

Irek Ulidowski (Leicester) CCR: part 1 38 / 48

Logics for Reversibility

Event identifiers

If we want to capture HH bisimulation, we need to have control over
which events are reversed. In the formula below we need to know whether
the first or second event labelled with a is being reversed.

〈a〉〉〈a〉〉〈〈a〉tt

However we do not want to talk about events directly, since that would
not be abstract enough. So we use event identifiers:

〈x : a〉〉〈y : a〉〉〈〈x〉tt

Here the event being reversed is the first a rather than the second a.

Example

a |a |= 〈x : a〉〉〈y : a〉〉〈〈x〉tt a.a 6|= 〈x : a〉〉〈y : a〉〉〈〈x〉tt

Irek Ulidowski (Leicester) CCR: part 1 39 / 48

Logics for Reversibility

Event Identifier Logic

Assume an infinite set of identifiers x which can be bound to any events.
Event Identifier Logic (EIL) is:

φ ::= tt | ¬φ | φ ∧ φ′ | 〈x : a〉〉φ | (x : a)φ | 〈〈x〉φ

We need to treat forward and backwards modalities differently:

Going forward, x is bound to a new event that has not yet occurred.

Reversing, x is interpreted as the event to which x is already bound.

Once x is reversed, there is no further access to the binding for x
(achieved via notion of permissible environment).

Thus, for example, x is bound in 〈x : a〉〉φ.

Irek Ulidowski (Leicester) CCR: part 1 40 / 48

Logics for Reversibility

Satisfaction

An environment ρ is a partial mapping from identifiers to events. We say
that ρ is a permissible environment for φ and a configuration X if
fi(φ) ⊆ dom(ρ) and rge(ρ ↾ fi(φ)) ⊆ X .

X , ρ |= 〈x : a〉〉φ ⇐⇒ ∃e,Y . X
e
→ Y with ℓ(e) = a and

Y , ρ[x 7→ e] |= φ

X , ρ |= 〈〈x〉φ ⇐⇒ ∃e,Y . X
e
 Y with ρ(x) = e and

Y , ρ |= φ (ρ is permissible for φ and Y)

Example

Consider ea < e′a. Is 〈x : a〉〉〈y : a〉〉〈〈y〉〈〈y〉tt satisfied?
After performing ea, e

′
a and reversing e′a we have

{ea}, [x 7→ ea, y 7→ e′a] 6|= 〈〈y〉tt since rge(ρ ↾ y) = {e′a} * {ea}.

X , ρ |= (x : a)φ ⇐⇒ ∃e. ℓ(e) = a and ρ[x 7→ e] |= φ

Irek Ulidowski (Leicester) CCR: part 1 41 / 48

Logics for Reversibility

Examples

If we are not careful with the handling of identifier bindings, we can make
the logic too strong. Consider

φ
df
= 〈x : a〉〉〈y : b〉〉〈〈y 〉〈〈x〉〈z : a〉〉¬〈y : b〉〉tt

If the three ys are all bound to the same event, we have

a.b + a.b |= φ a.b 6|= φ

This makes the logic more discriminating than HH bisimulation.
However, if we regard 〈y : b〉〉 as binding a fresh event, there is no
problem, as

a.b + a.b 6|= φ a.b 6|= φ

Irek Ulidowski (Leicester) CCR: part 1 42 / 48

Logics for Reversibility

More examples

1 〈x : a〉〉〈y : a〉〉〈〈x〉tt is satisfied by a |a but not by a.a.

2 [x : a]] [y : a]] 〈〈x〉tt is satisfied only by a |a but not by (a |a) + a.a.

Irek Ulidowski (Leicester) CCR: part 1 43 / 48

Logics for Reversibility

EIL characterises HH bisimulation

For closed φ we define C |= φ iff ∅ |=C φ.

Let C,D be stable configuration structures.

Then C and D are HH eqt iff for all φ ∈ EIL we have
C |= φ iff D |= φ:

HH

H HWH

WH

Theorem

EIL characterises HH bisimulation (for stable configuration structures).

The proof would still work with the logic without declarations (x : a)φ.

Next, we look for sublogics of EIL.

Irek Ulidowski (Leicester) CCR: part 1 44 / 48

Logics for Reversibility

A logic for History Preserving bisimulation

Reverse-only logic EILro:

φ ::= tt | ¬φ | φ ∧ φ′ | (x : a)φ | 〈〈x〉φ

This logic is preserved between isomorphic configurations, and
characterises configurations up to isomorphism.

EILh (no forward after reverse logic) is given as follows, where φr is a
formula of EILro:

φ ::= tt | ¬φ | φ ∧ φ′ | 〈x : a〉〉φ | (x : a)φ | φr

Theorem

EILh characterises H bisimulation (for stable configuration structures).

Irek Ulidowski (Leicester) CCR: part 1 45 / 48

Logics for Reversibility

A logic for Weak History Preserving bisimulation

We get from EILh to EILwh by simply requiring that all formulas of
EILwh are closed, where φrc is a closed formula of EILro:

φ ::= tt | ¬φ | φ ∧ φ′ | 〈a〉〉φ | φrc

We write 〈a〉〉φ rather than 〈x : a〉〉φ since φ is closed and in particular x
does not occur free in φ.

Also we omit declarations (x : a)φ since they have no effect when φ is
closed.

Of course declarations can occur in φrc .

Theorem

EILwh characterises WH bisimulation (for stable configuration structures).

Similarly, for HWH.

Irek Ulidowski (Leicester) CCR: part 1 46 / 48

Conclusions

Conclusions

We have reversed CCS using keys, predicates and fixed term
structure. Recently the π calculus was reversed with the help of keys.

A wealth of reverse bisimulations. We have strengthened
Bednarczyk’s result as much as possible:
in the absence of equidepth auto-concurrency, ri-ib is as strong as hh.

Logics: extensions of HML and the new Event Identifier Logic.
Simple logical characterisations of wh, h and hh bisimulations.

Irek Ulidowski (Leicester) CCR: part 1 47 / 48

Conclusions

References

Iain Phillips and Irek Ulidowski, Reversing Algebraic Process Calculi.
In FOSSACS 2006. Springer, LNCS 3921.

Iain Phillips and Irek Ulidowski, Reversing Algebraic Process Calculi.
The Journal of Logic and Algebraic Programming, 73, pp 70-96, 2007.

Iain Phillips and Irek Ulidowski, A Hierarchy of Reverse Bisimulations
on Stable Configuration Structures. Mathematical Structures in
Computer Science, vol 22, pp 333-372, 2012.

Iain Phillips and Irek Ulidowski, An Event Identifier Logic.
Mathematical Structures in Computer Science, vol 24. 2014

Irek Ulidowski (Leicester) CCR: part 1 48 / 48

	Reversing CCS
	Models of Computation
	Equivalences
	Logics for Reversibility
	Conclusions

